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Abstract. We prove several complexity and decidability results for au-
tomatic monoids: (i) there exists an automatic monoid with a P-complete
word problem, (ii) there exists an automatic monoid such that the first-
order theory of the corresponding Cayley-graph is not elementary decid-
able, and (iii) there exists an automatic monoid such that reachability
in the corresponding Cayley-graph is undecidable. Moreover, we show
that for every hyperbolic group the word problem belongs to LOGCFL,
which improves a result of Cai [4].

1 Introduction

Automatic groups attracted a lot of attention in combinatorial group theory
during the last 15 years, see e.g. the textbook [11]. Roughly speaking, a finitely
generated group G, generated by the finite set I', is automatic, if the elements
of G can be represented by words from a regular language over I', and the
multiplication with a generator on the right can be recognized by a synchronized
2-tape automaton. This concept easily yields a quadratic time algorithm for the
word problem of an automatic group.

It is straight forward to extend the definition of an automatic group to the
monoid case; this leads to the class of automatic monoids, see e.g. [6,13, 16, 26]. In
the present paper, we study the complexity and decidability of basic algorithmic
questions in automatic monoids. In Section 4 we consider the complexity of the
word problem for automatic monoids. Analogously to the group case, it is easy
to show that for every automatic monoid the word problem can be solved in
quadratic time. Here, we prove that there exists a fixed automatic monoid with
a P-complete word problem. Thus, unless P = NC, where NC is the class of all
problems that can be solved in polylogarithmic time using a polynomial amount
of hardware, there exist automatic monoids for which the word problem cannot
be efficiently parallelized. Whether there exists an automatic group with a P-
complete word problem was asked for the first time by Cai [4]. This problem
remains open.

An important subclass of the class of automatic groups is the class of hyper-
bolic groups, which are defined via a geometric hyperbolicity condition on the
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Cayley-graph. In [4], Cai has shown that for every hyperbolic group the word
problem belongs to the parallel complexity class NC?. Cai also asked, whether
the upper bound of NC? can be improved. Using known results from formal lan-
guage theory, we show in Section 4 that the word problem for every hyperbolic
group belongs to the complexity class LOGCFL C NC?. LOGCFL is the class of
all problems that are logspace reducible to a context-free language [32]. We also
present a class of automatic monoids, namely monoids that can be presented by
finite, terminating, confluent, and left-basic semi-Thue systems [29], for which
the complexity of the word problem captures the class LOGDCFL (the logspace
closure of the deterministic context-free languages).

In Section 5 we study Cayley-graphs of automatic monoids. The Cayley-graph
of a finitely generated monoid M wrt. a finite generating set I" is a I'-labeled
directed graph with node set M and an a-labeled edge from a node x to a node y
if y = za in M. Cayley-graphs of groups are a fundamental tool in combinatorial
group theory [23] and serve as a link to other fields like topology, graph theory,
and automata theory, see, e.g., [24,25]. Results on the geometric structure of
Cayley-graphs of automatic monoids can be found in [30, 31]. Here we consider
Cayley-graphs from a logical point of view, see [20,21] for previous results in
this direction. More precisely, we consider the first-order theory of the Cayley-
graph of an automatic monoid M. This theory contains all true statements of
the Cayley-graph that result from atomic statements of the form “there is an
a-labeled edge between two nodes” using Boolean connectives and quantification
over nodes. From the definition of an automatic monoid it follows immediately
that the Cayley-graph of an automatic monoid is an automatic graph in the sense
of [1,18]; hence, by a result from [18], its first-order theory is decidable. This
allows to verify non-trivial properties for automatic monoids, like for instance
right-cancellativity. Here, we prove that there exists an automatic monoid such
that the first-order theory of the corresponding Cayley-graph is not elementary
decidable. This result sharpens a corresponding statement for general automatic
graphs [1]. We remark that, using a result from [22], the Cayley-graph of a right-
cancellative automatic monoid has an elementarily decidable first-order theory.
Finally we prove that there exists an automatic monoid M such that reachability
in the Cayley-graph (i.e., the question whether for given monoid elements u and
v there exists © € M with u = vz in M) is undecidable.

2 Monoids and word problems

More details and references concerning the material in this section can be found
in [3]. In the following, let I" be always a finite alphabet of symbols. A semi-Thue
system R over I is a (not necessarily finite) set R C I'* x I'*; its elements are
called rules. A rule (s,t) will be also written as s — t. W.L.o.g. we may assume
that every symbol from I" appears in a rule of R; thus, I" is given uniquely by R.
Let dom(R) = {¢| 3r: (¢,r) € R} and ran(R) = {r | 3¢: (¢,r) € R}. We define
the binary relation — g on I'* by: © —g y if Ju,v € I'*3(s,t) € R: © = usv and
y = utv. Let <p by the smallest equivalence relation on I'* containing — g; it



is a congruence wrt. the concatenation of words and called the Thue-congruence
associated with R. Hence, we can define the quotient monoid I"*/ & g, which is
briefly denoted by I'*/R. Let g : I — I'*/ R be the canonical surjective monoid
homomorphism that maps a word w € I'* to its equivalence class wrt. <p. A
monoid M is finitely generated if it is isomorphic to a monoid of the form I'*/R.
In this case, we also say that M is finitely generated by I'. If in addition to
I' also R is finite, then M is a finitely presented monoid. The word problem of
M ~ I'*/R wrt. Ris the set {(u,v) € I'*xXI'* | mr(u) = mr(v)}; it is undecidable
in general. If a monoid M is isomorphic to both I'*/R and X*/S for semi-Thue
systems R and S, then the word problem of M wrt. R is logspace-reducible
to the word problem of M wrt. S. Hence, since we are only interested in the
decidability (resp. complexity) status of word problems, it makes sense to speak
just of the word problem of M.

The semi-Thue system R is terminating if there does not exist an infinite
chain s; —g o —pg 83 —g -+ in I'*. The set of irreducible words wrt. R is
IRR(R) ={se | -3t € I'* : s —p t}. The system R is confluent (resp. locally
confluent) if for all s,t,u € I'* with s Sz t and s g u (resp. s —g t and
s —p u) there exists w € I'* with ¢ Srwand u Sp w. If Ris terminating,
then by Newman’s lemma R is confluent if and only if R is locally confluent.
Using critical pairs [3] which result from overlapping left-hand sides of R, local
confluence is decidable for finite terminating semi-Thue systems. The system R
is length-reducing if |s| > |¢| for all (s,t) € R, where |w| is the length of a word
w. The system R is called length-lexicographic if there exists a linear order > on
the alphabet I' such that for every rule (s,t) € R either |s| > [t]| or (|s| = |t|
and there are u,v,w € I'* and a,b € I" such that s = uav, t = ubw, and a > b).
Clearly, every length-lexicographic semi-Thue system is terminating. In the case
when R is terminating and confluent, then every word s has a unique normal
form NFg(s) € IRR(R) such that s >z NFg(s) and moreover, the function
mr[IRR(R) (i.e., g restricted to IRR(R)) is bijective. Thus, if moreover R is
finite, then the word problem of I'*/R is decidable: mr(s) = wr(t) if and only if
NFR(S) = NFR(t)

3 Automatic monoids

Automatic monoids were investigated for instance in [6, 13, 14, 16, 26]. They gen-
eralize automatic groups, see [11]. Let us fix a finite alphabet I". Let # ¢ I" be
an additional padding symbol and let Iy = I' U {#}. We define two encodings
Vo, Vp : T X I — (I'yp x I'y)* as follows: Let u, v € I'* and let k = max{|ul, |v|}.
Define w = u#F—14l 2 = v#h=1vl o = gk—luly and z = #F~1vly. Let w[i] denote
the ¢-th symbol of w and similarly for x, y, and z. Then

vr(u,v) = (wll], z[1]) - - (w[k], z[k]) and ve(u,v) = (y[1], 2[1]) - - (y[k], 2[k]).

For instance, v,.(aba,bbabb) = (a,b)(b,b)(a,a)(#,b)(#,b) and v,(aba, bbabb) =
(#,0)(#,b)(a,a)(b,b)(a,b). In the following let «, 5 € {¢,7}.



A relation R C I'* x I'* is called a-automatic if the language {vq(u,v) |
(u,v) € R} is a regular language over the alphabet I’y x I'x. The following
simple lemma will turn out to be useful. Its simple proof is left to the reader. A
relation R C I'* x I'* has bounded length-difference if there exists a constant
such that for all (u,v) € R, |(Ju| — |v])] < 7.

Lemma 1. Let R, S C I'* X I'* have bounded length-difference. Then R is (-
automatic if and only if R is r-automatic. Moreover, if R and S are a-automatic,
then R-S = {(st,uv) | (s,u) € R, (t,v) € S} is a-automatic as well.

Let M be a monoid. A triple (I', R, L) is an af-automatic presentation for M
if: (i) R is a semi-Thue system over the finite alphabet I" such that M ~ I'*/R,
(i) L C I'* is a regular language such that wr[L maps L surjectively to M,
(iii) the relation {(u,v) € L x L | mg(u) = wr(v)} is a-automatic, and (iv)
if 3 = £ (resp. = r), then the relation {(u,v) € L x L | wg(au) = 7r(v)}
(resp. {(u,v) € L x L | mr(ua) = wr(v)}) is a-automatic for every a € I
The monoid M is af-automatic if there exists an af-automatic presentation
for M. Thus, we have four different basic notions of automaticity. Whereas
for groups all these four variants are equivalent [13] (which allows to speak of
automatic groups), one obtains 15 different notions of automaticity for monoids
by combining the four basic variants of af-automaticity [13,14]. For our lower
bounds we will mostly work with the strongest possible notion of automaticity,
i.e., simultaneous af-automaticity for all «, 5 € {¢,r} (which includes the notion
of biautomaticity from the theory of automatic groups, see [11]). Note that a
af-automatic monoid is by definition finitely generated. Various classes of semi-
Thue systems that present automatic monoids can be found in [26].

4 Complexity of the word problem

The word problem for an automatic group can be solved in quadratic time [11].
Moreover, the same algorithm also works for a/f-automatic monoids [6]. Here we
will show that P is also a lower bound for the monoid case.

Theorem 1. There is a finite, length-lexicographic, and confluent semi-Thue
system R C I'* x I'* such that the word problem for I'*/R is P-complete and
(I, R,IRR(R)) is an af-automatic presentation for I'*/R for all o, B € {£,1}.

Proof. We start with a fixed deterministic Turing machine S that accepts a
P-complete language. Let p(n) be a polynomial such that S terminates on an
input w € L(S) after exactly p(|w|) steps (this exact time bound can be easily
enforced). We may assume that the tape is restricted to size p(Jw|). It is straight
forward to simulate S by a new deterministic Turing machine T that operates
in a sequence of complete left/right sweeps over the whole tape (of size p(|wl)).
During a right sweep, the head runs from the left tape end to the right tape end
in a sequence of right moves. When reaching the right tape end, the head turns
back and starts a left sweep. Let X be the tape alphabet of T, @ be the set of



states, go be the initial state, and g be the final state. With ¢ € X we denote the
blank symbol. We write ga =7 bp (ag =1 pb), in case T writes b, moves right
(left), and enters state p, when reading a in state g. The machine T terminates
(and accepts its input) if and only if it finally reaches the final state ¢;. Thus, T
cannot make any transitions out of gy. Moreover, we may assume that the tape
is blank and that the tape head is scanning the first cell when T terminates in
state ¢7. Define I' = YUY UQUQU{$,$}, where ¥ = {a | a € X} is a disjoint
copy of X and similarly for Q. Let R be the following semi-Thue system over I:

ga — bp if ga =7 bp §§—>ﬁb if aq =1 pb
g8 —q forallqeQ $g—q foralqge@

R is length-lexicographic and confluent (because T' is deterministic). Next, let
w € X* be an arbitrary input for T and let m = p(|w|). Then w is accepted by T'
if and only if §mqow¢m"w|$m SR gr¢™ if and only if gmqowq:m*'w‘ gm Sp qre™.
Thus, the word problem for I'*/R is P-hard.

Next, we show that for all a, 8 € {¢,r}, (I, R,JIRR(R)) is an af-automatic
presentation for I'™*/R (then in particular, the word problem for I'*/R belongs
to P). Due to the symmetry of R, we can restrict to § = £. Thus, we have
to show that the relation E. = {(u,v) € IRR(R) x IRR(R) | cu =g v} is a-
automatic for all ¢ € I and « € {¢,r}. Note that all relations that appear in the
following consideration have bounded length-difference. This allows to make use
of Lemma 1. First, note that the following relations are a-automatic:

Ay ={(u,7p) | pe Que X", v € X qu SR Up}
B, ={(wpv) | peQue T ve X ug g pu}
The relation A, (resp. By) describes a single right (resp. left) sweep over the

whole tape started in state ¢, which is just a rational transduction. Since a-
automatic relations are closed under composition, the relation

Cy = {(u$,pv) | P € Q,u,v € £*, qu$ S5 pv}

is a-automatic as well. Now the a-automaticity of the relations E. for ¢ € I
follows easily: For c € QU X' U {8} we have E. = {(u, cu) | u € IRR(R)}, which
is clearly a-automatic. For c =@ € X and ¢ = q € @), respectively, we have:

Ez = {(u,au) | u € IRR(R),u & QI'*} U
{(qu,pbu) | u € IRR(R),q,p € Q,b € X, (ag,pb) € R}

Eq = {(vw,vw) | (u,v) € Ag,w € IRR(R),w & (X U{$}) I} U
{(vw,vw) | (u,v) € Cy,w € IRR(R)}.

Finally, Eg = {(u,%u) | u € IRR(R),u & QI'™*} UU,co{(qu.v) | (u,v) € E,}.
This concludes the proof of the a-automaticity of the relations E.. O

Corollary 1. There exists a fized finitely presented monoid with a P-complete
word problem, which is simultaneously af-automatic for all a, B € {£,r}.



It is open, whether there exists an automatic group (or even cancellative auto-
matic monoid) with a P-complete word problem. An important subclass of the
class of automatic groups is the class of hyperbolic groups, which are defined via
a geometric hyperbolicity condition on the Cayley-graph. The precise definition
is not important for the purpose of this paper. In [4], Cai has shown that for ev-
ery hyperbolic group the word problem belongs to the parallel complexity class
NC?, which is the class of all problems that can be recognized by a polynomial
size family of Boolean circuits of depth O(log?(n)), where only Boolean gates of
fan-in at most 2 are allowed. Cai also asked, whether the upper bound of NC?
can be improved. Using known results from formal language theory, we will show
that for every hyperbolic group the word problem belongs to LOGCFL C NC?,
which is the class of all problems that are logspace reducible to a context-free
language [32]. For alternative characterizations of LOGCFL see [27, 33].

Theorem 2. The word problem for every fized hyperbolic group is in LOGCFL.

Proof. By [8], a group G is hyperbolic if and only if G = I'*/ R, where R is finite,
length-reducing, and L := {s € I'"* | s Spe} = {s € I'* | s &g e}. Since G is
a group, the word problem for G is logspace reducible to L. Since R is length-
reducing, L is growing context-sensitive, i.e., it can be generated by a grammar,
where every production is strictly length-increasing. Since every fixed growing
context-sensitive language belongs to LOGCFL [9], the theorem follows. O

In [10,15], hyperbolic groups were generalized to hyperbolic monoids. It is not
clear whether Theorem 2 can be extended to hyperbolic monoids. It is also
open, whether the upper bound of LOGCFL from Theorem 2 can be further
improved, for instance to LOGDCFL, which is the class of all problems that are
logspace reducible to a deterministic context-free language [32]. For another class
of automatic monoids, we can precisely characterize the complexity of the word
problem using LOGDCFL: A semi-Thue system R over the alphabet I" is called
left-basic [29] if: (i) if £ € dom(R), r € ran(R) and r = wlv then u = v = ¢ and
(ii) if £ € dom(R), r € ran(R), ur = fv, and |¢| > |u|, then v = e. Condition (i)
means that a right-hand side does not strictly contain a left-hand side. Condition
(ii) means that the following kind of overlapping is not allowed:

u | r € ran(R)
¢ € dom(R) | v#e

Let us define the suffix-rewrite relation — g by s —g t if and only if s = uf and
t = ur for some u € I'* and (¢,r) € R. The following lemma is obvious:

Lemma 2. If R is left-basic, then for every s € IRR(R) and a € I' we have
sa =gt if and only if sa —*»R t.
Left-basic semi-Thue systems generalize monadic semi-Thue systems. Systems

that are finite, monadic, and confluent present monoids that are simultaneously
rr- and ffl-automatic, but in general neither r¢- nor ¢r-automatic [26]. Using



arguments similar to those from [26], we can show that for a finite, terminating,
confluent, and left-basic semi-Thue system R over an alphabet I', the monoid
I'*/R is rr-automatic.

Theorem 3. The following problem is in LOGDCFL:

INPUT: A finite, terminating, confluent, and left-basic semi-Thue system R
over an alphabet I', and two words s,t € I'*

QUESTION: s &g t?
Moreover, there exists a finite, length-reducing, confluent, and left-basic semi-
Thue system R over an alphabet I' such that the word problem for I'*/R is
LOGDCFL-complete.

Proof. Note that the upper bound in the first statement holds in a uniform set-
ting, i.e., the semi-Thue system is part of the input. In order to prove this upper
bound, we will use a machine-based characterization of LOGDCFL: A logspace
bounded deterministic AuxPDA is a deterministic pushdown automaton that
has an auxiliary read-write tape of size O(log(n)) (where n is the input size).
A problem belongs to LOGDCFL if and only if it can be decided by a logspace
bounded deterministic AuxPDA that moreover works in polynomial time [32].
Now, let us assume that the input consists of a tuple (I, R, s,t), where R is a
finite, terminating, confluent, and left-basic semi-Thue system over the alphabet
I' and s,t € I'*. Let n be the length of the binary coding of this input. We
will construct a logspace bounded deterministic AuxPDA that checks in poly-
nomial time, whether NFg(s) = NFg(t). For this, we will first show how to
calculate NF(s) on a deterministic AuxPDA in logspace and polynomial time.
The basic idea of how to do this appeared many times in the literature, see e.g.
[3, Thm. 4.2.7]. The only slight complication in our situation results from the
fact that the semi-Thue system R belongs to the input. To overcome this, we
need the logspace bounded auxiliary store of our AuxPDA. The correctness of
the following procedure follows from Lemma 2. Our algorithm for computing
NFr(s) works in stages. At the beginning of a stage the pushdown contains a
word from IRR(R) and the auxiliary store contains a pointer to a position ¢ in
the input word s. Note that a symbol @ € I' can be represented as a bit string
of length O(log(n)), thus the pushdown content is a sequence of blocks of length
O(log(n)), where every block represents a symbol from I'. The stage begins by
pushing the i-th symbol of s onto the pushdown (which is a bit string of length
O(log(n))) and incrementing the pointer to position 7 + 1 in s. Now we have
to check whether the pushdown content is of the form I"*dom(R). For this we
have to scan every left-hand side of R using a second pointer to the input. Every
¢ € dom(R) is scanned in reverse order and thereby compared with the top of
the push-down. During this phase, symbols are popped from the pushdown. If
it turns out that the left-hand side that is currently scanned is not a suffix of
the pushdown content, then these symbols must be “repushed”. This can be
done, since the suffix of the pushdown content that was popped so far is a suffix
of the currently scanned left-hand side £ € dom(R), which is still available on
the read-only input tape. If a left-hand side £ is found on top of the pushdown,



then the corresponding right-hand side is pushed on the pushdown and we try
to find again a left-hand side on top of the pushdown. If finally no left-hand side
matches a suffix of the pushdown content, then we know that the pushdown con-
tent belongs to IRR(R) and we can proceed with the next stage. Finally, if the
first pointer has reached the end of the input word s (or more precisely points
to the first position following s), then the pushdown content equals NF g(s).

Claim: In the above procedure, after the i-th stage the pushdown has length at
most -, where @ = max({1}U{|r| | r € ran(R)}). Moreover, every stage needs
only polynomial time.

The first statement can be shown by induction on 7. Since R is left-basic, it
follows that if w is the pushdown content at the end of the (i — 1)-th stage, then
the pushdown content at the end of the i-th stage either belongs to wil' or is
of the form ur for some r € ran(R) and some prefix u of w. Moreover, the i-th
stage simulates at most |w| - |R| rewrite steps of R.

In order to check whether NFg(s) = NFg(t), we have to solve one more
problem: If we would calculate NFg(t) in the same way as above, then the
pushdown would finally contain the word NFg(s)NFg(t). But now there seems
to be no way of checking, whether NFr(s) = NFg(¢). Thus, we have to apply
another strategy. Note that for a fixed binary coded number 1 < i < « - |s], it
is easy to modify our algorithm for calculating NF r(s) such that some specified
auxiliary storage cell S contains always the i-th symbol of the pushdown content
(or some special symbol if the pushdown is shorter than ). For this we have
to store the length of the pushdown, for which we need only space O(log(n)).
Moreover, also S only needs space O(log(n)). Thus, at the end of our modified
algorithm for computing NFr(s), S contains the symbol NFg(s)[i] (the i-th
symbol of NFg(s)) or some special symbol in case |[NFg(s)| < 4. Next, we flush
the pushdown and repeat the same procedure with the other input word ¢ and
the same 7, using another storage cell T. In this way we can check, whether
NFr(s)[i]] = NFg(t)[¢]. Finally, we repeat this step for every 1 < i < max{« -
|s|, - |t|}. The latter bound is the maximal pushdown-length that may occur,
which follows from the above claim. Note that also ¢ needs only space O(log(n)).
This concludes the description of our LOGDCFL-algorithm.

It remains to construct a finite, length-reducing, confluent, and left-basic
semi-Thue system R such that the corresponding word problem is LOGDCFL-
hard. In [32], Sudborough has shown that there exists a fixed deterministic
context-free language L C X* with a LOGDCFL-complete membership prob-
lem. Let A = (@, A4, X,0,q0, L) be a deterministic pushdown automaton with
L = L(A), where @ is the set of states, ¢o € @ is the initial state, A is the
pushdown alphabet, 1. € A is the bottom symbol, and § : A x Q x X' — A* x Q
is the transition function. By [32, Lem. 7] we may assume that .4 makes no
e-moves and that A accepts L by empty store in state go. Let m = max{|y| |
0(A,q,a) = (v,p), ¢,p € Q, A € A a € X}; thus, m is the maximal length of a
sequence that is pushed on the pushdown in one step. Let # ¢ AUQ U X be an
additional symbol and let I' = AU Q U X' U {#}. Define the semi-Thue system
R by R = {Agqa™# — vp | 6(A,q,a) = (v,p)}; it is length-reducing, confluent,



and left-basic. Moreover, if h : X* — (X U {#})* denotes the homomorphism
defined by h(a) = a™+#, which can be computed in logspace, then w € L if and
only if Lgoh(w) =g qo if and only if Lgoh(w) <r qo. O

5 Cayley-graphs

Let M be a monoid, which is finitely generated by I, and let o denote the
monoid operation of M. The right Cayley-graph of M wrt. I' is the I'-labeled
directed graph C(M,I") = (M, ({(u,v) | woa = v})eer). Thus, edges are
defined via multiplication with generators on the right. The graph that is de-
fined analogously via multiplication with generators on the left is called the
left Cayley-graph of M wrt. I'. In the following, we will always refer to the
right Cayley-graph when just speaking of the Cayley-graph. Cayley-graphs were
mainly investigated for groups, in particular they play an important role in com-
binatorial group theory [23] (see also the survey of Schupp [28]). Combinatorial
properties of Cayley-graphs of monoids are studied in [17]. In [30, 31], Cayley-
graphs of automatic monoids are investigated. The work of Calbrix and Knapik
on Thue-specifications [5, 19] covers Cayley-graphs of monoids that are presented
by terminating and confluent semi-Thue systems as a special case.

In [21], an investigation of Cayley-graphs from a logical point of view was
initiated. For a given Cayley-graph C = (M, (E,)qcr) we consider first-order
formulas over the structure C. Atomic formulas are of the form x = y and
E.(z,y), (there is an a-labeled edge from x to y) where z and y are variables
that range over the monoid M. Instead of (z,y) € E, we write x 0oa = y, or
briefly xa = y. First-order formulas are built from atomic formulas using Boolean
connectives and quantifications over variables. The notion of a free variable is
defined as usual. A first-order formula without free variables is called a first-
order sentence. For a first-order sentence ¢, we write C = ¢ if ¢ evaluates to
true in C. The first-order theory of the Cayley-graph C, denoted by FOTh(C), is
the set of all first-order sentences ¢ such that C |= ¢. For a detailed introduction
into first-order logic over arbitrary structures see [12].

If the monoid M is finitely generated both by I" and X, then FOTh(C(M, I))
is logspace reducible to FOTh(C(M, X)) and vice versa [20]. Thus, analogously
to word problems, the decidability (resp. complexity) status of the first-order
theory of a Cayley-graph does not depend on the chosen set of generators. From
the definition of an ar-automatic monoid M it follows immediately that C(M, I)
is an automatic graph in the sense of [1, 18] (but the converse is even false for
groups, see e.g. [2]). Thus, since every automatic graph has a decidable first-order
theory [18], FOTh(C(M, I')) is decidable in case M is ar-automatic (o = £ or
a=r). If M is an af-automatic monoid (o = £ or o = r), then the first-order
theory of the left Cayley-graph of M is decidable.

on

A problem is elementary decidable if it can be solved in time O(2° ), where
the height of this tower of exponents is constant. By [1], there exists an auto-
matic graph with a nonelementary first-order theory. This complexity is already
realized by Cayley-graphs of automatic monoids:



Theorem 4. There is a finite, length-lexicographic, and confluent semi-Thue
system R C I'™ x I'* such that (I', R,IRR(R)) is an af-automatic presentation
for I'*/R for all o, B € {£,r} and FOTh(C(I"*/R,I)) is nonelementary.

Proof. Let I' = {a,b,a,b,$1,%2,%,} and let the semi-Thue system R over I’
consist of the following rules, where ¢ € {a, b}:

c$ — $ic c$y — $s¢ a8, —a  c$4— 8¢
c$ —c 6$2—>$1E b$a—>$ab

R is length-lexicographic and confluent. Arguments similar to those from the
proof of Theorem 1 show that (I, R,IRR(R)) is an af-automatic presentation
of M = I'/R. Let C = C(M,I'). It remains to show that FOTh(C) is not
elementary decidable. For this we reduce the first-order theory of finite words
over {a,b} to FOTh(C). The former theory is defined as follows: A word w =
aras - a, € {a,b}* of length n is identified with the relational structure S, =
({1,...,n},<,Q.), where < is the usual order on natural numbers and @, is
the unary predicate {i € {1,...,n} | a; = a}. Then the first-order theory of
finite words over {a,b} consists of all first-order sentences ¢ that are built up
from the atomic formulas z < y and Q,(x) such that S,, E ¢ for every word
w € {a,b}*. It is known that the first-order theory of finite words is decidable
but not elementary, see e.g. [7, Example 8.1] for a simplified proof.

For our reduction first notice that IRR(R) = {$1, $2,$.}*{a,b,a, b}*. Hence,
the latter set can be identified with the monoid M. For x € IRR(R) we have z €
{$1,%2,8.}"{a,b}* if and only if 2823, # 2$;$; in M. This allows us to represent
all words from {a,b}* in C. The fact that a word w € {a,b}* is represented by
infinitely many nodes of C, namely by all elements from {$1,$2,$,}*w does
not cause any problems; it is only important that every word w € {a,b}* is
represented at least once. In the sequel let us fix z = vw with v € {$1, $2, $,}*
and w € {a,b}*. The set of all positions within the word w is in one-to-one
correspondence with the set of all y such that y$; = z in M: the latter holds
if and only if Jwi,ws € {a,b}*3c € {a,b} : w = wicwy and y = vw;cws.
Thus, we can quantify over positions of the word w by quantifying in C over
all those nodes y such that y$; = z in M. Next, assume that y = vwicws and
w = wicws, i.e., y represents the position |w;|+1 of w. Then ¢ = a if and only if
y$, = x in M; thus we can express that a position is labeled with the symbol a.
It remains to express that a position is smaller than another one. Assume that
y = vwicws, ¥y = vwidw), wicwy = widwy, = w, and wy; # w}, i.e., the two
positions represented by y and y’ are different. Then |w;| < |w}| if and only if
JzeM: 28 =yANz$ =9 in M.

From the preceding discussion it follows that for every first-order sentence
¥ over the signature (<, @Q,) we can construct in polynomial time a first-order
formula ¢(z) over the Cayley-graph C such that ¢ belongs to the first-order
theory of finite words if and only if C |= Vx : ¢(x). This proves the theorem. O

Corollary 2. There exists a finitely presented monoid M such that M is si-
multaneously af-automatic for all a, f € {€,7} and FOTh(C(M,I")) is not ele-
mentary decidable.



Since the word problem of an automatic group can be solved in time O(n?), the
results from [20] imply that the nonelementary lower bound from Corollary 2
cannot be realized by an automatic group. This fact even holds for automatic
monoids of finite geometric type: A finitely generated monoid M has finite ge-
ometric type if for some (and hence every) finite generating set I', the Cayley-
graph C(M, I") has bounded degree [30], i.e., the number of neighbors of any
node is bounded by a fixed constant. Every right-cancellative monoid has fi-
nite geometric type, but for instance the bicyclic monoid {a,b}*/{(ab,e)} is not
right-cancellative but has finite geometric type. Since the Cayley-graph of an
ar-automatic monoid of finite geometric type is an automatic graph of bounded
degree, and the first-order theory of every automatic graph of bounded degree

O(n)
belongs to DSPACE(22° ) [22], we obtain:

Theorem 5. Let M be an ar-automatic monoid (o € {r,£}) of finite geometric
O(n)
type. Then FOTh(C(M, I')) belongs to DSPACE(22 ).

We conclude this paper with an undecidability result for automatic monoids.
Note that for an ar-automatic monoid M (« € {r,¢}) it is decidable whether
for given u,v € M there exists x € M such that zu = v in M, because this is a
first-order property of the Cayley-graph. On the other hand, the reverse question
(3 : ux = v, i.e., reachability in the Cayley-graph) is undecidable in general:

Theorem 6. There exists a finitely presented monoid M that is simultaneously
lr- and rr-automatic such that for given u,v € M it is undecidable whether
Jre M:uzx=v in M.

The proof of this result uses the same techniques as the proof of Theorem 1.
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