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Abstract. The first-order theory of an automatic structure is known to
be decidable but there are examples of automatic structures with nonele-
mentary first-order theories. We prove that the first-order theory of an
automatic structure of bounded degree (meaning that the corresponding
Gaifman-graph has bounded degree) is elementary decidable. More pre-
cisely, we prove an upper bound of triply exponential alternating time
with a linear number of alternations. We also present an automatic struc-
ture of bounded degree such that the corresponding first-order theory
has a lower bound of doubly exponential time with a linear number of
alternations. We prove similar results also for tree automatic structures.

1 Introduction

Automatic structures were introduced in [13,15]. The idea goes back to the con-
cept of automatic groups [8]. Roughly speaking, a structure is called automatic if
the elements of the universe can be represented as words from a regular language
and every relation of the structure can be recognized by a finite state automaton
with several heads that proceed synchronously. Automatic structures received
increasing interest during the last years [1, 3,14, 16-18]. One of the main moti-
vations for investigating automatic structures is the fact that every automatic
structure has a decidable first-order theory. On the other hand it is known that
there exist automatic structures with a nonelementary first-order theory [3]. This
motivates the search for subclasses of automatic structures for which the first-
order theory becomes elementary decidable. In this paper we will present such
a subclass, namely automatic structures of bounded degree, where the bounded
degree property refers to the Gaifman-graph of the structure. Using a method
of Ferrante and Rackoff [9] (see Section 3), we show in Section 4 that for every
automatic structure of bounded degree the first-order theory can be decided in
triply exponential alternating time with a linear number of alternations (Theo-
rem 3). We are currently not able to match this upper bound by a sharp lower
bound. But in Section 6 we will construct an example of an automatic structure
of bounded degree such that the corresponding first-order theory has a lower
bound of doubly exponential time with a linear number of alternations (Theo-
rem 5). Finally, in Section 7 we will briefly discuss the extension of our results
from Section 4 to tree automatic structures [2].



2 Preliminaries

General notations Let I be a finite alphabet and w € I'* be a finite word over
I'. The length of w is denoted by |w|. We also write I'* = {w € I'* | n = |w|}
and I'S" = {w € I'* | n > |wl|}. Let us define exp(0,z) = z and exp(n + 1,z) =
2¢xp(n.7) for z € N. A computational problem is called elementary if it can be
solved in time exp(c,n) for some constant ¢ € N.

In this paper we will deal with alternating complexity classes, see [5,19] for
more details. Roughly speaking, an alternating Turing-machine is a nondeter-
ministic Turing-machine, where the set of states is partitioned into existential
and universal states. A configuration with a universal (resp. existential) state
is accepting if every (resp. some) successor state is accepting. An alternation
in a computation of an alternating Turing-machine is a transition from a uni-
versal state to an existential state or vice versa. For functions ¢(n) and a(n)
with a(n) < t(n) for all n > 0 let ATIME(a(n),t(n)) denote the class of all
problems that can be solved on an alternating Turing-machine in time ¢(n) with
at most a(n) alternations. It is known that ATIME(¢(n),t(n)) is contained in
DSPACE(t(n)) if t(n) > n [5].

Structures The notion of a structure (or model) is defined as usual in logic. Here
we only consider relational structures. Sometimes, we will also use constants,
but a constant ¢ can be always replaced by the unary relation {c}. Let us fix
a relational structure A = (A, (R;)ics), where R; C A™ i€ J For BC A
we define the restriction A|B = (B, (R; N B™);cs). Given further constants
Cly---,Cn € A, we write (A, c1,...,cp) for the structure (4, (R;)ics,C1,---,Cn)-

The Gaifman-graph G 4 of the structure A is the following undirected graph:

Ga=(A{(a,b) e Ax A\ Ier,---en) € RiTjikicj =a# b=c})
i€

Thus, the set of nodes is the universe of A and there is an edge between two
elements, if and only if they are contained in some tuple belonging to one of the
relations of A. With d4(a,b), where a,b € A, we denote the distance between a
and bin G 4, i.e., it is the length of a shortest path connecting a and b in G 4. For
a € A and r > 0 we denote with Sa(r,a) ={b € A|da(a,b) <r} the r-sphere
around a. If @ = (a1,...,a,) € A" is a tuple, then S(r,a) = U, Sa(r,a;).
The substructure of A that is induced by S4(r,a) is denoted by N4(r,a), i.e.,
Ny(r,a) = AlSa(r,a). A connected component of the structure A is any induced
substructure A[C', where C'is a connected component of the Gaifman-graph G 4.
We say that the structure A has bounded degree, if its Gaifman-graph G 4 has
bounded degree, i.e., there exists a constant d such that every a € A is adjacent
to at most d other nodes in G 4.

First-order logic For more details concerning first-order logic see e.g. [12].
Let us fix a structure A = (A4, (R;)ics), where R; C A™. The signature of A
contains for each i € J a relation symbol of arity n; that we denote without risk



of confusion by R; as well. Let V be a countable infinite set of variables, which
evaluate to elements from the universe A. First-order formulas over the signature
of A are constructed from the atomic formulas z = y and R;(x1, ..., %y,), where
i€ Jand z,y,z1,...,x,, € V, using Boolean connectives and quantifications
over variables from V. The notion of a free variable is defined as usual. The
quantifier-depth of a formula ¢ is the maximal number of nested quantifiers in
¢. A first-order formula without free variables is called a first-order sentence. If
p(z1,...,Ty,) is a first-order formula with free variables among z1,...,%, and
ai,...,an € A, then A |= ¢(a1,...,a,) means that ¢ evaluates to true in A
when the free variable z; evaluates to a;. The first-order theory of A, denoted
by FOTh(A), is the set of all first-order sentences ¢ such that A = ¢. Given a
formula @(z1,...,Zn, Y1,---,Ym) and bi,..., by € A, @(21,...,Tn,b1,--.,bm)A
denotes the n-ary relation {(a1,...,a,) € A" | A = p(a1,...,an,b1,...,bm)}.
Let X be an arbitrary set of first-order sentences over some fixed signature S. A
model of X is a structure A with signature S such that A |= ¢ for every ¢ € X.
With sat(X) we denote the set of all first-order sentences ¢ over the signature
S such that A = ¢ for some model A of X. The set of all sentences ¢ such
that A | ¢ for every model A of X' is denoted by val(X). Note that if X is
complete, i.e., for every first-order sentence ¢ either ¢ € X or —¢ € X (this holds
in particular if ¥ = FOTh(A) for some structure A), then sat(X) = val(X).

Let C be some complexity class. We say that C is a hereditary lower bound
for a theory FOTh(A) if for every X' C FOTh(A) neither sat(X) nor val(X) is
in C [6]. Thus, in particular FOTh(A) does not belong to the class C.

Automatic structures See [3, 15] for more details concerning automatic struc-
tures. Let us fix n € N and a finite alphabet I'. Let # & I' be an addi-
tional padding symbol. For words wy,...,w, € I'* we define the convolution
w; Wy ®- - - @ wy, which is a word over the alphabet [];, (I'U{#}), as follows:
Let w; = ;1052 - Qi k; with aij; € Iand k = max{kl, e, kn} Fork; < j<k
define a; ; = #. Then

w R Qw, = (al’l,---;anyl)'"(al,kJ""a"vk)'

Thus, for instance aba ® bbabb = (a,b)(b,b)(a,a)(#,b)(#,b). An n-ary relation
R C (I')™ is called automatic if the language {w1 ®---Qwy, | (w1,...,w,) € R}
is a regular language.

Now let A = (A, (R;)ics) be an arbitrary relational structure with finitely
many relations, where R; C A™. A tuple (I', L, h) is called an automatic presen-
tation for A if

I is a finite alphabet,

— L C I'* is a regular language,

h: L — A is a surjective function,

the relation {(u,v) € L x L | h(u) = h(v)} is automatic, and

the relation {(u1,...,un;) € L™ | (h(u1),...,h(un;)) € R;} is automatic for
every i € J.



We say that A is automatic if there exists an automatic presentation for A. The
following result from [15] can be shown by induction on the structure of the
formula .

Proposition 1 (cf [15]). Let (I,L,h) be an automatic presentation for the
structure A and let o(x1,...,%,) be a first-order formula over the signature of A.
Then the relation {(uy,...,u,) € L™ | A = @(h(u1),...,h(uy,))} is automatic.

This proposition implies the following result, which is one of the main motiva-
tions for investigating automatic structures.

Theorem 1 (cf [15]). If A is automatic, then FOTh(A) is decidable.

In [3] it was shown that even the extension of first-order logic, which allows
to say that there are infinitely many z with ¢(z), is decidable. On the other
hand there are automatic structures with a nonelementary first-order theory [3].
For instance the structure ({0,1}*, sq, $1, <), where s;(w) = wi for w € {0,1}*
and ¢ € {0,1} and < is the prefix order on finite words, has a nonelementary
first-order theory, see e.g. [6, Example 8.3]. In Section 4 we will show that for
automatic structures of bounded degree this cannot happen: in this case the
first-order theory is in ATIME(O(n),exp(3,0(n))).

Let us end this section with two typical examples for automatic structures
of bounded degree:

Transition graphs of machines like Turing-machines or counter machines:
Let M be such a machine, C(M) the set of all possible configurations of M, and
= the one-step transition relation between configurations. Then (C(M), =)
is the transition graph of M and easily seen to be automatic.

Cayley-graphs of automatic groups [8] or more general Cayley-graphs of au-
tomatic monoids of finite geometric type [20]: Let M = (M,o) be a finitely
generated monoid and I" a finite generating set for M. Then the Cayley-graph
of M with respect to I' is the structure (M, ({(z,zoa) |z € M,a € I'})ser). It
can be viewed as a I'-labeled directed graph: there is an a-labeled edge from z
to y if and only if y = z 0 a. Automatic monoids [4] have the property that their
Cayley-graphs are automatic, but in general these graphs may have unbounded
degree (more precisely, a node may have unbounded indegree). On the other
hand, if the Cayley-graph of M has bounded degree with respect to some finite
generating set, then it is easy to see that this holds for every finite generating
set of M. In this case, the monoid M is of finite geometric type [20]. This is in
particular the case for right-cancellative monoids and hence for groups.

Moreover, the class of automatic structures of bounded degree is closed under
operations like for instance disjoint union or direct product [3].

3 The method of Ferrante and Rackoff

In order to prove that the first-order theory of an automatic structure of bounded
degree is elementary, we have to introduce a general method from [9].



Let us fix a structure A with universe A. Roughly speaking, Gaifman’s The-
orem [11] states that first-order logic only allows to express local properties of
structures, see [7] for a recent account of this result. For our use, the following
weaker statement is sufficient, which is an immediate consequence of the main
theorem in [11].

Theorem 2 (cf. [11]). Let @ = (a1, a2, ..., a) and b = (b1,ba,...,br), where
ai,b; € A, such that (NA(7",a),a) = (NA(7",E),Z).1 Then, for any first-order
formula (21, ...,2k) of quantifier-depth at most n, we have A |= p(a) if and
only if A= o(b).

A norm function on A is just a function A : A — N. Let us fix a norm function
Aon A. We write A |= 3z < n : ¢ in order to express that there exists a € A
such that A(a) < n and A E ¢(a), and similarly for Vo < n : ¢. Let H :
{(§,d) e NxN| j <d} — N be a function such that the following holds: For all
j<deN, ala=(ai,as,...,aj—1) € A7 with Ma;) < H(i,d), and all a € A,
there exists a; € A with A(a;) < H(j,d) and

(NA(7d_j7 67 Cl), Zia a) = (NA(7d_j7 Zi; aj); 57 aj)'

Then A is called H-bounded (with respect to the norm function \). This defini-
tion is a slight variant of the definition in [9] that suits our needs much better
than the original formulation. The following corollary to Theorem 2 was shown
by Ferrante and Rackoff for their version of H-bounded structures.

Corollary 1 (cf. [9]). Let A be a relational structure with universe A and norm
Aand let H : {(j,d) e NxN|j<d} - N be a function such that A is H-
bounded. Then for any first-order formula ¢ = Q121 Q222 - - - Qqxq : ¥ where ¥
is quantifier free and Q; € {3,V}, we have A |= ¢ if and only if

Al Quzy < H(1,d) Qezz < H(2,d) - Qazq < H(d,d) : .

Proof. For j < d, let ¢; denote the formula Q;z; Q11241 --- Qqzq : ¢ and let
@; stand for the sentence

Qi1 <H(1,d)---Qj1zj1 < H(j —1,d) ;.

Thus, ¢1 = ¢. We show that A = ; if and only if A |= ¢;11, which then proves
the corollary.

Let @ = (a1,...,aj-1) € A7~! with Xa;) < H(i,d). First assume Q; = 3,
ie., ¢; =3z Y41 If A= 1(a), then there is a € A with A = 9;41(@, a). By
our assumption on the norm function A, we find a; € A with A(a;) < H(j,d)
and

(Na(1"9,@,0),d,a) = (Na(7"7,@,0;), 8 a;). (1)

! Thus, there exists a bijection f : SA(7",a) — Sa(7",b), which preserves all relations
from A and such that f(a;) =b; for 1 <7 < k.



Since the quantifier depth of ;41 is d — j, Theorem 2 implies A = 9411 (@, a;).
Thus, A = (3z; < H(j,d) : ¥j4+1)(@). If, conversely, A = (3z; < H(j,d) :
1;41)(a), we have trivially A |= v, (a).

Assume now that Q; =V, ie., ¥; =Vz; : ¥;j11. If A |=1);(a), then of course
also A = (Vz; < H(j,d) : ¢j+1)(a). Now assume that

A (Vo; < H(j,d) : ¢11)(@) (2)

and let a € A be arbitrary. We have to show that A = ¢;41(a,a). The case
Ma) < H(j,d) is clear. Thus, assume that A(a) > H(j,d). Then there exists
a; € A with A(a;) < H(j,d) and (1). Since A(a;) < H(j,d), (2) implies A =
1 +1(a, a;). Finally, Theorem 2 implies A = ¥;11(a, a). O

4 An upper bound

In this section we apply the method of Ferrante and Rackoff in order to prove
the following result:

Theorem 3. If A is an automatic structure of bounded degree, then FOTh(A)
can be decided in ATIME(O(n),exp(3,0(n))).

Proof. Fix an automatic presentation (I, L, h) for A and let the degree of the
Gaifman-graph G 4 be bounded by 6. By [15] we can assume that h : L — A
is injective and thus bijective. Hence, we may assume that L is the universe of
A (and h is the identity function). Let E be the edge relation of G 4. Since this
relation is first-order definable in 4, Proposition 1 implies that the relation E
is automatic. Let v be the number of states of a finite automaton Ag for the
language {u ® v | (u,v) € E}.

Claim 1. If (u,v) € E, then |(Ju| — |v])| < 7.

In order to deduce a contradiction, assume w.l.0.g. that (u,v) € E and |v| —|u| >
v. Then a simple pumping argument shows that the automaton Ag accepts an
infinite number of words of the form v ® w with w € L and |w| > |v|. It follows
that the Gaifman-graph G 4 has infinite degree, which is a contradiction.

Claim 2. Let r € N and u € L. Then there exists a finite automaton A, , with
exp(2,0(r)) many states such that

L(A; ) ={veL|(Na(r,u),u) = (Na(r,v),v)}.

Thus, the automaton A, ,, accepts a word v € L if and only if the r-sphere around
v is isomorphic to the r-sphere around u (with u mapped to v). For the proof of
Claim 2 first notice that since G4 has bounded degree, |S(r,u)| € 20, We
will use this in order to describe the finite substructure N4(r,u) by a formula
of size 2°(") over the signature of A:

First, for 0 < n < § (§ bounds the degree of the Gaifman-graph) let the
formula deg,, (z) express that the degree of z in the Gaifman-graph G 4 is exactly



n. Thus, deg, (z) is a fixed first-order formula over the signature of A. Next
take m = |S4(r,u)| € 2°(") many variables 1, ..., &,,, where z; represents the
element u; € Sa(r,uw) (u; # u; for i # j) and w.l.o.g. u = us. Then write down
the conjunction of the following formulas, where R is an arbitrary relation of 4
and 0 <n <4

— x; # x; for i # j,

— R(.’L‘il,.. .,:L'in) if (uil,. ..,uin) € R,

— Rz, i) if (uwy,...,u;,) € R, and

— deg,, (z;) if the degree of u; in G 4 is precisely n.

Finally we quantify the variables za, ..., z,, existentially. Let ¢(x;) be the re-
sulting formula. It is easy to see that A = ¢(v) if and only if (Na(r,u),u) =
(N 4(r,v),v). Only the use of the formulas deg,, (z;) needs some explanation. If we
would omit these formulas, then A = ¢(v) would only express that (N 4(r, u),u)
is isomorphic to some induced substructure of (N 4(r,v),v) (with v mapped to
v). But by fixing the degree of every x; we exclude the possibility that there
exists y € Sa(r,z1) with y # z; for all 1 <i < m.?

Now the automaton A, , is obtained by translating the formula ¢(x1) into
an automaton using the standard construction for automatic structures, see e.g.
[15]: each of the predicates listed above can be translated into an automaton
of fixed size (recall that deg,, is a formula of fixed size). Since we have 20(r)
such predicates, their conjunction can be described by a product automaton of
size exp(2,0(r)) working on 2°(") tracks (one for each variable z;). Finally, the
existential quantification over the variables xo, ..., z, means that we have to
project this automaton onto the track corresponding to the variable z;. The
resulting automaton is A, ,, it still has exp(2,O(r)) states and only one track.
This proves Claim 2.

For the next claim we define the norm of an element v € L as its length |u.

Claim 3. A is H-bounded by a function H satisfying H(j,d) € exp(3,0(d)) for
al j<deN

Proof of Claim 3. By Claim 2, the size of the automaton A, , is bounded by
exp(2,c-r), where ¢ is some fixed constant. Define the function H by

H(]Jd) ZH(]—l,d)+2’yexp(27c7d_3)7

where 1 is the constant from Claim 1 and H (0, d) is set to 0. Note that H(d,d) €
exp(3,0(d)). Now let 1 < j < d and @& = (uq,...,uj_1) € LI with |u;| <
H(i,d). Let furthermore v € L with |u| > H(j,d). Thus, |u| — |u;| > 2 -7 -
exp(2,c-7%7) for every 1 < i < j—1, which by Claim 1 implies that the distance
between u and every u; in the Gaifman-graph is larger than 2 - exp(2,c- 7¢77).

2 The standard solution of this problem is to say that there does not exist y ¢
{z1,...,%m} which is in G4 adjacent to some z; with d4(z1,x;) < r—1, see e.g. the
proof of [22, Corollary 4.9]. But this would introduce a quantifier alternation that
we want to avoid.



Thus, the spheres S4(7¢77,%) and S4(7%77,u) are certainly disjoint and there
is no edge in G4 between these two spheres.

Now consider the automaton Aza-; ,, from Claim 2. It has at most exp(2,¢-
74-7) states. Since u is accepted by Aza-j 4, it accepts a word of length larger
than H(j,d) = H(j — 1,d) + 2 - v - exp(2,c - 7%79). Thus, a simple pumping
argument shows that Aza-; ,, also accepts a word u; € L with

H(j—l,d)+7-exp(2,c-7d_j) S |uJ| S H(j_]-ad)+2'7'exp(2ac'7d_j) = H(]a d)

(note that v > 1). Since |u;j| > H(j — 1,d) + v -exp(2,c- 7%77), Claim 1 implies

that the distance between u; and u; (1 <4 < j) in the Gaifman-graph is at least

exp(2,c-7%77). Thus, also the spheres S4(7¢~%,%) and S4(7%79,u;) are disjoint

and there is no edge in G 4 between these two spheres. Finally, since by definition

of the automaton Aza-;, we have (N4(7%77,u),u) = (NA(7T77,u;),u;), we

obtain (Na (7477, 4, u),u,u) = (N4(7% 9,1, u;), 4, u;). Thus, A is H-bounded.
Now we can finish the proof of the theorem. Let

0= Q1z1Q222 - Qaxa : Y(21,- .., Ta)

be a first-order sentence over the signature of A with d quantifiers Q; € {3,V}.
Then, by Corollary 1, A |= ¢ if and only if

A 'Z Qlwl < H(]-:d)Q?'rQ < H(27d)ded < H(dad) : ¢($17"'7$d)' (3)

Since H (i,d) € exp(3,0(|¢|)), this implies the statement of the theorem: In or-
der to verify (3), we guess (either in an existential or a universal state) words
u; € L with |u;| < H(i,d). Every quantifier alternation leads to one alternation
in our alternating Turing-machine. After having guessed every word u;, we ver-
ify whether A = ¢(uq,...,uq) by running the automata given by the automatic
presentation of 4. This needs deterministic triply exponential time. This con-
cludes the proof. O

Remark 1. The proof of Theorem 3 shows also another result. Assume that the
premises of Theorem 3 are satisfied. If moreover the Gaifman-graph G 4 has poly-
nomial growth, i.e., for every u € L, the size of the r-sphere S 4(r,u) is bounded
by 71 then the size of the automaton A, ,, from Claim 2 is bounded by (™)
It follows that FOTh(A) can be decided in ATIME(O(n), exp(2,n°™M)).

Remark 2. Theorem 3 can be easily generalized to a larger class of automatic
structures: By Proposition 1, the class of automatic structures is closed under
first-order interpretations (see [3] for the definition). Moreover, it is easy to see
that a first-order interpretation between two structures leads to a polynomial
time reduction between the corresponding first-order theories. Thus, every au-
tomatic structure that is first-order interpretable in an automatic structure of
bounded degree has a first-order theory in ATIME(O(n), exp(3,0(n))). More-
over, the resulting class of automatic structures strictly contains the class of
automatic structures of bounded degree.



5 The method of Compton and Henson

In order to prove lower bounds for theories of automatic structures of bounded
degree, we will use a method of Compton and Henson, which will be introduced
in this section.

For every i > 0 let C; be a class of structures over some signature (R;) e,
which is the same for all structures in [J;5 Ci. Assume that R; has arity n;. Let
furthermore A be an additional structure with universe A. We say that (C;)i>o
has a monadic interpretation in the structure A [6] if for every i > 0 there exist
formulas

¢i(x7'r)7 (wi,j ('Z'la -3 Tn;, T))jEJJ Hi(xa T, S) (4)

over the signature of A4 such that for every structure B € C; there exists a € A
with:

— B is isomorphic to the structure (¢;(z,a)?, (¥ ;(z1, . .. s Ty s a)M)jes),
— pi(z,a,b)? is a subset of ¢;(z,a)? for every b € A, and moreover every
subset of ¢;(x,a)” is of the form p;(x,a,b)* for some b € A.

Thus, by varying the parameter r in (4), we obtain all structures from C;. In [6]
it is also allowed to use a sequence 7y, ..., of parameters instead of a single
parameter r. We will not need this more general notion of monadic interpreta-
tions.

In order to derive complexity lower bounds using monadic interpretations,
one has to require that given i > 0 in unary notation (i.e., $¢), the formulas in
(4) can be computed efficiently. Following [6], we require that these formulas are
reset log-lin computable from $¢. This means that there exists a deterministic
Turing-machine operating in linear time and logarithmic working space that
computes (4) from $?. Moreover the input-head always moves one cell to the
right except for k transitions (where k is some fixed constant), where the input-
head is reset to the left end of the input. This technical extra condition was
introduced in [6] in order to obtain a transitive notion of reducibility.® In the
following we will always restrict implicitly to reset log-lin computable functions
in the context of monadic interpretations. The following theorem was shown in
[6, Thm. 7.2].

Theorem 4 (cf. [6]). Let T(n) be a time resource bound such that for some d
between 0 and 1, T'(dn) € o(T'(n)). Let C, be the class of all structures of the
form ({0,...,m},plus) with m < T'(n) and plus(z,y, 2) if and only if t+y = z.
If there is a monadic interpretation of (Cn)n>0 in a structure A, then for some
constant ¢, ATIME(cn, T (cn)) is a hereditary lower bound for FOTh(A).*

3 Reset log-lin reductions should not be confused with the log-lin reductions from
[21], where it is only assumed that the output length is linearly bounded in the
input length.

* From the proofs in [6] it is easy to see that this statement is also true if Cy, is the
singleton class {({0,...,T(n) — 1}, plus)}.



Fig. 1. A tree of height 2 with marked leafs

6 A lower bound

A binary tree of height n with marked leafs is a structure of the form
({Oa ]-}Sna 50,81, P)a

where s; = {(w,wi) | w € {0,1}*,|w| < n} and P C {0,1}" is an additional
unary predicate on the leafs. Let 7, be the set of all these structures and let
T = Up>o Tn- Figure 1 shows a member of 75, where the leafs 00, 01, and 11
are marked.

Binary trees with additional unary predicates were used in [10] in order to
derive lower bounds on the parametrized complexity of first-order model check-
ing. Here we will use these trees in connection with the method of Compton and
Henson from the preceding section. First we have to prove the following lemma:

Lemma 1. There exists an automatic structure A = (A, so,s1, P) with s; C
Ax A and P C A such that

— every connected component of A is isomorphic to a structure from T, and
— every structure from T is isomorphic to a connected component of A.

Proof. Let X = {0,1,#,a,a’,b,b'} and let A = ({a,a’,b,b'}*{0,1}*#)*, which
is regular. Let sg C A x A contain all pairs of the form

(U1041U1#U20tz?12 - FHUROURFE, U BrurFUsfavs #Unﬁnvn#)
such that

—Uu; € {aaalababl}*a a; € {07 1}; /Bz € {aaalababl}a v; € {OJ 1}*a and
— if @; = 0 then 3; = a, and if a; = 1 then 3; = b'.

This relation is clearly automatic. The relation s; C A x A is defined analogously,
we only replace the second condition above by 8; = b if a; = 1 and 8; = a' if
a; = 0. Finally define the regular language P C A by

P = {w1#wa#---w,# € A | w; € {a,b}* for some i}.

This finishes the definition of the automatic structure A = (A4, sg,s1,P). It
is easy to see that .4 has indeed the properties stated in the lemma. In Fig-
ure 2, it is shown, how the tree from Figure 1 is generated. Marked leafs are



00#01#114#

T T

a0#tal#b' 13 a'0#ta’ 14tb14#
aa#tab’ #b'b' # aa’ #ab#b' bH# a'a#a'b' #bb' # a'a’ #a bFbbH#H

Fig. 2. A connected component from the structure A in Lemma 1

underlined. Note that the same tree is for instance also rooted at words from

{a,b}*00#{a,b}*014#{a, b}*11#({a,a’, b, b' }*{0, 1} 234)*.
O

Lemma 2. Let A be the structure from Lemma 1. Let C, be the class of all
structures of the form ({0,...,m},plus) with m < 22". Then there exists a
monadic interpretation of (Cp)n>0 in the structure A.

Proof. Let A = (4, sg, 81, P) be the structure from Lemma 1. Given a,b € A we
say that b is a successor of a or a is a predecessor of b if there exists a directed
path in the relation so U s; from a to b. This directed path defines a word over
{0,1} in the canonical way. If, e.g., so(a, ¢) and s1(c, b), then the path from a to
b defines the word 01.

Our aim is to construct formulas

bn(z,7), plus,(z,y,2,7), pn(z,r,5)

that are reset log-lin computable from $”™ and that witness a monadic interpre-
tation of (Cp)n>0 in the structure A. First, we define a few auxiliary formulas
that define relations in the structure A. Let us fix n > 0. For every 0 < i < n,
the formula 7;(zo,1,y0,y1) expresses that zo is a predecessor of x1, yo is a
predecessor of y;, and the unique path leading in 4 from z( to z; has length at
most 2! and is labeled with the same word over {0, 1} as the unique path leading
in A from yo to y1:

mo(Z0, T1,Y0,Y1) =
(wo =21 AN yo=w1) V (s0(zo, 1) A so(yo,y1)) V (s1(wo,21) A 51(y0,1))
Tit1(To, T1,Y0,Y1) =
Az, Jys Ve Vo' Yy Vy'

(r=zo AN =2 ANy=9yg Ay =y2)V p )
{((m=x2/\w'=$1/\y=y2/\y'=y1) - mi(z,2',y,y")

Here we use the usual trick for replacing two occurrences of 7; in the definition
of m;4+1 by a single occurrence of m; [9], which is necessary in order to obtain



formulas of linear size. It is easy to see that =; is reset log-lin computable from
$? (see [6] for a class of reset log-lin computable formula sequences that contains
the sequence (7;);>0)- In the same way we can construct reset log-lin computable
formulas, which express the following:

— =i (z,y) if and only if z is a predecessor of y and the unique path from z to
y has length at most 2¢. Instead of <; (z,y) we will write 2 <; y. We write
z<;yifr <;yand x # y.

— dist;(zo, 1,Y0,y1) if and only if 2o <; 21, yo <i y1, and the unique path
from z¢ to z1 has the same length as the unique path from yo to y1. We
write A\;(z,y, 2) for dist;(z,y, z, ).

We will represent an interval {0,...,m} with m < 22" by the leafs of a binary
tree of height k < 2" rooted at the node r € A.° The set of these nodes can be
defined by the formula

On(z,7) = v 2nz A ~Ty{so(z,y) V si(z,y)}

(thus, for most a € A we have ¢, (x,a)? = §). The word from {0,1}* (k < 27)
labeling the path from the root r to a leaf z can be interpreted as the binary
coding of z. In order to define addition on these leafs let y be another leaf of the
tree rooted at 7. Let u # r (resp. v # r) be a node on the unique path from r to =
(resp. r to ). Assume that A\, (r, u,v) holds. We first define a formula 1, (u, v, 7),
expressing that adding = and y leads to a carry over from a previous position at
the position corresponding to u (and v). For i € {0,1} let 8;(x) = Ty : s;(y, ).
Then we can define 9, (u,v,r) as follows:

)‘n(Tap7Q) Ap=<pu AN g=<pv A ﬁl(p) A ﬁl(Q) A

n(u,v,7) = 3p3g An(r;8,2) A
Ynlu,0,1) VsVEd [ = s <nu A | = (Bi(s) V Bu(t)
g3t

Using the formula

pulwv,w,r) =\ (Bilw) A Bi(0) A daluyv,r) A Bew)) V

i,j,k€{0,1}
i+j+1=kmod 2

V  Biw) A Bi(w) A ~pn(u,0,7) A Br(w))
Sketon),

we can define plus,,(z,y, z,r) as follows:

phlsn(m,y,zar) = én(x,r) A Su(y,r) A onl2,7) A

An(r,u,0) A Ap(r,v,w) A
VuVUVw{(u L E A<y Aw<yz) @n(u, v, w,7)

% In this way we represent only those intervals whose size is a power of two, which is
not crucial, see the footnote in Theorem 4.



Finally, arbitrary subsets of the set of leafs in the tree rooted at r can be defined
by varying s in the following formula:

pn(x,r,8) = dn(2,r) A Jy{s 2ny A mu(r,z,s,y) A P(y)}

This formula selects those leafs from the tree rooted at r such that the corre-
sponding leaf in the tree rooted at s satisfies the unary predicate P. O

Lemma 1 and 2 combined with Theorem 4 give us the main result of this section:

Theorem 5. There exists an automatic structure A of bounded degree such
that for some constant ¢, ATIME(cn,exp(2,cn)) is a hereditary lower bound
for FOTh(A).

7 Tree automatic structures

Tree automatic structures were introduced in [2], they generalize automatic
structures. Let I' be a finite alphabet. A finite binary tree over I' is a map-
ping t : dom(t) — I', where dom(t) C {0,1}* is finite and satisfies the following
closure condition for all w € {0,1}* and i € {0,1}: if wi € dom(¢), then also
w € dom(t) and wj € dom(t) for all 5 € {0,1}. Those w € dom(t) such that
w0 ¢ dom(t) (and hence also w1l ¢ dom(t)) are called the leafs of t. With T we
denote the set of all finite binary trees over I'. We define the height of the tree
t by height(t) = max{|w| | w € dom(t)}. A tree automaton over I' is a tuple
A=(Q,4,I,F), where @ is the finite set of states, I C @ (resp. F C Q) is the
set of initial (resp. final) states, and § C Q@ x @ X I' x Q. A successful run of A
on a tree t is a mapping p : dom(¢) — @ such that: (i) p(w) € I if w is a leaf
of t, (ii) p(e) € F, and (iii) (p(w0), p(wl),t(w), p(w)) € ¢ if w € dom(t) is not
a leaf. With T'(A) we denote the set of all finite binary trees t such that there
exists a successful run of A on ¢t. A set L C T is called recognizable if there
exists a finite tree automaton A with L = T(A). Recognizable tree languages
allow similar pumping arguments as regular word languages. More precisely, if
A is a finite tree automaton with n states and T'(A) # (), then T (A) contains a
tree of height at most n.

Let t1,...,t, € Tr. We define the convolution ¢t = ¢t; ® --- ® t,, which is
a finite binary tree over [[; (I U {#}), as follows: dom(t) = |J}_, dom(t;)
and for all w € J;, dom(t;) we define t(w) = (a1,...,a,), where a; = t;(w)
if w € dom(¢;) and a; = # otherwise. An n-ary relation R over Tr is called
tree-automatic if the language {t; ® --- ® t, | (t1,...,tn) € R} is recognizable.
Using this definition we can define the notion of a tree automatic presentation
analogously to the word case in Section 2: A tree automatic presentation of the
structure A = (A, (R;)icg), where R; C A™  is a tuple (I, L, h) such that

— I' is a finite alphabet,
— L CTT is recognizable,
— h: L — A is a surjective function,



— the relation {(u,v) € L x L | h(u) = h(v)} is tree automatic, and
— the relation {(u1,...,un;) € L™ | (h(u1),...,h(uy,,;)) € R} is tree auto-
matic for every i € J.

We say that A is tree automatic if there exists a tree automatic presentation for
A. An example of a tree automatic structure, which is not automatic is (N, -),
i.e., the natural numbers with multiplication [2].

Many results for automatic structures carry over to tree automatic structures.
For instance the first-order theory of a tree automatic structure is still decidable
[2]. Analogously to Theorem 3 we can prove the following result:

Theorem 6. If A is a tree automatic structure of bounded degree, then FOTh(A)
can be decided in ATIME(O(n), exp(4,0(n))).

Proof. We copy the proof of Theorem 3. Thus, let (I, L, h) be a tree automatic
presentation for A, where h can be assumed to be bijective (see [2, Theorem 3.4]).
For an element t € L, we define its norm as height(t). Then, analogously to Claim
1 in the proof of Theorem 3 it follows that if (¢,t') is an edge in the Gaifman-
graph G 4, then |height(t) — height(¢')| < 7. Then also Claim 2 and 3 from the
proof of Theorem 3 carry over easily to the tree automatic case. Thus A is H
bounded by a function H satisfying H(j,d) € exp(3,0(d)) for all j <d € N. We
can conclude as in the word case. The only difference is that a binary tree, whose
height is bounded by exp(3, O(n)) needs exp(4, O(n)) many bits for its specifi-
cation in the worst case. This is the reason for the ATIME(O(n), exp(4,0(n)))
upper bound in the theorem. O

8 Open problems

Several open problems remain for (tree) automatic structures of bounded degree:

— Does there exist an automatic structure A of bounded degree such that
ATIME(O(n), exp(3,0(n))) is a (hereditary) lower bound for FOTh(A4), or
is ATIME(O(n), exp(2,0(n))) always an upper bound? The same open prob-
lem remains for tree automatic structures, there the gap is even larger (be-
tween ATIME(O(n), exp(2,0(n))) and ATIME(O(n), exp(4, O(n)))).

— Is there a tree automatic structure of bounded degree, which is not auto-
matic? Without the restriction to structures of bounded degree this is true,
see Section 7.

Acknowledgments. I am grateful to Dietrich Kuske for many fruitful discus-
sions on the topic of this paper.
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