Automatic Structures of Bounded Degree

Markus Lohrey

Institut für Formale Methoden der Informatik, Universität Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany
lohrey@informatik.uni-stuttgart.de

Abstract. The first-order theory of an automatic structure is known to be decidable but there are examples of automatic structures with nonelementary first-order theories. We prove that the first-order theory of an automatic structure of bounded degree (meaning that the corresponding Gaifman-graph has bounded degree) is elementary decidable. More precisely, we prove an upper bound of triply exponential alternating time with a linear number of alternations. We also present an automatic structure of bounded degree such that the corresponding first-order theory has a lower bound of doubly exponential time with a linear number of alternations. We prove similar results also for tree automatic structures.

1 Introduction

Automatic structures were introduced in [13, 15]. The idea goes back to the concept of automatic groups [8]. Roughly speaking, a structure is called automatic if the elements of the universe can be represented as words from a regular language and every relation of the structure can be recognized by a finite state automaton with several heads that proceed synchronously. Automatic structures received increasing interest during the last years [1, 3, 14, 16–18]. One of the main motivations for investigating automatic structures is the fact that every automatic structure has a decidable first-order theory. On the other hand it is known that there exist automatic structures with a nonelementary first-order theory [3]. This motivates the search for subclasses of automatic structures for which the firstorder theory becomes elementary decidable. In this paper we will present such a subclass, namely automatic structures of bounded degree, where the bounded degree property refers to the Gaifman-graph of the structure. Using a method of Ferrante and Rackoff [9] (see Section 3), we show in Section 4 that for every automatic structure of bounded degree the first-order theory can be decided in triply exponential alternating time with a linear number of alternations (Theorem 3). We are currently not able to match this upper bound by a sharp lower bound. But in Section 6 we will construct an example of an automatic structure of bounded degree such that the corresponding first-order theory has a lower bound of doubly exponential time with a linear number of alternations (Theorem 5). Finally, in Section 7 we will briefly discuss the extension of our results from Section 4 to tree automatic structures [2].

2 Preliminaries

General notations Let Γ be a finite alphabet and $w \in \Gamma^*$ be a finite word over Γ . The length of w is denoted by |w|. We also write $\Gamma^n = \{w \in \Gamma^* \mid n = |w|\}$ and $\Gamma^{\leq n} = \{w \in \Gamma^* \mid n \geq |w|\}$. Let us define $\exp(0, x) = x$ and $\exp(n + 1, x) = 2^{\exp(n,x)}$ for $x \in \mathbb{N}$. A computational problem is called *elementary* if it can be solved in time $\exp(c, n)$ for some constant $c \in \mathbb{N}$.

In this paper we will deal with alternating complexity classes, see [5, 19] for more details. Roughly speaking, an alternating Turing-machine is a nondeterministic Turing-machine, where the set of states is partitioned into existential and universal states. A configuration with a universal (resp. existential) state is accepting if every (resp. some) successor state is accepting. An alternation in a computation of an alternating Turing-machine is a transition from a universal state to an existential state or vice versa. For functions t(n) and a(n) with $a(n) \leq t(n)$ for all $n \geq 0$ let ATIME(a(n), t(n)) denote the class of all problems that can be solved on an alternating Turing-machine in time t(n) with at most a(n) alternations. It is known that ATIME(t(n), t(n)) is contained in DSPACE(t(n)) if $t(n) \geq n$ [5].

Structures The notion of a structure (or model) is defined as usual in logic. Here we only consider relational structures. Sometimes, we will also use constants, but a constant c can be always replaced by the unary relation $\{c\}$. Let us fix a relational structure $\mathcal{A} = (A, (R_i)_{i \in J})$, where $R_i \subseteq A^{n_i}$, $i \in J$. For $B \subseteq A$ we define the restriction $\mathcal{A} \upharpoonright B = (B, (R_i \cap B^{n_i})_{i \in J})$. Given further constants $c_1, \ldots, c_n \in A$, we write $(\mathcal{A}, c_1, \ldots, c_n)$ for the structure $(\mathcal{A}, (R_i)_{i \in J}, c_1, \ldots, c_n)$. The Gaifman-graph $G_{\mathcal{A}}$ of the structure \mathcal{A} is the following undirected graph:

$$G_{\mathcal{A}} = (A, \{(a, b) \in A \times A \mid \bigvee_{i \in J} \exists (c_1, \dots, c_{n_i}) \in R_i \ \exists j, k : c_j = a \neq b = c_k\}).$$

Thus, the set of nodes is the universe of \mathcal{A} and there is an edge between two elements, if and only if they are contained in some tuple belonging to one of the relations of \mathcal{A} . With $d_{\mathcal{A}}(a,b)$, where $a,b\in A$, we denote the distance between a and b in $G_{\mathcal{A}}$, i.e., it is the length of a shortest path connecting a and b in $G_{\mathcal{A}}$. For $a\in A$ and $r\geq 0$ we denote with $S_{\mathcal{A}}(r,a)=\{b\in A\mid d_{\mathcal{A}}(a,b)\leq r\}$ the r-sphere around a. If $\widetilde{a}=(a_1,\ldots,a_n)\in A^n$ is a tuple, then $S_{\mathcal{A}}(r,\widetilde{a})=\bigcup_{i=1}^n S_{\mathcal{A}}(r,a_i)$. The substructure of \mathcal{A} that is induced by $S_{\mathcal{A}}(r,\widetilde{a})$ is denoted by $N_{\mathcal{A}}(r,\widetilde{a})$, i.e., $N_{\mathcal{A}}(r,\widetilde{a})=\mathcal{A}\upharpoonright S_{\mathcal{A}}(r,\widetilde{a})$. A connected component of the structure \mathcal{A} is any induced substructure $\mathcal{A}\upharpoonright C$, where C is a connected component of the Gaifman-graph $G_{\mathcal{A}}$. We say that the structure \mathcal{A} has bounded degree, i.e., there exists a constant d such that every $a\in A$ is adjacent to at most d other nodes in $G_{\mathcal{A}}$.

First-order logic For more details concerning first-order logic see e.g. [12]. Let us fix a structure $\mathcal{A} = (A, (R_i)_{i \in J})$, where $R_i \subseteq A^{n_i}$. The *signature of* \mathcal{A} contains for each $i \in J$ a relation symbol of arity n_i that we denote without risk

of confusion by R_i as well. Let \mathbb{V} be a countable infinite set of variables, which evaluate to elements from the universe A. First-order formulas over the signature of A are constructed from the atomic formulas x = y and $R_i(x_1, \ldots, x_{n_i})$, where $i \in J$ and $x, y, x_1, \dots, x_{n_i} \in \mathbb{V}$, using Boolean connectives and quantifications over variables from V. The notion of a free variable is defined as usual. The quantifier-depth of a formula ϕ is the maximal number of nested quantifiers in φ. A first-order formula without free variables is called a first-order sentence. If $\varphi(x_1,\ldots,x_n)$ is a first-order formula with free variables among x_1,\ldots,x_n and $a_1,\ldots,a_n\in A$, then $A\models\varphi(a_1,\ldots,a_n)$ means that φ evaluates to true in Awhen the free variable x_i evaluates to a_i . The first-order theory of A, denoted by FOTh(A), is the set of all first-order sentences φ such that $A \models \varphi$. Given a formula $\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ and $b_1,\ldots,b_m\in A, \varphi(x_1,\ldots,x_n,b_1,\ldots,b_m)^{\mathcal{A}}$ denotes the *n*-ary relation $\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi(a_1,\ldots,a_n,b_1,\ldots,b_m)\}.$ Let Σ be an arbitrary set of first-order sentences over some fixed signature \mathcal{S} . A model of Σ is a structure \mathcal{A} with signature \mathcal{S} such that $\mathcal{A} \models \psi$ for every $\psi \in \Sigma$. With sat(Σ) we denote the set of all first-order sentences ϕ over the signature S such that $\mathcal{A} \models \phi$ for some model \mathcal{A} of Σ . The set of all sentences ϕ such that $\mathcal{A} \models \phi$ for every model \mathcal{A} of Σ is denoted by val(Σ). Note that if Σ is complete, i.e., for every first-order sentence ϕ either $\phi \in \Sigma$ or $\neg \phi \in \Sigma$ (this holds in particular if $\Sigma = \text{FOTh}(A)$ for some structure A, then $\text{sat}(\Sigma) = \text{val}(\Sigma)$.

Let C be some complexity class. We say that C is a hereditary lower bound for a theory FOTh(A) if for every $\Sigma \subseteq FOTh(A)$ neither $sat(\Sigma)$ nor $val(\Sigma)$ is in C [6]. Thus, in particular FOTh(A) does not belong to the class C.

Automatic structures See [3,15] for more details concerning automatic structures. Let us fix $n \in \mathbb{N}$ and a finite alphabet Γ . Let $\# \notin \Gamma$ be an additional padding symbol. For words $w_1, \ldots, w_n \in \Gamma^*$ we define the *convolution* $w_1 \otimes w_2 \otimes \cdots \otimes w_n$, which is a word over the alphabet $\prod_{i=1}^n (\Gamma \cup \{\#\})$, as follows: Let $w_i = a_{i,1}a_{i,2}\cdots a_{i,k_i}$ with $a_{i,j} \in \Gamma$ and $k = \max\{k_1, \ldots, k_n\}$. For $k_i < j \leq k$ define $a_{i,j} = \#$. Then

$$w_1 \otimes \cdots \otimes w_n = (a_{1,1}, \ldots, a_{n,1}) \cdots (a_{1,k}, \ldots, a_{n,k}).$$

Thus, for instance $aba \otimes bbabb = (a,b)(b,b)(a,a)(\#,b)(\#,b)$. An *n*-ary relation $R \subseteq (\Gamma^*)^n$ is called automatic if the language $\{w_1 \otimes \cdots \otimes w_n \mid (w_1,\ldots,w_n) \in R\}$ is a regular language.

Now let $\mathcal{A} = (A, (R_i)_{i \in J})$ be an arbitrary relational structure with finitely many relations, where $R_i \subseteq A^{n_i}$. A tuple (Γ, L, h) is called an *automatic presentation* for \mathcal{A} if

- $-\Gamma$ is a finite alphabet,
- $-L \subseteq \Gamma^*$ is a regular language,
- $-h:L\to A$ is a surjective function,
- the relation $\{(u,v) \in L \times L \mid h(u) = h(v)\}\$ is automatic, and
- the relation $\{(u_1,\ldots,u_{n_i})\in L^{n_i}\mid (h(u_1),\ldots,h(u_{n_i}))\in R_i\}$ is automatic for every $i\in J$.

We say that \mathcal{A} is *automatic* if there exists an automatic presentation for \mathcal{A} . The following result from [15] can be shown by induction on the structure of the formula φ .

Proposition 1 (cf [15]). Let (Γ, L, h) be an automatic presentation for the structure A and let $\varphi(x_1, \ldots, x_n)$ be a first-order formula over the signature of A. Then the relation $\{(u_1, \ldots, u_n) \in L^n \mid A \models \varphi(h(u_1), \ldots, h(u_n))\}$ is automatic.

This proposition implies the following result, which is one of the main motivations for investigating automatic structures.

Theorem 1 (cf [15]). If A is automatic, then FOTh(A) is decidable.

In [3] it was shown that even the extension of first-order logic, which allows to say that there are infinitely many x with $\phi(x)$, is decidable. On the other hand there are automatic structures with a nonelementary first-order theory [3]. For instance the structure $(\{0,1\}^*, s_0, s_1, \preceq)$, where $s_i(w) = wi$ for $w \in \{0,1\}^*$ and $i \in \{0,1\}$ and \preceq is the prefix order on finite words, has a nonelementary first-order theory, see e.g. [6, Example 8.3]. In Section 4 we will show that for automatic structures of bounded degree this cannot happen: in this case the first-order theory is in ATIME $(O(n), \exp(3, O(n)))$.

Let us end this section with two typical examples for automatic structures of bounded degree:

Transition graphs of machines like Turing-machines or counter machines: Let \mathcal{M} be such a machine, $\mathcal{C}(\mathcal{M})$ the set of all possible configurations of \mathcal{M} , and $\Rightarrow_{\mathcal{M}}$ the one-step transition relation between configurations. Then $(\mathcal{C}(\mathcal{M}), \Rightarrow_{\mathcal{M}})$ is the transition graph of \mathcal{M} and easily seen to be automatic.

Cayley-graphs of automatic groups [8] or more general Cayley-graphs of automatic monoids of finite geometric type [20]: Let $\mathcal{M}=(M,\circ)$ be a finitely generated monoid and Γ a finite generating set for \mathcal{M} . Then the Cayley-graph of \mathcal{M} with respect to Γ is the structure $(M,(\{(x,x\circ a)\mid x\in M,a\in\Gamma\})_{a\in\Gamma})$. It can be viewed as a Γ -labeled directed graph: there is an a-labeled edge from x to y if and only if $y=x\circ a$. Automatic monoids [4] have the property that their Cayley-graphs are automatic, but in general these graphs may have unbounded degree (more precisely, a node may have unbounded indegree). On the other hand, if the Cayley-graph of \mathcal{M} has bounded degree with respect to some finite generating set, then it is easy to see that this holds for every finite generating set of \mathcal{M} . In this case, the monoid \mathcal{M} is of finite geometric type [20]. This is in particular the case for right-cancellative monoids and hence for groups.

Moreover, the class of automatic structures of bounded degree is closed under operations like for instance disjoint union or direct product [3].

3 The method of Ferrante and Rackoff

In order to prove that the first-order theory of an automatic structure of bounded degree is elementary, we have to introduce a general method from [9].

Let us fix a structure \mathcal{A} with universe A. Roughly speaking, Gaifman's Theorem [11] states that first-order logic only allows to express local properties of structures, see [7] for a recent account of this result. For our use, the following weaker statement is sufficient, which is an immediate consequence of the main theorem in [11].

Theorem 2 (cf. [11]). Let $\widetilde{a} = (a_1, a_2, \ldots, a_k)$ and $\widetilde{b} = (b_1, b_2, \ldots, b_k)$, where $a_i, b_i \in A$, such that $(N_A(7^n, \widetilde{a}), \widetilde{a}) \cong (N_A(7^n, \widetilde{b}), \widetilde{b})$. Then, for any first-order formula $\varphi(x_1, \ldots, x_k)$ of quantifier-depth at most n, we have $A \models \varphi(\widetilde{a})$ if and only if $A \models \varphi(\widetilde{b})$.

A norm function on \mathcal{A} is just a function $\lambda:A\to\mathbb{N}$. Let us fix a norm function λ on \mathcal{A} . We write $\mathcal{A}\models\exists x\leq n:\varphi$ in order to express that there exists $a\in A$ such that $\lambda(a)\leq n$ and $\mathcal{A}\models\varphi(a)$, and similarly for $\forall x\leq n:\varphi$. Let $H:\{(j,d)\in\mathbb{N}\times\mathbb{N}\mid j\leq d\}\to\mathbb{N}$ be a function such that the following holds: For all $j\leq d\in\mathbb{N}$, all $\widetilde{a}=(a_1,a_2,\ldots,a_{j-1})\in A^{j-1}$ with $\lambda(a_i)\leq H(i,d)$, and all $a\in A$, there exists $a_i\in A$ with $\lambda(a_i)\leq H(j,d)$ and

$$(N_{\mathcal{A}}(7^{d-j}, \widetilde{a}, a), \widetilde{a}, a) \cong (N_{\mathcal{A}}(7^{d-j}, \widetilde{a}, a_j), \widetilde{a}, a_j).$$

Then \mathcal{A} is called H-bounded (with respect to the norm function λ). This definition is a slight variant of the definition in [9] that suits our needs much better than the original formulation. The following corollary to Theorem 2 was shown by Ferrante and Rackoff for their version of H-bounded structures.

Corollary 1 (cf. [9]). Let A be a relational structure with universe A and norm λ and let $H: \{(j,d) \in \mathbb{N} \times \mathbb{N} \mid j \leq d\} \to \mathbb{N}$ be a function such that A is H-bounded. Then for any first-order formula $\varphi \equiv Q_1x_1 Q_2x_2 \cdots Q_dx_d : \psi$ where ψ is quantifier free and $Q_i \in \{\exists, \forall\}$, we have $A \models \varphi$ if and only if

$$A \models Q_1 x_1 < H(1, d) Q_2 x_2 < H(2, d) \cdots Q_d x_d < H(d, d) : \psi.$$

Proof. For $j \leq d$, let ψ_j denote the formula $Q_j x_j Q_{j+1} x_{j+1} \cdots Q_d x_d : \psi$ and let φ_j stand for the sentence

$$Q_1 x_1 \leq H(1,d) \cdots Q_{j-1} x_{j-1} \leq H(j-1,d) \psi_j$$
.

Thus, $\varphi_1 \equiv \varphi$. We show that $\mathcal{A} \models \varphi_j$ if and only if $\mathcal{A} \models \varphi_{j+1}$, which then proves the corollary.

Let $\widetilde{a} = (a_1, \ldots, a_{j-1}) \in A^{j-1}$ with $\lambda(a_i) \leq H(i, d)$. First assume $Q_j = \exists$, i.e., $\psi_j \equiv \exists x_j : \psi_{j+1}$. If $A \models \psi_j(\widetilde{a})$, then there is $a \in A$ with $A \models \psi_{j+1}(\widetilde{a}, a)$. By our assumption on the norm function λ , we find $a_j \in A$ with $\lambda(a_j) \leq H(j, d)$ and

$$(N_{\mathcal{A}}(7^{d-j}, \widetilde{a}, a), \widetilde{a}, a) \cong (N_{\mathcal{A}}(7^{d-j}, \widetilde{a}, a_j), \widetilde{a}, a_j). \tag{1}$$

¹ Thus, there exists a bijection $f: S_{\mathcal{A}}(7^n, \widetilde{a}) \to S_{\mathcal{A}}(7^n, \widetilde{b})$, which preserves all relations from \mathcal{A} and such that $f(a_i) = b_i$ for $1 \le i \le k$.

Since the quantifier depth of ψ_{j+1} is d-j, Theorem 2 implies $\mathcal{A} \models \psi_{j+1}(\widetilde{a}, a_j)$. Thus, $\mathcal{A} \models (\exists x_j \leq H(j,d) : \psi_{j+1})(\widetilde{a})$. If, conversely, $\mathcal{A} \models (\exists x_j \leq H(j,d) : \psi_{j+1})(\widetilde{a})$, we have trivially $\mathcal{A} \models \psi_j(\widetilde{a})$.

Assume now that $Q_j = \forall$, i.e., $\psi_j \equiv \forall x_j : \psi_{j+1}$. If $\mathcal{A} \models \psi_j(\widetilde{a})$, then of course also $\mathcal{A} \models (\forall x_j \leq H(j,d) : \psi_{j+1})(\widetilde{a})$. Now assume that

$$\mathcal{A} \models (\forall x_j \le H(j, d) : \psi_{j+1})(\widetilde{a}) \tag{2}$$

and let $a \in A$ be arbitrary. We have to show that $A \models \psi_{j+1}(\tilde{a}, a)$. The case $\lambda(a) \leq H(j, d)$ is clear. Thus, assume that $\lambda(a) > H(j, d)$. Then there exists $a_j \in A$ with $\lambda(a_j) \leq H(j, d)$ and (1). Since $\lambda(a_j) \leq H(j, d)$, (2) implies $A \models \psi_{j+1}(\tilde{a}, a_j)$. Finally, Theorem 2 implies $A \models \psi_{j+1}(\tilde{a}, a)$.

4 An upper bound

In this section we apply the method of Ferrante and Rackoff in order to prove the following result:

Theorem 3. If A is an automatic structure of bounded degree, then FOTh(A) can be decided in ATIME(O(n), exp(3, O(n))).

Proof. Fix an automatic presentation (Γ, L, h) for \mathcal{A} and let the degree of the Gaifman-graph $G_{\mathcal{A}}$ be bounded by δ . By [15] we can assume that $h: L \to \mathcal{A}$ is injective and thus bijective. Hence, we may assume that L is the universe of \mathcal{A} (and h is the identity function). Let E be the edge relation of $G_{\mathcal{A}}$. Since this relation is first-order definable in \mathcal{A} , Proposition 1 implies that the relation E is automatic. Let γ be the number of states of a finite automaton A_E for the language $\{u \otimes v \mid (u,v) \in E\}$.

Claim 1. If
$$(u, v) \in E$$
, then $|(|u| - |v|)| \leq \gamma$.

In order to deduce a contradiction, assume w.l.o.g. that $(u, v) \in E$ and $|v| - |u| > \gamma$. Then a simple pumping argument shows that the automaton A_E accepts an infinite number of words of the form $u \otimes w$ with $w \in L$ and $|w| \geq |v|$. It follows that the Gaifman-graph G_A has infinite degree, which is a contradiction.

Claim 2. Let $r \in \mathbb{N}$ and $u \in L$. Then there exists a finite automaton $A_{r,u}$ with $\exp(2, O(r))$ many states such that

$$L(A_{r,u}) = \{ v \in L \mid (N_{\mathcal{A}}(r,u), u) \cong (N_{\mathcal{A}}(r,v), v) \}.$$

Thus, the automaton $A_{r,u}$ accepts a word $v \in L$ if and only if the r-sphere around v is isomorphic to the r-sphere around u (with u mapped to v). For the proof of Claim 2 first notice that since $G_{\mathcal{A}}$ has bounded degree, $|S_{\mathcal{A}}(r,u)| \in 2^{O(r)}$. We will use this in order to describe the finite substructure $N_{\mathcal{A}}(r,u)$ by a formula of size $2^{O(r)}$ over the signature of \mathcal{A} :

First, for $0 \le n \le \delta$ (δ bounds the degree of the Gaifman-graph) let the formula $\deg_n(x)$ express that the degree of x in the Gaifman-graph G_A is exactly

n. Thus, $\deg_n(x)$ is a fixed first-order formula over the signature of \mathcal{A} . Next take $m = |S_{\mathcal{A}}(r,u)| \in 2^{O(r)}$ many variables x_1, \ldots, x_m , where x_i represents the element $u_i \in S_{\mathcal{A}}(r,u)$ ($u_i \neq u_j$ for $i \neq j$) and w.l.o.g. $u = u_1$. Then write down the conjunction of the following formulas, where R is an arbitrary relation of \mathcal{A} and $0 \leq n \leq \delta$:

```
-x_i \neq x_j \text{ for } i \neq j,
-R(x_{i_1}, \ldots, x_{i_n}) \text{ if } (u_{i_1}, \ldots, u_{i_n}) \in R,
-\neg R(x_{i_1}, \ldots, x_{i_n}) \text{ if } (u_{i_1}, \ldots, u_{i_n}) \notin R, \text{ and }
-\deg_n(x_i) \text{ if the degree of } u_i \text{ in } G_{\mathcal{A}} \text{ is precisely } n.
```

Finally we quantify the variables x_2, \ldots, x_m existentially. Let $\phi(x_1)$ be the resulting formula. It is easy to see that $\mathcal{A} \models \phi(v)$ if and only if $(N_{\mathcal{A}}(r,u),u) \cong (N_{\mathcal{A}}(r,v),v)$. Only the use of the formulas $\deg_n(x_i)$ needs some explanation. If we would omit these formulas, then $\mathcal{A} \models \phi(v)$ would only express that $(N_{\mathcal{A}}(r,u),u)$ is isomorphic to some induced substructure of $(N_{\mathcal{A}}(r,v),v)$ (with u mapped to v). But by fixing the degree of every x_i we exclude the possibility that there exists $y \in S_{\mathcal{A}}(r,x_1)$ with $y \neq x_i$ for all $1 \leq i \leq m$.

Now the automaton $A_{r,u}$ is obtained by translating the formula $\phi(x_1)$ into an automaton using the standard construction for automatic structures, see e.g. [15]: each of the predicates listed above can be translated into an automaton of fixed size (recall that \deg_n is a formula of fixed size). Since we have $2^{O(r)}$ such predicates, their conjunction can be described by a product automaton of size $\exp(2, O(r))$ working on $2^{O(r)}$ tracks (one for each variable x_i). Finally, the existential quantification over the variables x_2, \ldots, x_m means that we have to project this automaton onto the track corresponding to the variable x_1 . The resulting automaton is $A_{r,u}$, it still has $\exp(2, O(r))$ states and only one track. This proves Claim 2.

For the next claim we define the norm of an element $u \in L$ as its length |u|.

Claim 3. A is H-bounded by a function H satisfying $H(j,d) \in \exp(3,O(d))$ for all $j \leq d \in \mathbb{N}$.

Proof of Claim 3. By Claim 2, the size of the automaton $A_{r,u}$ is bounded by $\exp(2, c \cdot r)$, where c is some fixed constant. Define the function H by

$$H(j,d) = H(j-1,d) + 2 \cdot \gamma \cdot \exp(2, c \cdot 7^{d-j}),$$

where γ is the constant from Claim 1 and H(0,d) is set to 0. Note that $H(d,d) \in \exp(3,O(d))$. Now let $1 \leq j \leq d$ and $\tilde{u} = (u_1,\ldots,u_{j-1}) \in L^{j-1}$ with $|u_i| \leq H(i,d)$. Let furthermore $u \in L$ with |u| > H(j,d). Thus, $|u| - |u_i| > 2 \cdot \gamma \cdot \exp(2,c\cdot 7^{d-j})$ for every $1 \leq i \leq j-1$, which by Claim 1 implies that the distance between u and every u_i in the Gaifman-graph is larger than $2 \cdot \exp(2,c\cdot 7^{d-j})$.

The standard solution of this problem is to say that there does not exist $y \notin \{x_1, \ldots, x_m\}$ which is in G_A adjacent to some x_i with $d_A(x_1, x_i) \le r - 1$, see e.g. the proof of [22, Corollary 4.9]. But this would introduce a quantifier alternation that we want to avoid.

Thus, the spheres $S_{\mathcal{A}}(7^{d-j}, \widetilde{u})$ and $S_{\mathcal{A}}(7^{d-j}, u)$ are certainly disjoint and there is no edge in $G_{\mathcal{A}}$ between these two spheres.

Now consider the automaton $A_{7^{d-j},u}$ from Claim 2. It has at most $\exp(2,c\cdot 7^{d-j})$ states. Since u is accepted by $A_{7^{d-j},u}$, it accepts a word of length larger than $H(j,d)=H(j-1,d)+2\cdot \gamma\cdot \exp(2,c\cdot 7^{d-j})$. Thus, a simple pumping argument shows that $A_{7^{d-j},u}$ also accepts a word $u_j\in L$ with

$$H(j-1,d) + \gamma \cdot \exp(2, c \cdot 7^{d-j}) \le |u_j| \le H(j-1,d) + 2 \cdot \gamma \cdot \exp(2, c \cdot 7^{d-j}) = H(j,d)$$

(note that $\gamma \geq 1$). Since $|u_j| \geq H(j-1,d) + \gamma \cdot \exp(2,c\cdot 7^{d-j})$, Claim 1 implies that the distance between u_j and u_i $(1 \leq i < j)$ in the Gaifman-graph is at least $\exp(2,c\cdot 7^{d-j})$. Thus, also the spheres $S_{\mathcal{A}}(7^{d-j},\widetilde{u})$ and $S_{\mathcal{A}}(7^{d-j},u_j)$ are disjoint and there is no edge in $G_{\mathcal{A}}$ between these two spheres. Finally, since by definition of the automaton $A_{7^{d-j},u}$ we have $(N_{\mathcal{A}}(7^{d-j},u),u)\cong (N_{\mathcal{A}}(7^{d-j},u_j),u_j)$, we obtain $(N_{\mathcal{A}}(7^{d-j},\widetilde{u},u),\widetilde{u},u)\cong (N_{\mathcal{A}}(7^{d-j},\widetilde{u},u_j),\widetilde{u},u_j)$. Thus, \mathcal{A} is H-bounded.

Now we can finish the proof of the theorem. Let

$$\varphi \equiv Q_1 x_1 Q_2 x_2 \cdots Q_d x_d : \psi(x_1, \dots, x_d)$$

be a first-order sentence over the signature of \mathcal{A} with d quantifiers $Q_i \in \{\exists, \forall\}$. Then, by Corollary 1, $\mathcal{A} \models \varphi$ if and only if

$$\mathcal{A} \models Q_1 x_1 \le H(1, d) \, Q_2 x_2 \le H(2, d) \cdots Q_d x_d \le H(d, d) : \psi(x_1, \dots, x_d). \tag{3}$$

Since $H(i,d) \in \exp(3,O(|\varphi|))$, this implies the statement of the theorem: In order to verify (3), we guess (either in an existential or a universal state) words $u_i \in L$ with $|u_i| \leq H(i,d)$. Every quantifier alternation leads to one alternation in our alternating Turing-machine. After having guessed every word u_i , we verify whether $\mathcal{A} \models \psi(u_1,\ldots,u_d)$ by running the automata given by the automatic presentation of \mathcal{A} . This needs deterministic triply exponential time. This concludes the proof.

Remark 1. The proof of Theorem 3 shows also another result. Assume that the premises of Theorem 3 are satisfied. If moreover the Gaifman-graph $G_{\mathcal{A}}$ has polynomial growth, i.e., for every $u \in L$, the size of the r-sphere $S_{\mathcal{A}}(r,u)$ is bounded by $r^{O(1)}$, then the size of the automaton $A_{r,u}$ from Claim 2 is bounded by $2^{(n^{O(1)})}$. It follows that FOTh(\mathcal{A}) can be decided in ATIME(O(n), exp($2, n^{O(1)}$)).

Remark 2. Theorem 3 can be easily generalized to a larger class of automatic structures: By Proposition 1, the class of automatic structures is closed under first-order interpretations (see [3] for the definition). Moreover, it is easy to see that a first-order interpretation between two structures leads to a polynomial time reduction between the corresponding first-order theories. Thus, every automatic structure that is first-order interpretable in an automatic structure of bounded degree has a first-order theory in $\text{ATIME}(O(n), \exp(3, O(n)))$. Moreover, the resulting class of automatic structures strictly contains the class of automatic structures of bounded degree.

5 The method of Compton and Henson

In order to prove lower bounds for theories of automatic structures of bounded degree, we will use a method of Compton and Henson, which will be introduced in this section.

For every $i \geq 0$ let C_i be a class of structures over some signature $(R_j)_{j \in J}$, which is the same for all structures in $\bigcup_{i \geq 0} C_i$. Assume that R_j has arity n_j . Let furthermore \mathcal{A} be an additional structure with universe A. We say that $(C_i)_{i \geq 0}$ has a *monadic interpretation* in the structure \mathcal{A} [6] if for every $i \geq 0$ there exist formulas

$$\phi_i(x,r), \ (\psi_{i,j}(x_1,\ldots,x_{n_i},r))_{j\in J}, \ \mu_i(x,r,s)$$
 (4)

over the signature of A such that for every structure $B \in C_i$ there exists $a \in A$ with:

- $-\mathcal{B}$ is isomorphic to the structure $(\phi_i(x,a)^{\mathcal{A}}, (\psi_{i,j}(x_1,\ldots,x_{n_j},a)^{\mathcal{A}})_{j\in J}),$
- $-\mu_i(x,a,b)^A$ is a subset of $\phi_i(x,a)^A$ for every $b \in A$, and moreover every subset of $\phi_i(x,a)^A$ is of the form $\mu_i(x,a,b)^A$ for some $b \in A$.

Thus, by varying the parameter r in (4), we obtain all structures from C_i . In [6] it is also allowed to use a sequence r_1, \ldots, r_k of parameters instead of a single parameter r. We will not need this more general notion of monadic interpretations.

In order to derive complexity lower bounds using monadic interpretations, one has to require that given $i \geq 0$ in unary notation (i.e., $\i), the formulas in (4) can be computed efficiently. Following [6], we require that these formulas are reset log-lin computable from $\i . This means that there exists a deterministic Turing-machine operating in linear time and logarithmic working space that computes (4) from $\i . Moreover the input-head always moves one cell to the right except for k transitions (where k is some fixed constant), where the input-head is reset to the left end of the input. This technical extra condition was introduced in [6] in order to obtain a transitive notion of reducibility. In the following we will always restrict implicitly to reset log-lin computable functions in the context of monadic interpretations. The following theorem was shown in [6, Thm. 7.2].

Theorem 4 (cf. [6]). Let T(n) be a time resource bound such that for some d between 0 and 1, $T(dn) \in o(T(n))$. Let C_n be the class of all structures of the form $(\{0,\ldots,m\}, \text{plus})$ with m < T(n) and plus(x,y,z) if and only if x+y=z. If there is a monadic interpretation of $(C_n)_{n\geq 0}$ in a structure A, then for some constant c, ATIME(cn, T(cn)) is a hereditary lower bound for FOTh(A).

³ Reset log-lin reductions should not be confused with the log-lin reductions from [21], where it is only assumed that the output length is linearly bounded in the input length.

⁴ From the proofs in [6] it is easy to see that this statement is also true if C_n is the singleton class $\{(\{0,\ldots,T(n)-1\},\text{plus})\}.$

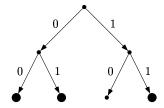


Fig. 1. A tree of height 2 with marked leafs

6 A lower bound

A binary tree of height n with marked leafs is a structure of the form

$$(\{0,1\}^{\leq n}, s_0, s_1, P),$$

where $s_i = \{(w, wi) \mid w \in \{0, 1\}^*, |w| < n\}$ and $P \subseteq \{0, 1\}^n$ is an additional unary predicate on the leafs. Let \mathcal{T}_n be the set of all these structures and let $\mathcal{T} = \bigcup_{n \geq 0} \mathcal{T}_n$. Figure 1 shows a member of \mathcal{T}_2 , where the leafs 00, 01, and 11 are marked.

Binary trees with additional unary predicates were used in [10] in order to derive lower bounds on the parametrized complexity of first-order model checking. Here we will use these trees in connection with the method of Compton and Henson from the preceding section. First we have to prove the following lemma:

Lemma 1. There exists an automatic structure $A = (A, s_0, s_1, P)$ with $s_i \subseteq A \times A$ and $P \subseteq A$ such that

- every connected component of A is isomorphic to a structure from T, and
- every structure from $\mathcal T$ is isomorphic to a connected component of $\mathcal A.$

Proof. Let $\Sigma = \{0, 1, \#, a, a', b, b'\}$ and let $A = (\{a, a', b, b'\}^*\{0, 1\}^*\#)^*$, which is regular. Let $s_0 \subseteq A \times A$ contain all pairs of the form

$$(u_1\alpha_1v_1\#u_2\alpha_2v_2\cdots\#u_n\alpha_nv_n\#,\ u_1\beta_1v_1\#u_2\beta_2v_2\cdots\#u_n\beta_nv_n\#)$$

such that

 $-u_i \in \{a, a', b, b'\}^*, \ \alpha_i \in \{0, 1\}, \ \beta_i \in \{a, a', b, b'\}, \ v_i \in \{0, 1\}^*, \ \text{and}$ $-\text{ if } \alpha_i = 0 \text{ then } \beta_i = a, \ \text{and if } \alpha_i = 1 \text{ then } \beta_i = b'.$

This relation is clearly automatic. The relation $s_1 \subseteq A \times A$ is defined analogously, we only replace the second condition above by $\beta_i = b$ if $\alpha_i = 1$ and $\beta_i = a'$ if $\alpha_i = 0$. Finally define the regular language $P \subseteq A$ by

$$P = \{w_1 \# w_2 \# \cdots w_n \# \in A \mid w_i \in \{a, b\}^* \text{ for some } i\}.$$

This finishes the definition of the automatic structure $\mathcal{A} = (A, s_0, s_1, P)$. It is easy to see that \mathcal{A} has indeed the properties stated in the lemma. In Figure 2, it is shown, how the tree from Figure 1 is generated. Marked leafs are

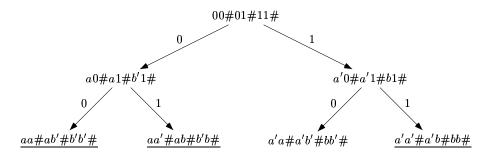


Fig. 2. A connected component from the structure A in Lemma 1

underlined. Note that the same tree is for instance also rooted at words from $\{a,b\}^*00\#\{a,b\}^*01\#\{a,b\}^*11\#(\{a,a',b,b'\}^*\{0,1\}^{\geq 3}\#)^*$.

Lemma 2. Let \mathcal{A} be the structure from Lemma 1. Let \mathcal{C}_n be the class of all structures of the form $(\{0,\ldots,m\},\text{plus})$ with $m<2^{2^n}$. Then there exists a monadic interpretation of $(\mathcal{C}_n)_{n>0}$ in the structure \mathcal{A} .

Proof. Let $\mathcal{A}=(A,s_0,s_1,P)$ be the structure from Lemma 1. Given $a,b\in A$ we say that b is a successor of a or a is a predecessor of b if there exists a directed path in the relation $s_0\cup s_1$ from a to b. This directed path defines a word over $\{0,1\}$ in the canonical way. If, e.g., $s_0(a,c)$ and $s_1(c,b)$, then the path from a to b defines the word 01.

Our aim is to construct formulas

$$\phi_n(x,r)$$
, plus_n (x,y,z,r) , $\mu_n(x,r,s)$

that are reset log-lin computable from $\n and that witness a monadic interpretation of $(\mathcal{C}_n)_{n\geq 0}$ in the structure \mathcal{A} . First, we define a few auxiliary formulas that define relations in the structure \mathcal{A} . Let us fix $n\geq 0$. For every $0\leq i\leq n$, the formula $\pi_i(x_0,x_1,y_0,y_1)$ expresses that x_0 is a predecessor of x_1 , y_0 is a predecessor of y_1 , and the unique path leading in \mathcal{A} from x_0 to x_1 has length at most 2^i and is labeled with the same word over $\{0,1\}$ as the unique path leading in \mathcal{A} from y_0 to y_1 :

$$\pi_{0}(x_{0}, x_{1}, y_{0}, y_{1}) \equiv (x_{0} = x_{1} \wedge y_{0} = y_{1}) \vee (s_{0}(x_{0}, x_{1}) \wedge s_{0}(y_{0}, y_{1})) \vee (s_{1}(x_{0}, x_{1}) \wedge s_{1}(y_{0}, y_{1}))$$

$$\pi_{i+1}(x_{0}, x_{1}, y_{0}, y_{1}) \equiv \exists x_{2} \exists y_{2} \forall x \forall x' \forall y \forall y'$$

$$\left\{ \begin{pmatrix} (x = x_{0} \wedge x' = x_{2} \wedge y = y_{0} \wedge y' = y_{2}) \vee \\ (x = x_{2} \wedge x' = x_{1} \wedge y = y_{2} \wedge y' = y_{1}) \end{pmatrix} \rightarrow \pi_{i}(x, x', y, y') \right\}$$

Here we use the usual trick for replacing two occurrences of π_i in the definition of π_{i+1} by a single occurrence of π_i [9], which is necessary in order to obtain

formulas of linear size. It is easy to see that π_i is reset log-lin computable from $\i (see [6] for a class of reset log-lin computable formula sequences that contains the sequence $(\pi_i)_{i\geq 0}$). In the same way we can construct reset log-lin computable formulas, which express the following:

- $\preceq_i (x, y)$ if and only if x is a predecessor of y and the unique path from x to y has length at most 2^i . Instead of $\preceq_i (x, y)$ we will write $x \preceq_i y$. We write $x \prec_i y$ if $x \preceq_i y$ and $x \neq y$.
- $\operatorname{dist}_i(x_0, x_1, y_0, y_1)$ if and only if $x_0 \prec_i x_1, y_0 \prec_i y_1$, and the unique path from x_0 to x_1 has the same length as the unique path from y_0 to y_1 . We write $\lambda_i(x, y, z)$ for $\operatorname{dist}_i(x, y, x, z)$.

We will represent an interval $\{0, \ldots, m\}$ with $m < 2^{2^n}$ by the leafs of a binary tree of height $k \leq 2^n$ rooted at the node $r \in A$.⁵ The set of these nodes can be defined by the formula

$$\phi_n(x,r) \equiv r \leq_n x \land \neg \exists y \{s_0(x,y) \lor s_1(x,y)\}$$

(thus, for most $a \in \mathcal{A}$ we have $\phi_n(x,a)^{\mathcal{A}} = \emptyset$). The word from $\{0,1\}^k$ $(k \leq 2^n)$ labeling the path from the root r to a leaf x can be interpreted as the binary coding of x. In order to define addition on these leafs let y be another leaf of the tree rooted at r. Let $u \neq r$ (resp. $v \neq r$) be a node on the unique path from r to x (resp. r to y). Assume that $\lambda_n(r,u,v)$ holds. We first define a formula $\psi_n(u,v,r)$, expressing that adding x and y leads to a carry over from a previous position at the position corresponding to u (and v). For $i \in \{0,1\}$ let $\beta_i(x) \equiv \exists y : s_i(y,x)$. Then we can define $\psi_n(u,v,r)$ as follows:

$$\psi_{n}(u,v,r) \equiv \exists p \,\exists q \left\{ \begin{cases} \lambda_{n}(r,p,q) \,\wedge\, p \prec_{n} u \,\wedge\, q \prec_{n} v \,\wedge\, \beta_{1}(p) \,\wedge\, \beta_{1}(q) \,\wedge\\ \forall s \,\forall t \left\{ \begin{pmatrix} \lambda_{n}(r,s,t) \,\wedge\\ p \preceq_{n} s \prec_{n} u \,\wedge\\ q \preceq_{n} t \prec_{n} v \end{pmatrix} \rightarrow (\beta_{1}(s) \,\vee\, \beta_{1}(t)) \right\} \right\}$$

Using the formula

$$\varphi_{n}(u, v, w, r) \equiv \bigvee_{\substack{i, j, k \in \{0, 1\}\\ i+j+1 \equiv k \bmod 2}} (\beta_{i}(u) \wedge \beta_{j}(v) \wedge \psi_{n}(u, v, r) \wedge \beta_{k}(w)) \vee \bigvee_{\substack{i, j, k \in \{0, 1\}\\ i+j \equiv k \bmod 2}} (\beta_{i}(u) \wedge \beta_{j}(v) \wedge \neg \psi_{n}(u, v, r) \wedge \beta_{k}(w))$$

we can define $\operatorname{plus}_n(x,y,z,r)$ as follows:

$$\begin{aligned} \operatorname{plus}_n(x,y,z,r) \; &\equiv \; \phi_n(x,r) \; \wedge \; \phi_n(y,r) \; \wedge \; \phi_n(z,r) \; \wedge \\ \forall u \, \forall v \, \forall w \left\{ \begin{pmatrix} \lambda_n(r,u,v) \; \wedge \; \lambda_n(r,v,w) \; \wedge \\ u \, \preceq_n \; x \; \wedge \; v \, \preceq_n \; y \; \wedge \; w \, \preceq_n \; z \end{pmatrix} \to \; \varphi_n(u,v,w,r) \right\} \end{aligned}$$

⁵ In this way we represent only those intervals whose size is a power of two, which is not crucial, see the footnote in Theorem 4.

Finally, arbitrary subsets of the set of leafs in the tree rooted at r can be defined by varying s in the following formula:

$$\mu_n(x,r,s) \equiv \phi_n(x,r) \wedge \exists y \{ s \leq_n y \wedge \pi_n(r,x,s,y) \wedge P(y) \}$$

This formula selects those leafs from the tree rooted at r such that the corresponding leaf in the tree rooted at s satisfies the unary predicate P.

Lemma 1 and 2 combined with Theorem 4 give us the main result of this section:

Theorem 5. There exists an automatic structure A of bounded degree such that for some constant c, ATIME $(cn, \exp(2, cn))$ is a hereditary lower bound for FOTh(A).

7 Tree automatic structures

Tree automatic structures were introduced in [2], they generalize automatic structures. Let Γ be a finite alphabet. A finite binary tree over Γ is a mapping $t: dom(t) \to \Gamma$, where $dom(t) \subseteq \{0,1\}^*$ is finite and satisfies the following closure condition for all $w \in \{0,1\}^*$ and $i \in \{0,1\}$: if $wi \in \text{dom}(t)$, then also $w \in \text{dom}(t)$ and $wj \in \text{dom}(t)$ for all $j \in \{0,1\}$. Those $w \in \text{dom}(t)$ such that $w0 \notin \text{dom}(t)$ (and hence also $w1 \notin \text{dom}(t)$) are called the leafs of t. With T_{Γ} we denote the set of all finite binary trees over Γ . We define the height of the tree t by height(t) = $\max\{|w| \mid w \in \text{dom}(t)\}$. A tree automaton over Γ is a tuple $A = (Q, \delta, I, F)$, where Q is the finite set of states, $I \subseteq Q$ (resp. $F \subseteq Q$) is the set of initial (resp. final) states, and $\delta \subseteq Q \times Q \times \Gamma \times Q$. A successful run of A on a tree t is a mapping $\rho: \text{dom}(t) \to Q$ such that: (i) $\rho(w) \in I$ if w is a leaf of t, (ii) $\rho(\epsilon) \in F$, and (iii) $(\rho(w0), \rho(w1), t(w), \rho(w)) \in \delta$ if $w \in \text{dom}(t)$ is not a leaf. With T(A) we denote the set of all finite binary trees t such that there exists a successful run of A on t. A set $L \subseteq T_{\Gamma}$ is called recognizable if there exists a finite tree automaton A with L = T(A). Recognizable tree languages allow similar pumping arguments as regular word languages. More precisely, if A is a finite tree automaton with n states and $T(A) \neq \emptyset$, then T(A) contains a tree of height at most n.

Let $t_1, \ldots, t_n \in T_{\Gamma}$. We define the convolution $t = t_1 \otimes \cdots \otimes t_n$, which is a finite binary tree over $\prod_{i=1}^n (\Gamma \cup \{\#\})$, as follows: $\operatorname{dom}(t) = \bigcup_{i=1}^n \operatorname{dom}(t_i)$ and for all $w \in \bigcup_{i=1}^n \operatorname{dom}(t_i)$ we define $t(w) = (a_1, \ldots, a_n)$, where $a_i = t_i(w)$ if $w \in \operatorname{dom}(t_i)$ and $a_i = \#$ otherwise. An *n*-ary relation R over T_{Γ} is called tree-automatic if the language $\{t_1 \otimes \cdots \otimes t_n \mid (t_1, \ldots, t_n) \in R\}$ is recognizable. Using this definition we can define the notion of a tree automatic presentation analogously to the word case in Section 2: A tree automatic presentation of the structure $A = (A, (R_i)_{i \in J})$, where $R_i \subseteq A^{n_i}$, is a tuple (Γ, L, h) such that

- $-\Gamma$ is a finite alphabet,
- $-L \subseteq T_{\Gamma}$ is recognizable,
- $-h:L\to A$ is a surjective function,

- the relation $\{(u,v) \in L \times L \mid h(u) = h(v)\}$ is tree automatic, and
- the relation $\{(u_1,\ldots,u_{n_i})\in L^{n_i}\mid (h(u_1),\ldots,h(u_{n_i}))\in R_i\}$ is tree automatic for every $i\in J$.

We say that \mathcal{A} is tree automatic if there exists a tree automatic presentation for \mathcal{A} . An example of a tree automatic structure, which is not automatic is (\mathbb{N}, \cdot) , i.e., the natural numbers with multiplication [2].

Many results for automatic structures carry over to tree automatic structures. For instance the first-order theory of a tree automatic structure is still decidable [2]. Analogously to Theorem 3 we can prove the following result:

Theorem 6. If A is a tree automatic structure of bounded degree, then FOTh(A) can be decided in ATIME(O(n), exp(4, O(n))).

Proof. We copy the proof of Theorem 3. Thus, let (Γ, L, h) be a tree automatic presentation for \mathcal{A} , where h can be assumed to be bijective (see [2, Theorem 3.4]). For an element $t \in L$, we define its norm as height(t). Then, analogously to Claim 1 in the proof of Theorem 3 it follows that if (t,t') is an edge in the Gaifmangraph $G_{\mathcal{A}}$, then $|\text{height}(t) - \text{height}(t')| \leq \gamma$. Then also Claim 2 and 3 from the proof of Theorem 3 carry over easily to the tree automatic case. Thus \mathcal{A} is H bounded by a function H satisfying $H(j,d) \in \exp(3,O(d))$ for all $j \leq d \in \mathbb{N}$. We can conclude as in the word case. The only difference is that a binary tree, whose height is bounded by $\exp(3,O(n))$ needs $\exp(4,O(n))$ many bits for its specification in the worst case. This is the reason for the ATIME $(O(n), \exp(4,O(n)))$ upper bound in the theorem.

8 Open problems

Several open problems remain for (tree) automatic structures of bounded degree:

- Does there exist an automatic structure \mathcal{A} of bounded degree such that $\operatorname{ATIME}(O(n), \exp(3, O(n)))$ is a (hereditary) lower bound for $\operatorname{FOTh}(\mathcal{A})$, or is $\operatorname{ATIME}(O(n), \exp(2, O(n)))$ always an upper bound? The same open problem remains for tree automatic structures, there the gap is even larger (between $\operatorname{ATIME}(O(n), \exp(2, O(n)))$ and $\operatorname{ATIME}(O(n), \exp(4, O(n)))$).
- Is there a tree automatic structure of bounded degree, which is not automatic? Without the restriction to structures of bounded degree this is true, see Section 7.

Acknowledgments. I am grateful to Dietrich Kuske for many fruitful discussions on the topic of this paper.

References

M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. A model-theoretic approach to regular string relations. In *Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS'2001)*, pages 431–440. IEEE Computer Society Press, 2001.

- 2. A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
- 3. A. Blumensath and E. Grädel. Automatic structures. In *Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS'2000)*, pages 51–62. IEEE Computer Society Press, 2000.
- 4. C. M. Campbell, E. F. Robertson, N. Ruškuc, and R. M. Thomas. Automatic semigroups. *Theoretical Computer Science*, 250(1-2):365–391, 2001.
- 5. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. *Journal of the Association for Computing Machinery*, 28(1):114-133, 1981.
- K. J. Compton and C. W. Henson. A uniform method for proving lower bounds on the computational complexity of logical theories. Annals of Pure and Applied Logic, 48:1-79, 1990.
- 7. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1991.
- 8. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston. Word processing in groups. Jones and Bartlett, Boston, 1992.
- J. Ferrante and C. Rackoff. The Computational Complexity of Logical Theories. Number 718 in Lecture Notes in Mathematics. Springer, 1979.
- 10. M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. In *Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS'2002)*, pages 215–224. IEEE Computer Society Press, 2002.
- 11. H. Gaifman. On local and nonlocal properties. In J. Stern, editor, *Logic Colloquium* '81, pages 105–135. North Holland, 1982.
- 12. W. Hodges. Model Theory. Cambridge University Press, 1993.
- 13. B. R. Hodgson. On direct products of automaton decidable theories. *Theoretical Computer Science*, 19:331–335, 1982.
- 14. H. Ishihara, B. Khoussainov, and S. Rubin. Some results on automatic structures. In *Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science* (LICS'2002), pages 235–244. IEEE Computer Society Press, 2002.
- 15. B. Khoussainov and A. Nerode. Automatic presentations of structures. In *LCC:* International Workshop on Logic and Computational Complexity, number 960 in Lecture Notes in Computer Science, pages 367–392, 1994.
- 16. B. Khoussainov and S. Rubin. Graphs with automatic presentations over a unary alphabet. *Journal of Automata, Languages and Combinatorics*, 6(4):467–480, 2001.
- 17. B. Khoussainov, S. Rubin, and F. Stephan. Automatic partial orders. To appear in *Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science* (LICS'2003), 2003.
- 18. D. Kuske. Is Cantor's Theorem automatic. In Proceedings of the 10th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2003), Almaty (Kazakhstan), 2003. this volume.
- 19. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
- P. V. Silva and B. Steinberg. A geometric characterization of automatic monoids. Technical Report CMUP 2000-03, University of Porto, 2001.
- L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOCS 73), pages 1-9. ACM Press, 1973.
- 22. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, *Handbook of Formal Languages*, volume III, pages 389–455. Springer, 1997.