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1 Introduction

Cayley-graphs of groups are a fundamental tool in combinatorial group theory [28,29] and
serve as link between other fields like toplogy, graph theory, and automata theory, see, e.g.,
the results in [34, 35]. The concept of Cayley-graphs can be easily generalized from groups
to monoids: the monoid elements are the vertices and edges result from right-multiplication
with generators of the monoid. So far, Cayley-graphs of monoids received less attention
than Cayley-graphs of groups; their combinatorial properties were studied in [20-22,51]
and in [44, 45], Cayley-graphs of automatic monoids are investigated.

In a previous a paper [25] we have investigated the logical aspects of Cayley-graphs of
groups. Building on the seminal results of Muller and Schupp [34, 35], we have shown that
the Cayley-graph of a group G has a decidable MSO-theory if and only if G is context-free
(or equivalently, virtually-free). We have shown furthermore that the Cayley-graph of a
group G has a decidable first-order theory if and only if G' has a decidable word problem.

The results mentioned in the previous paragraph do not carry over to monoids, see,
e.g., Proposition 3.3. Our main results about the monoid case state the preservation of the
decidability of the first-order (resp. monadic second-order) theory under some well-known
algebraic constructions. In order to obtain these results, we use a construction that works
for arbitrary relational structures: In [50], Walukiewicz proved that the MSO-theory of
the tree-like unfolding (see Section 5.1) of a structure can be reduced to the MSO-theory
of the original structure; the original statement goes back to [42,43,46]. Using this deep
result, we prove in Section 6 that the class of finitely generated monoids, whose Cayley-
graphs have decidable MSO-theories, is closed under finite free products (Theorem 4.1(2)).
The same result also holds for first-order theories, in fact we will prove a more general
preservation theorem in this case. For this, we generalize tree-like unfoldings. This leads us
to the notion of a factorized unfolding: the tree-like unfolding of a structure A consists of
the set of words over the set of elements of A. This set of words is equipped with the natural
tree structure. Hence the successors of any element of the tree can be identified with the
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elements of A and can therefore naturally be endowed with the structure of A. Basically, a
factorized unfolding is the quotient of this structure with respect to Mazurkiewicz’s trace
equivalence, in fact, it is a generalization of this quotient (see Section 5.2). In general, the
MSO-theory of a factorized unfolding may be undecidable, even in case the underlying
structure has a decidable MSO-theory. On the other hand, the first-order theory of a
factorized unfolding can be reduced to the first-order theory of the underlying structure
(Theorem 5.6). Section 7 is devoted to the proof of this result. It uses a technique of
Ferrante and Rackoff [15] and a thorough analysis of factorized unfoldings using ideas from
the theory of Mazurkiewicz traces. Based on this result, we will prove in Section 6 that
the class of finitely generated monoids, whose Cayley-graphs have decidable first-order
theories, is closed under finite graph products (Theorem 4.1(1)). The graph product is a
well-known construction in mathematics, see, e.g., [17,18,48].

Our results on first-order theories of Cayley-graphs should be also compared with the
classical results about first-order theories of monoids: the first-order theory of a monoid M
contains all true first-order statements about M that are built over the signature containing
the monoid operation and all monoid elements as constants. The first-order theory of the
Cayley-graph of M can be seen as a fragment of the whole first-order theory of M in the
sense that only equations of the form za = y, with z and y variables and a« € M are
allowed. In this context we should mention the classical results of Makanin, stating that
the existential first-order theory of a free monoid [30] or free group [31] is decidable. In
[11] it was shown that under some algebraic restrictions, the decidability of the existential
first-order theory is preserved under graph products.

Some of the results of this paper can be also found in the extended abstract [26].

2 Preliminaries

For a binary relation — on some set, we denote by — the reflexive and transitive closure
of —. Let A be an alphabet (finite or infinite). The empty word over A is denoted by ¢.
For s € A* let |s| denote the length of the word s. The set of all a € A that occur in s is
alph(s). For s,t € A* we write s <t if s is a prefix of ¢.

Relational structures and logic The notion of a structure (or model) is defined as
usual in logic, see, e.g., [19]. Here we only consider relational structures. Sometimes, we
will also use constants, but a constant ¢ can be always replaced by the unary relation {c}.
Let us fix a relational structure A = (A, (R;)ics), where R; C A™ i € J. The signature
of A contains the equality symbol =, and for every i € J it contains a relation symbol of
arity n; that we denote without risk of confusion by R; as well. For B C A we define the
restriction A[B = (B, (R; N B™),cz), it is a structure over the same signature as A. Let
A\B = A[(A\B). Given further relations R;, j € K, JNK = (), we also write (A, (R;)ick)
for the structure (A, (R;)icsuk)-

Next, let us introduce monadic second-order logic (MSO-logic). Let V; be a countably
infinite set of first-order variables which range over elements of the universe A. First-
order variables are denoted z,y, z, ', etc. Let V, be a countably infinite set of second-



order variables which range over subsets of A. Variables from V, are denoted X,Y, Z, X',
etc. MSO-formulas over the signature of A are constructed from the atomic formulas
Ri(x1,...,xp,), x =y, and © € X (where i € J, x1,...,&pn,, 2,y € Vi, and X € Vy)
using the Boolean connectives —, A, and V, and quantifications over variables from V; and
Vs. The notion of a free occurrence of a variable is defined as usual. A formula without
free occurrences of variables is called an MSO-sentence. If p(z1,...,2,, X1,...,Xm) is an
MSO-formula such that at most the first-order variables among z1, ..., z, and the second-
order variables among X, ..., X,, occur freely in ¢, and aq,...,a, € A, Ay,..., A, C A,
then A = ¢(aq, ..., a,, A1, ..., Ap) means that ¢ evaluates to true in A if the free variable
z; (resp. X;) evaluates to a; (resp. A;). The MSO-theory of A, denoted by MSOTh(A), is
the set of all MSO-sentences ¢ such that A = ¢.

A first-order formula over the signature of A is an MSO-formula that does not contain
any occurrences of second-order variables. In particular, first-order formulas do not contain
atomic subformulas of the form x € X. The quantifier-depth of a first-order formula ¢ is
the maximal number of nested quantifiers in ¢. The first-order theory FOTh(A) of A is
the set of all first-order sentences ¢ such that A = ¢. With X, (A) (resp. II,(A)) (where
n > 0) we denote the set of all sentences in FOTh(A) of the form B;Bs--- B, : ¢, where
¢ is a Boolean formula, B; for ¢ odd is a nonempty block of existential (resp. universal)
quantifiers and B; for i even is a nonempty block of universal (resp. existential) quantifiers.

An important method for proving the decidability of logical theories are interpretations.
Let B be another relational structure with universe B. Then we say that A is MSO-
interpretable (resp. first-order interpretable) in B if there exist MSO formulas (resp. first-
order formulas) ¢ (z) and ¢;(z;) (i € J, T; is a tuple of first-order variables of length n;)
over the signature of B such that the structure (v(z)?, (¢;(Z;)?)ics) is isomorphic to A.
Here ¢(z)? = {b € B | B = ¢(b)} and ¢;(7;)® = {¢ € B% | B = ¢;(¢)}. It is easy to
see that if A is MSO-interpretable (resp. first-order interpretable) in B and MSOTh(B)
(resp. FOTh(B)) is decidable, then also MSOTh(A) (resp. FOTh(.A)) is decidable.

Undirected graphs An undirected graph is a relational structure G = (V, E), where V is
called the set of nodes and F C V x V is a symmetric and irreflexive edge relation (thus,
undirected graphs do not have self loops). A path of length n > 0 in G between u € V and
v € V is a sequence [vg, v1,...,v,] of nodes such that vy = u, v, = v, and (v;,v;41) € F
for all 0 < i < n. We write dg(u,v) for the distance between the nodes u,v € V|, i.e,,
dg(u,v) is the minimal length of a path between u and v. The r-sphere, centered at v € V,
is Sg(r,v) = {u € V | dg(v,u) < r}. For a k-tuple ¥ = (vq,...,v;) € V¥ we define
Sg(r,v) = Ule Sa(r,v;).

Word problems Let M be a finitely generated monoid and let I" be a finite generating
set for M, i.e., there exists a surjective monoid homomorphism A : I'* — M. The word
problem for M with respect to I is the set W(M, I") = {(u,v) € I x I'* | h(u) = h(v)}.
The following fact is well-known:



Theorem 2.1. Let M be a finitely generated monoid and let Iy and Iy be two finite
generating sets for M. Then W (M, I) is logspace reducible to W (M, I).!

Thus, the computational complexity of the word problem does not depend on the under-
lying set of generators.

Mazurkiewicz traces A detailed introduction to the theory of Mazurkiewicz traces can
be found in [12]. An independence alphabet is a pair (A, I), where A is a possibly infinite
set and I C A x A is symmetric and irreflexive (thus, it is an undirected graph). The
relation [ is known as the independence relation, its complement D = (A x A) \ [ is the
dependence relation. The pair (A, D) is called a dependence alphabet. For a € A, we let
I(a) ={be€ A| (a,b) € I} and D(a) = {b€ A | (a,b) € D} = A\ I(a). Let =, be the
smallest congruence on A* that contains all pairs (ab, ba) with (a,b) € I. The trace monoid
(free partially commutative monoid) M(A, I) associated to (A, I) is the quotient monoid
A*/=p; its elements are called traces. Trace monoids will be one of the few examples of
not necessarily finitely generated monoids in this work. Extreme cases are free monoids (if
D = A x A) and free commutative monoids (if D = {(a,a) | a € A}). Trace monoids were
first investigated in [8]. Mazurkiewicz [32] introduced them into computer science.

Let us fix a trace monoid M = M(A, I). The trace represented by the word s € A* is
denoted by [s];. The neutral element of M is the empty trace [¢];, briefly €. An element
a € A will be identified with the trace [a];.

Let t = [s]; € M. We define [t| = |s| (the length of t) and alph(¢) = alph(s). For two
traces t,u € M we write (¢, u) € I if alph(¢) xalph(u) C I. The trace t € M can be visualized
by its dependence graph D;. To define D;, choose an arbitrary word w = aas - - - ap, a; € A,
with ¢t = [w]; and define D, = ({1,...,n}, E,A), where £ = {(¢,7) | i < j,(a;,q) €
D} and A(i) = ;. If we identify isomorphic dependence graphs, then this definition is
independent of the chosen word representing ¢. Moreover, the mapping ¢ — D, is injective.
As a consequence of the representation of traces by dependence graphs, one obtains Levi’s
Lemma for traces, see, e.g., [12, p 74|, which is one of the fundamental facts in trace theory.
The formal statement is as follows.

Lemma 2.2. Let uy,...,Up,V1,...,0, € M. Then uiug - - Uy = v10s - - - vy, if and only if
there exist w; j; € M (1 <4 <m, 1< j <n) such that

— U = Wi W9 - Wi, for every 1 <7 < m,
— U = Wi W+ W, for every 1 < j < n, and
- (wigung) €TH1<i<k<mandn>j>£>1

The situation in the lemma will be visualized by a diagram of the following kind. The i—th
column corresponds to u;, the j—th row corresponds to v;, and the intersection of the i—th
column and the j-th row represents w; ;. Furthermore w; ; and wy, are independent if one
of them is left-above the other one.

! See, e.g., [40] for the notion of logspace reducibility.
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A consequence of Levi’s Lemma is that trace monoids are cancellative, i.e., usv = utv
implies s = ¢ for all traces s,t,u,v € M.

A subset L € M is recognizable if there exists a finite monoid S and a monoid homo-
morphism h : M — S, which may be assumed to be surjective, such that L = h~1(h(L)).
The class of recognizable subsets of M is a Boolean algebra. In case A is finite, it is easy to
see that L is recognizable if and only if the language {u € A* | [u]; € L} is a regular subset
of A*. Thus, every finite subset of M is recognizable. Moreover, the recognizable subsets of
M are closed under products [39].

We end this section with a brief discussion of trace rewriting systems, which generalize
semi-Thue systems [5] from words to traces. Formally, a trace rewriting system over M is a
subset R C M x M. Its domain is the set dom(R) = {s € M | 3t € M : (s,t) € R} and its
range is defined dually by ran(R) = {t e M | s € M: (s,t) € R}. We define the one-step
rewrite relation — g on M as follows: s —g t if there exist u,v € M and (¢,r) € R with
s = uwlv and t = urv. The Thue congurence <>g is the smallest equivalence relation on M
that contains —g; it is easily seen to be a congurence on the trace monoid M. Thus, we
can define the quotient monoid M/(;R, briefly M/g. In case I = (), i.e., M = A* R is called
a semi-Thue system over A.

The set RED(R) is the set of all traces ¢ € M such that ¢ —x s for some s. The set of
irreducible traces (with respect to R) is IRR(R) = M\RED (R). The sytem R is terminating
if there does not exist an infinite chain s; —g S0 = S3 =g -+ in M it is length-reducing
if [s| > |t| for all (s,t) € R and, finally, it is confluent if for all s,,u € M with ¢ p<~5 S u
there exists v € M with ¢ g v g< u. It is well-known that R is confluent if and only if
R is Church-Rosser, i.e., for all s,t € M, if s &g t, then s =g u gt for some u € M,
see [5, p 12]. Moreover, if R is terminating and confluent, then for every s € M there
exists a unique normal form NFg(s) € IRR(R) such that s 5 NFg(s) and s <5 ¢ if and
only if NFg(s) = NFg(t). Thus, if A and R are both finite and R is moreover terminating
and confluent, then the word problem for M/g is decidable. In general, it is undecidable
whether a finite length-reducing trace rewriting system is confluent, see [36]. This is in
sharp contrast to semi-Thue systems, and makes confluence proofs challenging.

3 Cayley-graphs

In this section we introduce the main concept of this work — Cayley-graphs of monoids,
and prove some basic results on these graphs.

Let M = (M, o,1) be a finitely generated monoid with identity 1 and let I" be a finite
generating set for M. The Cayley-graph of M with respect to I' is the following relational



Fig. 1.

structure:

C(M,F) = (M’ ({(U,U) | uoa= U})aef)

It is a directed graph, where every edge has a label from I" and {(u,v) | uoa = v} is the set
of a-labeled edges. We express the fact that there exists an a-labeled edge from z to y by
writing z o a = y or briefly za = y. Since I" generates M, C(M, I') is (weakly) connected.

Cayley-graphs of groups play an important role in combinatorial group theory [28], see
also the surveys of Babai [1] and Schupp [41]. On the other hand, only a few papers deal
with Cayley-graphs for monoids. Combinatorial aspects of Cayley-graphs of monoids are
studied in [20-22,51]. In [44,45], Cayley-graphs of automatic monoids are investigated.
The work of Calbrix and Knapik on Thue-specifications [7,24] covers Cayley-graphs of
monoids I/ with R terminating and confluent as a special case.

Figure 1 and 2 depict some typical Cayley-graphs. Figure 1 shows the Cayley-graph of
{a, b}/ ((ab,e)}, With respect to the generating set {a, b}. Figure 2 shows the Cayley-graph
of {a, b}*/{(ab,baa)y With respect to {a,b}. The concrete shape of the Cayley-graph C(M, I)
depends heavily on the chosen set of generators I'. Nevertheless, and similarly to the word
problem, the chosen generating set has no influence on the decidability (or complexity) of
the first-order (resp. monadic second-order) theory of the Cayley-graph:

Proposition 3.1. Let Iy and I, be finite generating sets for the monoid M. Then FOTh(C(M, 1))
is logspace reducible to FOTh(C(M, I3)) and the same holds for the X, -, II,,-, and MSO-
theories.

Proof. We prove the statement for the first-order theories. The same construction also
applies for the other theories mentioned in the proposition. The only difficulty is to find
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a logspace-reduction that preserves the quantifier alternation depth. Given a first-order
sentence ¢; over the signature of C(M, I1) we construct a first-order sentence ¢ over the
signature of C(M, I3) such that C(M, I) = ¢y if and only if C(M, I3) = ¢, as follows:

For a € I7, fix some letters bf,...,b% € I, such that a and bf...b% describe the same
element of the monoid M. Define the first-order formula 6(z, (z%) wer, ) as
1<k<ng

0(z, (z3) aery ) = /\ xzb = z§ A /\ xh_ by = x§.

1<k<ng
a€l a€ll
1<k<ng

Then we replace simultaneously in ¢» every quantification 3z : ¢ (resp. Vx : 1)) by

3.7: 3 a€l xz B

1<k<ng ) 1<k<ng
resp. Vo V aes, af 1 0(z, (23) aery ) — 1.
1<k<nq 1<k<na

Here, the z§ are new variables that do not appear in ¢;. Finally, to obtain ¢, we replace
in the resulting sentence every occurrence of an atomic predicate ra = y by z; = y. It
is easy to see that C(M,I) = ¢ if and only if C(M, I3) = ¢o. Moreover, if ¢; is in
prenex normal form and we transform ¢, into prenex normal form (for which we only have
to pull out all quantifiers), then the two sentences have the same quantifier alternation
depth. Finally, note that the sentence ¢, can be produced using only logarithmic space, an
observation that completes the proof of this proposition. O

Whenever the specific generating set I’ will be of no importance, we will briefly write
C(M) instead of C(M,I"). The next proposition states a simple connection between the
word problem and the first-order theory of the Cayley-graph.

Proposition 3.2. Let M be a finitely generated monoid such that X,(C(M)) is decidable.
Then the word problem for M is decidable.



Proof. Choose a finite generating set I' for M. Two given words u = agpa; - - - amy—1 and
v = boby - - - bp—1, Where a;,b; € I', represent different elements in M if and only if there
exists x € M such that the (unique) paths in C(M, I') starting in z and labeled by u and v,
respectively, end in different nodes. This fact can be easily expressed by an Y;-sentence of
first-order logic:

To = Yo A .'L'm?éyn/\

0<i<m 0<i<n
g

Note that Book [4] has shown that the word problem for a monoid I'*/g, where I" and R
are finite and R is length-reducing and confluent, can be solved in linear time. Hence the
following proposition shows that the converse implication of Proposition 3.2 becomes false.

Proposition 3.3. There exists a fized finite, length-reducing, and confluent semi-Thue
system R over a finite alphabet I' such that X1 (C(I™*/r)) is undecidable.

Proof. By [37, Thm. 2.4] there exists a fixed finite, length-reducing, and confluent semi-
Thue system R over I" such that the common right-multiplier problem is undecidable for
I'*/g,? which is the following problem:

INPUT: Words u,v € I'™*

QUESTION: Does there exist z € I'* with zu &g zv?
But this is a Xj-property of the Cayley-graph of I'*/g that can be constructed effectively
from u and v. This proves the proposition. O

The next result was shown in [10]. A semi-Thue system R over I is left-basic if it satisfies
the following two conditions:

— if £ € dom(R), r € ran(R), and r = ufv, then u = v = ¢.
— if £ € dom(R), r € ran(R), ur = v, and |£| > |ul, then v = €.

A semi-Thue system R over a finite alphabet I is regular if R can be written as R =
Ui, Li x R; where both L; C I'* and R; C I'* are regular for 1 <i <n.

Proposition 3.4. Let R be a terminating, confluent, left-basic, and regular semi-Thue
system R over a finite alphabet I'. Then MSOTh(C(I™*/g)) is decidable.

4 Graph products

In this section we will introduce graph products of monoids. The graph product con-
struction generalizes both the free product and the direct product. Graph products were

2 In [37, Thm. 2.4] undecidability is stated for the common left-multiplier problem, but by reversing the words in
R, undecidability is also obtained for the common right-multiplier problem.
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introduced in [17]. Our main result will state that the decidability of the first-order the-
ory (resp. MSO-theory) of the Cayley-graph is preserved under graph products (resp. free
products). Other closure results for graph products can be found for instance in [18, 27, 48,
49].

Let (X, Is) be a finite independence alphabet, i.e., X is finite, and let M, = (M,, o4, 1,)
be a finitely generated monoid for every o € X. Let A, = M, \ {1,}, where w.l.o.g. A,NA,
for 0 # 7. Define an independence alphabet (A, I) by

A:UAU and I = U A, x A,

ceX (o,7)Elx
Let R, for 0 € X and R be the following trace rewriting systems over M(A, I):
R, ={(ab,c) | a,b,c € Ay,a0,b=c} U {(ab,e) | a,b € Ay,a0,b=1,}

R=|]JR,.

ceXr

Then the graph product P(X, I, (My),cx) is the quotient monoid M(A, I)/k. Special
cases are the free product *,ex M, (if I, = ) and the direct product [[,.x M, (if Iy =
(X x )\ {(0,0) | 0 € X}). If every M,, is generated by I, then from the definition of P
it is obvious that P is generated by I' = | J, ., I, In fact, if the monoid M, is isomorphic
to I} /s, , then, using Tietze transformations, it is easy to see that P is isomorphic to I/,
where S = |, .y, So U {(ab,ba) | a € I5,be I, (0,7) € Is}.

The following theorem is the main result of this section. For technical reasons, we will
add in the further discussion the neutral element of a monoid as a constant to the Cayley-
graph. Thus, define the rooted Cayley-graph of a finitely generated monoid M as the rooted
graph (C(M), 1), where 1 is the neutral element of M.

Theorem 4.1. Let P =P(X, Iy, (M,)sex), where M, is finitely generated.

(1) If FOTh(C(M,), 1,) is decidable for all o € X, then also FOTh(C(P), 1) is decidable.
(2) If I = 0 and MSOTh(C(M,), 1,) is decidable for all o € X, then also MSOTh(C(P), 1)
15 decidable.

Before we go into the details of the proof of Theorem 4.1 (that can be found in Section 6)
let us first state some consequences and limitations.

In [25] the authors have shown that for a finitely generated group G, FOTh(C(G)) is
decidable if and only if the word problem of G is decidable. Together with Statement (1)
in Theorem 4.1 we obtain the following result:

Corollary 4.2. Let M be a graph product of automatic monoids and groups with decidable
word problems. Then FOTh(C(M)) is decidable.

Statement (1) in Theorem 4.1 does not generalize to MSO-theories:

Proposition 4.3. Let P = P(X, Iy, (My)ses), where M, is nontrivial and finitely gen-
erated by I',. If MSOTh(C(PP), 1) is decidable, then:

9



— (X, Ix) does not contain an induced cycle of length 4 (also called C4),

— if (0,7) € Iy and M, is infinite, then M, is finite,

— if (0,01), (0,09) € Iy, 01 # 09, and M, is infinite, then (o1,09) € Is, and
— MSOTh(C(M,), 1,) is decidable for every o € X.

Proof. 1f one of the first three conditions is not satisfied, then P contains a submonoid of
the form M; x M,, where both M; and M are infinite (note that we assume that every
M, is nontrivial). Since C(M;) is infinite and every node has finite outdegree, we find an
infinite path a;; — a;2 — --- in C((M;). In M; x My C P, these two paths generate an
infinite grid. Hence the MSO-theory of C(P) is undecidable, see, e.g., [16].

Next we show that MSOTh(C(M,), 1,) is decidable for every o € X' in case MSOTh(C(P), 1)
is decidable. Note that M, is the least subset of (C(IP), 1) containing 1 that is closed under
a-successors for a € I',; hence M, is MSO-definable in (C(IP), 1). Since an MSO sentence ¢
holds in (C(M,), 1,) if and only if its restriction to M, C P holds in (C(P), 1), the result
follows. O

In order to prove Theorem 4.1, we will introduce in the next section two general unfolding
operations that work for arbitrary relational structures.

5 Unfoldings

5.1 Tree-like unfoldings

In [42] Semenov introduced the following construction, which he attributes to An. A. Much-
nik and which generalizes a construction from [43, 46].

Definition 5.1. Let A = (A, (R;)1<i<x) be a relational structure with finitely many re-
lations, where the relation R; has arity n;. On the set of finite words A*, we define the
following relations:

—~

R, = {(uay,uay, ..., uay,) | u € A, (a1, a9, ...,a,,) € R;}
suc = {(u,ua) | u € A%, a € A}
cl={(ua,vaa) |u € A*,a € A} 3

The relational structure A = (A*, (E)lgigm suc, cl) is called the tree-like unfolding of A.

One can think of the structure A as a tree (A*, suc) together with some additional relations.
Any tuple of elements of A* that appears in one of the additional relations is “local”: the
distance between any two entries in the tree (A* suc) is at most 2. The term tree-like
unfolding comes from the fact that A is an extension of the tree (A*, suc).

In [42], Semenov also sketched a proof of the following result, which he attributes to
An. A. Muchnik. A complete proof was given by Walukiewicz [50].

3 «c]” stands for “clone”.
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Theorem 5.2 (cf. [50]). MSOTh(A) can be reduced to MSOTh(A).

The relations of the tree-like unfolding are instances of a more general construction, which
will be crucial for our notion of factorized unfoldings: Let ¢ be a first-order formula over
the signature of A with )" | k; free variables, where k; € N (k; = 0 is allowed). For words
Ui = ;1050 Qg (a;; € A) of length &; (1 <1 < n) we write A = @(uy, ug, ..., uy,) if

A ): (p(al’l, .. .,al’kl, CLQ,I, .. .,0,2’]”, .. .,an’l, ceay a’n,kn)-

An n-ary relation R over A* is k-suffix definable in A if there are k,...,k, < k and a
first-order formula ¢ over the signature of A with > k; free variables such that

R = {(uu1, uug, ..., uuy) | u,u; € A%, |u;| = ki, A E o(u1,ug, - ., uy) }-

Note that a formula ¢ with m free variables defines many different k-suffix definable rela-
tions, namely one for each partition of the number m.

All relations of A are 2-suffix definable in A. On the other hand, there exist 2-suffix
definable relations such that adding them to A makes Theorem 5.2 fail: To see this, let

cp = {(ua,uba) | u € A* a,b € A},

which is 2-suffix definable in A.* Recall that < denotes _the prefix order on A*; thus it is
the reflexive transitive closure of the relation suc from A and therefore MSO definable in

A.

Proposition 5.3. Let S = {(n,n+ 1) | i € N} be the successor relation on N. Then
MSOTh(N, S) is decidable but FOTh(N*, S, <, cp) is undecidable.

Proof. The decidability of MSOTh(N, S) was shown by Biichi [6]. For the undecidability of
FOTh(N*, S , <, cp) recall that it is undecidable whether a given two-counter machine (with
zero-tests), started with empty counters, finally terminates. Thus, let us fix a two-counter
machine CM with initial state gy and final state ¢ # ¢o. We will construct a first-order
sentence ¢erg such that (N*) S , <, ¢p) = ¢denm if and only if CM, started in the configuration
(g0, 0,0) terminates. We can assume that the state space @ of CM is {1,..., A} for some
A € N. Then a computation of CM starting in (go, 0,0) can be encoded by a sequence of
the form qymonog0q min10---q mgn, € N* such that ¢; € Q, m;,n; > 1, mg =ng =1,
and (g1, miy1 — 1,m;41 — 1) is a successor configuration of (¢;, m; — 1,n; — 1) for CM.
First, note that the relation suc from the tree-like unfolding is first-order definable
in (N*, <). For a fixed n € N, it is also easy to write down a formula ,(z) such that
(N, 5, <,¢cp) = ,(w) if and only if w = vn for some v € N*: We start with 1o(z) =
-3y : §(y,x) A Tz : suc(z,z) and define inductively ¢, (z) = 3y : ¥, 1(y) A §(y,a:)
Next, using the prefix relation =< and the formulas ¢, for 0 < n < A, we can construct
a first-order formula ¢¢(z) such that (N*,S, < cp) E éo(w) if and only if w € N* has

1 “cp” stands for “copy”.
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the form ¢omong0gimini0---qmpne with ¢ € @, m;,n; > 1, my = ng = 1, and
g = ¢y. Furthermore, we claim that there exists a formula ¢;(x) such that for every
w € N* we have (N*,g, =<,¢cp) E &1 (w) if and only if for every prefix vpkflOgmn < w
with p,k, ¢, q,m,n > 1, the configuration (¢,m — 1,n — 1) is a successor configuration
of (p,k —1,£ — 1), i.e., one of the finitely many transition rules of CM transforms the
configuration (p,k—1,£—1) into (g9, m—1,n—1). Let us consider one such transition rule,
saying, e.g., that if CM is in state ¢; € @, then CM can move into state ¢go € () and add
1 to the first counter. It suffices to construct a formula 6(x) such that for every word w of
the form vpmn0qgk £ with v € N*, we have (N*,§,j,cp) E 6(w) if and only if p = ¢,
q=¢q, L =n,and k =m+ 1.

It is easy to express p = ¢; and ¢ = ¢o using 1), and 1),,. Thus, it remains to express
k =m+1 (and ¢ = n, which can be done analogously): This is the case if and only if there
are z;,vy; € N* for 0 <4 < 4 such that

(suc(z; 1, z;) Nep(Yi1, ¥i)) -

suc(z4, w) A Ys = x4; A §($0,y0) A
=1

4
1=

This formula expresses that

(1) xq, 1,0, x3, T4, w is a successor sequence, i.e., ty =vpmn0gk, x3=vpmnOgq, ...,
To =vpm, R

(2) yo =wvp(m+ 1) because of S(x¢,yo),

(3) ys = x4, 1€, ys =vpmnOqk,

(4) and y;_; is obtained from y; by deleting the penultimate letter, i.e., y3 = vpmnO0k,
Yo =vpmnk,yy =vpmk,and yo=vpk.

Since vpk = yo = vp(m + 1) the formula expresses indeed £ = m + 1. Other transitions
can be dealt with similarly. Hence, we have (N*, S ,=,cp) = 3zt go(z) A ¢1(x) if and
only if CM reaches the final state ¢; from the initial configuration (go, 0,0). This proves
the theorem. 0

Since =< is MSO-definable in the presence of suc, the previous proposition implies that
MSOTh(N*, S, suc, cp) is undecidable. Thus, the presence of the relation cp makes Walukiewicz’s
result fail.

Recall that the underlying set of the tree-like unfolding of a structure A is the set of
all finite words over the carrier set of A. In factorized unfoldings that we introduce next,
this underlying set consists of Mazurkiewicz traces.

5.2 Factorized unfoldings

Let (A,I) be an independence alphabet. For an n-ary relation R over A* we define its
I-quotient
R/I = {([Ul]j, ceey [Un][) | (ul, ceey U'n) € R}

For instance, < /r is the prefix order on traces.
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Definition 5.4. Let A be a relational structure with carrier set A. Let furthermore

— I C A x A be an independence relation that is first-order definable in A,

—n:M(A,I) — S be a monoid homomorphism into some finite monoid S such that
n1(q) N A is first-order definable in A for every q € S, and

— R; be a k;-suffiz definable relation in A for 1 <1 < k.

Then the structure B = (M(A, I), (17 (q))qes, (Ri/1)1<i<x) i a factorized unfolding of A,
it is also called the factorized unfolding of A corresponding to I, n, and (R;)1<i<-

Note that in contrast to the tree-like unfolding there are many different factorized unfold-
ings of A.

The notion of a factorized unfolding is a proper generalization of the tree-like unfolding,
also in case I = () in Definition 5.4: By Proposition 5.3, the relation cp cannot be defined
in the tree-like unfolding A, but since it is 2-suffix definable it may be part of a factorized
unfolding. On the other hand, for the relations n7!(g) in the above definition we have the
following:

Lemma 5.5. Let MSOTh(A) be decidable and n: A* — S be a monoid morphism into a
finite monoid S such that n='(q) N A is MSO-definable in A for every ¢ € S. Then also

-~

MSOTh(A, (1 '(q))4es) is decidable.
Proof. Since P, :=n~'(q) N A is MSO-definable in A, the structure B = (A, (P,)4es) has a

decidable MSO-theory. Hence, by Theorem 5.2, also MSOTh(g) is decidable and it suffices
to prove that 7 '(q) C A* is MSO-definable in B. But z € 5 !(g) if there is a partition
(Xs)ses of the universe A* with € € X; (where 1 is the unit of the monoid S), z € X, and,

for all (y,z) € suc:if y € X, and z € ﬁ:, then z € 1551\3 O
The following theorem is our main result for factorized unfoldings.

Theorem 5.6. Let A be a relational structure and let B be the factorized unfolding of A
corresponding to I, n, and (R;)1<i<x, where {I(a) | a € A} C 24 is finite. Then any first-
order sentence ¢ of quantifier alternation depth d over the signature of B can be transformed
effectively into a sentence 6 of quantifier alternation depth d + O(1) and size 22200 pper

the signature of A such that B = ¢ if and only if A = 6.

Remark 5.7. We postpone the lengthy proof of this theorem to Section 7. It will also show
that not only the size of # is bounded doubly exponential in the size of ¢, but also the
time needed to construct # from ¢ is bounded doubly exponential in |¢|.

In case A is finite, a much simpler proof using automatic structures is given as Theo-
rem 8.2. By Theorem 8.1 below, the finiteness of {I(a) | a € A} is necessary for Theorem 5.6
to hold.

Corollary 5.8. Let A be a relational structure with a decidable first-order theory. Let B
be the factorized unfolding of A corresponding to I, n, and (R;)i1<i<x, where {I(a) | a €
A} C 24 is finite. Then FOTh(B) is decidable.
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Remark 5.9. Let (R;);en be a list of all relations that are k-suffix definable in A for some k €
N. Moreover, let (L;);en be a list of all subsets 7 (q) C M(A, I) such that n : M(A4,1) — S
is a homomorphism into a finite monoid S, ¢ € S, and n~!(p) N A is first-order definable
in A for every p € S. Note that every L; is recognizable. Then also the first-order theory
of B = (M(A,I),(L;)en, (Ri/r)ien) is decidable. The important point is that any first-
order sentence over the signature of B can mention only finitely many relations R;/r and
L;. Thus, it suffices to work in a suitable reduct of B with only finitely many relations,
which can be handled by Theorem 5.6 provided the lists above are recursive enumerations.
This is no problem for the list (R;);en since any such relation is uniquely given by a tuple
(k1,ka, ..., k,) of natural numbers and a first-order formula ¢ with k; + --- + &, free
variables. For the languages L;, we list all finite monoids S with distinguished element
g € S and all tuples (g,)pes of first-order formulas with one free variable such that

(1) the sets {a € A| A = ¢p(a)} for p € S form a partition of A and
(2) if A= @p,(a) A pp,(b) and (a,b) € I, then p1ps = pop; in S.

These tuples can be enumerated since the first-order theory of A is decidable and I is first-
order definable in A. By the second requirement, any such tuple encodes an homomorphism
n from M(A, I) into S satisfying n7'(p) NA = {a € A | A E ¢y(a)}. Hence from this
enumeration of tuples, we obtain an effective enumeration of the sets L; as required.

6 Proof of Theorem 4.1

Using Theorem 5.2 and Theorem 5.6, we will give a proof of Theorem 4.1 in this section.
Let us fix a graph product P =P(X, Iy, (M;)sex) for the further discussion. Define A,, A,
I, R,, and R as in Section 4. The crucial fact for our further investigation is the following:

Lemma 6.1. The trace rewriting system R over M(A, I) is confluent.

Proof. Since R is terminating, it suffices by Newman’s Lemma [38] to show that R is locally
confluent, i.e., for all s, 51, s9 € M(A, I) with s; g s —g sy there exists s’ € M(A, I') with
$1 g 8 RE so.

Thus, assume that s — g s; and s = so. Hence, s = t;a;b;u; and s; = t;r;u; forv =1, 2,
where (a;b;,7;) € R. Thus, r; € AU {e}. By applying Levi’s Lemma 2.2 to the identity
t1a1b1u1 = toasbouy, we obtain the following diagram:

Ug ||W2| 1 |V2
agbe||p2| T |@2
lo |v1| p1 w1

[ £ fasbyfu

Thus, (wy,ws) € I. For the further arguments it is easy to see that we may assume v; =
v9 = €. Assume that a;,b; € A,,. Let us first consider the case t # €. Thus, 01 = 09 = 0,
r1,79 € Ay U {€}, and (c,w;) € I for all ¢ € A, and ¢ = 1,2. Moreover, since (py,ps) € [
but both traces only contain symbols from A,, we have p; = ¢ or p, = ¢ and similarly
g =corq =c¢c.If p =py = q = q = ¢ then s; = s5. Otherwise, since a1b; cannot be a
proper factor of asbs and vice versa, we obtain up to symmetry the following diagram:
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ug |wa| by
a/2b2 Q9 bg =ai| €
ty || € € |lwy

o] o ]

Thus, s1 = asworiw; = wiasriwy and sy = wiryweb; = wyrebiwy. Finally, by definition of
the system R, it follows that aor; and ryb; can be reduced to as o, by 0, by = a9 0, a1 04 b1.
This concludes the case ¢ # €.

Now assume that ¢ = ¢. Thus, we have the following diagram:

Uz |W2| 1 | €
asba||p2| € |qo
ta || €| p1 |un

[t faubilon

If also p; = ¢, i.e.,

Ug ||W2 albl g

asba||p2| € |qo
to ||l €| € |wy

[t faubilon

then (wige,a1) € I implies (wy1qe,71) € I. We have to show that s; = powsriwige and
S9 = wiTewWea1b; can be reduced to the same trace. We have sy —p wirqwyr;. Moreover
with the independencies listed above, we obtain

81 = PoWoTl1W1Qq2 = PoWoW1GeT1 = W1P2GaWeT —r W1T2WaT1.

If one of the traces ps, q1, or ¢y is empty, then we can argue analogously. Thus, we may
assume that pi, po, ¢1, and ¢ are nonempty. It follows p; = a1, g1 = by, ps = as, and
go = by. Then all traces from {ws, ws, a1by, asbs} are pairwise independent, from which it
follows again easily that s; and sy can be reduced to wiwsqrirs. O

Since R is also terminating, the previous lemma implies that P is in one-to-one correspon-
dence with IRR(R) C M(A, I), which is the set of all traces that do not contain a factor
of the form ab with a,b € A, for some o € X.

For the further consideration, assume that M, is finitely generated by I, C A,. Then
PP is finitely generated by I" = |J, .5, I'»- Our next goal is to define the rooted Cayley-graph
(C(P, I'),1) within the trace monoid M(A, I). For a € I', let us define the edge-relation

F, = {(s,t) € IRR(R) x IRR(R) | sa > t}.
Since P =2 M(A, I)/r and R is confluent and terminating, we obtain the following lemma:
Lemma 6.2. (IRR(R), (Fu)acr),€) is isomorphic to (C(P,I"),1).

For a trace t € M(A, I) let max(t) ={a € A |Ju € A* : t = [ua];}.
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Lemma 6.3. For s,t € IRR(R) C M(A,I) and a € I, C A, we have (s,t) € F, if and
only if in M(A, I):

— t = sa (and thus max(s) N A, = (), or
— s=tbforbe A, and bo, a = 1,, or
— s=ub foru € IRR(R), b€ A, bo,a=c# 1,, and t = uc.

Proof. If one of the three cases above holds, then it is easy to see that indeed sa =g t, i.e.,
(5,t) € F,. Now assume that sa =5 t € IRR(R). If t # sa, then sa —g v 5 t for some
trace v. Thus, there exist 7 € X, (bb',7) € R,, and s1, s9 € M(A, I) such that sa = s1bbs,.
By applying Levi’s Lemma to this identity and using s € IRR(R), we obtain the following
diagram:

S21(|S9 g
belbla =1V
S1||S1 g

RO

Thus, 7 = o and (a, s2) € I, which implies also (b, so) € I. Thus, s = ub, for u = s18,. If
r =e¢,ie,bo,a=1,, then v = u € IRR(R). Thus, t = u and s = tb, i.e., the second
case from the lemma holds. On the other hand, if »r = bo, a = ¢ # 1,, then v = uc,
which again belongs to IRR(R) (otherwise, since b,c € A,, also s = ub € RED(R)). Hence
t=v =uc. O

We now define a structure

A = (A; (AO')0'627 (Ea)aefa (a’)aEF)7 (1)

where for a € I,, 0 € X, E, consists of all pairs (z,y) € A, X A, such that z o, a =y in
M. Thus, A is the disjoint union of the restricted Cayley-graphs C(M,, I';)\{1,}, where
moreover every generator a € I, is added as a constant, and every A, C A is added as
a unary predicate. We will apply Theorem 5.2 and 5.6 to the structure A. For this, we
now define a suitable factorized unfolding of A. First, note that the independence relation
I C Ax A s first-order definable in A using the unary predicates A, and that {I(a) | a € A}
is finite: If a,b € A,, then I(a) = I(b). In order to define a suitable homomorphism
n:M(A,I) — S into a finite monoid S, let us consider the finitely generated trace monoid
M(X, Is;). The closure properties of recognizable trace languages (see Section 2) imply that

L=M(Z,Ix)\ | M(Z, Is)ooM(Z, Iy)

ceXy

is recognizable. Hence, there exists a homomorphism h : M(X, I;) — S into a finite monoid
S and a subset F' C S such that L = h~'(F). Now define g : A — X by g(a) = o ifa € A,.
We can extend g homomorphically to g : M(A,I) — M(X,I5). Let n = g o h. Then
n ' (F) = IRR(R). Note that for every q € S, the set n7'(¢q) N A, is either empty or A,.
Thus, every set n!(g) N A is first-order definable in A.
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From the previous discussion it follows that the structure

B = (M(A,I), 7 (q))ges» Su¢, (Ao /1)oess (Bafi)acrs (@/1)acr) 2)

(see Section 5.1 for the definition of the operator™) is a factorized unfolding of A.°> We
next present a first-order interpretation of the rooted Cayley-graph (C(P,I"),1) in B.

Lemma 6.4. (C(P,I"),1) is first-order interpretable in B.

Proof. By Lemma 6.2 it suffices to show that (IRR(R), (Fy)acr,€) is first-order inter-
pretable in B. First, recall that IRR(R) = 7~ (F). Moreover, ¢ is the only trace ¢ such that
there is no s with (s,t) € suc. Finally, by Lemma 6.3 we have (s,t) € F, for s,t € IRR(R)
and a € I, if and only if in B:

— (s,1) € suc, 3¢A0_/1, and ¢ € a/r (ie., t = sa) or

— (t,s) € suc, t & A, o1, S € AU/I, but there is no u with (s,u) € E, /1 (note that
if s € A, o/, 1., s = vb with b € A,, but there is no u with (s,u) € E, /1, then
bo,a=1,), or

— (s,t) € B, /1.

This proves the lemma. O

Now we can finish the proof of Theorem 4.1. Assume that M, is finitely generated by
I, € My \ {15}. Thus, P is finitely generated by I = {J, .5, I.

Let us first prove (1) from Theorem 4.1. If FOTh(C(M,, I';), 1,) is decidable, then, since
every constant a € I is first-order definable in the rooted Cayley-graph (C(M,, I,),1,),
also the structure (C(My, I5)\{1s}, (¢)ser,) has a decidable first-order theory. By the
Feferman-Vaught Theorem [13], the same holds for the disjoint union of these structures
with the unary predicates A, = M, \ {1,} added. But this is precisely the structure
A from (1). We can therefore apply Corollary 5.8 and obtain that FOTh(B) is decidable.
Since (C(P, I'), 1) is first-order interpretable in B (Lemma 6.4), it follows that the first-order
theory of (C(IP), 1) is indeed decidable.

Now assume that I = (), i.e., M(A, I) = A*. The argumentation is similar to the first-
order case: If MSOTh(C(M,, I,),1,) is decidable for every o € X, then also MSOTh(.A)
is decidable, [43]. Hence, by Lemma 5.5, also MSOTh(A, (n7(q))qes) is decidable. But
the structure B from (2) (for I = ) is a reduct of this structure. Hence, MSOTh(B) is
decidable, and the result follows again from Lemma 6.4. Note that the cl-predicate from
A is actually not needed here. This concludes the proof of Theorem 4.1.

Remark 6.5. Concerning the complexity of FOTh(C(P), 1), note that Theorem 5.6 (more
precisely Remark 5.7) allows us to reduce FOTh(C(P),1) in doubly exponential time to
FOTh(A). Recall that A is essentially the disjoint union of the Cayley-graphs of the
monoids M,. To the knowledge of the authors, all known proofs for decomposition the-
orems (in the style of Feferman-Vaught’s Theorem) that allow to reduce the theory of a

® Here we identify the constant a with the unary relation {a}, thus @ = A*a.
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disjoint union (or direct product) to the theories of the factors, lead to a nonelementary
blow-up in terms of complexity. Therefore, we are only able to give a nonelementary up-
per bound for FOTh(C(P), 1) even if all the theories FOTh(C(M,), 1,) can be decided in
elementary time.

For monadic second-order logic the situation is clear: Note that C(Z/2Z) is a graph
with two nodes, thus its monadic second-order theory is in PSPACE (it is in fact PSPACE-
complete). But in C(Z /27 x Z/27) we can define Z with the successor relation, which has
a nonelementary MSO-theory [33].

7 Proof of Theorem 5.6

We have to translate a first-order sentence ¢ over the signature of the factorized unfolding
B into an equivalent one over the basic structure A. In a first step, we show how to restrict
quantifications in ¢ to “short traces”. This reduction can be found in Section 7.3, it uses
a method by Ferrante and Rackoff whose essence is described in Section 7.2. The precise
notion of “short trace” uses the concept of Foata’s normal form and can be found in
Section 7.1. After this reduction to short traces, i.e., after the translation of ¢ into a local
sentence, the local sentence is tranformed into an equivalent one over the signature of A,
see Section 7.4 for the details.
For the remainder of this section, let us fix the factorized unfolding

B = (M(A, I),(n7(q))ges: (Ri/1)1<i<) (3)
of A. Recall that

— I C A x A is first-order definable in A,

— n:M(A, I) — S is a monoid homomorphism into a finite monoid S such that n~'(g)NA
is first-order definable in A for every ¢ € S, and

— R, is a k;-suffix definable relation in A for 1 < i < k.

Assume moreover that there are only finitely many different sets I(a) for a € A.

7.1 Foata normalforms

An (A, I)-clique is a subset C C A such that (a,b) € I for all a,b € C with a # b. Since
{I(a) | @ € X'} is finite, every (A, I)-clique is finite. Thus, for an (A4, I)-clique C, we can
define a unique trace [C] = [a1as - - - a,];, where ay, a9, ..., a, is an arbitrary enumeration
of C. Let F(A,I) denote the set of all (A, I)-cliques. For t € M(A, I) let max(t) = {a €
A|Jue A* i t = [ua];} and min(t) = {a € A | Ju € A* : t = [au],}. Note that min(t)
and max(t) are (A, I)-cliques. The set of all traces that have ¢ as a prefix is denoted by
tM(A,I) = {tu | u € M(A, I)}. Thus, ¢t € [min(¢)|M(A, I).

The Foata normal form FNF(t) of t € M(A, I) is a word over the set F(A,I) of finite
(A, I)-cliques. It is defined inductively:

FNF([e];) =¢ and FNF(¢) = min(¢t) FNF(s)
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where s is the trace satisfying ¢ = [min(¢)]s. Since M(A, I) is cancellative, s is given
uniquely by this requirement. The height of t, briefly height(t), is the length of its Foata
normal form FNF(¢). Alternatively, height(t) can be defined as the number of nodes in a
longest directed path in the dependence graph D;. Thus, height(st) < height(s)+ height(t).
The reversed Foata normal form of t € M(A, I) is defined as follows:

rFNF([e];) =¢ and 1FNF(¢) = rFNF(s) max(¢)

where s is the trace uniquely given by ¢ = s[max(¢)]. Then height(#) also equals the length
of rFNF(¢). If the word A, Ay --- A,, where A; € F(A,I), is the (reversed) Foata normal
form of ¢, then we say that the factorization t = [A;][As]---[A4,] is in (reversed) Foata
normal form.

7.2 The method of Ferrante and Rackhoff

The major tool from mathematical logic that we use for the proof of Theorem 5.6 is a
method of Ferrante and Rackhoff. Let B = (A, (R;)ics) be a relational structure, where R;
has arity n;. The Gaifman-graph Gg of the structure B is the following undirected graph:

Gs=(A,{(a,) € Ax A|\/3(cr,...,cn) € R Fjik iy =a#b=c}).

ieJ

We will mainly be interested in restrictions of the structure B to certain spheres in this
graph. To ease notations, we will also write Sg(r,a) for B[Sg,(r,a), i.e., Sg(r,a) is the
substructure of B induced by the r-sphere around the tuple @ in the Gaifman-graph of B.

A norm function on B is just a function A : A — N. We write B =3z < n: ¢ in order
to express that there exists a € A such that A(a) < n and B = ¢(a), and similarly for
Vz < n: . Following Ferrante and Rackoff [15], we define H-bounded structures:

Definition 7.1. Let A be a norm function on the structure B. Let furthermore H : {(j,d) €
N x N |j<d} = N be a function such that the following holds: For any j < d € N, any
a=(ay,a,...,a; 1) € A with XN(a;) < H(i,d), and any a € A, there ezists a; € A with
Ma;) < H(j,d) and

(Ss(7"77, @,a), @,a) = (Sp(7"7, @, a5), @, a;).°
Then B (together with the norm function \) is called H-bounded.

The original definition by Ferrante and Rackoff [15] differs slightly from this one in two
aspects: firstly, their function H has a third argument that describes a uniform bound
for A(a;) with i < j; instead, we restrict to the case where the norm of these elements is
bounded by appropriate values of the function H. Secondly, Ferrante and Rackoff require
the tuples (a,a) and (a,a;) to be indistinguishable by a first-order formula of quantifier

6 Thus, there is an isomorphism from Si(7¢77, @, a) to Sg(7%77, @, a;) that fixes every a; for i < j and maps a to
a;.
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depth d — j; instead, we require certain spheres around these tuples to be isomorphic. By
Gaifman’s theorem, this implies that the given tuples are indistinguishable by any first-
order formula, i.e., our requirement is more restrictive, but easier to establish. The following
result was shown by Ferrante and Rackoff for their version of H-bounded structures. See
[25] for a proof.

Proposition 7.2 (cf. [15]). Let B be a relational structure with norm X\ and let H :
{(j,d) € Nx N | j <d} - N be a function such that B is H-bounded. Then for any
first-order formula ¢ = Q121 Qaxs - - - Qqxq : V) where v is quantifier-free and Q; € {3,V},
we have B = ¢ if and only if

B = Qir: <npQaxre <ng-+-Qurag < ng : Y(x1,. .., Tq). (4)

7.3 From properties of B to local properties of B

In this section, we will reduce an arbitrary first-order sentence over the signature of B
to a sentence of the form (4) using Corollary 7.2. First of all, this requires the definition
of a norm function on B: Let £ = max{k; | 1 < i < k}. On M(A, I) we define a norm
function A : M(A,I) — N by A(t) = [t|. According to Section 7.2, 3z < n : ¢(z) is an
abbreviation for 3z : || <n A ¢(x). Now, in order to make Corollary 7.2 applicable, we
next investigate the metric on M(A, I) that is induced by the structure B (more precisely,
by its Gaifman-graph, cf. Section 2).

Lemma 7.3. Let u = s[A1]---[Anly = tv € M(A, I) with s[A]---[An] in reversed Foata
normal form and |v| < m. Then t = s[A1]- - [Am—_jo)]w for some w € M(A,I).

Proof. The lemma is shown by induction on |v|. The case v = ¢ is trivial. Thus, let
v = av' for some a € A, ie., u = s[A;]---[An]y = (ta)v'. By induction we have ta =
s[A1] - - [Am—jpj+1]w for some w' € M(A,I). Then a € max(s[A]---[Am—jo+1]w'). Since
s[A1][Asg] - - - [Am—jv| 1] is in reversed Foata normal form, we obtain a € max([Ap, |y 41]w’).
Hence, there is a trace w satisfying [A,,_j,+1]w’ = wa, i.e., t = s[A;]--- [Ap_py]w. O

Recall that for 7 € N and u € M(A, I') we denote by Sg(r, u) the substructure of B induced
by the r-sphere around u in the Gaifman-graph Gp. The distance function dg, in the
Gaifman-graph Gz will be denoted by d in the following. Recall also that k& was chosen
such that every relation R; is k-suffix definable.

Lemma 7.4. Let u = s[A1]---[Ar.] be in reversed Foata normal form. Then we have
Sp(r,u) C sM(A,I).

Proof. Let us take v € M(A,I) with d(u,v) < r. We have to show that v € sM(A, I).
By assumption there exists a path wug,uq,...u, in the Gaifman-graph of B such that

uy = u, Uy, = v, and m < r. Inductively we will show that u; = s[A1]--- [Agrki|Vi
for some y;, thus v = s[A1]---[Agr km|ym € sM(A,I). The case i = 0 is clear. Now
assume that u; = s[A] - - - [Agr_ki]y; and ¢ < m. Since (u;, u;41) is an edge in the Gaifman-

graph of B and all nonunary relations of B result from k-suffix definable relations, we have
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u; = 8[A1] - [Agr—ki|y; = 2w and u; 11 = 2w’ for some z, w, w' € M(A, I) with |w| < k (and
|w'| < k). Lemma 7.3 implies that u; 1 = s[A1]- - [Agr_ri—k]y'w’ for some 3’ € M(A,I).
Thus, we can set y; 1 = y'w'. O

Thus, the r-sphere around u = s[A;][Asg] - - - [Ag,] is contained in s M(A, I). The next lemma
will be used to shorten s, i.e., to find v properly shorter than u that is the center of an
isomorphic r-sphere. Let s,t € M(A, I) be two traces. Since M(A, I) is cancellative, the
mapping f = fs: 1 sM(A,I) — tM(A,I) defined by f(su) = tu is a bijection. We will
show that, under some assumptions on s and ¢, it is an isomorphism from (Sg(r,u),u) to

(Sg(r,v),v).

Lemma 7.5. Let u = s[A;]-- - [Akrsk] and v = t[A1]- - - [Agr4x] e in reversed Foata nor-
mal form and n(s) = n(t). Then the mapping f = fs; is an isomorphism from (Sp(r,u),u)
to (Sg(r,v),v).

Proof. Lemma 7.4 implies Sg(r,u) C s[A;]---[Ax]M(A, I), thus f is defined on Sg(r, u).
Since n(f(su)) = n(tw) = n(t) -n(uw) = n(s) - n(u) = n(su), f preserves all unary predicates
n~1(q) for ¢ € S. Now assume that (ui,...,u,) € R/;, where u; € Sg(r,u) and R/ is a
relation of B. Thus, R is k-suffix definable. Hence, there exist y, wy, ..., w, € M(A4, I) such
that u; = yw;, |w;| <k, and (y'wy,...,y'w,) € R/, for all y' € M(A, I). Since Sg(r,u) C
s[A1] - - - [Ax]M(A, I), we have yw; = u; = s[A1]---[Ax]v; for some v; € M(A, I). Thus,
Lemma 7.3 and |w;| < k implies y = sy; for some trace y;. Since M(A4, I) is cancellative,
it follows y; = -+ - = y, =: z. Thus, f(u;) = f(szw;) = tzw; and (f(u1),---, f(u,)) € R/r.
It follows that f maps Sz(r, u) injectively and structure preserving into Sg(r,v). Since we
may exchange the roles of s and ¢, it follows that f maps Sg(r, u) bijectively to Sz(r,v). O

Recall that (A, I) has only finitely many neighborhoods, i.e., that the set {I(a) | a € A}
is finite. Thus, also {D(a) | a € A} is finite, where D = (A x A) \ 1.

Lemma 7.6. There exists a homomorphism h : M(A, I) — @ into some finite monoid @
such that for all s,t € M(A, I), we have:

if h(s) = h(t) and a € max(s), then there exists b € max(t) with D(a) = D(b).

Proof. Let D be the powerset of {D(a) | a € A}, thus D is finite. For s € M(A, I), define
f(s) ={D(a) | a € max(s)} € D. Let s,t € M(A, I) such that f(s) = f(t). We show that
f(sc) = f(tc) for all ¢ € A: Clearly, ¢ € max(sc) N max(tc). Now let a € A\ {c}. Then
a € max(sc) if and only if (a,c) € I and a € max(s). Hence f(sc) = {D(c)} U{D(a) |
D(a) € f(s),c & D(a)}. Thus, indeed, f(sc) = f(tc).

Now consider the image f(D) of M(A, I) under f. Let @ be the transformation monoid
of f(D), ie., Q = (F(D)'™®) o) and define a mapping h : A — Q such that h(a)(f(s)) =
f(sa) which is well defined by the previous paragraph. Clearly h(a) o h(b) = h(b) o h(a)
for (a,b) € I. Thus, we can extend h to a monoid homomorphism h : M(A4,I) — @ with
h(t)(f(s)) = f(st). Now suppose h(s) = h(t). Then a € max(s) implies D(a) € f(s) =
h(s)(f(e)) = f(t). Hence, there is b € max(t) with D(a) = D(b). O
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Lemma 7.7. Let h be the homomorphism from Lemma 7.6 and let s, s',t,t' € M(A, I) with
h(s") = h(t'), s = s'[max(s)|, and t = t'[max(s)]. Then max(t) = max(s) and height(t) =
height(t') + 1.

Proof. Clearly, max(s) C max(t). So let a € max(t) \ max(s). Since t = t'[max(s)], we get
a € max(t') and (a,c) € I for every ¢ € max(s). Since h(s') = h(t'), it follows D(a) = D(b),
i.e., I(a) = I(b) for some b € max(s'). Thus, also (b,c) € I for every ¢ € max(s). But this
implies b € max(s), i.e., (b,b) € I, a contradiction. Thus, indeed, max(t) = max(s). This
implies height(¢) = height(#'[max(s)]) = height(¢#'[max(¢)]) = height(¢') + 1. O

By Lemma 7.6 we can find a homomorphism 7’ from M(A, I) into some finite monoid S’
(namely S x @) such that the following implications hold:

— if ’(s) = 1'(t) and a € max(s), then there exists b € max(t) with D(a) = D(b).
— If /(s) = 7'(t), then n(s) =n(t).

Lemma 7.8. Letu € M(A,I) and r,£ € N such that £ > k(r+1), height(u) > max{k(r +
1)+ |S'| + 1,¢}. Then there exists v € M(A, I) with

¢ < height(v) <2+ |S'|+1 and (Sg(r,u),u) = (S(r,v),v).

Proof. If height(u) < £+]S’'|+1 we can set u = v. Thus, assume that height(u) > £+|S’|+1.
Then there are (A, I)-cliques A; C A and s € M(A, I) such that u = s [A][As] - - - [Ak(ri1)]
is in reversed Foata normal form and height(s) > £ — k(r + 1) +|S’"| + 1. Let s’ € M(A4, I)
with s = s’ [max(s)]. Then height(s') > ¢ — k(r +1) + |S'| + 1, and we can write s’ = 5159
with height(s;) = ¢ — k(r + 1) and height(se) > |S’|. A simple pigeon hole argument
shows that there exists s, € M(A,I) such that 7'(sy) = 7/(s,) and height(s,) < |5'|.
Define ¢ = s;1s) and t = ¢’ [max(s)]. Thus, 7'(s") = n'(¥'). Hence, by Lemma 7.7 we get
height(t) = height(¢') + 1 and max(t) = max(s). This ensures in particular

height(t) = height(¢') + 1 < height(s;) + height(s}) +1 < £—k(r+ 1)+ |S'| +1

and
height(t) > height(t') > height(s;) = £ — k(r + 1).

Now set v = t[A;][As] - [Akr41)]. A k(r + 1)-fold application of Lemma 7.7 implies
height(v) = height(t) + k(r + 1) and therefore

¢ < height(v) < £+ |S'| + 1.

Since 7'(s) = n'(t), we can apply Lemma 7.5, implying (Sg(r,u),u) = (Ss(r,v),v), which
finishes the proof. O

Lemma 7.9. The factorized unfolding B from (3) is H-bounded by a function H with
H(j,d) < H(d,d) € 2°9 for j < d.
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Proof. Recall that the norm of a trace ¢ was defined as its length |¢|. Since {I(a) | a € A}
is finite, there is @ € N such that any (A, I)-clique contains at most « elements. We define
H (i,d) inductively: H(1,d) = a- (k(7%'+1)+2(]S'| +1)) and H(j,d) = a- (H(j —1,d) +
4.7 . | +|S'|4+1) for 1 < j < d. Then H(j,d) < H(d,d) is bounded by 2°@ for j < d.

Let d € Nand t € M(A, I) with [¢t| > H(1,d). Let £ = k(7% '4+1)+|5"|+1 < H(1,d)/«
and 7 = 79!, Then £ > k(r+1) and £ = k(r+1)+|S'|+1 < H(1,d)/a < |t|/a < height(t).
Hence, by Lemma 7.8, there is t; € M(A, I) with height(¢;) < £+ |S'|+1 < H(1,d) and
(Sp(7%71,t),t) = (Sp(7% 1, ¢1),11). This proves the base case for the H-boundedness of B.

Next, let 1 < j < d €N, t = (t,t,...,t;_1) € M(A,I)7~ with |t;| < H(i,d) and
t € M(A, I) with [t| > H(j,d). In order to apply Lemma 7.8, let £ = H(j—1,d)+4-7¢7 -k
and r = 7977, Thus, £ > H(1,d) > k(7% + 1) > k(r + 1). Moreover, |t| > H(j,d) >
H(1,d) > a- (k(7%7 + 1) + |S’| + 1). Hence, height(t) > [t|/a > k(r +1) + |S'| + 1.
Furthermore, |t| > H(j,d) > « - £ implies height(¢) > ¢£. Thus, by Lemma 7.8, there exists
t; € M(A, I) with

¢ < height(t;) < £+ [S'|+1 and (Ss(747,t),t) = (S(7*7,1;),1;).

Thus, £ < |t;] < a- (€ +]S'| +1). In the Gaifman-graph Gp, the distance between ¢; and
t; is at least (|t;| — |ti|)/k. Since |t;| < H(i,d) < H(j — 1,d) for 1 < i < j, we obtain
d(ti, t;) > (|t;| — |t:])/k > (¢ — H(j —1,d))/k = 4- 747, Hence the spheres Sz(7%7,%) and
Sp(7%79,t;) are disjoint and no edge in G connects elements from the former to elements
from the latter sphere. The same holds for the spheres Sg(7%7,%) and Sg(7%7,t). Thus,

(SB(7d_j7 Et)v %v’t) = (SB(7d_]’ %v’t]): Et])7
and the factorized unfolding B is indeed H-bounded. O

Now let ¢ = Q121Qoo - - - Quxq : Y(x1,...,z4) be a first-order sentence over the sig-
nature of B with d quantifiers Q; € {3,V}. Since B is H bounded by the previous lemma,
Proposition 7.2 implies that B = ¢ if and only if

B ): Ql.’L'l S H(l,d)Q2$2 S H(?,d) N 'QdZEd S H(d, d) : w(.’L‘l, .. .,:Ed). (5)

7.4 From local properties of B to properties of A

It remains to reduce local sentences of the form (5) to sentences that speak about the
structure A. This is achieved by the following proposition.

Proposition 7.10. Let 1(z1,...,z4) be a Boolean formula over the signature of B. Let
ni,...,ng €N, and Q1,...,Qq € {3,V}. Then we can effectively construct a sentence 6
over the signature of A such that

B ):lel SH(lad)Q2x2 < H(Qﬁd)Qdmd SH(dad)¢

if and only if A = 0. Moreover, 0 has quantifier alternation depth d+O(1) and size bounded
by n - || - 29" where n = max{n,, ..., nq}.
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Proof. We will encode a trace x € M(A, I) with |z| < n by a sequence y1ys - - - Y, of first-
order variables y; € A of length m < n, with the meaning that z = [y192 - - - ym]s. First,
for every m < n, we have to construct a first-order formula in 2m free variables over the
signature of A, which expresses that [y1ys - Ym|r = [2122 - - 2m]r in M(A, I). This can be
done inductively as follows: If m = 0, then this formula is the truth value true. If m > 0,
then [y19s - - - Ymlr = [2122 - - - z]r if and only if

m i—1
\/ (y1 =2z N /\(Zz: 2z;) €T N lya- - Ymlr = [21 2ic1Zis1 - Zm][)

i=1 j=1

(recall that by assumption the independence relation I can be defined by a fixed first-
order formula over the signature of A). The above recursive definition would lead to a
formula of exponential size for [y1y2 - - - ym|r = [2122 - - - 2] since an equation of the form
(Y2 -« -Ym|r = [U1...upm 1] appears m times. Using a trick from Ferrante [14, Lem. 2] we
can be more space economical: The above formula is equivalent to

(Y2 Ymlr = [Ul Um 1r A

=1 L — .

\ j=i+1 y,

-~

Juyg e g 4

Let s,, be the size of this formula with 2m free variables. Then s,, is bounded by s,,_1 +
O(m?). Thus, s, € O(n?®). Moreover the quantifier alternation depth in the above formula
is 0, since we only use existential quantifiers.

Now a bounded existential quantification 3z; < n; in (4) can be replaced by /3% Jy; - - - Jy;,
where z is represented by the sequence y; ---y;, and similarly for a universal quantifier.
Since there are only d quantifiers in (4), these replacements increase the size of the formula
at most by a factor n?. Furthermore, the quantifier alternation depth is unchanged.

Next, consider an atomic formula R/;(z1,...,z,) in 1, where R is one of the k-suffix
definable relations R; (1 < i < k). Since R is k-suffix definable, we can assume that

R = {(uuy, vug, ..., uu,) | u,u; € A" |u;| = 4, A = ¢p(ug, ug, ... ur)}

for some ¢; < k, where ¢ is a fixed first-order formula over the signature of A. Assume
that the trace z; € M(A,I) is represented by the sequence ;1 - - Yim, (m; < n). If for
some 1 < i < r, we have m; < /;, then we can replace R/;(z1,...,x,) by the truth value
false. The same can be done if m; — ¢; # m; — ¢; for two different 4, j. Thus, assume that
m; —€; =£>0 for all 1 <4 <r. Then we can replace R/;(z1,...,z,) by the formula

/\ [?/z 1Y ml I= [21 72N zz’,li]l
3 1<i<r 24,5 E|Z1 E|Zg 1<i<r y

1<]<l
A ¢(21,1, N AW SIS/ RIS Zr,ér)
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which has fixed quantifier alternation depth and size bounded by O(n?). Similarly, an
atomic formula of the form z = y can be replaced by a formula of size s, € O(n?) and
fixed quantifier alternation depth.

Finally, we want to express 7(z) = ¢ for some ¢ € S. Assume that © € M(A, ) is
represented by the sequence y; - - - 4y,,, where m < n. Then we can replace n(z) = ¢ by

VA 1w =a

(q15--Gm)ES™ 1<i<m
a1-q2--qm=4q
Recall that n(y;) = ¢; can be expressed by a fixed first-order formula over the signature of
A. Thus, the size of the above formula is bounded by O(|S|") and its quantifier alternation
depth is O(1).

Altogether, any of the atomic subformulas in 7 gets replaced by a formula of quantifier
alternation depth O(1) and size bounded by 2°™. Hence, the size of the resulting sentence
9 is bounded by n¢ - 1] -2°™, and its quantifier alternation depth is bounded by d+ O(1).

O

Since the function H satisfies H(j,d) < H(d,d) € 2°@, the previous proposition
implies that the sentence in (5) is equivalent to a first-order sentence over the signature
of A of size 22°/*" and quantifier alternation depth d + O(1). This finishes the proof of
Theorem 5.6.

8 Some results on factorized unfoldings

This final section contains two auxiliary result on factorized unfoldings. The first one shows
that the requirement on {I(a) | a € A} in Theorem 5.6 to be finite is necessary for the
theorem to hold. The second result of this section gives a much simpler proof of Theorem 5.6
in case the structure A is finite.

The structure (N*, S, <, cp) from Proposition 5.3 has an undecidable first-order theory.
Thus, allowing the relation </;, which is the prefix order on traces, in factorized unfoldings
would make Theorem 5.6 fail (already for I = )). In Theorem 5.6, we also assume that
there are only finitely many different sets I(a). The reason is again that otherwise the
result would fail: Let V = {(m,n) € N* |m < n} and E = {({,,m,n) € N* | £,m < n}. On
A =V UE, define the relation R by

R = {((m,n), (¢,m,n)) | £,m <n}U{((4,n), (¢(,m,n))|L,m < n}.

Thus, dom(R) = V and ran(R) = E. Furthermore, let I be the set of pairs of distinct
elements from V U F that agree on their last component. Then there are infinitely many
sets I(a), but any of these sets is finite. We will consider the structure A = (A, R, I). The
decidability of FOTh(N, <) implies the decidability of FOTh(.A).

Theorem 8.1. Let B = (M(A,I),CI/I,SUC/I,E/I), which is a factorized unfolding of A.
Then FOTh(B) is undecidable.
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Proof. We will reduce the first-order theory of all finite directed graphs (which is undecid-
able by [47]) to the first-order theory of B.

The idea is to represent a finite graph by the finite (A, I)-clique max(s) of a trace
s € M(A, I), which by the definition of I is a subset of

VN(Nx{n}) U EnKN x {n})

for some n € N. Those elements from V' (resp. F') in max(s) represent the nodes (resp. edges)
of G. To represent the set max(s) in B, we use the cl/;-relation. More precisely, for
s € M(A,I) let G(s) denote the set of traces ¢ such that (s,t) € cl/; in B. In other
words, G(s) is the set of traces sa (with a € A) such that a € max(s). By fs; we denote
the bijection from G(s) to max(s) given by sa — a (this is well-defined, since sa = sb
implies @ = b). Now let ¢t € G(s). Then f,(t) € V if and only if there is u € M(A, I) with
(s,u) € suc/r and (t,u) € ﬁ/f (recall that V' = dom(R)). Similarly, f;(¢) € E if and only if
there is u € M(A, I) with (s, u) € suc and (u,t) € R/;. Now let v, e € G(s) with f,(v) € V
and f,(e) € E. Then (f,(v), fs(e)) € R if and only if (v,e) € R/;. Thus, we can write a
formula graph(z) with one free variable x such that B = graph(s) if and only if max(s)
is a directed graph, i.e., any element of max(s) N F is adjacent with at least one element
from max(s) NV.

Now let ¢ be a sentence over the signature of directed graphs. Using the ideas explained
above, we can construct a formula ¢'(z) with one free variable such that for any trace
s € M(A, I) satisfying graph(s), the graph of maximal elements of s satisfies ¢ if and only
if B = ¢'(s). Thus, ¢ is true in all finite graphs (i.e., belongs to the theory of all finite
graphs) if and only if B = Vz : graph(z) = ¢'(z). O

In order to prove the undecidability results in Proposition 5.3 and Theorem 8.1 we used
infinite structures. Infinity is needed as the next theorem shows. See [23, 3] for the definition
of an automatic structure.

Theorem 8.2. Let A be a finite relational structure with universe A, and let

B = (M(A, 1), (17" (q))ges, (Ri/r)1zizx)

be any factorized unfolding of A. Then the structure (B, </;) is automatic and has therefore
a decidable first-order theory.

Proof. The free monoid F(A, I)* generated by the set of (A, I)-cliques maps naturally
onto M(A,I), let h denote the canonical homomorphism defined by A(C) = [C]. Let
FNF C F(A,I)* denote the set of Foata normal forms. Then a word C,C,---C,, over
F(A,I) belongs to FNF if and only if for every 1 < i < n and every a € C; 1, there is
b € C; with (a,b) ¢ I. Since A is finite, the set FNF is recognizable. Moreover, h maps
FNF bijectively to M(A, I). Let suc, = {(t,ta) | t € M(A, I)} for a € A. In a forthcoming
paper, we will show that the structure (M(A, I'), </, (suc,)qca) is automatic with respect
to FNF and h. Using the closure of automatic structures under first-order interpretations
[23], it suffices to show that
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— the set {w € FNF | n(h(w)) = ¢} is regular for every ¢ € S and
— every relation R;/;, 1 < i < k, is first-order definable in (M(A, I), < /1, (Suca)aca)-

Using an automaton with state space S, the first point is easy to check. For the second
point we can argue as follows: Since A is finite and R; is k-suffix definable for some k, we

.....

a finite relation. Now, for s = [ajay - - - a,|r € M(A, ), ax € A, define

SUCs(Zo, Try) = FT1 -+ I {/\ suCy, (a;j_l,:rj)} i

=1

Then (yi1,...,ys) € R;/r if and only if

\/ Elx{ /\ sucsj(x,yj)}.

(315"'73n)€Fi 1<j<n
Thus, the relation R;/; is even first-order definable in (M(A, I), (Suc,)seca) O

Remark 8.3. We can also say something on the complexity of the decision procedure for the
first-order theory of (B, < /r) in the previous theorem: Suppose that any two distinct letters
from A are independent. Then one can reduce FOTh(B, <) to Presburger’s Arithmetic,
which is decidable in DSPACE(22°™”) [2] and hence elementary. On the other hand, the
theory FOTh({a, b}*, suc,, suc,, X) is not elementarily decidable, see [9, Example 8.3].

Note that Theorem 8.2 implies in particular that the prefix order on finite traces over a
finite independence alphabet (A, I) has a decidable first-order theory.

9 Open problems

Many open problems remain for Cayley-graphs of finitely generated monoids. The most
ambitious goal would be to obtain a complete (algebraic or combinatorial) characteriza-
tion of those monoids such that the corresponding Cayley-graph has a decidable first-order
theory or MSO-theory, respectively. But due to the missing symmetry in Cayley-graphs of
monoids this problem might be too difficult. A promising class for further results are can-
cellative monoids. Their Cayley-graphs have at least bounded degree. Is there a cancellative
monoid with a decidable word problem such that the corresponding Cayley-graph has an
undecidable first-order theory? Is there a cancellative monoid such that its Cayley-graph
has finite tree-width but an undecidable MSO-theory?

In [25] we have shown that for Cayley-graphs of finitely generated groups the decid-
ability of the full first-order theory is equivalent to the decidability of the X;-theory. The
corresponding problem for monoids is again open.

As already mentioned, in statement (1) from Theorem 4.1 it remains open whether
the complexity of FOTh(C(PP), 1) is bounded elementarily in the complexity of the theories
FOTh(C(M,),1,), where the M, are the factors of the graph product.
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For MSO-theories, statements (2) from Theorem 4.1 and Proposition 4.3 leave a gap. A

plausible conjecture is that MSOTh(C(P), 1) is decidable if and only if the four conditions
in Proposition 4.3 are satisfied. One might first try to prove this conjecture for graph
products of finite monoids. In particular, if the independence relation (X, I) is a chain
of four nodes (also called P4) and every node is labeled with a finite monoid, then it is
not clear whether the corresponding graph product has a Cayley-graph with a decidable
MSO-theory.
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