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Abstract. For arestricted class of monoids, we prove that the decidabil-
ity of the existential theory of word equations is preserved under graph
products. Furthermore, we show that the positive theory of a graph prod-
uct of groups can be reduced to the positive theories of some of the factor
monoids and the existential theories of the remaining factors. Both re-
sults also include suitable constraints for the variables.

1 Introduction

Since the seminal work of Makanin [13] on equations in free monoids, the decid-
ability of various theories of equations in different monoids and groups has been
studied, and several new decidability and complexity results have been shown.
Let us mention here the results of [16, 19] for free monoids, [3, 14] for free groups,
[7] for free partially commutative monoids (trace monoids), [8] for free partially
commutative groups (graph groups), [4] for plain groups (free products of finite
and free groups), and [18] for torsion-free hyperbolic groups.

In this paper, we will continue this stream of research by considering graph
products (Section 2.2). The graph product construction is a well-known con-
struction in mathematics, see e.g. [11,12], that generalizes both free products
and direct products: An independence relation on the factors of the graph prod-
uct specifies, which monoids are allowed to commute elementwise. Section 3
deals with existential theories of graph products. Using a general closure result
for existential theories (Thm. 2), we will show in Section 3.2 that under some
algebraic restriction on the factors of a graph product, the decidability of the
existential theory of word equations is preserved under graph products (Thm. 4).
This closure result remains also valid if we allow constraints for variables, which
means that the value of a variable may be restricted to some specified set. More
precisely, we will define an operation, which, starting from a class of constraints
for each factor monoid of the graph product, constructs a class of constraints for
the graph product. We will also present an upper bound for the space complexity
of the existential theory of the graph product in terms of the space complexities
for the existential theories of the factor monoids. Using known results from [20] it
follows that the existential theory of word equations of a graph product of finite
monoids, free monoids, and torsion-free hyperbolic groups is decidable. This re-
sult generalizes the decidability result for graph products of finite monoids, free
monoids, and free groups groups from [5].



In Section 4 we consider positive theories of equations. It turns out that the
positive theory of word equations of a graph product of groups with recogniz-
able constraints can be reduced to (i) the positive theories with recognizable
constraints of those factors of the graph product that are allowed to commute
with all the other factors and (ii) the existential theories of the remaining factors.

Proofs that are omitted in this paper can be found in the full version [6]

2 Preliminaries

Let A be a possibly infinite alphabet. The empty word over A is €. An involution
ton A is a function ¢+ : A - A with «(¢«(a)) = a for all a € A. Let M = (M,0,1)
be a monoid. A monoid involution on M is an involution ¢ : M — M with
t(a o b) = 1(b) o t(a) for all a,b € M and «(1) = 1. A partial monoid involution
on M is a monoid involution ¢+ : T — Z, where 7 is a submonoid of M. A subset
L C M is recognizable if there exists a homomorphism h : M — @ to a finite
monoid @ such that L = h=1(F) for some F C ). With REC(M) we denote the
class of all recognizable subsets of M, it is a Boolean algebra. The set RAT(M)
of rational subsets of M is defined via rational expressions over M, see e.g. [2].
If M is finitely generated, then REC(M) C RAT(M).

2.1 Mazurkiewicz traces

For a detailed introduction to trace theory see [9]. An independence alphabet is
a pair (A4, ), where A is a possibly infinite set and I C A x A is a symmetric
and irreflexive independence relation. Its complement D = (A x A) \ I is the
dependence relation. The pair (A, D) is called a dependence alphabet. For a € A
let I(a) = {b € A| (a,b) € I} and D(a) = A\ I(a). Let = be the smallest
congruence on A* that contains all pairs (ab, ba) with (a, b) € I. The trace monoid
(free partially commutative monoid) M(A, I) is the quotient monoid A* /=, its
elements are called traces. Since A is not necessarily finite, we do not restrict to
finitely generated trace monoids. Extreme cases are free monoids (if D = A x A)
and free commutative monoids (if D = {(a,a) | a € A}). The trace represented
by the word s € A* is denoted by [s]r. For R C M(A, I) x M(A, I) we denote with
M(A,I)/R the quotient monoid of M(A,I) wrt. to the smallest congruence on
M(A, I) containing R. If A is finite, then it is easy to see that L € REC(M(A4, I))
if and only if {s € A* | [s]; € L} is regular.

We define on A an equivalence relation ~ by a ~ b if and only if D(a) = D(b)
(or equivalently I(a) = I(b)). Since D is reflexive, ~ C D. An equivalence class
of ~ is called a complete clan of (A,I). In the sequel we will briefly speak of
clans. A clan C is thin [8] if D(a) # () for some (and hence all) a € C. The
cardinality of the set of thin clans is denoted by ¢(A,I) — of course it may be
infinite. Note that c(A,I) # 1, and ¢(A, 1) =0& I = 0.

A partial function f on A is compatible with I if (a,b) € I and a,b €
dom(f) imply (f(a), f(b)) € I. This allows to lift f to a partial function on
M(A,I) by setting f([a1---an]r) = [f(an) --- f(a1)]r. The domain of this lifting



is M(dom (f),I). Note that we reverse the order of the symbols in the f-image
of a trace. In our applications, f will be always a partial injection on A like for
instance an involution ¢ : B — B with B C A. In this case, the lifting of ¢ to
M(A,I) is a partial monoid involution on M(A, I') with domain M(B, I).

2.2 Graph products

Graph products generalize both free products and direct products. They were
introduced in [11]. Let (X, I5x) be an independence alphabet with X' finite, and
let M, = (M,,0,,1,) be a monoid for every ¢ € X. Define an indepen-
dence alphabet (A,I) by A = J,c5x M, and I = U(U,T)EIE M, x M, where
w.l.o.g. M, "M, =0 for o # 7. Define R C M(A,I) x M(A,I) by

R= U {(ab,c) | a,b € My,a0,b=c} U {1, = €}.
oeX

The graph product P = P(X, Ix,(M;)sex) is the quotient monoid M(A, I)/R.
In case Iy = 0 (resp. Iy = (X x X) \ Idy) we obtain the free (resp. direct)
product of the M,,.

For s,t € M(A, I) we write s — g t if there exist u,v € M(A,I) and (/,r) € R
with s = ufv and ¢t = urv. Let IRR = {s € M(A,I) | -3t : s — g t}. The relation
— g is clearly Noetherian and also confluent (see [6, Lemma 2.2]). It follows that
there is a natural bijection w : P — IRR such that z € P is represented by
the trace w(x). Moreover, for x,y,z € P we have zy = z in P if and only if
w(z)w(y) =gk w(z). Note that M(A, I) is in general not finitely generated.

2.3 Relational structures and logic

Let us fix a relational structure 4 = (A, (R;)ics), where R; C A™ i € J.
Given further relations R;, j € K, JN K = 0, we also write (A, (R;)ick) for
the structure (A, (R;)icquk). First-order formulas over A are built from the
atomic formulas R;(z1,...,%,,;) and x =y (wherei € J and z1, ..., Z,,, 2,y are
variables ranging over A) using Boolean connectives and quantifications over
variables. The notion of a free variable is defined as usual. A formula without
free variables is a sentence. If p(x1,...,1,) is a first-order formula with free
variables among z1,...,z, and ay,...,a, € A, then A = ¢(ay,...,a,) means
that ¢ evaluates to true in A if x; evaluates to a;. The first-order theory of
A, denoted by FOTh(A), is the set of all first-order sentences ¢ with A = ¢.
The ezistential first-order theory AFOTh(A) of A is the set of all sentences
in FOTh(A) of the form Jz; --- 3z, : ¢(z1,...,2,), where p(z1,...,2,) is a
Boolean combination of atomic formulas. The positive theory posTh(A) is the
set of all sentences in FOTh(.A) that do not use negations, i.e., that are built from
atomic formulas using conjunctions, disjunctions, and existential and universal
quantifications.

We view a monoid M = (M,o,1) as a relational structure by considering
the multiplication o as a ternary relation and the constant 1 as a unary relation.



Instead of o(x,y,z)) we write oy = z or briefly zy = 2. We also consider
extensions (M, (R;);cJ) of the structure M, where R; is a relation of arbitrary
arity over M. In many cases, a partial monoid involution ¢ will belong to the
R;. Tt is viewed as a binary relation on M. In case C C 2™, we also write
(M, C, (R;)icy) instead of (M, (L)rec, (R;)ics) and call formulas of the form
x € L for L € C constraints. Constants from M can be included as singleton
subsets into the R;. Note that if M is finitely generated by I, then constants
from I' suffice in order to define all monoid elements of M. On the other hand,
the further investigations are not restricted to finitely generated monoids.

It is known that already the V3*-fragment of FOTh({a,b}*, a, b) is undecid-
able [10]. Together with Presburger’s result on the decidability of FOTh(N) it
follows that the decidability of the full first-order theory is not preserved under
free products. For a restricted class of monoids and existential sentences, we will
show such a closure result in Section 3.2 even for general graph products.

3 Existential theories of graph products

Based on results from [8] for finitely generated trace monoids with partial in-
volution, we prove in Section 3.1 a general preservation theorem for existential
theories. In Section 3.2 we use this result in order to show that under some
restrictions graph products preserve the decidability of the existential theory.

All our decidability results in this section are based on the main result from
[8], see also [6, Thm. 3.1]:

Theorem 1. For every k > 0, the following problem is in PSPACE:

INPUT: A finite independence alphabet (A, I) with ¢(A,I) < k, a partial
involution v on A that is compatible with I, and an existential sentence ¢ over
(M(A,I),,,REC(M(A,I))) (with ¢ lifted to M(dom (¢),I)).

QUESTION: Does (M(A,I),.,,REC(M(A,I))) = ¢ hold?

In Thm. 1, a recognizable set L € REC(M(A4,I)) has to be represented by a
finite automaton for the regular language {u € A* | [u]r € L}, which is crucial
for the PSPACE upper-bound, see e.g. the remarks in [6]. Note that since every
singleton subset belongs to REC(M(A4, I)), constants are implicitly allowed in
Thm. 1.

Thm. 1 cannot be extended to the case of rational constraints: By [15,
Prop. 2.9.2 and 2.9.3], IFOTh(M(A4, I), RAT (M(A, I))) is decidable if and only
if TUId4 is an equivalence relation.

3.1 A general preservation theorem

For the further discussion let us fix an independence alphabet (A, I), a partial
involution ¢« on A, a subset C C 24 of constraints, and additional predicates R;
(1 < j < m) of arbitrary arity on A. Let M = M(A,T) and A = (A, ¢, (L)rec)-
We assume that:



(1) ¢ is compatible with I,

(2) there are only finitely many clans of (A4, I), i.e., there are only finitely many
sets D(a),

(3) dom(t) as well as every clan belong to C, and

(4) IFOTh(A, (R;)1<j<m) is decidable.

Due to (1), we can lift ¢ to a partial monoid involution on M. Since I is a union
of Cartesian products of clans, (2) and (3) imply that I is definable by a Boolean
formula over (A, (L)rec)-

From the unary predicates in C we construct a set £(C,I) C 2™ as follows:
A C-automaton A is a finite automaton in the usual sense, except that every
edge of A is labeled with some language L € C. The language L(A) C A* is

the union of all concatenations Ly Ls - - - L,, for which there exists a path gg Ly,

Il LN “Qn_1 Ln, qrn in A from the initial state gy to a final state g¢,,. We say
that A is I-closed if [u]; = [v]; and u € L(A) imply v € L(A). In the following,
we will identify L(A) with {[u]; | u € L(A)} C M. Then £(C,I) consists of all
languages L(A) C M such that A is an I-closed C-automaton. For effectiveness
statements, it is necessary that languages in C have some finite representation.
Then, also languages from £(C,I) have a canonical finite representation.

Since A C M, we can view every relation R; also as a relation on M. This is
done in the following theorem,' which is the main result of this section:

Theorem 2. If IFOTh(A, ¢, (L)rec, (Rj)1<j<m) belongs to NSPACE(s(n)),
then IFOTh(M, ¢, L(C,T), (R;)1<j<m) belongs to NSPACE(2°(™ + s(n®M)).

Reducing the number of generators The main difficulty in the proof of
Thm. 2 is to reduce the infinite set A of generators of M to a finite set of
generators B. For this, we will prove a technical lemma (Lemma 2) in this
paragraph. In the sequel, we will restrict to some reduct (A,,(L)rep) of the
structure A from the previous section, where D C C is finite and contains dom(s)
as well as every clan of (A, ). We will denote this reduct by A as well. Assume
that D = {Lg, L1, ..., Ly}, where dom(s) = Lo and Ly, ..., L, is an enumeration
of the clans of (4, I). Thus, {Ly,...,Le} is a partition of A.

Given another structure B = (B, , (K;)o<i<k) (With ¢ a partial involution on
B, K; C B, and Ky = dom(()), a mapping f : A — B is a strong homomorphism
from AtoBifforallae Aand 0< 3 <k:

a€L; & fla) e K; and Va € dom(:) : f(1(a)) = ¢(f(a))

Lemma 1. We can effectively construct a finite structure B = (B, ¢, (K;)o<i<k)
(with ¢ a partial involution on B, K; C B, and dom({) = Ko) such that |B| <
2k+1(2k+1 4 2) and there exist strong homomorphisms f : A - B and g: B — A
with f surjective.?

! Recall that in contrast to this, the partial involution ¢ was lifted from A to the whole
trace monoid M.

2 Effectiveness in this context means that given a finite set D C C, we can construct
the finite structure B effectively.



Proof (sketch). The picture on the right vi-

sualizes the construction for ¥ = 2. The
set L; (resp. Ly) is represented by the R -1 .
left (resp. lower) half of the whole square, A\ Ly ¢ T o\
which represents A. The inner circle represents 7\’3{ T+
dom(:) = Lg, and the thin lines represent the S A nT
partial involution ¢. The 22 regions that are Tiee /\\.\ Tee
bounded by thick lines represent the (in gen- )
eral infinite) preimages f~1(b) (b € B). Basi- Ly .D/' T }%{
cally, B results by contracting every nonempty . T° .*
region to a single point. Nonemptyness of a re- 7 L
1 1

gion can be expressed as an existential sentence
over A and is therefore decidable. O
Since the strong homomorphism f is surjective in the previous lemma and
{L1,...,L¢} is a partition of A, also {K3, ..., K,} is a partition of B.

Now assume that we have given a third structure C = (C, &, (4;)o<i<k), where
C is finite, £ is a partial involution on C, 4; C C for 0 < i < k, dom(&) = Ay,
and {A;,...,A4,} is a partition of C' (with A4; = 0 allowed). In the sequel, an
embedding of C in A is an injective strong homomorphism h : C — A.

Lemma 1 allows to deduce the following lemma, where f(I) = {(f(a), f()) |
(a,b) € I'} (and similarly for g(J)).

Lemma 2. Given C as above, we can effectively construct a finite structure B =
(B, ¢, (Ki)o<i<k) (with ¢ a partial involution on B, K; C B, and dom({) = Kj)
together with an independence relation J C B x B such that:

— C C B, |B| <2k1(2k1 4 2) 4+ |C|, ¢ is compatible with J, and

— for every embedding h : C — A there are strong homomorphisms f: A - B
and g : B — A with f(I) CJ, g(J) CI, and f(h(c)) = ¢, g(c) = h(c) for all
ceC.

Proof of Thm. 2. Fix a formula § over (M, ¢, L(C,I),(R;)i1<j<m). We have
to decide whether 0 is satisfiable in (M, ¢, £(C,I), (R;)1<j<m)- For this, we will
present a nondeterministic algorithm that constructs a finitely generated trace
monoid M' with a partial monoid involution ¢ and a Boolean formula ¢' over
(M, (, REC(M')) such that 6 is satisfiable in (M, ¢, L(C,T), (R;)1<j<m) if and
only if for at least one outcome of our nondeterministic algorithm, ¢’ is satisfiable
in (M, {, REC(M)). This allows to apply Thm. 1.

Assume that every C-automaton in 6 only uses sets among the finite set
D C C. Assume that also dom(:) as well as every clan of (A, I) belong to D. Let
D ={Lo,...,L}, where Ly = dom(¢) and Ly,..., L, is an enumeration of the
clans of (A,I). Let £ = L(D,I).

First we may push negations to the level of atomic subformulas in 8. More-
over, disjunctions may be eliminated by nondeterministically guessing one of
the two corresponding disjuncts. Thus, we may assume that 8 is a conjunction
of atomic predicates and negated atomic predicates. We replace every negated
equation zy # z (resp. 1(z) # z) by xy = 2' Az # 2/, (vesp. v(z) = 2' Az # 2),



where 2z’ is a new variable. Thus, we may assume that all negated predicates in
0 are of the form ¢ #y, x ¢ L (L € £), and = R;(x1,...,Zy).

We can write 8 as a conjunction ¢ A v, where 9 contains all formulas of
the form (—)R;(z1,...,25). Let  # y be a negated equation in ¢, where z
and y are variables. Since x # y is interpreted in the trace monoid M, we can
replace z # y by either (x = zau A y = zbv A a,b € L N a #Db) or
(zr=2u Ny=20 Nu€L-M A v¢gL-M), where L € D is a clan of (A4,1)
that is guessed nondeterministically. In the first case, we add a,b € L A a # b
to the “A-local” part . In the second case, we have to construct an I-closed
D-automaton for L - M, which is easy, since all clans belong to D. Thus, in the
sequel we may assume that ¢ does not contain negated equations.

So far, we have obtained a conjunction ¢ A 1, where ¢ is interpreted in
(M, ¢, £) and 9 is interpreted in the base structure (A, (R;)i1<j<m). The formula
¢ does not contain negated equations. Let = be the set of all variables that
occur in ¢ A 1, and let 2 C = contain all variables that occur in the A-local
part v. Thus, all variables from (2 are implicitly restricted to A C M. Note that
variables from {2 may of course also occur in ¢. In case ¢ contains a constraint
x € L with L € £ and z € 2, then we can guess L' € D with LN L' # () and
replace x € L by the constraint z € L', which will be shifted to 1. Hence, we
may assume that for every constraint € L that occurs in ¢, we have z € =\ £2.

Next, for every variable z € (2 we guess whether z € Ly = dom(¢) or z ¢
dom(:) holds and add the corresponding (negated) constraint to . In case = €
dom(t) was guessed, we add a new variable T to 2 and add the equation ¢(z) =T
to 1. Next, we guess for all different variables x,y € 2 (here 2 refers to the new
set of variables including the added copys %), whether z = y or z # y. In case
x = y is guessed, we can eliminate for instance y. Thus, we may assume that for
all different variables z,y € {2 the negated equation x # y belongs to 1. Finally,
for every set L; with 1 < ¢ < k and every = € {2 we guess whether z € L or
2 ¢ L holds and add the corresponding constraint to ¢. We denote the resulting
formula by ¢ as well.

Most of the guessed formulas 1) won’t be satisfiable in (A, (R;)1<j<m) (e.g.,
if Ly N L; = 0 and the constraints € L; and # € L; were guessed). But
since IFOTh(A, (R;)1<j<m) is decidable, we can effectively check whether the
guessed formula v is satisfiable. If it is not satisfiable, then we reject on the
corresponding computation path. Let us fix a specific guess, which results in a
satisfiable formula v, for the further consideration.

Now we define a finite structure C = ((~2,§, (A3)o<i<k) as follows: Let 0=
{Z | z € 2} be a disjoint copy of the set of variables 2. For 0 <i < k let A; be
the set of all 7 € 2 such that z € L; belongs to . Finally, we define the partial
involution £ on 2 as follows: The domain of £ is Ag and £(Z) = ¥ in case t(z) =y
or 1(y) = z belongs to the conjunction . Since 1) is satisfiable and {Ly,..., L;}
is a partition of A, it follows that {A; ..., Ay} is a partition of 19 (with A4; =0
allowed). Thus, C satisfies all the requirements from Lemma 2, which can be
applied to the structures A and C. Hence, from C we can effectively determine
a finite structure B = (B, ¢, (K;)o<i<k) together with an independence relation



J C B x B such that 9] C B, the partial involution ( is compatible with .J, and
for every embedding h : C — A there exist strong homomorphisms f: A - B
and g : B — A with f(I) C J, g(J) C I, and f(h(Z)) =T, g(x) = h(x) for every
z € 2. We also obtain a size bound of |2| + 2°®) C 200¢]) for | B|. We denote
the lifting of ¢ to M(B, J) by ¢ as well. Let M' = M(B, J).

Recall that we have to check whether there exist assignments k : {2 — A
and A : '\ 2 — M such that « satisfies ¢ in (A, (R;)1<j<m) and kU X satisfies
¢ in (M, ¢, L). We have already verified that the conjunction 1 is satisfiable in
(A, (R;)1<j<m)- For the following consideration let us fix an arbitrary assignment
Kk : 2 — A that satisfies ¢ in (A, (R;)1<j<m).> Then & defines an embedding h :
C — A by h(Z) = k() for x € 2. Therefore there exist strong homomorphisms
f:A > Band g:B — A with f(k(z)) = 7, g(T) = w(z) (z € ), and all
the other properties from Lemma 2. Since f and g preserve the involution on
A and B, respectively, and f(I) C J, J C g(I), we obtain the homomorphisms
M) - (M,¢) and g : (M, {) — (M, 1) between trace monoids with partial
involution.

Given a D-automaton 4, we define a new automaton A’ by replacing every
edge p L, gin Aby p X, ¢ (and changing nothing else). Recall that K; C B.
Since A is I-closed, A’ is easily seen to be J-closed. Moreover, since B is finite,
L(A") C M is a recognizable trace language. Recall that for every 0 < i < k, we
have a € L; if and only if f(a) € K; and b € K; if and only if g(b) € L;. Thus,
the following statement is obvious:

Lemma 3. Lett € M and u € M'. Then t € L(A) if and only if f(t) € L(A")
and u € L(A") if and only if g(u) € L(A).

Next, we transform the conjunction ¢ into a conjunction ¢', which will be inter-
preted over (M, (,REC(M)), by replacing in ¢ every occurrence of a variable
x € {2 by the constant T € 19, C B. Thus, ¢' contains constants from 2 and
variables from =\ {2, which range over the trace monoid M'. Moreover, every con-
straint z € L(A) (resp. ¢ & L(A)) in ¢ is replaced by z € L(A’) (resp. x ¢ L(A"))
(note that z € =\ £2). Thus, all constraint languages in ¢’ belong to REC(M').

Lemma 4. The following two statements are equivalent:

(1) There exists an assignment A : ZE\2 — M such that kK U X satisfies the
Boolean formula ¢ in (M, ¢, L).

(2) There ezists an assignment X' : S\ 2 — M’ that satisfies the Boolean formula
¢ in (M',, REC(M)).

Proof. First, assume that (1) holds. We claim that (2) holds with A’ = fo A. Let
u' = v’ be an equation of ¢’, which results from the equation u = v of ¢. The only
difference between u = v and u' = v’ is that every occurrence of every variable
z € 2in u = v is replaced by the constant Z in v’ = v’. The assignment kU is a
solution of u = v in (M} ¢). Since f : (M, ¢) — (M, () is a homomorphism between

3 We do not have to determine  explicitly, only its existence is important.



trace monoids with partial involution, fo(kUAX) = fok U fod= for U X is
a solution of u = v in (M, (). Since f(k(x)) = ¥ for every xz € 2, the mapping
X' is a solution of u' = v’ in (M, (). The preservation of (negated) constraints
follows from Lemma 3.

Now assume that (2) holds. We claim that (1) holds with A = go \'. Consider
an equation u = v of ¢ and let v’ = v’ be the corresponding equation of ¢'.
Thus, A’ is a solution of ' = v’ in (M, (). Let the function 7 map every variable
z € {2 to the constant T € B. By construction of 4’ = v/, ' U 7 is a solution
of u = v in (M,(). Since g : (M',¢{) —» (M,¢) is a homomorphism between
trace monoids with partial involution and g(w(x)) = k(z) for every x € {2, the
mapping go (A U7) = AU k is a solution of u = v in (M, ¢). For the preservation
of (negated) constraints we use again Lemma, 3. O

For the previous lemma it is crucial that the conjunction ¢ does not contain
negated equations, because the homomorphisms f and g are not injective in
general, and therefore do not preserve inequalities.

Since Lemma 4 holds for every  : {2 — A that satisfies ¢ in the structure
(A, (Rj)i1<j<m), and we already know that such an assignment exists, it only
remains to check whether (M',(,REC(M')) |= ¢'. By Thm. 1 this can be done
effectively. This proves the decidability statement in Thm. 2. A closer investiga-
tion of the outlined decision procedure gives the space bounds in Thm. 2 (note
that ¢(B, J) = ¢(4, 1) is a constant).

3.2 Closure under graph products

Fix a graph product P = P(X, Is;, (M )sex), where M, = (M,,0,,1,). Define
A, I, R, IRR, and w : P — IRR as in Section 2.2. Recall that w is bijective.
Let inv, = {(a,b) € My x M, | aos b = 15} and inv = |J, 5 inv,. Let
Us = dom(inv,), Vo =ran(inv,), U =U,cx Us, and V =, 5 Vs.

We also include constraints into our considerations. Hence, for every o €
X let C, C 2M- be a class of constraints. We assume that U,,V, € C,. Let
C = U,cs Co- Recall the definition of the class £ = £(C,I) C 24D from
Section 3.1. We define the class Z€ = Z£(C, I, R) C 24D by 7€ = {L NIRR |
L € £}. Using the one-to-one correspondence between P and IRR, we may view
LNIRR also as a subset of P, hence ZC C 2F.

Ezample 1. If REC(M,) C C,, then also REC(P) C ZL [6, Lemma 4.8]. A
subset L C M of a monoid M, which is finitely generated by I', is called
normalized rational if the set of length-lexicographical normalforms from I'™
(wrt. an arbitrary linear order on I') that represent elements from L is rational
[6]. It is not hard to see that ZL is the set of normalized rational subsets of P in
case C, is the set of normalized rational subsets of M, .

Throughout this section we make:

Assumption 3 For all 0 € ¥ and a,b,c € M,, ifao, b = ao,c = 1, or
boy,a=co,a=1,, thenb=c. Thus inv, is a partial injection.



For example groups, free monoids, the bicyclic monoid {a,b}*/sp=c, and finite
monoids satisfy Assumption 3,* whereas {a,b, c}* /ap=ac=c does not.

By Assumption 3, inv is a partial injection on A with dom(inv) = U and
ran(inv) = V. Since inv is compatible with I, we can lift it to M(A, I) (see Sec-
tion 2.1). The resulting partial injection has domain M(U, I) and range M(V, I).
The following theorem is the main result of this section.

Theorem 4. If Assumption 3 holds and for all o € X, IFOTh(M,,C,) belongs
to NSPACE(s(n)), then 3FOTh(P,ZL) belongs to NSPACE(29(™) + s(n©M)),

Before we go into the details of the proof of Thm. 4 let us first present an
application. The existential theory of a finite monoid is decidable for trivial
reasons. By Makanin’s result, the existential theory with constants of a free
monoid is also decidable. Finally, by [18,20], also the existential theory with
constants of a torsion-free hyperbolic group is decidable. Note that every free
group is torsion-free hyperbolic. Since finite monoids, free monoids, and groups
in general all satisfy Assumption 3 (and either U, =V, =0 or U, =V, = M,
for these monoids), we obtain the following corollary:

Corollary 1. Let P be a graph product of finite monoids, free monoids, and
torsion-free hyperbolic groups, and let I' be a finite generating set for P. Then
AFOTh(P, (a)eer) s decidable.

For the proof of Thm. 4 assume that IFOTh(M,,C,) belongs to NSPACE(s(n))
for every o € X. Thus, the same holds for IFOTh(M,,inv,,C,). This remains
true if we put M, and M, \ {1,} into C,. Then IRR € L: the language L =
X*\U,ex ¥*olx(0)*oX* is regular. In order to define a C-automaton for IRR,
we just have to replace in a finite automaton for L every label o by M, \ {1,}.

We may also replace C by its closure under union; this does not change the
class £L = L(C,I). Thus, the sets U, V, UUV, and every clan of (A,I) (which is
a union of some of the M) belong to C. Then M(U, I) (the domain of the lifting
of inv to M(A, I)) belongs to L.

Since by Assumption 3, inv : U — V is a partial injection, we can define
a partial involution ¢ on A with domain U UV € C by «(a) = b if and only if
either inv(a, b) or inv(b,a) (note that inv(a,b) and inv(b, c) implies a = ¢). This
involution on A is compatible with I, hence it can be lifted to a partial monoid
involution ¢ on M(A4, I') with domain M(U UV, I).

Since IFOTh(M,,inv,,C,) belongs to NSPACE(s(n)) for every o € X,
the same is true for IFOTh(A,,(L)rec, (0 )rex). Thm. 2 (with (o,)sex for
(Rj)1<j<m) shows that the theory IFOTh(M(A,I),t, L, (o )scx) belongs to
NSPACE(2°(™ + 5(n©M)) (note that the conditions (1)-(4) from Section 3.1
are all satisfied in the present situation).

Let 6 be a Boolean formula with atomic predicates of the form zy = z and
z € L, where L € I (atomic predicates of the form z = 1 are not necessary since

4 For a finite monoid note that aob = 1 implies that the mapping ¢ — boz is injective,
hence it is surjective. Thus, there exists ¢ with boc = 1. Clearly a = ¢, i.e., boa =1,
and inv, is a partial involution.
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{1} € ZIC). We have to check, whether there exists an assignment for the variables
in @ to elements in P that satisfies 6. For this, we transform € in polynomial time
into an equivalent existential statement over (M(A,I),t, L, (o5 )sex)- Thus, in
some sense we isolate the structure of the factor monoids M, into the “M,-
local” o,-predicates.

First, we may push negations to the level of atomic subformulas in 6. We
replace every negated equation xy # z by 2y = 2’ A z # 2/, where 2’ is a new
variable. Thus, we may assume that all negated predicates in @ are of the form
z #y and = ¢ L for variables z and y.

Recall from Section 2.2 that every z € P has a unique representative w(z) €
IRR C M(A,I) and that zy = z in P if and only if w(z)w(y) =g w(z). Moreover,
for L = L' NIRR € ZIL with L' € £ we have z € L if and only if w(z) € L.
Hence, if we add for every variable z in 8 the constraint z € IRR (recall that
IRR € £) and replace every equation zy = z in 6 by the predicate zy S5 z,
then we obtain a formula, which is satisfiable in the trace monoid M(A4, I) if and
only if the original formula 8 is satisfiable in P. Using the following lemma, we
can replace the predicates zy — g z by ordinary equations plus o,-predicates.
For the proof of this lemma, Assumption 3 is essential.

Lemma 5. There exists a fized Boolean formula ¥(x,y,z,%1,...,Tm) over the
structure (M(A, I), 1, (05 )sex, L) such that for all x,y,z € IRR, 2y S g 2 if and
only zy - A2 : Y(2, Y, 2, %1, - -« ) i (M(A, D), 0, L, (05)rex)-

We obtain an equivalent formula over (M(A,I),t, L, (o )secx) whose size in-
creased by a constant factor. This concludes the proof of Thm. 4.

4 Positive theories of graph products

In this section we consider positive theories. Let P = P(X, I, (Gs)oecx) be a
graph product, where every G, is a finitely generated group. Let I, be a finite
generating set for G,. Then P is generated by I' = |J,cx [+ A node 0 € X is a
cone if I (o) = X'\ {o}. Since we restrict to finitely generated groups, we obtain
finite representations for recognizable constraints: If L = h~!(F) € REC(P),
where h : P — @ is a homomorphism to a finite monoid S and F' C @, then L
can be represented by h and F' C S. To represent h, it suffices to specify h(a) for
every generator a € I'. The next theorem is our main result for positive theories,
its proof is similar to the proof of Corollary 18 in [5], see [6].

Theorem 5. Assume that: (i) if o is a cone, then posTh(G,, (a)ecr, , REC(G,))
is decidable and (ii) if o is not a cone, then AFOTh(G,, (a)ecr, , REC(G,)) is
decidable. Then posTh(P, (a)ecr, REC(P)) is decidable.

The theory of Z with semilinear constraints (which include recognizable con-
straints over Z) is decidable [17]. Since the same holds for finite groups, Thm. 5
implies that for a graph product P of finite groups and free groups the theory
posTh(P, (a)eer, REC(PP)) is decidable. This result was already shown in [5].
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Thm. 5 cannot be extended by allowing monoids for the groups G,. Already
the positive V33-theory of the free monoid {a,b}* is undecidable [10]. Similarly,
Thm. 5 cannot be extended by replacing REC(PP) by RAT(P), since the latter
class contains a free monoid {a,b}* in case PP is the free group of rank 2.
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