Realizability of high-level message sequence
charts: closing the gaps *

Markus Lohrey

Institut fiir Informatik, Universitit Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
lohrey@informatik.uni-stuttgart.de

Abstract. We study the notion of safe realizability for high-level message sequence
charts (HMSCs) [2]. We show that safe realizability is EXPSPACE-complete for bounded
HMSCs but undecidable for the class of all HMSCs. This solves two open problems from
[2]. Moreover we prove that safe realizability is also EXPSPACE-complete for the larger
class of globally-cooperative HMSCs.

1 Introduction

Message sequence charts (MSCs) are a popular visual formalism for specifying
communication scenarios of asynchronous processes, where most of the details
(variables, timing constraints, etc) are abstracted away. They are part of the
ITU standard [16]. High-level message sequence charts (HMSCs) extend MSCs
by allowing iteration and non-deterministic choices. In this way infinite sets of
MSCs can be described.

HMSCs are a suitable formalism for the purpose of specification. On the other
hand, HMSCs allow to describe communication patterns, like for instance non-
local choices [5], which are quite pathological from a practical point of view.
Thus HMSCs should not be considered as a model for implementations. This
rises the question of realizability (or implementability): Given an HMSC (the
specification), is it possible to implement it as a communicating protocol (the
implementation), which shows the same behaviour as the original HMSC?

Concerning the formal definition of realizability, we follow Alur et al [1,2],
which define two notions of realizability: weak realizability and safe realizability.
Both are based on the model of communicating finite state machines (CFMs)
with FIFO queues for describing the implementation. CFMs appeared as one of
the earliest abstract models for concurrent systems [6], and are used for instance
in the specification language SDL [15]. An accepting run of a CFM generates in
a canonical way an MSC. Thus, in [2] an HMSC H is called weakly realizable,
if there exists a CFM A such that the set of all MSCs generated by the accept-
ing runs of A is precisely the set of MSCs defined by H. In practice, such an
implementation may be considered as being too weak. A very desirable further

* This work was done while the author was on leave at IRISA, Campus de Beaulieu, 35042 Rennes,
France and supported by the INRIA cooperative research action FISC.

property of the implementation A is deadlock-freeness: every partial run of A can
be completed to a run that terminates in a final state of .A. Thus, in [2] an HMSC
H is called safely realizable, if there exists a deadlock-free CFM A such that the
set of all MSCs generated by the accepting runs of A is precisely the set of MSCs
defined by H.

In [2] it is shown that weak realizability is already undecidable for bounded
HMSCs, a class of HMSCs which was introduced in [4,21] because of its nice
model-checking properties. As shown in [19], FIFO communication (i.e., message
overtaking is not allowed) is the reason for this negative result: for non-FIFO
communication weak realizability is decidable for bounded HMSCs. Concerning
safe realizability, Alur et al prove in [2] an EXPSPACE upper bound as well as
a PSPACE lower bound for safe realizability of bounded HSMCs, but the exact
complexity remained open. In Section 3.1, we will prove that safe-realizability is in
fact EXPSPACE-complete for bounded HMSCs. Using the same proof technique
we will also show that safe realizability is undecidable for the class of all HMSCs,
which solves the second open problem from [2]. Furthermore, in Section 3.2,
we will extend our EXPSPACE-completeness result from bounded to globally-
cooperative HMSCs [9,19], which share many of the nice algorithmic properties
of bounded HMSCs. Finally, in Section 4 we argue that all our results remain
valid for non-FIFO communication.

Let us remark that the notion of realizability used in this paper is a quite
strict one in the sense that it allows neither the introduction of new messages
nor the addition of further content to already existing messages. More liberal
realizations that allow the latter were studied in [9]. Other approaches to the
realization problem can be also found in [7,11].

A preliminary version of this paper appeared in [18].

2 Preliminaries

For complexity results we will use standard classes like PSPACE (polynomial
space) and EXPSPACE (exponential space), see [22] for definitions.

Let X be an alphabet of symbols and I' C Y. We denote with 7 : X* — I'™*
the projection morphism onto the subalphabet I'. The empty word is denoted by
e. The length of the word w € X* is |w|. For k € N let w[1, k| be the prefix of w
of length min{k, |w|}. For u,v € X* we write u C v, if u is a prefix of v.

A pomset is a labeled partial order P = (A, A, <), i.e., (A, <) is a partial order
and A : A — Y is a labeling function. For B C A we define the restricted pomset
Plg = (B, AlB, <[B)- A word A(a1)A(az) -- - Aa,) € X* is a linearization of P if
A={ay,0aq,...,a,}, a; # a; for i # j, and a; < a; implies ¢ < j for all 4, j. With
lin(P) C X* we denote the set of all linearizations of P.

For this paper, we use some basic notions from trace theory, see [8] for more
details. An independence relation on the alphabet Y is a symmetric and irreflexive
relation I C X x Y. The complementary relation (X x X)\I is also called a

2

dependence relation. On X* we define the equivalence relation =; as the transitive
reflexive closure of the symmetric relation {(uabv, ubav) | u,v € X*, (a,b) € I}.
For a subset L. C X* we define the I-closure of L by

[Lj={veX'|FuelL:u=v} C X"

Let A be a finite automaton over the alphabet X' and assume that - C QX X' X @
is the transition relation of A. Then A is called loop-connected with respect to I,
if for every loop ¢1 =% g2 =2 -+ =22 g, 2 qq of A, the set {ai,...,a,} C X
induces a connected subgraph of (X, (X x X)\I). For a loop connected automaton
A, one can construct an automaton A’ of size bounded exponentially in the size
of A such that L(A") = [L(.A)]; [21]. In general, this exponential blow-up cannot
be avoided, see [21] for an example.

2.1 Message sequence charts

For the rest of this paper let P be a finite set of processes (|P| > 2) and C be a
finite set of message contents. With Ch = {(p,q) € P x P | p # q} we denote the
set of all channels. The set of types of process p € P is

Yy = {plq(c),p?q(c) | ¢ € P\{p},c € C}

and the set of all types is X' = |J p 2. With plg(c) we denote the type of an
event that sends from process p a message with content ¢ to process ¢, whereas
p?q(c) denotes the type of an event that receives on process p a message with
content ¢ from process q. A partial message sequence chart (pMSC) over P and
C is a tuple M = (E,t,m, <), where:

— F is a finite set of events.

— t: E — X labels each event with its type. The set of events located on process
peEPisE,=t%,). Let Eb={e € E|3p,q€ P,ce C:t(e) =plg(c)} be
the set of send events and E, = E\E) be the set of receive events.

— m : D — E; is a bijection between a subset D C E, of the send events and
the receive events such that m(s) = r and #(s) = plg(c) implies t(r) = ¢7p(c).
In this case we also say that (s,r) is a message in M from process p to ¢ with
content c. If s € E)\\D with t(s) = plg(c) then s is called an unmatched send
event in M from p to ¢ with content c.

— < is a partial order on FE, called the wisual order of M, such that for every
p € P, the restriction of < to E, is a total order, and < is equal to the
transitive closure of

{(e1,€2) | e1 < ey, Ap € P ey, e0 € E} U {(s,m(s)) | s € D}.

Partial message sequence charts are called left-closed compositional message se-
quence charts in [9]. Often pMSCs are further restricted to satisfy the FIFO condi-
tion, which means that for all s1, so € Ey, if 51 < s9, t(s1) = plg(c), t(s2) = plq(d),

3

and s, € D, then also s; € D and m(s;) < m(ss), i.e., message overtaking on any
channel is disallowed. For the main part of this paper we always assume the FIFO
restriction without mentioning it explicitly, only in Section 4 we briefly discuss
the non-FIFO case. The pMSC definition may also include local actions, however
this is not important in the present setting. We use the usual graphical repre-
sentation of pMSCs, where time flows top-down, processes are drawn as vertical
lines, and arrows represent messages. The following diagram shows a pMSC with
two unmatched send events.

0 2
0'1(a) ¢
071(b) ¢
211 (c)
071(b) ¢ 271(c)
0'2(a) ¢

2!1(c)

) 270(a)

Let M = (E,t,m,<) be a pMSC, where m : D — E; for D C E;. We also write
E(M) = E. We identify M with the pomset (E,t, <), and we identify pMSCs
if they are isomorphic as pomsets. In particular, for ¥ C E we can define the
restricted pomset M [z, which in general is not a pMSC. If D = FE), i.e., if there
are no unmatched send events, then M is called a message sequence chart (MSC)
over P and C. With pMSCp (resp. MSCpc) we denote the set of all pMSCs
(resp. MSCs) over P and C. In the sequel, we will omit the subscripts P and
C, if they are clear from the context. Let |M| = |E| denote the size of M. Let
P(M) = {p € P | E, # (0} be the set of all processes that are active in M.
More generally, for F C E let P(M[r) = {p € P | E,NF # 0} be the set
of all processes that participate in M [p. The communication graph G(M) of M
is defined as the directed graph G(M) = (P(M),+), where p — ¢ if and only
if there exists in M a message from p to ¢ (with arbitrary content). Note that
G(M) does not contain isolated points. This is different from [4], where the set
of nodes of G(M) consists of all processes. For p € P let m,(M) = 7z, (w), where
w € lin(M) is an arbitrary linearization of M (note that 7y, (w1) = 7y, (ws) for
all wy, wy € lin(M)).

Let M; = (E;, t;,mi, <), 1 € {1,2}, be two pMSCs over P and C such that
E1 N Ey = 0 and for all (p,q) € Ch, if there is an unmatched send event from p

4

to g in My, then there is no message from p to ¢ in M, (there may be unmatched
sends from p to ¢ in My). Then the concatenation of M; and M, is the pMSC
M - My = (E1 U Ey, t; Uty, mi Umeg, <), where < is the transitive closure of

<1 U =<y U{(e1,e2) € E1 X Ey | dp € P : e; and ey are located on process p}.

For the case that M;, My € MSC this corresponds to the usual definition of
MSC-concatenation. Note that concatenation is only partially defined on pMSC
but totally defined on MSC. In case M; € MSC, the concatenation M; - M is
always defined.

Let FF C E(M) be an arbitrary set of events of the pMSC M. As already
remarked, the pomset N = M [p is in general not a pMSC. On the other hand,
if F'is downward-closed, i.e., e < f € F implies e € F', then N = M [y is again a
pMSC over P and C. We write N < M in this case, this defines a partial order
(PMSC, <) on the set of pMSCs. The pomset M [z will be denoted by M\N.
In general, M\N is not a pMSC. On the other hand, if a send event s € F' is
unmatched in M whenever it is unmatched in N (i.e., no message arrows are
crossing from F' to its complement E\F, this happens in particular if N is an
MSC), then M\N € pMSC and moreover M = N - (M\N).

We say that an MSC M € MSC is atomic if M cannot be written as M =
M - My for MSCs My, My € MSC\{(}, where () stands for the MSC with an
empty set of events. With Apc (briefly A) we denote the set of atomic MSCs
over P and C. Already for |P| = 2, the set A is easily seen to be infinite, see
e.g. [10, Sec. 3] for an example. On A we define an independence relation 7 by
(A,B) € T if P(A) N P(B) = . Obviously, every M € MSC can be written as
M =A;-Ay--- A, where A; € A. Furthermore, this factorization is unique up
to Z-commutations, a fact that will be crucial in Section 3.2, see [12,19]:

Lemma 2.1 (cf[12,19]). IfAy,..., Ay, By, ..., B, € A are atoms such that the
MSCs Ay - Ay--- A, and By - By - -- B, are equal then the words u = A1Ay--- A,
and v = B1Bsy - -+ By, over A satisfy u =7 v.

The supremum (resp. infimum) of two pMSCs M;, My € pMSC in the par-
tial order (pMSC, <) is denoted by sup(M;, Ms) (resp. inf(M;, Ms)). In general,
sup(Mi, My) does not exist (whereas inf(M;, M) always exists):

Lemma 2.2. Let My, My € pMSC. Then sup(My, My) ezists if and only if for all
p € P, either m,(My) C 7m,(Ms) or m,(Msy) C m,(My). Moreover, if sup(My, My)
exists and M = inf(My, My) then the following holds:

(

(1) M # 0 if and only if P(My) N P(Ms) # ()

(2) P(Mi\M) N P(Mx\M) =0

(3) Sup(Ml, Mg)\Ml = MQ\M

(4) If M, € MSC and there is an unmatched send event e of type plq(c) in M
then q ¢ P(M\M).

(5) If My € MSC then My\M is a pMSC and My = M - (Ms\M).
(6) If My, My € MSC then also M € MSC.
(7) IfMl,MQ € A andM;é(Z) then M1 :MQ.

Proof. 1f sup(M;, M) exists then there exists N € pMSC such that M; < N and
M, < N. Thus 7,(M;) C m,(N) and 7,(Ms) C 7,(N). Hence either m,(M;) C
mp(Ms) or m,(Ms) T mp(My). On the other hand, if for all p € P, either m,(M;) C
mp(Ms) or my(My) E my(Mi), then we can define words up,v, € X5 (p € P)
as follows: (i) if m,(M;) C m,(Ms) then u, = my(M;) and v, = mp(Ms), and
(ii) if m,(Ms) C my(My) then u, = m,(Ms) and v, = my(M;). It it not difficult
to see that there exist unique pMSCs M and N such that m,(M) = u, and
mp(N) = v, for all p € P. Then M; < N, My < N, and sup(M;, M,) exists, in
fact N = sup(Mj, Ms). Thus we have shown the first statement from the lemma.
Moreover, M = inf(M;, Ms), and (1), (2), and (3) follow immediately. For (4),
assume that M; € MSC and let s be an unmatched send event in M of type
plg(c). Since M; € MSC, s has a corresponding receive event in M;, which must
be contained in M;\M. Thus ¢ € P(M;\M). Since P(M;\M) N P(M\M) =0
by (2), it follows ¢ ¢ P(My\M), which shows (4). (5) follows easily from (4). For
(6) note that if M;, M, € MSC, then by (4), M cannot have any unmatched send
events, hence M € MSC. Finally (5) and (6) imply (7). O

The following picture visualizes the general situation. Arrows that are leaving
some region correspond to unmatched sends, and the whole region corresponds
to the supremum.

M = inf(Ml, MQ)

M; < > My
MA\M M\ M

\ /

The ITU standard Z.120 defines high-level message sequence charts (HMSCs) as
finite transition systems with nodes labeled by MSCs. Here we prefer to label
edges by MSCs, which does not change the expressive power of HMSCs. Thus,
an HMSC H over P and C is a tuple H = (V, —, vy, F'), where V is a finite set
of nodes, = C V x MSCpc x V is a finite set of labeled edges, vy € V is the
initial node, and F' C V is the set of final nodes. Instead of (u, M,v) € —, we

write u 5 v. The MSC-language msc(H) defined by H is the set of all MSCs

M- My - -- M, where v, ﬂm V1 &)H %H v, € F for some vq,...,v, € V.
We impose the restriction that -+ C V' x Apc x V. This assumption does not
change the expressiveness of HMSCs and can be easily established by adding

6

further nodes to V. Let Ay = {A € A | Ju,v eV :u Ay v}. We may view H
also as a finite automaton over the alphabet Ay of atoms, which accepts the set
L(H) C A}, of words over Ay. We will denote this automaton by H as well. An
HMSC H is called bounded [4,21] if for every cycle

A1 Ag Anfl An
V) —*g V2 —*H """ ——H Un —2H V1,

the communication graph G(A; - Ay--- A,) is strongly connected, i.e., for all
p,q € P(G) we have p +> ¢ +> p. In [4] it is shown that for a bounded HMSC
H the language lin(msc(H)) C X* of all linearizations of MSCs generated by H
is regular, which makes several model-checking problems decidable for bounded
HMSCs. On the other hand, bounded HMSCs are a quite restricted class, since
they only allow the specification of behaviours where the size of communication
buffers stays within some fixed bound. Thus, only finite state systems can be
specified. Fortunately, many model checking problems stay decidable for a larger
class of (infinite state) HMSCs: In [9], an HMSC H is called globally-cooperative
if H, viewed as a finite automaton over the alphabet Ay, is loop-connected with
respect to the independence relation Z C A x A. Globally-cooperative HMSCs
were independently introduced in [19] as ¢-HMSCs. It is easy to see that every
bounded HMSC is globally-cooperative. Finally, H is called Z-closed if H, viewed
as a finite automaton over Ag, satisfies L(H) = [L(H)|z. Thus, by [21], for a
globally-cooperative HMSC H there exists an Z-closed HMSC H' of size bounded
exponentially in the size of H such that L(H') = [L(H)|z and thus also msc(H) =
msc(H'). The diagram below shows three simple HMSCs. The first one is not
globally-cooperative (and hence not bounded). The second HMSC is bounded
(and hence globally-cooperative). Finally, the third HMSC is globally-cooperative
but not bounded.

Ot HOH Q.

2.2 Communicating finite state machines

In this section we briefly introduce communicating finite state machines (CFMs)
The tight relationship between CFMs and the theory of MSCs is well-known, see
e.g. [13,14,17, 20].

The set of buffer configurations is the set (C*)°! of all functions from the set
of channels Ch to the set C* of all words over the alphabet C of message contents.
The buffer configuration B € (C*)°" such that B(p,q) = ¢ for all (p,q) € Ch is
denoted by By. Recall from the previous section that X, is the set of all types of
process p. A CFM over P and C is a tuple A = (A,),ep of finite nondeterministic

7

automata. Each A, is a tuple A, = (S,, Xy, 8y, So,p, F}p), where S, is the finite set
of states of A,, 6, C S, x X}, x S, is the transition relation of A,, so, € S) is the
initial state of Ay, and F,, C S, is the set of final states of A,. We say that A is
deterministic if every A, is deterministic, and we say that A is reduced if every
A, is reduced, i.e., every state of S, is reachable from the initial state sy, and
from every state of S, a final state from F}, can be reached.

The infinite set S of global states of A and the set F of final global states of
A are defined by

S=]]S, x (€)™ and F=]]F, x{B}.

peEP peEP

The initial global state of A is (so, By), where sy = (so,p)pep- The global transition
relation 6 C Sx X' xS of A is defined as follows: Let (s, B) € S, where s = (sp)pep,
and 7,5 € P, ¢ € C. Then,

— (84, 1j(c), t) € 0; implies
((s, B), ilj(c), (t,C)) €4,

where t = (ty)pep, tp = s for p # 4, t; =1, Cp, q) = B(p, q) for (p, q) # (i, J),
and C(i,j) = ¢B(i,j), and
— (si, 174(c), t) € 6; and B(j,7) = wc for some w € C* implies

((s,B), i%j(c), (¢,C)) €6,

where t = (t,)pep, tp = sp for p #14, t; = t, C(q,p) = B(g, p) for (¢,p) # (4,9),
and C(j,1) = w.

We extend the relation § C S x X' x S in the usual way to a relation § C Sx X* xS.
Instead of ((s, B),w, (t,C)) € §, w € £*, we write (s,B) —4 (t,C). We write
(s,B) =4 (£,C) if (s,B) >4 (t,C) for some w € X*. We write (s,B) —4 if
(s, B) %4 (t,C) for some (t,C). Let

L(A) = {w e ¥ | 3(t,By) € F: (sg, By) 2 (t,Bp)}.

It is easy to see that for every run (s, By) —4 (t,B), w € X*, that starts with
empty buffers, there exists a unique pMSC pmsc(w) with w € lin(pmsc(w)).
Furthermore, if also B = By then pmsc(w) € MSC and we write msc(w) instead
of msc(w). Thus we can define msc(A) = {msc(w) | w € L(A)}. Finally, we
say that A is deadlock-free if for all (s, B) such that (sg, By) —4 (s, B) we have
(s, B) 5 4 (t,By) for some (t,By) € F.

If wy,wy € lin(N) for N € pMSC then (s,By) —»4 (t,B) if and only if
(s, By) =>4 (t, B). Thus, we may write (s, By) L) (t, B) in this case. If moreover
M < N € pMSC then there is a global state (u,C) of A such that for all v €
lin(M) and w € lin(N\M) we have (s, By) =4 (u,C) 24 (t,B). Thus, we may

write (s, By) 54 (u,C) 2% 4 (8, B).

Lemma 2.3. Let A be a deterministic CFM. Let M, My, My € pMSC such that
sup(M;y, My) exists and M = inf(My, Ms). If

(5, Bp) 254 (s1,B:) and (s,By) 22 4 (52, 55)

then there ezists a global state (t,B) of A such that

(51,8) Y2\ (4,8) and (s, B5) XM 4 (8, B).

Proof. Note that the case P(M;) N P(Msy) =), i.e., M = () is obvious. For the
general case note that there exist global states (t;,C;) and (to,Cs) such that

(5, Bp) 4 (61,C1) 2% 4 (s1,B1) and (s, By) g (£, Ca) 22 4 (5, Bo).

Since A is deterministic, we have (t;,C;) = (t2,C2). By Lemma 2.2(2), we have
P(M; \ M) P(M,\ M) = 0. Then

(s1,8) Y2\ (6,8) and (59, B5) XM, (4, B)

for some (t, B) follows immediately. O

3 Weak and safe realizability

Let L C MSCp be a set of MSCs. Following [1], we say that L is weakly realizable
if there exists a CFM A over P and C such that msc(A4) = L. We say that L
is safely realizable if there exists a deadlock-free CFM A over P and C such
that msc(A) = L. ' An HMSC H is called weakly realizable (safely realizable) if
msc(H) is weakly realizable (safely realizable).

In [3], weak and safe realizability was also characterized by the following two
conditions for sets of MSCs. Let L C MSC.

— Closure condition CC,, (called CC2 in [1]). If M € MSC is such that for all
p € P there exists N € L with m,(M) = m,(/N) then M € L.

— Closure condition CCy (called CC3 in [1]). If M € pMSC is such that for all
p € P there exists N € L with m,(M) C 7,(N) then M < N for some N € L.

Then the following holds.
Lemma 3.1 (cf [3]). Let L C MSC.

— L is weakly realizable if and only if L satisfies closure condition CC,,.
— L s safely realizable if and only if L satisfies closure condition CC, and
closure condition CC;.

! These definitions allow local automata .4, with infinite state sets, but this case will never occur in
this paper, since we restrict to sets of MSCs generated by HMSCs.

9

For the above lemma it is important that every M &€ pMSC can be uniquely
reconstructed from its projections m,(M), p € P, which is obvious due to the
FIFO-restriction.

The original definition of weak (safe) realizability suggests that the main
difficulty for checking weak (safe) realizability of an HMSC is that of finding a
CFM that witness weak (safe) realizability. The following lemma shows that this
is in fact not the case.

Lemma 3.2. Let L be a set of MSCs.

— If A= (Ap)pep is a CFM such that m,(L) = L(A,) for every p € P then L is
weakly realizable if and only if msc(A) = L.

— If A= (A,)pep is a deterministic and reduced CFM such that m,(L) = L(A,)
for every p € P then L is safely realizable if and only if A is deadlock-free and

msc(A) = L.

Proof. Note that one direction in each of the two statements is trivial. For the
other direction, first assume that A = (Ap)ycp is a CFM such that m,(L) =
L(A,) for every p € P but msc(.A) # L. Since clearly L C msc(.A), there exists
M € msc(A) \ L. Thus, m,(M) € m,(L) for all p € P. Lemma 3.1 implies that L
is not weakly realizable.

For the second statement assume that A = (A,)pep is a deterministic and
reduced CFM such that m,(L) = L(A,) for every p € P. If msc(A) # L then by
the previous paragraph, L is not weakly realizable and hence not safely realizable.
If A is not deadlock-free then there exists a pMSC M and a global state (s, B)

such that (sg, Bp) M, (s, B) but there is no global final state that is reachable
from (s, B). Since every local automaton A4, is reduced, there exist words w, € 2
such that m,(M)w, € L(A,) = m,(L) for every p € P. Thus, for every p € P
there exists N € L with m,(M) C m,(N). We claim that there does not exist
N € L with M < N (with Lemma 3.1 this shows that L is not safely realizable).
In order to deduce a contradiction, assume that M < N for some N € L. Since

L C msc(A), it follows that (sq, Bp) M, (s, B) N\—M>A (t,By) for a global
final state (t,Bp). Since A is deterministic, we obtain (s’,B’) = (s, B), which
contradicts the assumption that no global final state is reachable from (s, B). O

Note that for a given HMSC H it is easy to construct a CFM with the properties
from Lemma 3.2.

As already mentioned, the notions of weak and safe realizability were intro-
duced in [1], where it was shown that for finite sets of MSCs, safe realizability
can be tested in polynomial time, whereas weak realizability is coNP-complete,
see also [3]. In [2], realizability was studied for HMSCs. It was shown that weak
realizability is already undecidable for bounded HMSCs if FIFO communication
is assumed. Under non-FIFO communication, weak realizability is decidable for
bounded HMSCs [19]. Safe realizability for bounded HMSCs was shown to be

10

in EXPSPACE, but PSPACE-hard in [2]. In Section 3.1, we will close this gap
by proving that safe realizability for bounded HMSCs is EXPSPACE-complete.
The proof technique used for this result will be also used in order to prove that
safe realizability is undecidable for the class of all HMSCs. Moreover, in Sec-
tion 3.2 we will show that safe realizability remains EXPSPACE-complete for
globally-cooperative HMSCs.

3.1 Lower bound proofs

Theorem 3.3. The following problem is EXPSPACE-complete:

INPUT: Set P of processes, set C of message contents, and a bounded HMSC
H over P and C

QUESTION: Is H safely realizable?
Furthermore this problem is already EXPSPACE-complete for some fized P and
C (i.e., they do not belong to the input).

Proof. Membership in EXPSPACE is shown in [2] (for variable P and C), or
follows from Theorem 3.7. For the lower bound we combine ideas from [2] and [21,
23]. Let M be a fixed Turing-machine with an EXPSPACE-complete acceptance
problem (such a machine exists, take any machine, which accepts an EXPSPACE-
complete language). W.l.o.g. M works on an input of length 7 in space 2" — 1.
Let @ be the set of states of M and let A be the tape alphabet. Furthermore,
let gy be the initial state of M and ¢; be the final state of M. Let O € A be the
blank symbol. The machine M accepts if it reaches the final state g;. Let us fix an
input w € A* for M with |w| = n for the further discussion. Configurations of M
are represented as a word from A*QA* of length 2™. A sequence (uq, ..., Uy) of
words u; € A*QA* is called an accepting computation of M if u; = gowd?" "1,
lu;] = 2™ (1 < i <m), u;y1 is a successor configuration of u; with respect to M
(1 <i<m),and u, € A*q;A*.

For a number 0 < 7 < 2" let (1) € {0,1}" denote the binary representation
of 7 of length n, where moreover the least significant bit is the left-most bit.
For w = ag---agn 1, a; € QU A, let B(w) = (0)ag--- (2" — 1)agn ;1. Let I' =
QUAU{0,1} and define the set C of message contents by C = I'U{$,¢,7}. 2 We
will deal with the fixed set of processes P = {1,...,5}. For a symbol a € I" we
define the MSC a®Y (resp. a*®) over P and C as the unique MSC with the only
linearization 2!1(a) 172(a) 1!2 271 (resp. 4!5(a) 574(a) 5!4 475); thus, the symbol a
is send from 2 to 1 (resp. 4 to 5) and immediately confirmed. For C = by - - - b, €
I'* define the MSCs €D = p{*Y ... 52D and ¢49 = p*» ... 5% For words
Cy,Dy,...,Cp, Dy, € I'* (m > 1) we define the MSC M(Cy, Dy, ...,Cy,, Dy,)
over P and C as shown in Figure 1, where the case m = 3 is shown. Finally
define the following two sets of MSCs:

2 In the following, we will also use messages without any content, the corresponding types are written
as plq and p7q, respectively. Formally, one can introduce an additional message content nil for these
messages.

11

f—
no
fs

$
$
01(271)
$
$
02(2,1)
$
$
C§2’1)
D§4’5)

Fig.1. M(Ci1,D,,C5,D,,C3, Ds3)

Lg:{M(Cl,D]_,...,Cm,Dm) ‘ mZ]., Cl,Dl,...,Cm,DmEF*}

L, = LN\{M(B(u1), B(u1), -, B(tum), Btm)) | (t1,...,Uy) is an
accepting computation of M}

Claim 1. There exist bounded HMSCs H, and H, that can be constructed in time
polynomial in n = |w| and such that msc(H,) = L, and msc(H,) = L,.

For L, this is clear, since all messages are immediately confirmed by messages
back to the sending process. For L, we can reuse the construction from the proof
of [21, Prop. 7]. For completeness, a brief exposition follows. The set L, contains
all MSCs in L, that do not represent accepting computations of M starting on
input w. Thus, L, = U?Zl L,;, where M(Cy, Dy, ...,Cn, Dy) € Ly belongs to

— L, if some C} or Dy is not contained in ({0,1}"A)*{0,1}"Q({0,1}"A)*.

12

— L, if some Cj or Dy is not contained in 0"(Q U A)I™* N I™*1"A.
— L, 3 if some Cj, or Dy, contains a factor (i)a(j)b with a,b € QUA, but j # i+1.

— L, 4 if Cy does not belong to {0,1}*¢e{0,1}*a; - - - {0,1}*a, ({0, 1}*0)*, where
aj - -a, = w, or g5 does not occur in Cy,.

— L, if for some k and i, C} contains a factor (i)a and Dy, contains a factor
(i)b, where a,b € QU A but a # b (i.e., Cx # Dy).

— L, if for some k and i, Dy, contains a factor (i)a;sbitc;, Ci11 contains a factor
(1)agubyvcy, where s,t,u,v € {0,1}%, aj,b;,¢; € QU A, but there do not exist
w1, we such that wya1b;ciwy Faq wiasbacowsy. Note that this is local condition
on the tuple (ai, by, c1, as, by, c3).

The conditions describing L, 1, Ly2, L,3, and L, 4 can be enforced by finite au-
tomata, which can be transformed into bounded HMSCs that operate only on
the processes 1 and 2 (resp. 4 and 5). The set L,3 can be written as a union
U?_Ol A; U B; where M(C4, Dy, ...,Cy,, D,,) belongs to:

— A; if some Cy or Dy contains a factor in 1°a{0,1}" * 1a{0,1}¢a{0,1}" " 1b
with a,b € QU A and « € {0,1}.

— B; if some Cy or Dy, contains a factor in va{0,1}""*"1a{0,1}'8{0,1}"~*"1b
with a,b € QU A, v € {0,1}\ {1'}, o, B € {0,1}, and « # B.

In order to generate L, 5 and L, g, it is crucial that for every 7, the events belonging
to C’z-(z’l) (resp. D§4’5)) are causally independent from those in D§4’5) (resp. C’z(ill)).
Thanks to the counter, we do not need concurrent iteration (i.e., loops labeled
by MSCs with a non-connected communication graph). For L, 5 for instance, we
simply guess independently two positions in Cy and Dy, respectively, where (i)a
and (j)b, respectively, starts and verify whether i = j and a # b holds. Since the
binary codings of 7 and j are of polynomial length, the test whether 7 = j can be
done without looping in the HMSC. Finally, note that all constructions can be
done in time bounded polynomially in n. This concludes the outline of the proof

of Claim 1.
Claim 2. L, is safely realizable.

By Lemma 3.1 it suffices to verify condition CC,, and CC;, for L,. We will only
check CC,,, condition CC; can be verified analogously. Thus assume that M is an
MSC such that for each p € {1,...,5} there exists N € L, with m,(M) = m,(N).

13

Thus 73(M) = (3!2 372 314 3?4)* for some k > 1. Since M is an MSC, we have

my (M) =(273 213 2!1($) 271 211(ay) 271 -- - 21 (a1,) 271) - - -
(273 213 2!1($) 271 211 (ag1) 271 - - 21 (k) 2‘?1)
ma(M) =(473 413 415($) 475 415(by1) 475 - - - 415(by 5,) 475) - -
(473 413 415($) 475 415(by,1) 475 - - - 415(by, ,Jk) 5)
m (M) =(172($) 112 172(a1,1) 112---172(ay,) 112) --
(172($) 112 172(ak,1) 112 - - 172(ay;,) 112)
75 (M) =(574($) 514 574(by ;) 514 - - - 574(by ;) 514) -
(574($) 514 574(bg1) 514 - - - 574(by 5,) 5!4)

for some i1, j1,...,%, jx => 0. Thus M € L,. This proves Claim 2.
Now define the MSCs M, and M, by

2 3

From the bounded HMSCs H; and H, in Claim 1 it is straight-forward to con-
struct a bounded HMSC H such that msc(H) = (M, - Ly) U (M, - L,), where
concatenation is lifted to sets of MSCs in the obvious way.

Claim 3. If M does not accept w then H is safely realizable: Note that if M
does not accept w, then L, = L, and msc(H) = {M;, M, } - L,. Since L, is safely
realizable by Claim 2, also msc(H) is safely realizable.

Claim 4. If M accepts w then H is not weakly realizable (and hence not safely
realizable): Let (uq,...,u,) be an accepting computation of M. Let

M = M(,B(Ul),ﬁ(ul)aﬁ(UQ)aﬁ(UZ)ﬂ tee aﬁ(um)aﬁ(um))

Since M ¢ L,, we have M, - M ¢ msc(H). On the other hand for all p €
{1,...,5} there exists N € msc(H) such that m,(M, - M) = m,(N), for instance

for JURS {1: 25 3} take N = MT : M(ﬂ(ul)a Ca B(UQ)a B(UQ): ceey B(um)a ﬁ(um)) for
some C # [(uy). Thus, msc(H) is not weakly realizable. This proves Claim 4.

Thus, by Claim 3 and Claim 4, our fixed machine M accepts the input w if
and only if H is not safely realizable. Since the acceptance problem of M is

EXPSPACE-complete (and EXPSPACE is by Savitch’s Theorem closed under
complement [22]), the theorem follows. O

Theorem 3.4. There exist fixed sets P and C of processes and message contents,
respectively, such that the following problem is undecidable:

INPUT: An HMSC H over P and C

QUESTION: Is H safely realizable?

14

Proof. Basically we redo the construction from the proof of Theorem 3.3. But
instead of a Turing-machine with an EXPSPACE-complete acceptance problem,
we use a machine M with an undecidable acceptance problem. Counters, as used
in the proof of Theorem 3.3, are not necessary this time (and in fact cannot

be used, since configurations may become arbitrarily long). Thus we redefine
I'=QUA and

L. = L\{M (u1,u1, .., Uy, Up) | u; € A*QA*, (1 <i<m)
Us; l_M Uit1 (1 <1< m)
Up = Qow, Uy € A%qp A}

where w is a given input for M. The set L, can be generated by an (unbounded)
HMSC using loops labeled with the non-connected MSCs a(>) - a{*5) for a € I'.
The rest of the construction is completely analogous to the proof of Theorem 3.3.
We obtain an HMSC H such that the following holds:

— If M does not accept w then H is safely realizable.
— If M accepts w then H is not weakly realizable. ad

3.2 Upper bounds for globally-cooperative HMSCs

In [19] it was shown that weak realizability is decidable for globally-cooperative
HMSCs (called c-HMSCs in [19]) if non-FIFO communication is supposed. More-
over, it was argued that the methods used in the proof of this result can be also
used in order to prove that safe realizability is decidable for globally-cooperative
HMSCs, both for FIFO and non-FIFO communication. In this section, we prove
that safe realizability is in fact EXPSPACE-complete for globally-cooperative
HMSCs. Since EXPSPACE-hardness follows from Theorem 3.3, it remains to
prove membership in EXPSPACE. It should be noted that the technique from [2]
for proving that safe realizability is in EXPSPACE for bounded HMSCs cannot
be applied to globally-cooperative HMSCs: The proof in [2] is based on the fact
that the set of all linearizations of MSCs from msc(H) is a regular set in case H
is bounded. But for globally-cooperative HMSCs this is no longer the case, see
e.g. the example at the end of Section 2.1.

For the further discussion let us fix an arbitrary HMSC H = (V,—, v, F')
over P and C. For the main part of this section, we do not assume that H is
globally-cooperative. Recall that Ay = {A € A | Ju,v € V : u Ay v}. With
(Agr) we denote the set of all MSCs of the form A; - Ay--- A, with A; € Ay
(possibly n =0, i.e., 0§ € (Ag)).

For every p € P we can easily construct in polynomial time from H a
nondeterministic finite state automaton A}, with L(A}) = mp(msc(H)). Let @,
be the set of states of Aj. Thus, the size of @, is bounded polynomially in
the size of H. Using the powerset construction, we can build a determinis-
tic and reduced automaton A, = (S,, X, 8, S0, Fp) such that S, C 29 and

15

L(A,) = L(A}) = mp(msc(H)). We call the CFM A = (Ap)pep the canonical
implementation of H. By Lemma 3.2, H is safely realizable if and only if A is
deadlock-free and msc(.A) = msc(H). Our main tool for checking the latter two
conditions will be a finite state automaton Ay, whose definition is inspired by [19]:
Ay = (Sg, An, by, 80, Fy) is a finite state automaton over the alphabet of atoms
Ap, where sy = (s0,)pep is the initial state, Sy C [[,cp Sy is the set of all tuples

s such that there exists K € (Ag) with (so, By) —>.4 (s, Bo), Fg = Sy N [cp Fps
and the transition relation dy is defined as follows: If s,t € Sy and A € Ay then
(s, A, t) € 0y if and only if (s, By) £>A (t, By). Notations like s £>A@ t are defined
as for CFMs in Section 2.2. Note that Ay is Z-closed, i.e., if u € L(Ap) and
u =7 v for words u,v € A} then also v € L(Ayp), in fact, Ay is an asynchronous
automaton in the sense of [24]. Thus, by Lemma 2.1, for K € (Ag) and s,t € Sy

we can write s — A, t with the obvious meaning. We write s EN Ay if s EiN A, tfor
some t.

Note that the number of states of Ay is bounded by [[,.p S, < 22 per [9nl
which is exponential in the size of the HMSC H. Four our purpose this size bound
will be too large. But note that in order to write down a state of Ay we only need
polynomial space.

The main part of this section is devoted to the proof of the following result:

Theorem 3.5. The following problem is in PSPACE:

INPUT: Set P of processes, set C of message contents, and an arbitrary
HMSC H over P and C

QUESTION: Does the canonical implementation A of H satisfy the following
two properties: (i) A is deadlock-free and (ii) msc(A) C (Ay) ?

Before we go into the details of the proof of Theorem 3.5 let us first deduce a few
consequences.

Theorem 3.6. The following problem is PSPACE-complete:

INPUT: Set P of processes, set C of message contents, and an L-closed HMSC
H over P and C

QUESTION: Is H safely realizable?
Furthermore this problem is already PSPACE-complete for some fized P and C.

Proof. For PSPACE-hardness we can use the construction from the proof of [2,
Thm. 3]. In fact, the HMSC H, constructed there, satisfies the property that

u Sy v Sy wimplies P(A)NP(B) # 0, thus H is Z-closed. Moreover, P and C
are fixed in the construction. Hence, it remains to show membership in PSPACE.
We first verify whether the canonical implementation A of H is both deadlock-
free and satisfies msc(A) C (Ag). If this is not the case then we can reject. By
Theorem 3.5 this test can be done in polynomial space. Thus, let us assume that A
is deadlock-free and msc(A) C (Ag). It remains to show that msc(A) = msc(H),

16

where the inclusion msc(H) C msc(.A) is trivial. Thus, we have to check whether
msc(A) C msc(H). Since we already know that msc(A) C (A), this is equivalent
to msc(A) N (Ag) C msc(H). The following argument follows [19]. First note
that for all A;,..., A, € Ay, we have A; - Ay--- A, € msc(A) if and only if
the word A1 Ay --- A, € A} belongs to L(Ay). Hence, we have msc(A) N (Ag) C
msc(H) if and only if L(Ay) C [L(H)]z (where H is viewed as a finite automaton
over the alphabet Ag) if and only if L(Ay) C L(H) (H is Z-closed) if and
only if L(Ag) N (A} \L(H)) = (. This can be checked in polynomial space, by
guessing a word in the intersection and storing only the current state of Ay
(which is possible in polynomial space) and the current state of the automaton
for A}, \L(H) resulting from the subset construction. The latter is a subset of the
set of nodes of H, hence it only needs polynomial space. O

Theorem 3.7. The following problem is EXPSPACE-complete:

INPUT: Set P of processes, set C of message contents, and a globally-cooperative
HMSC H over P and C

QUESTION: Is H safely realizable?
Furthermore this problem is already EXPSPACE-complete for some fired P and
C.

Proof. The lower bound follows from Theorem 3.3. For the upper bound we can
argue as follows: For a globally-cooperative HMSC H we can by [21] construct
an Z-closed HMSC H' of size bounded exponentially in the size of H such that
msc(H) = msc(H'). By Theorem 3.6 we can check in space bounded polynomially
in the size of H' (and thus space bounded exponentially in the size of H) whether
H' and hence H is safely realizable. O

The rest of this section is devoted to a proof of Theorem 3.5. Recall that we want
to check whether A is deadlock-free and msc(A) C (Ag). A first simplification is
achieved by the following lemma.

Lemma 3.8. The following two statements are equivalent:

(a) A is deadlock-free and msc(A) C (Ag).

(b) Ay is deadlock-free and for all s € Sy and all M € pMSC\{0} such that
(s, By) 25 4 it holds

HKE(AH>3AGAH{SK_A>A@’ P(E)nP(M) =0, } (1)

sup(A, M) exists and, inf(A, M) # ()

Proof. First assume that (a) holds but A4y has a deadlock. Thus there exists
a run Sg M, 4, S such that no final state of Ay can be reached from s. Thus
(S0, By) N (s, By). Note that M € (Ay). Since by assumption A is deadlock-
free, there exists N € MSC and a final state (t, By) of A with (s, By) S (t, By).

17

Hence M - N € msc(A) and thus, by assumption, M - N € (Ay), i.e., N € (Ag).
Tt follows s - A, t € Fy, which is a contradiction.

Now assume (a) and let s € Sg, M € pMSC\{0} such that (s, Bp) 2, 1. Since
s € Sy, the state (s, By) is reachable in A from its initial state. Since A is deadlock-

free, there exists N € MSC such that M < N and (s, By) LR (t, By) for some
final state (t,By) of A. Since msc(A) C (Ay) we have M < N = Ay - Ay--- Ay
for Ay, ..., Ay € Ag. Define B; = A;[g(r). The following diagram visualizes the

situation.
Al B 7%:
74 > N
Ay Bl
/

Since M is downward-closed in N, B; must be downward-closed in A;, i.e., B; <
A;. Moreover, P(A;\B;) N P(B;) = 0 for i < j: If e would be an event of A;\B;
on process p and f would be an event of B; on process p, then either e < f
(which is not possible, since e belongs to N\M and f belongs to M) or f < e
(which is not possible, since e belongs to A;, f belongs to A4;, and i < j). Thus,
if there is an unmatched send from p to ¢ in B;, then, since the corresponding
receive belongs to A; \ B;, there cannot exist a message from p to ¢ in some
B; with 7 > 4. It follows that the concatenation B - By --- By, is well defined
and in fact M = By - By---B,,. Let k > 1 be minimal such that B, # 0,
thus By,...,By_1 = 0 and M = By --- B,,. Since M # (, such a k must exist.

Since (s, By) X, 4, we have s Ao A 4,- Moreover, P(A;---Ay_1) N P(M) =
and M = By--- By, < Ay---Ap, sup(Ay, M) exists. Finally, By, # () satisfies
By < A and By < By---B,, = M. Thus inf(Ag, M) # 0 and (1) holds with
K =A,---Ag_; and A = A. This concludes the proof of (a) = (b).

It remains to prove (b) = (a). We will show that —(a) implies —(b). Let us
first assume that A is not deadlock-free, but Ay is deadlock-free. We have to
show that (1) is false for some s € Sg and M # 0 with (s, By) 4. Choose a
pair (s, M) € Sy x pMSC such that (s, By) ~ 4 (t, B), where (t, B) is a deadlock-
state of A, i.e., no final state of A can be reached from (t, B), and moreover |M |
is minimal among all pairs with this property. By assumption s and M exist.
Since Ay is assumed to be deadlock-free, we must have M # (. We show that (1)
does not hold for s and M. Assume the contrary, thus there are K € (Ag) and

18

A € Ag such that s K—'A>A@ s' € Sy, P(K)NP(M) = 0, sup(A, M) exists, and
B = inf(A, M) # (. First, since A € Ay is an MSC, Lemma 2.2(5) implies that
M\B is a pMSC. Moreover, by Lemma 2.3, A has the following runs.

(s', By)
A
2N e
(s, Bo) y y,'
(t,B)

Since (t,B) is a deadlock-state of A, also (t', B') is a deadlock-state of A. Fur-
thermore, since B # () we have |M\B| < |M]|, a contradiction to the minimality
of M.

Finally let us assume that msc(A) ¢ (Ag). Take N € msc(A)\(Ag). Let
N = By - By --- By, be the decomposition of N into atoms. Since N ¢ (Ag), there
exists j such that By, ..., B; 1 € Ay but B; ¢ Ap. Since By - By - - - B,, € msc(A)

we find s € Sy with s MAQ s and (s, By) iA. We show that (1) is not
satisfied for s and M = B;. Assume the contrary. Thus there exists A € Ay such
that (among other properties) sup(A4, B;) exists and inf(A, B;) # (). Since A and
B; are atoms, Lemma 2.2(6) implies that B; = A € Ay, a contradiction. This
proves the lemma. O

Recall that we want to check property (a) from Lemma 3.8 in PSPACE. Since
PSPACE is closed under complement [22], it suffices to check —(a) in PSPACE. In-
stead of —(a), we will verify property —(b) from Lemma 3.8 in PSPACE. Whether
Ay has a deadlock can be easily verified in PSPACE, since states of Ay can be
stored in polynomial space. Basically, the second alternative from —(b) will be ver-
ified by guessing s € Sy and M € pMSC\{0} such that (s, By) 2, 4 but (1) from
Lemma 3.8 is not satisfied for s and M. Here, another problem arises. Whereas a
state s € Sy can be easily guessed in PSPACE, there is a priori no size bound for
the pMSC M. Thus, our next goal is to bound the size of a witness M for —(b)
in Lemma 3.8 (later, we will see that we do not have to give a bound on the size
of the MSC K in (1) from Lemma 3.8).

For the further consideration, let us fix some witnesses s € Sy and M €
pMSC\{0} for —(b) from Lemma 3.8, i.e., (s, By) M, 4 but (1) from Lemma 3.8 is
not satisfied for s and M. Furthermore, let us assume that s and M are chosen
with this property such that |A| is minimal. We will show that we can bound
the size of M. For this, the following lemma will be useful.

19

Lemma 3.9. Let t € Sy and N € pMSC such that (t, By) ~»4 and |N| < |M].
Then there exist atoms Ay, ..., Apn € Ay and non-empty prefizes B; < A;, 1 <
1 < m, such that the following holds:

— For all send types plg(c) € X, if there is an unmatched send event of type

plg(c) in B;, then ¢ & P(Biy1 -+ Bp).
— N =By - By--- By, (by the first point, concatenation of the B; is defined)

Proof. We will prove the lemma by induction on |[N|. The case N = {} is clear.
Thus let us assume that N # (. Since |N| < |M]|, the minimality of M implies

that N satisfies (1) from Lemma 3.8. Thus let us take K € (Ag) and A; € Ay

such that t K—Almﬂ t' € Sy, P(K)N P(N) = 0, sup(Ay, N) exists, and B; =

inf(Ay, N) # (0. Since A; is an MSC, Lemma 2.2(4) implies that if an unmatched
send event of type plg(c) exists in B; then ¢ ¢ P(N\B;). Moreover, Lemma 2.2(5)
implies that N\B; is a pMSC and N = B; - (N\B;). By Lemma 2.3, A has the
following runs:

(tlﬂ B@)

[t

A \N\Ij
/
(t, By)

1\3/'
.

Finally, since B; # (), we have |[N\B;| < |N|. Thus we can apply the induction
hypothesis to N\ B;, which implies the statement of the lemma. O

X/\

Next fix an arbitrary maximal event e in our fixed MSC M # (), and let N =
Mg {e} € PMSC, i.e., we remove e from M. Since |N| < |M| and (s, By) LNy
Lemma 3.9 applies to N. Thus, we get the following two properties (C1) and (C2)
for N:

(Cl) MrE(M)\{e} =N= B1 . B2 Tt Bm for preﬁxes Bz S Az of atoms Az € AH
(C2) For all send types plg(c) € X, if there is an unmatched send event of type
plg(c) in B; then ¢ & P(Bji1--- Bp,).

In order to bound the size of M, it suffices to give a bound on the number m.
For this, consider the run

(Sa B(Z)) = (51,31) ﬂm (52, 32) ﬂm T B—mm (Sm+1aBm+1) (2)

and assume that s, = s, (but possibly By # B,) for some k& < £. Due to (C2),
the CFM A can process, starting from (sg, By), also the suffix B;--- B, i.e.,

20

Bi-Bjg_1-Bg-Bm

(s, By) >4 (Sm+1,C) for some buffer configuration C (in general C #
B.,+1). We will use this observation for a kind of pumping argument. Define
n, = max{|m,(A)| | A € Ay} for p € P, i.e., n, is the maximal number of events
on process p that occur in some atom from Ag. The following lemma gives us
implicitly a bound on the size of N and hence M.

Lemma 3.10. It holds m < (|P|+_ cpnp+2) - (1 + [Lep [Spl)-

Proof. Let E C E(N) contain for each p € P the first n, many events that
occur in N on process p; if |7,(N)| < n, then all events that occur in N on
process p belong to E. Note that |E| < > pep My Hence it suffices to prove that
m < (|P|+|E[+2)-(1+]],ep |S|)- Assume that m > (| P|+|E|+2)-(1+T Lep |Sy)-
We will deduce a contradiction to the minimality of M. In the following we have
to distinguish two cases, depending on whether the maximal event e of M is a
send or a receive event. The case that it is a send event is simpler, so we will
only consider the case that it is a receive event, let ¢?p(c) be the type of e. Let
s € E(N) be the corresponding send event in N. Thus the type of s is plg(c),
and s is the earliest unmatched send event from process p to ¢ in N (if another
unmatched send event from p to ¢ would precede s in N then M would not satisfy
the FIFO restriction).

Now we mark in the sequence By, By, ..., By, all positions 7, such that either
P(By---B;_1) C P(By---B;) or B; contains an event from {s} U E. Thus |P| +
|E|+1 many positions become marked. These markings define |P|+|E|+2 many
(possibly empty) intervals in the sequence Bi, By, ..., B, that do not contain
any markings. Since m > (|P|+ |E| +2)- (1 + [L,ep [Sp]); at least one of these
intervals has length at least [. p [Sp|- Hence we find k, £ € {1,...,m} such that
k < ¢, s = sy in the run (2), and the subsequence By, ..., By_1 does not contain
a marking. Define N' = By---By_1 - By -+ B, due to (C2) concatenation is
defined here. Of course we have |[N'| < |N|, and by the choice of the markings
the following holds:

— The send event s still belongs to N'. Moreover, s is also the earliest unmatched
send event from p to ¢ in N’. Thus we can define a pMSC M’ by adding to
N’ a new maximal receive event that matches the send event s.

— P(N) = P(N') and thus also P(M) = P(M'").

— For all p € P, m,(N)[1,n,] = m,(N')[1,n,] and thus also m,(M)[1,n,] =
(M1,).

By the remark before Lemma 3.10, we have (s, By) LI)A (Sm+1,C) for some buffer
configuration C. Since s is the earliest unmatched send in N’ from p to ¢ and A

can execute the receive type ¢?p(c) in state s, 1, also (s, Bp) RN A
We will show that also M’ # () does not satisfy (1) from Lemma 3.8, which
is a contradiction to the minimality of M. For this let us take arbitrary K €

21

(Ag), A € Ag such that s K—'A>A0, P(K)N P(M') = (), and sup(A, M') exists.
We have to show that inf(A, M') = 0, i.e., P(A) N P(M') = (. First, note that
because of P(M) = P(M') we have P(K) N P(M) = (). Next, since sup(4, M")
exists, m,(M)[1, ny] = mp(M")[1,n,) for all p € P, and |m,(A)| < n, for all p € P,
Lemma 2.2 implies that also sup(A4, M) exists. Thus, by the choice of M, we have
inf(A, M) =0, i.e., P(A)N P(M) = (), which finally implies P(A) N P(M') = 0.

O

Thus, additionally to (C1) and (C2) we can state the following condition (C3):
(C3) The number m in (C1) satisfies m < (|P|+ > cpnp+2) - (1 +[[cp [Spl)-

Now we have all the means in order to prove Theorem 3.5.

Proof of Theorem 3.5. In order to simplify the presentation, we will give a poly-
nomial space algorithm for the complementary problem (recall that PSPACE is
closed under complement [22]). By Lemma 3.8 it suffices to check whether (b)
from Lemma 3.8 does not hold. First, we check whether the finite automaton
Ay is deadlock-free. Since states of Ay can be stored in polynomial space, this
can be done in space bounded polynomially in the size of H without explicitly
constructing Ag. If Ay is not deadlock-free, we accept. Otherwise, we have to

check whether a situation of the form (s, By) M, withs € Sp and M # () exists
such that moreover (1) from Lemma 3.8 becomes false. A first approach would
be to guess such a situation. But note that the size bound for M that results
from (C3) is exponential in the size of H, since [,cp |5, is exponential in the
size of H. Thus, this idea would lead to an exponential space algorithm. But note
that all we have to remember from M in order to check whether s and M do not
satisfy (1) from Lemma 3.8, is the set of processes P(M) and the tuple of prefixes
(mp(M)[1, ny])pep of the projections onto the processes (whether sup(A, M) exists
for some A € Ay depends by Lemma 2.2 only on the prefixes m,(M)[1, n,]), which
can be stored in polynomial space. Hence, we will guess M in an incremental way,
and thereby accumulate the data P(M) and (m,(M)[1, ny])pep. This is achieved
by the algorithm in Figure 2.

Note that all variables only need polynomial space, in particular, the binary
coding of the guessed number m needs only polynomial space. Note also that in
(1) in Figure 2, we only have to check whether B can be executed, starting from
t and the empty buffer configuration By: All unmatched sends that occurred in
the past are no longer relevant due to condition (C2), which is assured by the
test P(B) C P'.

At the end of the procedure in Figure 2, in case we have not rejected, we
have guessed s € Sy, Py C P, and a tuple (wp)pep € [I,ep %, Furthermore,
these data are guessed such that there exists a pMSC M that satisfies (C1), (C2),
(C3), (s, By) .4, P(M) = Py, and m,(M)[1,n,] T w, C m,(M). Furthermore
all M satisfying these properties can be potentially guessed. It remains to check

22

guess s € Sy; (corresponds to s from the previous discussion)
guess m < (|P|+>_ cpnp+2) - (1 +[[,cp[Syl); (corresponds to m in (C3))

guess a € {plq(-), p?q(-) | (p,q) € Ch}; (corresponds to the type of the

maximal event e of M, where - is a place holder for the message content)

P .= P; (contains all processes that may be active

in N according to (C2) in the future)

Py = 0; (accumulates the set P(M))

t:=s; (will pass through the sequence sy, ..., S, in the run (2))

w, = ¢ for all p € P; (accumulates the prefix m,(M)[1,n,] € X7)
if a is of the form ¢?p(-) for p,q € P then

s-occurred := false; (indicates that the send event that corresponds

to the maximal event e of M did not yet appear)
for ::=1tom do
guess B < A € Ay such that P(B) C P’ and (t, By) £>A; (1)
let (u, B) be such that (t, Bp) LN (u, B);
Py := Py UP(B); t:=u;
for all p € P do if |w,| < n, then w, = w, 7,(B) endfor
for all unmatched send events s of B do
let the type of event s be k!4(d);
= P\{1);
if Kk =p, ¢ = q, s-occurred = false, and
s is the earliest unmatched send from p to q in B then
Py = Py U{q}; w,:=w, q?p(d); s-occurred := true
endfor
endfor
if s-occurred = false then reject endif
elseif a is of the form plq(-) for p,q € P then
analogous (but simpler) to the previous case, and hence omitted

Fig. 2.

whether s and the implicitly guessed M do not satisfy (1) from Lemma 3.8. By
Lemma 2.2 this is equivalent to the following property:

K-A
S —4 A
VK € (An) VA€ A P(K)N Py =0y = ﬂpep{:p(f)ﬁé(i) A}.
P(A) NPy #0 P P

It remains to eliminate the unbounded quantifier VK € (Ag). For this we define
the restricted finite automaton Aj by removing from Ay all transitions of the

23

form t KN to with P(A) N Py # 0. Then the property above is equivalent to

*) A A/\
Vt € Sy VA € Ay : S 2y b=y A éﬂpeP{wpzﬂ-p() }
P(A)N Py # 0 mp(A) £ w,

This property can be easily checked in PSPACE (without explicitly constructing
the automata Aj; and Ay, which have exponential size). If it holds we accept,
otherwise we reject. O

4 Non-FIFO communication

For all results in Section 3 we have restricted to FIFO communication. In this
section we briefly discuss the non-FIFO case. Note that the obvious fact that
under FIFO communication, every MSC M can be reconstructed from its pro-
jections m,(M), p € P, is false for non-FIFO communication (take two messages
with identical contents, which are received in M; in the order in which they were
sent, whereas in M, they are received in reverse order). On the other hand if we
forbid at least overtaking of messages with identical message contents, this fact
still holds, see also [19]. Formally, we require that for all s1, s, € Ey, if 51 < sq,
t(s1) = plg(c) = t(sq2), and sy € D, then also s; € D and m(s1) < m(sq). Let us
assume this for the further discussion. Then for every tuple (wp)pepr € [L,cp 2
there exists at most one pMSC M with 7,(M) = w,.

For the non-FIFO case, the concatenation of two pMSCs M; and M, is defined
if whenever there is an unmatched send event from p to ¢ with content ¢ in
M, then there is no message from p to ¢ with content ¢ in M. With these
modifications, Lemma 2.1 (see [19]) and Lemma 2.2 remain valid for non-FIFO
communication.

Also our CFM model has to be slightly altered for the non-FIFO case. The
set CCM of buffer configurations has to be replaced by N®**C, For a given buffer
configuration B € N°"*C the value B((p, q),c), where (p,q) € Ch and ¢ € C,
represents the number of messages with content ¢ in the channel from p to ¢, see
also [19]. Transitions in this CFM model are defined analogously to the FIFO
case in Section 2.2. Then also Lemma 2.3, Lemma 3.1, and Lemma 3.2 remain
true.

In order to transfer upper bounds for realizability from FIFO to non-FIFO
communication, we can make use of a simple polynomial time reduction, which
eliminates message contents. Let H be an HMSC over P and C with respect
to non-FIFO communication. Thus only overtaking of messages with identical
content is forbidden. For every two processes p,q € P and every message content
¢ € C we introduce a new process (p, ¢, q). Moreover, a message from process
p to ¢ with content c¢ is replaced by a message from p to (p,c,q) (without any
content), which is immediately followed by a message from (p, ¢, ¢) to ¢ (without

peEP

24

any content). The resulting HMSC H' works without message contents, formally
it is defined over a singleton message content alphabet, and it does not contain
overtaking messages. It is easy to see that H is weakly (safely) realizable with
respect to non-FIFO communication if and only if H' is weakly (safely) realizable
with respect to non-FIFO communication. But note that for a singleton message
content alphabet, the FIFO restriction is in fact needless. Thus, H' is weakly
(safely) realizable with respect to non-FIFO communication if and only if it is
weakly (safely) realizable with respect to FIFO communication. Of course, this
construction transforms an Z-closed (bounded, globally-cooperative) HMSC into
an Z-closed (bounded, globally-cooperative) HMSC, and it yields a fixed set of
processes if we start with a fixed set of processes and message contents. Hence,
all upper bounds can be transfered from FIFO to non-FIFO communication.

Concerning our lower bound proofs in Section 3.1, note that in the construc-
tions there, every message is immediately confirmed, which implies that the ab-
sence of the FIFO restriction has no effect (the same holds for the PSPACE-
hardness proof in [2]). Altogether we obtain the following results:

Theorem 4.1. The following holds for non-FIFO communication:

— The following problem is PSPACE-complete:
INPUT: Set P of processes, set C of message contents, and an Z-closed HMSC
H over P and C
QUESTION: Is H safely realizable?

— The following problem is EXPSPACE-complete:
INPUT: Set P of processes, set C of message contents, and a globally-cooperative
(resp. bounded) HMSC H over P and C
QUESTION: Is H safely realizable?

— The following problem is undecidable:
INPUT: Set P of processes, set C of message contents, and an HMSC H over
P and C
QUESTION: Is H safely realizable?

Moreover all these results hold already for some fired P and C.

Note also that the HMSC H in the proof of Theorem 3.4 (resp. Theorem 3.3) is
either safely realizable (if M does not accept w) or not even weakly realizable (if
M accepts w). Hence we obtain

Theorem 4.2. There exist fited P and C such that the following holds for non-
FIFO communication:

— The following problem is undecidable:
INPUT: An HMSC H over P and C
QUESTION: Is H weakly realizable?

25

— The following problem is EXPSPACE-hard:
INPUT: A bounded HMSC H over P and C
QUESTION: Is H weakly realizable?

For the latter problem, no primitive recursive upper bound is presently known,
since the decidability proof in [19] uses a reduction to the reachability problem
for Petri nets.

Finally, for Z-closed HMSCs, it is easy to modify the PSPACE-hardness proof
from [2], in order to show PSPACE-hardness of weak realizability for Z-closed
HMSCs under non-FIFO communication.

5 Summary

The following table summarize all existing as well as our new results on realiz-
ability.

finite Z-closed bounded globally- general
cooperative
safe
realizability PSPACE- EXPSPACE- EXPSPACE- .
PTIME [1] complete [1] undecidable
(FIFO or complete d thi complete
non-FIFO) an 1S paper
_aveak' . coNP-complete
realizability [1] undecidable [2] | undecidable [2] | undecidable [2] | undecidable [2]
(FIFO)
weak . decidable [19], | decidable [19],
realizability CONP'E’]mplete ﬁgﬁ;‘i&é’g 1[119](’1 EXPSPACE- | EXPSPACE- | undecidable
(non-FIFO) —har hard hard

Only in the case of non-FIFO communication the precise complexity of weak
realizability for globally-cooperative (resp. Z-closed, bounded) HMSCs remains
open.

Acknowledgments. I am grateful to Anca Muscholl for many fruitful discussions
on the topic of this paper. Thanks also to the anonymous referees for pointing
out some inaccuracies in a previous version of this paper.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. In Proceedings of
the 22nd International Conference on on Software Engineering (ICSE 2000), Limerick (Ireland),
pages 304-313. ACM Press, 2000.

2. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. In F. Ore-
jas, P. G. Spirakis, and J. van Leeuwen, editors, Proceedings of the 28th International Colloquium
on Automata, Languages and Programming (ICALP 2001), Crete (Greece), number 2076 in Lecture
Notes in Computer Science, pages 797-808. Springer, 2001.

26

®

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. IEEE Transactions

on Software Engineering, 29(7):623-633, 2003.

. R. Alur and M. Yannakakis. Model checking of message sequence charts. In J. C. M. Baeten

and S. Mauw, editors, Proceedings of the 9th International Conference on Concurrency Theory
(CONCUR 99), Eindhoven (The Netherlands), number 1664 in Lecture Notes in Computer Science,
pages 114-129. Springer, 1999.

H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-local choice in
message sequence charts. In E. Brinksma, editor, Proceedings of the 3rd International Workshop
on Tools and Algorithms for Construction and Analysis of Systems (TACAS ’97), Enschede (The
Netherlands), number 1217 in Lecture Notes in Computer Science, pages 259-274, 1997.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the Association
for Computing Machinery, 30(2):323-342, 1983.

B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesventes. HMSCs as partial specifications . . . with
Petri nets as completion. In F. Cassez, C. Jard, B. Rozoy, and M. D. Ryan, editors, 4th Sum-
mer School on Modelling and Verification of Parallel Processes (MOVEP 2000), Nantes (France),
number 2067 in Lecture Notes in Computer Science, pages 125-152, 2000.

V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.

B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-checking
and realizability. In P. Widmayer, F. T. Ruiz, R. Morales, M. Hennessy, S. Eidenbenz, and
R. Conejo, editors, Proceedings of the 29th International Colloguium on Automata, Languages
and Programming (ICALP 2002), Malaga (Spain), number 2380 in Lecture Notes in Computer
Science, pages 657—-668. Springer, 2002.

E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In T. Margaria and
W. Yi, editors, 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, (TACAS 2001), Genova (Italy), volume 2031 of Lecture Notes in Computer
Science, pages 496-511. Springer, 2001.

L. Hélouét and C. Jard. Conditions for synthesis of communicating automata from HMSCs. In 5th
International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2000), Berlin
(Germany), 2000.

L. Hélouét and P. Le Maigat. Decomposition of message sequence charts. In 2nd Workshop on
SDL and MSC (SAM 2000), Grenoble (France), pages 4660, 2000.

J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. On message sequence graphs and
finitely generated regular MSC languages. In M. Nielsen and B. Rovan, editors, Proceedings of the
27th International Colloquium on Automata, Languages and Programming (ICALP 2000), Geneva
(Switzerland), number 1853 in Lecture Notes in Computer Science, pages 675—-686. Springer, 2000.
J. G. Henriksen, M. Mukund, K. N. Kumar, and P. Thiagarajan. Regular collections of message
sequence charts. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Proceedings of the
25th International Symposium on Mathematical Foundations of Computer Science (MFCS’2000),
Bratislava (Slovakia), number 1893 in Lecture Notes in Computer Science, pages 675-686. Springer,
2000.

ITU. Recommendation Z.100. Specification and Description Language (SDL). 1994.

ITU. Recommendation Z.120. Message Sequence Charts. 1996.

D. Kuske. A further step towards a theory of regular msc languages. In H. Alt and A. Ferreira,
editors, Proceedings of thel9th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2002), Juan les Pins (France), number 2285 in Lecture Notes in Computer Science, pages
489-500. Springer, 2002.

M. Lohrey. Safe realizability of high-level message sequence charts. In Proceedings of the 13th In-
ternational Conference on Concurrency Theory (CONCUR 2002), Brno (Czech Republic), number
2421 in Lecture Notes in Computer Science, pages 177-192. Springer, 2002.

R. Morin. Recognizable sets of message sequence charts. In H. Alt and A. Ferreira, editors,
Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2002), Juan les Pins (France), number 2285 in Lecture Notes in Computer Science, pages 523-534.
Springer, 2002.

M. Mukund, K. N. Kumar, and M. A. Sohoni. Synthesizing distributed finite-state systems from
MSCs. In C. Palamidessi, editor, Proceedings of the 11th International Conference on Concurrency
Theory (CONCUR 2000), University Park, PA (USA), number 1877 in Lecture Notes in Computer
Science, pages 521-535. Springer, 2000.

27

21.

22.
23.

24.

A. Muscholl and D. Peled. Message sequence graphs and decision problems on Mazurkiewicz
traces. In M. Kutylowski, L. Pacholski, and T. Wierzbicki, editors, Proceedings of the 24th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS’99), Szklarska
Poreba (Poland), number 1672 in Lecture Notes in Computer Science, pages 81-91. Springer, 1999.
C. H. Papadimitriou. Computational Complezrity. Addison Wesley, 1994.

I. Walukiewicz. Difficult configurations — on the complexity of LTrL. In K. G. Larsen, S. Skyum,
and G. Winskel, editors, Proceedings of the 25th International Colloquium on Automata, Languages
and Programming (ICALP 98), Aalborg (Denmark), number 1443 in Lecture Notes in Computer
Science, pages 140-151. Springer, 1998.

W. Zielonka. Notes on finite asynchronous automata. R.A.I.LR.O. — Informatique Théorique et
Applications, 27:99-135, 1985.

28

