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Abstract. We prove that a connected graph of bounded degree with
only finitely many orbits has a decidable MSO-theory if and only if it
is context-free. This implies that a group is context-free if and only if
its Cayley-graph has a decidable MSO-theory. On the other hand, the
first-order theory of the Cayley-graph of a group is decidable if and
only if the group has a decidable word problem. For Cayley-graphs of
monoids we prove the following closure properties. The class of monoids
whose Cayley-graphs have decidable MSO-theories is closed under free
products. The class of monoids whose Cayley-graphs have decidable first-
order theories is closed under general graph products. For the latter result
on first-order theories we introduce a new unfolding construction, the
factorized unfolding, that generalizes the tree-like structures considered
by Walukiewicz. We show and use that it preserves the decidability of
the first-order theory.

Most of the proofs are omitted in this paper, they can be found in the
full version [17].

1 Introduction

The starting point of our consideration was a result by Muller and Schupp [21]
showing that the Cayley-graph of any context-free group has a decidable monadic
second-order theory (MSO-theory). The questions we asked ourselves were: is
there a larger class of groups with this property? Can one show similar results
for first-order theories (FO-theories) of Cayley-graphs? Are there analogous con-
nections in monoid theory? Similarly to Muller and Schupp’s work, this led to
the investigation of graph classes with decidable theories that now forms a large
part of the paper at hand. Due to potential applications for the verification of in-
finite state systems, recently such graph classes have received increasing interest,
see [28] for an overview.

Courcelle showed that the class of graphs of tree-width at most b has a decid-
able MSO-theory (for any b € N) [5]. A partial converse was proved by Seese [24]
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(in conjunction with another result by Courcelle [6]) showing that any class of
graphs of bounded degree whose MSO-theory is decidable is of bounded tree-
width. On the other hand, there are even trees with an undecidable FO-theory.
We therefore restrict attention to connected graphs of bounded degree whose
automorphism group has only finitely many orbits. If such a graph G has finite
tree-width, then it is context-free (Theorem 3.1). Our proof of this fact is based
on the construction of a tree decomposition with quite strong combinatorial
properties, using techniques from the theory of groups acting on graphs [10]. By
another result of Muller and Schupp [21], G has a decidable MSO-theory.

Using this general result on graphs, we can show that Muller and Schupp’s
result on Cayley-graphs of context-free groups is optimal: any finitely generated
group whose Cayley-graph has a decidable MSO-theory is context-free (Corol-
lary 4.1). A similar result will be also shown for first-order logic: the FO-theory
of the Cayley-graph of a group is decidable if and only if the word problem of
the group is decidable (Proposition 4.2). One implication is simple since one
can express by a first-order sentence that a given word labels a cycle in the
Cayley-graph. The other implication follows from Gaifman’s locality theorem
for first-order logic [14] which allows to restrict quantifications over elements of
the Cayley-graph to certain spheres around the unit.

These results for groups do not carry over to monoids, e.g., there is a monoid
with a decidable word problem whose Cayley-graph has an undecidable FO-
theory (Proposition 6.1). On the other hand, we are able to prove some closure
properties of the classes of monoids whose Cayley-graphs have decidable theories.
Using a theorem of Walukiewicz [31] (the original statement goes back to work
by Stupp [27], Shelah [26], Muchnik, and Semenov, see [31] for an account)
on MSO-theories of unfoldings, we prove that the class of finitely generated
monoids whose Cayley-graphs have decidable MSO-theories is closed under free
products (Theorem 6.3(2)). Moreover, we show that the class of finitely generated
monoids whose Cayley-graphs have decidable FO-theories is closed under graph
products (Theorem 6.3(1)) which is a well-known construction in mathematics,
see e.g. [15,30]; it generalizes both, the free and the direct product of monoids.
In order to show this closure property, we introduce the notion of a factorized
unfolding in Section 5, which is also of independent interest (see the discussion in
Section 5): Walukiewicz’s unfolding of a structure A consists of the set of words
over the set of elements of A. This set of words is equipped with the natural tree
structure. Hence the successors of any node of the tree can be identified with
the elements of A and can therefore naturally be endowed with the structure
of A. Basically, a factorized unfolding is the quotient of this structure with
respect to Mazurkiewicz’s trace equivalence (in fact, it is a generalization of this
quotient). We show that the FO-theory of a factorized unfolding can be reduced
to the FO-theory of the underlying structure (Theorem 5.7). The proof of this
result uses techniques of Ferrante and Rackoff [13] and a thorough analysis of
factorized unfoldings using ideas from the theory of Mazurkiewicz traces [8].
From this result on factorized unfoldings, we obtain the closure under graph
products similarly to the closure under free products.



Our results on FO-theories of Cayley-graphs should be also compared with
the classical results about FO-theories of monoids: the FO-theory of a monoid M
contains all true first-order statements about M that are built over the signature
containing the monoid operation and all monoid elements as constants. Thus the
FO-theory of the Cayley-graph of M can be seen as a fragment of the whole FO-
theory of M in the sense that only equations of the form za = y, with z and y
variables and a € M are allowed. In this context we should mention the classical
results of Makanin, stating that the existential FO-theory of a free monoid [18]
or free group [19] is decidable, see [7] for a more detailed overview.

2 Preliminaries

Let A = (A, (R:)iek ) be arelational structure with carrier set A and relations R;
of arbitrary arity. First-order logic (FO) and monadic second-order logic (MSO)
over the structure A are defined as usual. The FO-theory (resp. MSO-theory)
of A is denoted by FOTh(A) (resp. MSOTh(A)).

A X-labeled directed graph (briefly graph) is a relational structure G =
(V,(Ey)acx), where X is a finite set of labels, and E, C V x V is the set
of all a-labeled edges. The undirected graph that results from G by forgetting
all labels and the direction of edges is denoted by undir(G). We say that G is
connected if undir(QG) is connected. We say that G has bounded degree, if for some
constant ¢ € N, every node of G is incident with at most ¢ edges in undir(G).
The diameter of U C V in G is the maximal distance in undir(G) between two
nodes u,v € U (which might be 00).

In Section 3 we will consider graphs of bounded tree-width. We will omit the
formal definition of tree-width (see e.g. [9]) since we are mainly interested in the
stronger notion of strong tree-width. A strong tree decomposition of an undirected
graph G = (V, E) is a partition P = {V; | i € K} of V such that the quotient
graph G/p = (P,E/p), where E/p = {(V;,V;) € Px P | V; x V; N E # (0}, is
a forest, i.e., acyclic [23]. The width of P is the supremum of the cardinalities
|Vi|, i € K. If there exists a strong tree decomposition P of G of width at most
b then G has strong tree-width at most b.

3 Graphs with a decidable MSO-theory

In [21], Muller & Schupp gave a graph-theoretical characterization of the tran-
sition graphs of pushdown automata, which are also called context-free graphs.
Moreover, in [21] it is shown that the MSO-theory of any context-free graph
is decidable. In this section, we outline a proof of the converse implication for
graphs with a high degree of symmetry. More precisely, we consider graphs with
only finitely many orbits. Here the orbits of a graph G = (V, (E,).cx) are the
equivalence classes with respect to the equivalence ~ defined as follows: v ~ v
for u,v € V if and only if there exists an automorphism f of G with f(u) = v.



Theorem 3.1. Let G = (V,(Ey)acx) be a connected graph of bounded de-
gree with only finitely many orbits. Then MSOTh(G) is decidable if and only
if undir(G) has finite tree-width if and only if G is context-free.

Proof (sketch). Assume that MSOTh(G) is decidable. Notice that MSO only
allows quantification over sets of nodes, whereas quantification over sets of edges
is not possible. On the other hand, for graphs of bounded degree, Courcelle [6]
has shown that the extension of MSO by quantification over sets of edges, which
is known as MSQO,, can be defined within MSO. Thus the MSQOs-theory of G is
decidable. A result of Seese [24] implies that undir(G) has finite tree-width.

Thus, assume that H = undir(G) has tree-width at most b for some b € N.
Then also any finite subgraph of H has tree-width at most b. Since the degree
of H is bounded by some constant d, the same holds for its finite subgraphs.
Hence, by a result from [3], any finite subgraph of H has strong tree-width at
most ¢ = (9b + 7)d(d + 1). From these strong tree decompositions of the finite
subgraphs of H, one can construct a strong tree decomposition P of H of width
at most ¢ as follows. Since H is connected and of bounded degree, H must be
countable. Thus we can take an w-sequence (G;);en of finite subgraphs of H
whose limit is H. From the non-empty set of all strong-tree decompositions of
width at most ¢ of the graphs G;, i € N, we construct a finitely branching tree as
follows. Put an edge between a strong tree decomposition P; (of width at most
¢) of G; and a strong tree decomposition P;1; (of width at most ¢) of G411 if P;
results from P;;1 by restriction to the nodes of G;. By Konig’s Lemma, this tree
contains an infinite path. Taking the limit along this path results in a strong
tree decomposition P of H of width at most c.

By splitting some of the partition classes of P, we can refine P into a strong
tree decomposition @) of width at most ¢ with the following property: for all
edges (V1, V2) of the quotient graph H /g, removing all edges between V; and V;
(note that there are at most ¢ such edges) splits H into exactly two connected
components. In the terminology of [10,29], the set of edges connecting V4 and
Vs is called a tight c?-cut of H. By [10, Paragraph 2.5] (see also [29, Prop. 4.1]
for a simplified proof), every edge of H is contained in only finitely many tight
c2-cuts. From this fact and the assumption that G, and hence also H, has only
finitely many orbits, one can deduce that the diameter of every partition class
in @ is bounded by some fixed constant v € N. Using this, one can show that
the graph G can be (2v + 1)-triangulated [20], this step is similar to the proof
of [2, Thm. 8]. Then essentially the same argument that was given in the proof
of [21, Thm. 2.9] for a vertex-transitive graph (i.e., a graph that has only one
orbit) shows that G is context-free.

The remaining implication “G context-free = MSOTh(G) decidable” was
shown in [21]. O

Remark 8.2. In [25] it was shown that if G is context-free then also G/~ is
context-free. Thus, a natural generalization of the previous theorem could be the
following: Let G be a connected graph of bounded degree such that the quotient
graph G/. is context-free with finitely many orbits. Then G has a decidable



MSO-theory if and only if G is context-free. But this is false: take Z together
with the successor relation and add to every number m = in(n+1) (n € Z) a
copy m' together with the edge (m,m’), whereas for every other number m we
add two copies m' and m' together with the edges (m,m') and (m,m). The
resulting graph is not context-free, but it has a decidable MSO-theory [11] (see
also [21]) and G/ .. is context-free with just two orbits.

4 Cayley-graphs of groups

Let G be a group generated by the finite set I'. Its Cayley graph C(G,I") has as
vertices the elements of G and as a-labeled edges the pairs (z, za) for z € G and
a € I'. The word problem of G wrt. I' is the set of words over 'U{a"' |a € I'}
that represent the identity of G. It is well known that the decidability of the
word problem does not depend on the chosen generating set; henceforth we will
speak of the word problem regardless of the generators. The group G is called
context-free if its word problem is a context free language [1,20]. By [21] this
is equivalent to saying that C(G, ") is a context-free graph. The automorphism
group of any Cayley-graph acts transitively on the vertices (i.e., has just one
orbit). Furthermore, Cayley-graphs are always connected. If the group is finitely
generated, then moreover its Cayley-graph has bounded degree. Thus, from The-
orem 3.1, we get the following (the implication “=” is due to Muller & Schupp)

Corollary 4.1. Let G be a group finitely generated by I'. Then G is context-free
if and only if MSOTh(C(G,I")) is decidable.

For FO-theories we obtain

Proposition 4.2. Let G be a group finitely generated by I'. Then the following
are equivalent:

(1) The word problem of G is decidable.
(2) FOTh(C(G,I")) is decidable.
(3) The existential FO-theory of the Cayley-graph C(G,I") is decidable.

Proof (sketch). The implication (2) = (3) is trivial. The implication (3) = (1)
is easily shown since a word over I'U{a~! | a € I'} represents the identity of G if
and only if it labels some cycle in the Cayley-graph, an existential property ex-
pressible in first-order logic. The remaining implication is shown using Gaifman’s
theorem [14]: since the automorphism group of C(G, I") acts transitively on the
vertices, it implies that it suffices to decide first-order properties of spheres in
C(G,I') around the identity of G. But these spheres are finite and effectively
computable since the word problem is decidable. O

In the complete version of this extended abstract [17], we prove that every FO-
sentence is equivalent in C(G,I") to the same sentence but with all quantifiers
restricted to spheres around the unit of at most exponential diameter. This
proof uses techniques developed by Ferrante and Rackoff [13]. In addition to the
above result, it provides a tight relationship between the word problem of G and
FOTh(C(G,I")) in terms of complexity: the space complexity of FOTh(C(G,I"))
is bounded exponentially in the space complexity of the word problem of G [17].



5 Factorized unfoldings

In [31], Walukiewicz proved that the MSO-theory of the tree-like unfolding of a
relational structure can be reduced to the MSO-theory of the underlying struc-
ture. The origin of this result goes back to [26,27]. Tree-like unfoldings are
defined as follows:

Definition 5.1. Let A = (A, (Ri)1<i<n) be a relational structure where the re-
lation R; has arity p;. On the set of finite words A*, we define the following
relations:

R\i:{(ual,uag,...,uam)|u€A*,(a1,a2,...,am) € R;}
suc = {(u,ua) |u € A*,a € A}
cl = {(ua,uaa) |u € A%, a € A}

Then the relational structure A = (A*, (E)lsign,suc, cl) is called the tree-like
unfolding of A.

-~

Theorem 5.2 (cf. [31]). Let A be a relational structure. Then MSOTh(A) can
be reduced to MSOTh(A).

-~

We will in particular use the immediate consequence that MSOTh(A) is decid-
able whenever the MSO-theory of A is decidable. The main result of this section
is a FO-analogue of the above result (Theorem 5.7).

The relations of the tree-like unfoldings are instances of a more general
construction that will be crucial for our notion of factorized unfoldings. Let
p(z1,22,...,2,) be a first-order formula over the signature of A with n free
variables. For a word w = ajas---a, € A* of length n we write A = p(w) if
A E p(a1,az,...,a,). An n-ary relation R over A* is k-suffiz definable in A if
there are k1,...,k, <k (k; =0 is allowed) and a first-order formula ¢ over the
signature of A with Y"1 | k; free variables such that

R= {(uula uuz, - - '7uun) | u, u; € A*’lul| = kla'A |= (10(“11"‘2 o un)}

Obviously, all relations of A are 2-suffix definable in .A. On the other hand, there
exist 2-suffix definable relations such that adding them to .4 makes Theorem 5.2
fail. To see this, let

eq = {(ua,uba) | u € A*,a,b € A},

which is 2-suffix definable in A. Define the prefix order < on A* by <= {(u,uv) |
u,v € A*}, it is the reflexive transitive closure of the relation suc from .21\, thus it
is MSO-definable in A. Let A = NU{a, b} be the set of natural numbers together
with two additional elements. On A we define the predicates S = {(n,n + 1) |
n € N}, U, = {a}, and U, = {b}. Then the structure 4 = (A, S,U,,Us) has a
decidable MSO-theory. We consider the structure B = (A*, s, [/J\a, ff\b, suc), which
is a reduct of the tree-like unfolding of .A. Using FO-logic over (B, eq, <), we can
express that a given 2-counter machine terminates. Thus we obtain



Proposition 5.3. FOTh(B,eq, <) is undecidable.

In particular, the MSO-theory of (B,eq) is undecidable. Thus, the presence of
the relation eq makes Walukiewicz’s result fail.

Recall that the underlying set of the tree-like unfolding of a structure A
is the set of words over the carrier set of A. In factorized unfoldings that we
introduce next, this underlying set consists of equivalence classes of words wrt.
Mazurkiewicz’s trace equivalence:

A (not necessarily finite) set A together with an irreflexive and symmetric
relation I C A x A is called independence alphabet, the relation I is the in-
dependence relation. With any such independence alphabet, we associate the
least congruence =; on A* identifying ab and ba for (a,b) € I. The quotient
M(A,I) = A*/=p is the free partially commutative or (Mazurkiewicz) trace
monoid generated by (A, I). The trace that is represented by the word w € A* is
denoted by [w];. Note that for I = ), the trace monoid M(A, I) is isomorphic to
the free monoid A*. In the other extreme, i.e., if I = (4 x A) \ {(a,a) | a € A},
we have M(A,I) = N4, i.e., the trace monoid is free commutative generated
by A. For a trace t € M(A, ), we let min(t) = {a € A|3Is € A* : ¢t = [as]} the
set of minimal symbols of ¢. The set max(t) of maximal symbols of ¢ is defined
analogously. For an n-ary relation R over A*, we define its I-quotient

R/[ = {([ul]l,...,[un]j) | (ul,...,un) S R}

Definition 5.4. Let A be a relational structure with carrier set A. Let further-
more

— I C A x A be an independence relation which is first-order definable in A,

— n:M(A,I) — S be a monoid morphism into some finite monoid S such that
n~1(s) N A is first-order definable in A for all s € S.

— R; be a k;-suffix definable relation in A for 1 <i<n.

Then the structure B = (M(A,I),(n™"(s))ses, (Ri/1)1<i<n) is a factorized un-
folding of A.

Note that in contrast to the tree-like unfolding there are many different factorized
unfoldings of 4. The notion of a factorized unfolding is a proper generalization
of the tree-like unfolding even in case I = §: by Proposition 5.3, the relation eq
cannot be defined in the tree-like unfolding, but since it is 2-suffix definable it
may occur in a factorized unfolding. On the other hand, if T = (), then, since
n~1(s) N A is first-order definable in A, the set n=1(s) C M(A, ) = A* is MSO-
definable in the tree-like unfolding of .A. Since Walukiewicz was interested in the
MSO-theory of his unfolding, the relations =1 (s) are “effectively present” in A.
The structure (B, eq, <) from Proposition 5.3 has an undecidable FO-theory.
Thus, allowing the relation </r in factorized unfoldings would make the main
result of this section (Theorem 5.7) fail. In Theorem 5.7, we will also assume
that there are only finitely many different sets I(a) = {b € A | (a,b) € I},
which roughly speaking means that traces from M(A,I) have only “bounded
parallelism”. The reason is again that otherwise the result would fail:



Proposition 5.5. There exists an infinite structure A and a factorized unfold-
ing B of A such that FOTh(A) is decidable but FOTh(B) is undecidable.

Proof (sketch). Let (V,E) = Ky, be a countable complete graph, A = VUE,
and R C (V x E) be the incidence relation. Furthermore, I = (A x A)\id4. Then
we think of a trace t € M(A, I') as representing the subgraph max(t) C A of Ky,.
This allows to reduce the FO-theory of all finite graphs to the FO-theory of the
factorized unfolding (M(A, I),cl/r, R/r) of A. The former theory is undecidable
by a result of Trakhtenbrot. O

In Proposition 5.3 and 5.5 we used infinite structures A. Infinity is needed as
the following shows:

Proposition 5.6. Let A be a finite structure and B be a factorized unfolding of
A. Then (B, =/1) is an automatic structure [16]; hence its FO-theory is decidable.

Proof (sketch). The underlying set of the structure B is the set of traces M(A4, I).
For these traces, several normal forms are known [8], here we use the Foata
normal form. Since A is finite, all the relations in (B, </r) (more precisely: their
Foata normal form incarnations) are synchronized rational relations. O

Now we finally formulate the main result of this section:

Theorem 5.7. Let A be a relational structure and consider a factorized unfold-
ing B = (M(A,T),(n7"(s))ses, (Ri/r)1<i<n) of A where {I(a) |a € A} C 24 is
finite. Then FOTh(B) can be reduced to FOTh(A).

Proof (sketch). For a trace t € M(A, I), let |t| be the length of any word rep-
resenting t. We will write 3z < n : ¢ as an abbreviation for 3z : |z| < n A 9,
i.e., dz < n restricts quantification to traces of length at most n. In order to
use techniques similar to those developed by Ferrante and Rackoff [13], one then
defines a computable function H : N x N — N with the following property:

Let o = Q122 Q222 ... Qgxq % be a formula in prenex normal form over the
signature of B, where @Q; € {V,3}. Then B |= ¢ if and only if

B Qiz1 < H(1,d) Qez2 < H(2,d) ...Qazq < H(d,d) : ¢ (1)

In order to be able to define H, the assumption that there are only finitely many
sets I(a) is crucial.

At this point we have restricted all quantifications to traces of bounded
length. Now a variable x that ranges over traces of length n can be replaced by a
sequence of first-order variables y; - - - y, ranging over A. Since I is FO-definable
in A, we can express in FO-logic over A that two such sequences represent the
same trace. Since also 7!(s) is first-order definable in A for every s € S and
all other relations in B result from k-suffix definable relations, it follows that (1)
can be translated into an equivalent first-order statement about A. O

Remark 5.8. The function H : N x N — N refered to in the above proof satisfies
H(i,d) < H(i + 1,d) and H(d,d) € 2949 (values for H(i,d) with i > d are not

used in the proof). This allows to show that this procedure transforms a formula
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i over the signature of B into a formula of size over the signature of A.



6 Cayley-graphs of monoids

The Cayley-graph C(M, I') of a monoid M wrt. some finite set of generators I"
can be defined analogously to that of a group. It will turn out to be convenient
to consider the rooted Cayley-graph (C(M,I"),1) that in addition contains a
constant 1 for the unit element of the monoid M.

It is easily checked that the implications (2) = (3) = (1) from Proposition 4.2
carry over to monoids, but the situation for the remaining implication is different.
The following proposition follows from [22, Thm. 2.4].

Proposition 6.1. There is a finitely presented monoid M with a decidable word
problem such that C(M, ") has an undecidable existential FO-theory.

On the decidability side let us mention that Cayley-graphs of automatic monoids
[4] have decidable FO-theories since they are automatic structures [16].

In the sequel, we will prove closure properties of classes of monoids with decid-
able theories. Using simple MSO-interpretations it is easy to see that the class of
finitely generated monoids, whose Cayley-graphs have decidable MSO-theories,
is closed under finitely generated submonoids and Rees-quotients w.r.t. rational
ideals. Moreover, if MSOTh(C(M,I"),1) is decidable and S is a finite monoid
then also MSOTh(C(M x S,I'U S),1) is easily seen to be decidable.

Now, we consider graph products of monoids [15] which generalize both,
the direct and the free product. In order to define it, let (X, J) be some finite
independence alphabet and let M, be a monoid for ¢ € X. Then the graph
product H( .7) M, is the quotient of the free product of the monoids M, subject
to the relations ab = ba for a € M,, b € M, and (o,7) € J. If J = (), then there
are no such relations, i.e., the graph product equals the free product *,cx M, .
If, in the other extreme, J = (X' x X) \ {(0,0) | ¢ € X}, then the graph
product equals the direct product [],cs M,. For the subsequent discussions,
fix some finite independence alphabet (X,J) and for every o € X a monoid
My = (Mg, 04,1,), which is generated by the finite set I',. Furthermore, let
M= (M,o,1) = H(E,J) M, be the graph product of these monoids wrt. (X, J).
This monoid is generated by the finite set I' = | J, .5, I

We will prove decidability results for the theories of the rooted Cayley-graph
(C(M,I'),1) using Theorems 5.2 and 5.7. In these applications, the underly-
ing structure 4 will always be the disjoint union of the rooted Cayley-graphs
(C(M4,T,),1,). Hence the carrier set A of the structure A is the disjoint union
of the monoids M,. It has binary edge-relations E, = {(z,z0,a) |z € My} C
My x M, for all ¢ € X and a € T, as well as unary relations 4, C A com-
prising all elements of the monoid M,, and unary relations U, = {1,}. We
now define a factorized unfolding B of this disjoint union .A: the independence
relation

1= |J M;xM.

(o,7)EJT

is FO-definable in A using the unary predicates A,. Since X is finite, there are
only finitely many sets I(a) for a € A. The relations E,,U,,suc, and suc, =



{(z,za) | x € A*}, where 0 € ¥ and a € I' C A, are 1l-suffix definable in A
(note that every a € I' is FO-definable in .4). We define the monoid morphism 7
in such a way that we are able to interpret the rooted Cayley-graph (C(M, I'),1)
in the factorized unfolding B. In particular, elements of the graph product M
will be represented by traces over (A4,I). To this aim, the following paragraph
defines the mapping n as follows:

For a € A, let pu(a) € X be the unique index with a € M, and define
u(t) = {u(a) | a occurs in t} for t € M(A,I). Then set n(t) = L if there is
o € X such that 1, is a factor of the trace t, or if there are a,b € M, such
that the trace ab is a factor of the trace t. If this is not the case, let n(t) =
(u(min(t)), u(t), u(max(t))). Thus, 5 is a mapping from M(A, I) into some finite
set S. Then the kernel {(s,t) € M(A,I) x M(A,I) | n(s) =n(t)} of n is a monoid
congruence. In other words, the set S can be endowed with a monoid structure
such that 7 is actually a monoid morphism into some finite monoid.

Now we have collected all the ingredients for our factorized unfolding of A:

B= (M(A7I)> (n_l(s))8657 (E\a/I)aEF; ([/];/1)0627 SUC/I, (SuCa/I)aEF)

is a factorized unfolding of A. Note that it does not contain the relation eq/r.
Therefore, in case J = @ (i.e., I = ) B is MSO-definable in the tree-like unfolding
A\, which will allow to apply Theorem 5.2. A major step towards a proof of
Theorems 6.3 is

Lemma 6.2. There is a first-order interpretation of the rooted Cayley-graph
(C(M, I'),1) in the factorized unfolding B of A.

Proof (sketch). The elements of the graph product M can be identified with
those traces t that satisfy n(t) # L (in the terminology of [30], they are I'-
equivalence classes of words of the form S(u)). In order to define the edges of
the rooted Cayley-graph (C(M,I"),1) within B, let us take s,t € M(A4, ) with
n(s) # L #n(t) and let 0 € X, a € IT,. Then one can show that s oa =t (here
we view s and ¢ as elements of M) if and only if the following holds in M(A, I):

- sa=t,or
— there is b € M, such that bo, a =1, and tb = s, or
— thereis b€ M, and u € M(A,I) with s = ub, bo,a # 1,, and t = u (bo, a).

All these properties can be easily expressed in first-order logic over B. ]
Now we can show the main result of this section:

Theorem 6.3. Let M = H(z,.}) M, where (X,J) is a finite independence al-
phabet and M, is a monoid finitely generated by I'y (0 € X). Let I' = 5 I

(1) If FOTh(C(M,,I,),1,) is decidable for all o € X, then FOTh(C(M,T'),1)
is decidable as well.

(2) If J = 0 and MSOTh(C(M, ,T,),1,) is decidable for all ¢ € X, then
MSOTh(C(M,I'),1) is decidable as well.



Proof. First assume that FOTh(C(M,,TI,),1,) is decidable for all o € X.
Lemma 6.2 implies that we can reduce FOTh(C(M,I'),1) to the FO-theory
of the factorized unfolding B, which is decidable by Theorem 5.7 since FOTh(.A)
is decidable by [12]. The second statement on MSO-theories follows similarly by
refering to [31] and [26] instead of Theorem 5.7 and [12], respectively. a

Statement (2) from Theorem 6.3 does not generalize to graph products.

Proposition 6.4. Let (¥, J), M,, I,, M, and I" as in Theorem 6.3 with M,
non-trivial. Assume furthermore that MSOTh(C(M, I'),1) is decidable. Then

(a) (X,J) does not contain an induced cycle of length 4 (also called C4),
(b) if (o,7) € J and M, is infinite, then M, is finite,

(c) if (0,01),(0,02) € J, 01 # 02, and M, is infinite, then (01,02) € J,
(d) MSOTh(C(M,,TI,),1,) is decidable for every o € X.

Proof (sketch). Condition (a), (b), and (c¢) hold, since otherwise M contains a
direct product of two infinite monoids and thus (C(M, I'), 1) contains an infinite
grid. In order to show (d), one defines (C(M,,I}),1,) in (C(M,I),1). O

It remains open whether the four conditions in Proposition 6.4 characterize graph
products, whose corresponding Cayley-graphs have decidable MSO-theories.
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