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Abstract. We consider a compressed form of the word problem for
finitely presented monoids, where the input consists of two compressed
representations of words over the generators of a monoid M, and we ask
whether these two words represent the same monoid element of M. For
compression we use straight-line programs. For several classes of monoids
we obtain completeness results for complexity classes in the range from
P to EXPSPACE. As a by-product of our results on compressed word
problems we obtain a fixed deterministic context-free language with a
PSPACE-complete membership problem. The existence of such a lan-
guage was open so far. Finally, we investigate the complexity of the
compressed membership problem for various circuit complexity classes.

1 Introduction

During the last decade, the massive increase in the volume of data has motivated
the investigation of algorithms on compressed data, like for instance compressed
strings, trees, or pictures. The general goal is to develop algorithms that directly
work on compressed data without prior decompression. Let us mention here the
work on compressed pattern matching, see, e.g., [21]. In this paper we investigate
two classes of computational problems on compressed data that are of central
importance in theoretical computer science since its very beginning: the word
problem and the membership problem. In its most general form, the word problem
asks whether two terms over an algebraic structure represent the same element of
the structure. Here, we consider the word problem for finitely presented monoids,
which are given by finite sets of generators and defining relations. In this case the
input consists of two finite words over the set of generators and we ask whether
these two words represent the same monoid element. The undecidability results
concerning the word problem for finitely presented monoids/groups are among
the first undecidability results that touched “real mathematics”, see [23] for ref-
erences. Moreover, these negative results motivated a still ongoing investigation
of decidable subclasses of word problems and their complexity. In particular,
monoids that can be presented by terminating and confluent semi-Thue systems
(i-e., string rewriting systems) received a lot of attention [8]. These monoids have
decidable word problems, and sharp complexity bounds are known for various
subclasses [7,15,16].

In its compressed variant, the input to the word problem for a finitely pre-
sented monoid consists of two compressed representations of words over the gen-
erators. We choose straight-line programs, or equivalently context-free grammars



that generate exactly one word, for compression. Straight-line programs turned
out to be a very flexible compressed representation of strings. Several other
compressed representations, like for instance Lempel-Ziv factorizations [28], can
be efficiently converted into straight-line programs and vice versa [19], which
implies that most of our complexity results hold for Lempel-Ziv factorizations
as well. Moreover, by using straight-line programs for representing inputs, the
compressed word problem becomes equivalent to the circuit equivalence problem
(a generalization of the well-known circuit evaluation problem), where we ask
whether two circuits over a finitely presented monoid M (i.e., acyclic directed
graphs with leafs labeled by generators of M and internal nodes labeled by the
monoid operation) evaluate to the same element of M. So far this problem was
only investigated for finite monoids [5]. In Section 3-5 we study the complex-
ity of compressed word problems for several subclasses of monoids presented by
terminating and confluent semi-Thue systems. We obtain completeness results
for various complexity classes between P and EXPSPACE. The general phe-
nomenon that we observe when moving from the (uncompressed) word problem
to its compressed variant is an exponential jump with respect to complexity.
This exponential jump is well known also from other work on the complexity of
succinct problems [12, 25, 26].

As a by-product of our investigation of compressed word problems we ob-
tain several new results concerning compressed membership problems. Here, the
problem is to decide for a fixed language L, whether a given compressed repre-
sentation of a word belongs to L [19]. We show that there exists a deterministic
context-free (even deterministic linear) language with a PSPACE-complete com-
pressed membership problem, which solves an open problem from [9,19]. This
result is also interesting in light of recent attempts to use straight-line pro-
grams for compressing control flow traces of procedural programming languages
[27]. At a certain level of abstraction, the set of all valid control flow traces
is a context-free language. We also present a context-sensitive language with an
EXPSPACE-complete compressed membership problem. Finally, in Section 6 we
investigate the complexity of the compressed membership problem for various
circuit complexity classes. We show that the levels of the logtime hierarchy [22]
correspond in a compressed setting to the levels of the polynomial time hierarchy.
A full version of this paper can be obtained from the author.

2 Preliminaries

We assume that the reader has some basic background in complexity theory
[17]. The reflexive and transitive closure of a binary relation — is —». Let I’
be a finite alphabet. The empty word over I' is denoted by e. For a word s =
aas---a, € I'* (a; € I') let w™ = anan_1---a1, alph(s) = {ay,...,a,},
[s] = n, |sle = [{¢ | a; = a}| (for a € T'), s[i] = a; (for 1 < i < n), and
s[i, 7] = aijair1---a; (for 1 <4 < j <n).Ifi> jweset s[i,j] =e. An involution
T on I'is a function ~ : I' — I" with @ = a for all @ € I'. Tt can be extended
to an involution on I'* by setting @y~ a, = @, ---a1. With I' = {@ | a € I'}



we always denote a disjoint copy of the alphabet I'. Then we can define an
involution ~on A = I'UT by setting @ = a; this involution will be extended to
A* in the above way. A weight-function is a homomorphism f : I'™* — N from
the free monoid I'™* to the natural numbers (with +) such that f=1(0) = {e}.
Given a linear oder > on the alphabet I', we extend = to a linear order on I'*,
called the lezicographic extension of >, as follows: u > v if v is a prefix of u or
v = wau' and v = wbv' with a,b € I' and a > b.

Semi-Thue systems and finitely presented monoids For more details and
references on the topic of this section see [8]. Let I' be a finite alphabet. A
semi-Thue system R over I is a finite subset R C I'* x I'*; its elements are
called rules. A rule (s,t) € R is also written as s — ¢. The pair (I',R) is a
presentation. Let dom(R) = {s | 3t : (s,t) € R}. We define the binary relation
—pr on I'* as follows: s —pg t if there exist u,v € I'* and (¢,r) € R with
s = ulv and t = urv. Moreover, let r+ = (—gr)"}, ©r = (=r Ugr¢), and
IRR(R) = I'™*\I"™*dom(R)I'™* (the set of irreducible words). We say that (I', R) is
terminating if there do not exist s; € I'™* for 1 € N with s; =g s;41 for all i € N.
We say that (I, R) is confluent (resp. locally confluent) if for all s,t,u € I'* with
t pé—s S u (resp. t g<—s — g u) there exists v € I'* such that t g v & u.
By Newman’s lemma, a terminating presentation is confluent if and only if it
is locally confluent. Moreover, for a terminating presentation, local confluence
(and hence confluence) can be checked effectively using critical pairs, which result
from overlapping left-hand sides. The reflexive and transitive closure < is a
congruence on the free monoid I'*, hence we can define the quotient monoid
I'* /&g, which we denote by M(T, R). It is called a finitely presented monoid,
and we say that M(I, R) is the monoid presented by (I', R). The word problem
for the fixed presentation (I, R) is the following decision problem:

INPUT: Two words s,t € I'*.
QUESTION: Does s < t hold?

It is easy to see that for two given presentations (I, R) and (X,S) such that
M(I,R) = M = M(X,S), there exists a logspace reduction from the word
problem for (I, R) to the word problem for (X,.S). Thus, the decidability and
complexity of the word problem do not depend on the chosen presentation and
we may just speak of the word problem for the monoid M.

If (T, R) is terminating and confluent, then every s € I'* has a unique normal
form NFg(s) € IRR(R) satisfying s =g NFg(s). Moreover, s <& g t if and only if
NFr(s) = NFg(t). Thus, the word problem is decidable. On the other hand, the
calculation of normal forms does not yield any upper bound on the complexity of
the word problem [3]. Complexity results on word problems for restricted classes
of finitely presented monoids can be found for instance in [7, 15, 16].

Grammar based compression Following [19], a straight-line program (SLP)
over the alphabet I' is a context-free grammar G = (V, I, S, P), where V is the
set of nonterminals, I' is the set of terminals, S € V is the initial nonterminal,
and P CV x (VUTI)* is the set of productions, such that (i) for every X € V



there is exactly one a € (V U I')* with (X,a) € P and (ii) there is no cycle in
the relation {(X,Y) € V xV | Ja: (X,a) € P,Y € alph(a)}.! The language
generated by the SLP G contains exactly one word that is denoted by eval(G).
More generally, every nonterminal X € V produces exactly one word that is
denoted by evalg(X). We omit the index G if the underlying SLP is clear from
the context. We also write P(G) for the set of productions P. The size of G is
|G| = 3" (x,a)cp la|- Every SLP can be transformed in polynomial time into an
equivalent SLP that is in Chomsky normal form (as a context-free grammar). We
may also allow exponential expressions of the form A? for A € V and a binary
coded integer i € N in the right-hand sides of productions. Such a production
can be replaced by O(log(i)) many ordinary productions. The following tasks can
be solved in polynomial time; the first two problems can be reduced to simple
arithmetic, whereas the third problem requires more subtle techniques:

— Given a SLP G, calculate |eval(G)|.
— Given a SLP G and a number i € {1,..., |eval(G)|}, calculate eval(G)][d].
— Given SLPs G and G», decide whether eval(G1) = eval(G») [18].

Let (I, R) be a fixed presentation. The compressed word problem for (I, R) is
the following problem:

INPUT: Two SLPs G; and G5 over the terminal alphabet I
QUESTION: Does eval(G1) < g eval(G2) hold?

Here, the input size is |G|+ |G2|. It is easy to see that also for the compressed
word problem the complexity does not depend on the chosen presentation, which
allows to speak of the compressed word problem for the monoid M = M(I, R).
We can view the compressed word problem also from another perspective. A
circuit C over M is a finite directed acyclic graph with exactly one node of
outdegree 0. The nodes of indegree 0 are labeled with elements from I". All nodes
of indegree greater than zero are labeled with the multiplication of M. Such a
circuit computes in a natural way an element of M. Then, the question, whether
two given circuits over M compute the same monoid element, is equivalent to
the compressed word problem for M. In [5], it was shown that for a finite non-
solvable monoid the compressed word problem is P-complete, whereas for every
finite solvable monoid the compressed word problem belongs to DET C NC? C
P. Our work can be seen as a first step towards extending the work from [5] to
infinite monoids.

For a given language L C I'* we also consider the compressed membership
problem for the language L, which is the following problem:

INPUT: A SLP G over the terminal alphabet I".

QUESTION: Does eval(G) € L hold?
Most of our complexity results can be also transfered to other compression
schemes, like for instance Lempel-Ziv 77 (LZ77) [28]. If G is a SLP of size n
with eval(G) = w, then LZ(w) (the LZ77-compressed representation of w) has

! Usually, the term “straight-line program?” is used in order to denote a linear sequence
of instructions. In our context, the only instruction is the concatenation of words.



size O(n) and can be constructed in polynomial time [19]. On the other hand, if
n is the size of LZ(w), then we can construct in polynomial time a SLP of size
O(n?-log(n)) generating w [19]. Thus, if we allow polynomial time reductions, the
completeness results from Section 4-6 also hold, if we use LZ77 for compression.
P-hardness results cannot be transfered directly, because the transformation
from a SLP to the LZ77-compressed representation might be P-hard.

3 Polynomial time cases

It is obvious that for every finite monoid the compressed word problem belongs
to P. In this section we present a class of infinite monoids with polynomial time
solvable compressed word problems. This class contains all free groups. In fact,
it turns out that for every non-abelian free group the compressed word problem
is P-complete.

A presentation (I, R) is 2-homogeneous if for every (¢,r) € R: |[¢| = 2 and
r = ¢ [6]. In [16] it was shown that for every 2-homogeneous presentation the
word problem is in logspace. Moreover, the uniform variant of the word problem
for 2-homogeneous presentations, where the presentation is part of the input, is
complete for symmetric logspace [16]. The following result was shown in [6]:

Proposition 1. For every 2-homogeneous presentation (I, R) there exists a 2-
homogeneous and confluent presentation (X,S) with M(I',R) = M(X,S).

For the further consideration let us fix a 2-homogeneous presentation (I, R). By
Prop. 1 we may assume that (I, R) is confluent. Then we have:

Lemma 1 (cf. [16]). There exist pairwise disjoint sets Xy, X., A C I', an in-
volution ~ : A = A, and a semi-Thue system S C {(ab,e) | a € Xy, b € X}
such that I' = Y, U X, UA and R =S U {(ag,¢) | a € A}.

We say that (I, R) is N-free, if a,b € Xy, ¢,d € X, (where X, and X, result
from the previous lemma), and ac, ad, bc € dom(R) imply bd € dom(R).

Theorem 1. If (I, R) is 2-homogeneous, confluent, and N -free, then the com-
pressed word problem for M(I, R) is in P.

In the next section we will see that Thm. 1 cannot be extended to the non-
N-free case unless P = NP. For the proof of Thm. 1 we need a generalization
of straight-line programs from [9]: A composition system G = (V,I,S,P) is
defined analogously to a SLP, but in addition to ordinary productions it may
also contain productions of the form A — B[i,j] for B € V and 4,j € N. For
such a production we define evalg(A) = evalg(B)[i,5].2 As for SLPs we define
eval(G) = evalg(S). In [9] it was shown that for two given composition systems
G1 and G2, the equality eval(G1) = eval(G2) can be verified in polynomial
time, which generalizes the corresponding result for SLPs from [18]. The proof
of Thm. 1 is based on:

% In [9], only productions of the form A — B[j, levalg (B)|]C|[1, i] are allowed. But this
definition is easily seen to be equivalent to our formalism.



Lemma 2. Assume that (I, R) is 2-homogeneous, confluent, and N-free. Then
the following problem belongs to P:

INPUT: Composition systems G1 and Ga with eval(Gy),eval(G2) € IRR(R).
QUESTION: Does eval(G,)eval(Gy) =g € hold?

Proof of Thm. 1. Let (I, R) be 2-homogeneous, confluent, and N-free. Given
SLPs GG; and G5 over the terminal alphabet I', we have to verify in polynomial
time, whether NFg(eval(G1)) = NFg(eval(G2)). Using the result of [9] men-
tioned before, it suffices to prove that given a SLP G in Chomsky normal form
over the terminal alphabet I', we can construct in polynomial time a composi-
tion system H such that eval(H) = NFg(eval(G)). We construct H inductively
by adding more and more rules. Initially, P(H) contains all rules from P(G) of
the form A — a with a € I'. Now assume that A — BC belongs to P(G) and
that H already contains enough rules such that evaly(B) = NFg(evalg(B)) and
evalg(C) = NFg(evalg(C)). If i is the largest number such that

evaly(B) = ujuy, evaly(C) =viva, |uo| = |v1] =4, wpvi Hge, (1)

then clearly NFg(evalg(A)) = wjvs. For a given ¢ € N, we can check (1) in
polynomial time by Lemma 2. Since ¢ is bounded exponentially in the input
size, the largest 7 satisfying (1) can be easily calculated in polynomial time by
doing a binary search. For this largest ¢ we add to the current H the production
A — BJ[1, |evalg(B)| — i]C[i + 1, |evalg (C)|]. O

For I' an alphabet, the monoid F(I') = M(I'U I,{(c¢,e) | c € TUT}) is a
group, namely the free group generated by I'. In case |I'| = n we also write F),
for F(I'). Tt is known that the (uncompressed) word problem for a free group
is in logspace [14]. Moreover, the word problem for F} is hard for uniform NC*
[20]. By Thm. 1, the compressed word problem for every free group is in P. By
a reduction from the monotone circuit value problem we can prove:

Theorem 2. The compressed word problem for Fy is P-complete.

4 Between P and PSPACE

PP is the class of all languages that can be accepted by a deterministic poly-
nomial time machine that has additional access to an NP-oracle; it is contained
in PSPACE. Several complete problems for PNF' can be found in [11].

Theorem 3. If (I, R) is 2-homogeneous and confluent (but not necessarily N -
free), then the compressed word problem for M(T, R) is in PNP,

Proof. The key observation is that for a 2-homogeneous and confluent (but not
necessarily N-free) presentation (I', R), the problem from Lemma 2 is in coNP:
If u; = eval(G;) (i = 1,2) with uy,uy € IRR(R), then ujuy =g € if and only
if lu1| = |uz2| = n and uq[iJua[n — i + 1] € dom(R) for every 1 < i < n. For a
single 7, the latter condition can be easily checked in polynomial time. Now the
decision procedure from the proof of Thm. 1 in the previous section gives us a
PNP_ i e., PNP_algorithm in the present situation. O



By a reduction from the complementary problem of SUBSETSUM, we can show:

Theorem 4. Let I' = {a,b,c,d} and R = {(ac,¢), (ad,¢), (bc,e)} The com-
pressed word problem for M(I', R) is coNP-hard.

The precise complexity of the compressed word problem for 2-homogeneous,
confluent, but non-N-free presentations remains open; it is located somewhere
between coNP and PN,

5 Polynomial space and above

Our PSPACE upper bounds rely all on the following simple fact:

Proposition 2. If the membership problem for the language L (the word prob-
lem for a finitely presented monoid M) belongs to |J ., NSPACE(log®(n)), then
the compressed membership problem for L (the compressed word problem for M)
belongs to PSPACE.

A presentation (I, R) is weight-reducing if there is a weight-function f on I'™*
with f(s) > f(t) for all (s,t) € R. A special case of weight-reducing pre-
sentations are length-reducing presentations, where |s| > [t| for all (s,t) € R.
In [15] the author has shown that for every fixed weight-reducing and conflu-
ent presentation the (uncompressed) word problem is in LOGCFL [24]. Since
LOGCFL C NSPACE(log?(n)) [13], Prop. 2 implies:

Proposition 3. For every weight-reducing and confluent presentation (I, R),
the compressed word problem for M(I',R) is in PSPACE.

In the rest of this section, we show that PSPACE-hardness can be deduced
already for a quite small subclass of weight-reducing and confluent presentations.

A presentation (I, R) is called monadic if for every (¢,r) € R: |[¢| > |r|
and |r| < 1. A 2-monadic presentation is a monadic presentation (I, R) such
that moreover || = 2 for every £ € dom(R). In the following, we present a
construction that reduces the reachability problem for directed forests to the
(uncompressed) word problem of a fixed 2-monadic and confluent presentation
(I R). Let I' = {bg,b1,co,c1,ca,#,8,>,0} and let R be the 2-monadic semi-
Thue system consisting of the following rules:

(1) boxr — ¢ for all z € {$,co,c1,c2} (2) bicg = ¢

(3) hi$ —»> (4) ve; = > foralli € {0,1,2}
(5) b$ — $ (6) #3 —>¢

(7) b102 -0

(8) 0z —» 0 forallz eI (9) 20— 0 forallz € I

Only the rules involving the absorbing symbol 0 produce overlappings. In the

resulting critical pairs, both words can be reduced to 0. Thus, R is confluent.
Assume now that (V, E) is a directed forest, where V= {v,...,v,} and i < j

whenever (v;,v;) € E. Let v, € V and U C V be a set of nodes such that every



node in U has outdegree 0. For i < j we define the interval I; ; = {vr | i < k < j}.
Thus, I, =V.If i > j we set I; ; = (. For every i € {1,...,n} let:

eIt if (v;,0;) is the unique outgoing edge at node v;
di=<c if v; € V \ U and v; has no outgoing edge
Co if v; € U (and thus has no outgoing edge)

For an interval I; ; (i < j) let o[l; ;] = §;$0;41%---6;8. We set o[f] = e. Using
the rules in (4) and (5) we get bo[l; j] =g $o[liy1,;] if i < j. Finally, define

B=lollia1]l and w(vg,U) = (#b7)"bho[l1,n)-

Lemma 3. We have w(vy,U) &5 0 if and only if Jv; € U : (va,v;) € E*.

The previous lemma yields the following result that is of independent interest.
It sharpens a corresponding result of [4] for monadic systems.

Theorem 5. There exists a fixred 2-monadic and confluent presentation (I, R)
such that the word problem for M(I, R) is L-hard under NC'-reductions.

Theorem 6. There exists a fized 2-monadic and confluent presentation with a
PSPACE-complete compressed word problem.

Proof. We show that the compressed word problem for the 2-monadic presenta-
tion (I, R) from the previous discussion is PSPACE-complete. The upper bound
follows from Prop. 3. For the lower bound we have to repeat a construction
from [15]. Let A = (Q, X, 4,90, ¢y) be a deterministic linear bounded automaton
(where @ is the set of states, X' is the tape alphabet, go (resp. gy) is the initial
(resp. final) state, and 0 : Q \ {gy} X ¥ = @ x X x {—1,+1} is the transi-
tion function) that accepts a PSPACE-complete language. Such an automaton
exists, see, e.g., [3]. Let w € X* be an input for A with |w| = N. We may
assume that A operates in phases, where a single phase consists of a sequence
of 2- N transitions of the form g1 =4 Y2¢2 = A q373, where v1,72,73 € ZV
and q1,¢2,¢s € Q. During the sequence q1v1 =4 V2¢2 (resp. 12q2 =>4 g373) only
right-moves (resp. left-moves) are made. The automaton A accepts, if it reaches
the final state gs. Let ¢ > 0 be a constant such that if w is accepted by A,
then A, started on w, reaches the final state gy after at most 2¢'N phases. Let
Sbea disjoint copy of X' and similarly for Q Let A=XUS U {<,0,1, £} and
O=QU Q U A and let S be the semi-Thue system over @ that consists of the
following rules, where x ranges over all symbols from A :

0gr — gfz for all g € @\ {gr} rqa — :I:Ep if 6(q,a) = (p,b,+1)
1lgz — 0qzx for all g € @\ {gr} aqr — pbx if §(q,a) = (p,b,—1)
zqf - xlq forallge Q\ {¢s} xga— zga forallge Q\ {gr}

Note that dom(R) C A(Q U Q)A. Moreover, (0, S) is length-preserving and
for any linear order on @ satisfying @ = 1 > 0 = X > @ we have (for the



lexicographic extension of >) s > t whenever s —g t. Let us choose such a
linear order that moreover satisfies Q = A > Q. In [15] the author argued
that w is accepted by A if and only if 1go£5Nw<a g v for some word v with
alph(v) N {qs,qr} # O (we have slightly modified the construction form [15]
but the principal idea is the same). For m = (¢ + 1)N let V = -, A& (Q U
@)Am_i+1. Note that any S-derivation starting from 1go£°Vw< is completely
contained in V. On the set V we construct a directed forest (V, E) by taking E =
(V xV)N—g. If we order V lexicographically by = and write V = {vy,...,v,}
with v; > vg > -+ > vy, then (v;,v;) € E implies i < j, i.e., (V, E) is an ordered
directed forest. Note that n = 2(m + 1) - |Q| - |A|™+?2, which belongs to 20().
Let U = {v € V | alph(v) N {qs,q5} # 0} and v, = 1go£°Nw<. Thus, a — 1 is
the number of words from V that are lexicographically larger than 1gq£¢Nw«.
The number a can be easily calculated in polynomial time from the input w.

The automaton A accepts w if and only if there is a path in (V, E) from v, to
anodein U. By Lemma 3 this is equivalent to w(vy, U) g 0. Thus, it remains to
show that w(v,,U) € I'* can be generated by a small SLP. Recall the definition
of the words §; and o[I] € I'*, where 1 < ¢ < n and I is an interval of (V,>),
from the discussion preceding Lemma 3. Note that if v; = uilus =g u1rus = v;
with (£,7) € S, then the number j—1 (i.e., the number of words from V that are
lexicographically between v; and v;) only depends on the rule (¢,r) (and thus £)
and |uz|. We call this number A(, |uz|); it is of size 20(Y). We now describe a
small SLP that generates the word o[V] € I'*. Assume that Q = {p1,...,Pn, }
and A = {a1,...,an, } With p; > piy1, Pi = Pit+1, and a; > a;4+1. We introduce
the following productions (Hf:1 u; abbreviates uq - - - ug):

na n2
Ai = ] BijAinBijfor0<i<m,  Apn— [[ BmjBm;
i=1 =
ny n2 .
BZJ%HH ,J,klf$|A‘ for0<i<m,1<j<ny
k=1 f=1
e Magpranm=O+L e o ap € dom(R)
Cijrt =4 c1 if ajpra; ¢ dom(R) and py, # gy
e if pr = gy
ni n2 .
ByJ%HH aJyk£$|A‘ forOSiSm,lgngD
k=1 f=1
cg*’\(“fp’“”’mfi)“ if a;pra; € dom(R)
Cijrt =4 e if ajpra; ¢ dom(R) and py, # gy
Cc2 if ﬁk = ij

The integer exponents that appear in the right-hand sides of these productions
are all of size 29™) and can therefore be easﬂy replaced by ordinary productions.
Note that eval(C’z ke) = 05 for every vy € Ala;pra;A™~ and eval(C’, Gke) = 05
for every vy € A* ajpkalAm i, It follows that for all 0 < i < m, all u € A?, and



all 1 < j < ns we have (note that ua;QA™ ! C V is an interval of (V,>))
eval(B; ;) = o[ua;QA™ '] and eval(B;;) = o[ua;QA™ ],

By induction on ¢ € {0,...,m} (for i = m down to 0), we can show that
o[I] = eval(4;), where I is the interval 7" uA¥(Q U Q)A™#-9+2 of the
linear order (V,>) and u € At is arbitrary. For i = 0 we get eval(4y) = o[V].
The number 8 = |o[[1 4—1]| € 2°™) can be calculated from the input word w
using simple arithmetic. Now it is easy to construct a SLP G of size polynomial
in the input size N with eval(G) = (#b{”)"bg o[V] = w(vy, U). This concludes
the proof. O

Since (I',R) is monadic and confluent, the language {w € I'* | w Sg 0} is
deterministic context-free [8, Thm. 4.2.7]. Thus, we obtain a fixed determin-
istic context-free language with a PSPACE-complete compressed membership
problem. This solves an open problem from [9,19]. We can even show a slightly
stronger result: In [10] a language is called deterministic linear if it is accepted
by a deterministic 1-turn pushdown automaton. It is easy to see that the lan-
guage {w € I | w S 0} N (F#b7) bl ((cf Uer Ucs)$)t is deterministic linear.
Moreover, it contains all words of the form w(v,,U). Thus, we obtain:

Corollary 1. There exists a fixed deterministic linear language L such that the
compressed membership problem for L is PSPACE-complete.

Also a uniform variant of the compressed membership problem for context-free
languages is PSPACE-complete:

Theorem 7. The following problem is PSPACE-complete:
INPUT: A context-free grammar G and a SLP H
QUESTION: eval(H) € L(G)?

Finally, we take a look at EXPSPACE-complete cases: A presentation (I, R) is
weight-lexicographic if there are a linear order > on I' and a weight-function f
on I'* with f(€) > f(r) or (f(£) = f(r) A £>r) for all (¢,r) € R.If |{| > |r| or
(|1 =|r| A £ r) for all (¢,7) € R, then (I, R) is length-lexicographic. A slight
variation of a construction from [15] yields the following two results:

Theorem 8. For every weight-lexicographic and confluent presentation, the com-
pressed word problem is in EXPSPACE. There is o fized length-lexicographic and
confluent presentation with an EXPSPACE-complete compressed word problem.

Theorem 9. There exists a fized context-sensitive language L such that the
compressed membership problem for L is EXPSPACE-complete.

6 Circuit complexity and compression

In this section we study compressed membership problems for languages from
very low complexity classes, which are usually defined by uniform families of



small depth Boolean circuits. An equivalent and for our purpose more suitable
definition is based on alternating Turing-machines with logarithmic time bounds.
See [17] for background on alternating Turing-machines. When dealing with
logarithmic time bounds it is necessary to enrich the machine model with a
random access mechanism in form of a special address tape that contains a binary
coded number p. If the machine enters a special query state, then it has random
access to the p-th input position. ALOGTIME is the class of all languages that
can be recognized on an alternating Turing-machine in time O(log(n)), it is equal
to uniform NC'. Within ALOGTIME, we can define the logtime hierarchy: For
k>1, E}fg (resp. H}fg) is the class of all languages that can be decided by an
alternating Turing-machine in time O(log(n)) within k& — 1 alternations, starting
in an existential (resp. universal) state. In [2], E}fg u H,lcog is proposed as a
uniform version of the circuit complexity class AC). The union s, Z;*6 UIT,*®
is called the logtime hierarchy LH [22]. It turns out that in a compressed setting,
the levels of LH and the polynomial time hierarchy PH = J,5, ZP°Y U I1P°Y
(see [17] for details on PH) are in a tight correspondence: B

Theorem 10. For every language in Z’}cog (H,lcog ) the compressed membership
problem belongs to K2 (ITP°%). There is a fized language in % (I1,°8) with
a Z’,’;Oly—complete (H,’:Oly—complete) compressed membership problem.

Every language in |J ., NSPACE(log®(n)) has a compressed membership prob-
lem within PSPACE (Prop. 2). Languages with a PSPACE-complete compressed
membership problem can be already found in ALOGTIME C DSPACE(log(n)):

Theorem 11. There exists o fixed language L in ALOGTIME such that the
compressed membership problem for L is PSPACE-complete.

It is not the case that for every ALOGTIME-complete language the compressed
membership problem is PSPACE-complete (unless P = PSPACE): The word
problem for the finite group S5 is ALOGTIME-complete [1] but its compressed
word problem is in P. Thus, a general upgrading theorem analogously to [25]
does not hold for straight-line programs. This is similar to the situation for hier-
archical graphs [12], where the correlation between the complexity of a problem
in its compressed and uncompressed variant, respectively, is quite loose.
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