
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

COMPLEXITY RESULTS FOR PREFIX GRAMMARS

Markus Lohrey1 and Holger Petersen1

Abstract. Resolving an open problem of Ravikumar and Quan, we
show that equivalence of prefix grammars is complete in PSPACE. We
also show that membership for these grammars is complete in P (it was
known that this problem is in P) and characterize the complexity of
equivalence and inclusion for monotonic grammars. For grammars with
several premises we show that membership is complete in EXPTIME
and hard for PSPACE for monotonic grammars.

1991 Mathematics Subject Classification. 03D03, 68Q17, 68Q42, 68Q45.

1. Introduction

The computational complexity of decision problems concerning languages de-
pends on the formalisms that are chosen to represent them. As an example take
the equivalence problem for regular sets. If languages are given by deterministic
finite automata, then equivalence can be tested in almost linear time [10]. The
problem becomes complete in PSPACE if languages are described by regular ex-
pressions [14]. If squaring is allowed as an operation in regular expressions, the
problem is complete in exponential space [14]. Adding complementation leads to
an equivalence problem that is not even elementary [18].

The number of characterizations of regular sets is especially impressive and
includes powerful devices like several variants of two-way automata. Almost four
decades ago, J. Richard Büchi added another formalism to the list by proving that
systems of rewriting rules which are applied to a prefix of a string generate exactly
the regular languages when starting from a finite set of axioms [1]. These systems
were therefore called regular canonical systems. Greibach gave a different proof and

Keywords and phrases: Rewriting systems, regular languages, computational complexity

1 University of Stuttgart, FMI

Universitätsstr. 38

70569 Stuttgart, Germany,
e-mail: {lohrey, petersen}@informatik.uni-stuttgart.de

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

extended the result to any regular set of axioms [9]. Büchi had already announced
in [1] that rules with several premises still generate the regular languages. The
proof was published by Büchi and Hosken in [3] and generalized to mixed systems
with prefix and suffix rewriting rules (the suffix rules have to be restricted to
a single premise, otherwise all recursively enumerable sets are obtained). In an
article based on [1] Kratko showed the same results [12]. A more recent exposition
can be found in [2].

Independently of the cited earlier work, Frazier and Page showed the origi-
nal result for pure regular canonical systems (without non-terminal symbols) [8].
They called these systems prefix grammars, a terminology we will also use here.
Petersen [16] considered the descriptional complexity of these grammars, while
Ravikumar and Quan [17] mainly investigated the computational complexity of
problems related to prefix grammars. There is a well-known correspondence be-
tween prefix grammars and pushdown systems, see [4, 9]. The latter model has
recently been investigated in the area of model checking with an emphasis on effi-
cient algorithms [6,7]. Here we consider decision problems for prefix grammars in
the more general framework of complexity classes.

In the present paper we will solve one of the questions left open in [17] concerning
the complexity of the equivalence problem for prefix grammars6. Additional re-
sults are related to the membership problem of these grammars and to monotonic
grammars. For grammars with several premises we show that the membership
problem (which is solvable in polynomial time for one premise rules) is complete
in EXPTIME. For monotonic grammars with several premises membership is still
hard for PSPACE.

2. Preliminaries

For a finite alphabet Σ, let Σ∗ denote the set of all finite words over Σ. The
empty word is denoted by ε. The length of a word w ∈ Σ∗ is |w|.

We assume that the reader has some basic background in complexity theory, see
e.g. [15]. We will use the standard complexity classes P, NP, PSPACE, and EXP-
TIME. All hardness results in this paper hold with respect to logspace reductions.
This fact will not be mentioned explicitly in the rest of the paper.

3. Prefix grammars

Definition 3.1. A prefix grammar G is a triple G = (Σ, S, P), where Σ is a finite
alphabet, S is a finite set of strings over Σ called axioms or base strings, and P is
a finite set of productions of the form α → β with finite strings α, β ∈ Σ∗.

Definition 3.2. Let G = (Σ, S, P) be a prefix grammar. A string v is produced
from u, denoted u ⇒G v, if there exist a production α → β in P and w ∈ Σ∗ such
that u = αw and v = βw. The language L(G) generated by G is the smallest set
of words satisfying S ⊆ L(G) and closed with respect to ⇒G, i.e., u ∈ L(G) and
u ⇒G v implies also v ∈ L(G).

TITLE WILL BE SET BY THE PUBLISHER 3

The above defined prefix grammars coincide with pure regular systems in the
sense of Büchi [1, 2]. Ravikumar and Quan [17] also investigate monotonic prefix
grammars defined in the following way.

Definition 3.3. A prefix grammar is called monotonic, if every production α → β

satisfies |α| ≥ |β|.

We also consider prefix grammars with several premises, where the generation
of a string depends on more than one string.

Definition 3.4. A prefix grammar with several premises G is a triple G =
(Σ, S, P) where Σ and S have the same meaning as in Definition 3.1 and P is a finite
set of productions of the form α1, . . . , αk → β, where k ≥ 1 and α1, . . . , αk, β ∈ Σ∗

(k may be different for different productions). The grammar G is called monotonic
if for every production α1, . . . , αk → β we have |αi| ≥ |β| for 1 ≤ i ≤ k.

A string v is produced from strings u1, . . . , uk, denoted u1, . . . , uk ⇒G v, if there
exist a production α1, . . . , αk → β in P and w ∈ Σ∗ such that ui = αiw for all
1 ≤ i ≤ k and v = βw. The language L(G) generated by G is the smallest set of
words satisfying S ⊆ L(G) and closed with respect to ⇒G, i.e., u1, . . . , uk ∈ L(G)
and u1, . . . , uk ⇒G v implies also v ∈ L(G).

Example 3.5. Consider the prefix grammar with several premises

G = ({2, 3, 5, a}, {2, 3, 5}, P),

where P contains the productions 2 → 2a2, 3 → 3a3, 5 → 5a5, and 2, 3, 5 → ε.
Then L(G) is the language

⋃

i∈{2,3,5} i(ai)∗ ∪ (a2·3·5)∗.

Let C be one of the four grammar classes introduced above (prefix grammars,
monotonic prefix grammars, prefix grammar with several premises, monotonic pre-
fix grammar with several premises). We will consider the following computational
problems for the class C:

Membership for C:

INPUT: G ∈ C and a string w ∈ Σ∗

QUESTION: w ∈ L(G)?

Equivalence for C:

INPUT: G1, G2 ∈ C
QUESTION: L(G1) = L(G2)?

Inclusion for C:

INPUT: G1, G2 ∈ C
QUESTION: L(G1) ⊆ L(G2)?

Inequivalence (resp. non-inclusion) for C is the complementary problem of equiv-
alence (resp. inclusion) for C. Concerning the membership problem we emphasize
that the grammar is part of the input. For a fixed prefix grammar (with possi-
bly several premises) G, L(G) is a fixed regular language. Thus, the membership
problem for L(G) belongs to the parallel complexity class NC1, see e.g. [19].

4 TITLE WILL BE SET BY THE PUBLISHER

4. Results

We begin our investigation with problems left open by Ravikumar and Quan
[17].

Theorem 4.1. Equivalence and inclusion for prefix grammars are both complete

in PSPACE.

Proof. The upper bound follows from the effective translation of prefix grammars
into NFA of polynomial size [4,17] and the fact that equivalence and inclusion are
in PSPACE for NFA [18].

For the lower bound notice that equivalence reduces to inclusion and thus it
suffices to consider equivalence. We will make use of the fact that the equivalence
problem for NFA is complete in PSPACE (can be shown with the technique from
[14]).

For the reduction of NFA equivalence to prefix grammar equivalence, consider
two NFA M1 = (Q1,Σ, δ1, q

1
0 , F1) and M2 = (Q2,Σ, δ2, q

2
0 , F2), where Q1 and

Q2 are disjoint sets of states, Σ is the w.l.o.g. common alphabet, δ1 and δ2 are
transition relations, and F1, F2 are sets of final states.

First we construct a prefix grammar G = (Σ ∪ Q1 ∪ Q2, F1 ∪ F2, P) by letting

P = {q → q′x | (q′, x, q) ∈ δ1 ∪ δ2}.

By induction qw ∈ L(G) iff starting from q string w is accepted (by M1 or M2

depending on whether q ∈ Q1 or q ∈ Q2).
Now we form G1 = (Σ ∪ Q1 ∪ Q2, F1 ∪ F2, P ∪ {q1

0 → ε}) and G2 = (Σ ∪
Q1 ∪ Q2, F1 ∪ F2, P ∪ {q2

0 → ε}). By construction L(G1) and L(G2) coincide on
strings from (Q1 ∪ Q2)Σ

∗. For w ∈ Σ∗ we have w ∈ L(G1) ⇐⇒ q1
0w ∈ L(G) ⇐⇒

w ∈ L(M1) and w ∈ L(G2) ⇐⇒ q2
0w ∈ L(G) ⇐⇒ w ∈ L(M2). Therefore

L(G1) = L(G2) iff M1 and M2 are equivalent.
The transformation is obviously possible in logspace. ¤

Remark: In the above proof, the straight-forward translation of M1 and M2 into
prefix grammars, i.e., taking Gi = (Σ∪Qi, Fi, Pi) with Pi = {q → q′x | (q′, x, q) ∈
δi} ∪ {qi

0 → ε}, will result in grammars that are inequivalent in general, even if
the NFA are equivalent.

Theorem 4.2. Membership for prefix grammars is complete in P.

Proof. The upper bound is Theorem 6.1 of [17].
Hardness follows from the result that emptiness for context-free grammars is

complete in P [11]. Notice that it suffices to consider context-free grammars that
either generate ∅ or {ε} by replacing every occurrence of a terminal symbol by ε.

Now take the context-free productions as productions of a prefix grammar and
observe that there is no loss of generality in considering left-most derivations. The
prefix grammar will derive ε from the initial symbol iff the initial context-free
grammar generated a nonempty language. ¤

TITLE WILL BE SET BY THE PUBLISHER 5

Theorem 4.3. Inequivalence and non-inclusion for monotonic prefix grammars

are both complete in NP.

Proof. Inequivalence trivially reduces to non-inclusion. Given two monotonic pre-
fix grammars G1 and G2, the length of a string w ∈ (L(G1) − L(G2)) is bounded
by the longest base string. Such a string can therefore be guessed in polynomial
time. Then the two membership problems are tested in deterministic polynomial
time according to Theorem 6.1 from [17].

For the lower bound we define a reduction from CNF-SAT to inequivalence for
monotonic prefix grammar (in [17] a similar construction is applied to inclusion,
but since inclusion does not reduce to equivalence, we cannot use the result from
[17] directly).

Let F = F1 ∧F2 ∧ · · · ∧Fk be a CNF-formula over the variables x1, . . . , xn with
clauses F1, F2, . . . , Fk. We view every Fi as a subset of {x1,¬x1, . . . , xn,¬xn}.
We assume w.l.o.g. that no clause contains both a variable and its complement. A
truth assignment to the variables x1, x2, . . . , xn will be identified with the string
a1a2 · · · an, where ai = t if xi is true and ai = f if xi is false.

Now we form a grammar G1 = (Σ, S1, R1) with Σ = {t, f, 1, . . . , k} and

S1 = {is1s2 · · · sn | 1 ≤ i ≤ k, ∀1 ≤ m ≤ n : sm = f if xm ∈ Fi, else sm = t}.

Let

R ={is1s2 · · · sr−1t → is1s2 · · · sr−1f |

1 ≤ i ≤ k,¬xr 6∈ Fi,

∀1 ≤ m < r : sm = f if xm ∈ Fi, else sm = t}.

We define R1 = R ∪ {i → ε | 1 ≤ i ≤ k}.
The grammar to be compared with G1 is G2 = (Σ, S2, R2), where S2 = S1∪{t

n}.
We define R2 = R1 ∪ {tm → tm−1f | 1 ≤ m ≤ n}.

Since S1 ⊆ S2 and R1 ⊆ R2, we certainly have L(G1) ⊆ L(G2). The additional
base string and productions of G2 will generate all strings from {t, f}n. In order
to be inequivalent to G2, at least one string of this form has to be missing from
L(G1). Now observe that a truth assignment to x1, . . . , xn does not satisfy F iff
at least one clause Fi is not satisfied. All truth assignments with this property are
generated by G1. Therefore F is satisfiable iff L(G1) 6= L(G2). ¤

Theorem 4.4. Membership for monotonic prefix grammars with several premises

is hard for PSPACE.

Proof. We describe a reduction from QBF (where formulas are in 3CNF) to mem-
bership for monotonic prefix grammars with several premises.

In the same way as in the proof of Theorem 4.3, F = F1 ∧ F2 ∧ · · · ∧ Fk is a
CNF-formula over the variables x1, . . . , xn and the quantified formula to be tested
has the form

QnxnQn−1xn−1 · · ·Q1x1F

6 TITLE WILL BE SET BY THE PUBLISHER

with Qi ∈ {∀,∃} for 1 ≤ i ≤ n.
For 1 ≤ m ≤ k and 1 ≤ j ≤ n let

φm(j) =

{

t if xj ∈ Fm

f otherwise.

We define a grammar G = (Σ, S,R′) with Σ = {t, f, 1, . . . , k, τ1, . . . , τn+1} and

S = {is1s2 · · · sn |

1 ≤ i ≤ k,∃j : sj = φi(j) and (xj ∈ Fi or ¬xj ∈ Fi)

∀1 ≤ m ≤ n : sm = t if (xm 6∈ Fi and ¬xm 6∈ Fi)}.

Notice that for each clause Fi seven axioms will be included in S (one axiom for
each satisfying truth assignment to the three literals appearing in Fi).

Let

R = {is1s2 · · · sr−1t → is1s2 · · · sr−1f | 1 ≤ i ≤ k, xr 6∈ Fi, ¬xr 6∈ Fi,

is1s2 · · · sr−1t is a prefix of some α ∈ S}.

With the productions from R we can derive for every i all strings of the form iw,
where w satisfies the clause Fi. Finally, we define

R′ =R ∪ {1, . . . , k → τ1}∪

{τiu → τi+1 | 1 ≤ i ≤ n,Qi = ∃, u ∈ {t, f}}∪

{τit, τif → τi+1 | 1 ≤ i ≤ n,Qi = ∀}.

We claim that τn+1 ∈ L(G) iff the quantified formula Qnxn · · ·Q1x1F evaluates
to true. Before we prove this claim, we first consider an example. Let us take the
quantified formula

∀x3∀x2∃x1 : (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3),

which evaluates to true. Then S contains the following axioms:

1ttt 1ttf 1tft 1tff 1ftt 1ftf 1fff

2ftt 2ftf 2fft 2fff 2ttt 2ttf 2tft

The set R is empty because every clause contains either xi or ¬xi for i ∈ {1, 2, 3}.
Using the production 1, 2 → τ1 we can derive the strings

τ1ttt τ1ttf τ1tft τ1ftt τ1ftf τ1fff.

These are all truth assignments that satisfy (x1∨x2∨¬x3)∧(¬x1∨x2∨¬x3). Using
the productions τ1t → τ2 and τ1f → τ2 (note that x1 is quantified existentially),

TITLE WILL BE SET BY THE PUBLISHER 7

we obtain the strings

τ2tt τ2tf τ2ft τ2ff.

Then τ2t, τ2f → τ3 yields the strings τ3t and τ3f , from which we finally obtain τ4

using the production τ3t, τ3f → τ4.
In order to prove “τn+1 ∈ L(G) ⇐⇒ Qnxn · · ·Q1x1F evaluates to true”, we

will show that a string of the form τiw with w ∈ {t, f}n−i+1 can be derived iff
the quantified formula Qi−1xi−1 · · ·Q1x1F is satisfied by the truth assignment to
xi, . . . , xn corresponding to w. We prove this claim by induction over i. For i = 1
there are no quantifiers in Qi−1xi−1 · · ·Q1x1F . By our construction a string of
the form τ1w can only be generated by a derivation 1w, . . . , kw ⇒G τ1w. Then
every clause has to contain a satisfied literal, and consequently the conjunction F

of all clauses is satisfied by the truth assignment corresponding to w. For i > 1
assume that the claim holds for i − 1. Thus, for all w′ ∈ {t, f}n−i+2, τi−1w

′ can
be derived if and only if Qi−2xi−2 · · ·Q1x1F is satisfied by the truth assignment
to xi−1, . . . , xn corresponding to w′. If Qi−1 = ∃, then the last derivation step was
τi−1tw ⇒G τiw or τi−1fw ⇒G τiw. By the induction hypothesis at least one of tw

or fw satisfies Qi−2xi−2 · · ·Q1x1F and therefore w satisfies Qi−1xi−1 · · ·Q1x1F .
If Qi−1 = ∀, then the last step was necessarily τi−1fw, τi−1tw ⇒G τiw and by the
hypothesis both tw and fw satisfy Qi−2xi−2 · · ·Q1x1F . This argument shows for
i = n + 1 that τn+1 ∈ L(G) iff the quantified formula Qnxn · · ·Q1x1F evaluates
to true. ¤

We will finally show in this section that membership for arbitrary (not necessar-
ily monotonic) prefix grammars with several premises is complete in EXPTIME.
Our proof of this result is based on a strong relationship between prefix grammars
with several premises and alternating pushdown automata.

An alternating pushdown automaton (alternating PDA for short) [5] is a push-
down automaton A = (Q,Σ,Γ, q0, F,⊥, δ), where Q is the set of states, Σ is the
input alphabet, Γ is the pushdown alphabet, q0 ∈ Q is the initial state, F ⊆ Q is
the set of final states, ⊥ ∈ Γ is the bottom symbol, and δ : Q×Γ×Σ∪{ε} → 2Q×Γ∗

is the transition function. In addition to an ordinary nondeterministic pushdown
automaton, the set of non-final states Q \ F is partitioned into two sets Q∃ and
Q∀. A configuration of A is a triple (q, u, v) ∈ Q × Γ∗ × Σ∗. The notion of an
accepting configuration is defined as follows:

• every configuration from F × Γ∗ × {ε} is accepting.
• a configuration of the form (q,Au, av) with q ∈ Q∃, A ∈ Γ, and a ∈

Σ∪{ε} is accepting if there exists (p, α) ∈ δ(q,A, a) such that (p, αu, v) is
accepting.

• a configuration of the form (q,Au, av) with q ∈ Q∀, A ∈ Γ, and a ∈
Σ∪{ε} is accepting if for all (p, α) ∈ δ(q,A, a) the configuration (p, αu, v)
is accepting.

The alternating PDA A accepts the string v ∈ Σ∗ if the configuration (q0,⊥, v) is
accepting. The language L(A) accepted by A consists of all strings accepted by

8 TITLE WILL BE SET BY THE PUBLISHER

A. In [5] it is shown that the class of all languages that can be accepted by an
alternating PDA is precisely ETIME =

⋃

c>0 DTIME(2cn). Since ETIME contains

EXPTIME-complete languages1, we obtain the following lemma:

Lemma 4.5. There exists a fixed alternating pushdown automaton that accepts

an EXPTIME-complete language.

An alternating auxPDA [13] is an alternating PDA with a two-way input tape
that has an additional two-way read-write tape of size O(log(n)), where n is the
input length. The class of all languages that can be accepted by an alternating
auxPDA is precisely EXPTIME =

⋃

c>0 DTIME(2(nc)) [13].

Theorem 4.6. Membership for prefix grammars with several premises is complete

in EXPTIME.

Proof. In order to show membership in EXPTIME it suffices to show that mem-
bership for prefix grammars with several premises can be solved on an alternating
auxPDA A. Thus, we will construct an alternating auxPDA A such that

L(A) = {(w,G) | G is a prefix grammar with several premises and w ∈ L(G)}.

Here, the grammar G is encoded in some canonical way as a string, for instance
by listing its productions separated by some distinguished symbol. We only sketch
the automaton A. Let G = (Σ, S, P) be a prefix grammar with several premises
and let w ∈ Σ∗ be the word that has to be tested for membership in L(G). The
input tape of A contains both, the word w and a description of G. The pushdown
of A stores a word over the alphabet Σ. Since Σ is part of the input for A, a single
symbol from Σ has to be stored by a binary sequence of length O(log(n)), where
n is the total length of the input of A. Two of these blocks have to be separated
by a special symbol. The automaton A starts by pushing the word w on the
pushdown by reading w from right to left. This ensures that the topmost block of
the pushdown represents the first symbol of w. Then A repeats the following step,
where each time A chooses nondeterministically (in a state from Q∃) between one
of the following two alternatives:

• A checks, whether the pushdown contains an axiom from the set of words
S. To check this, A guesses nondeterministically one of the axioms u ∈ S

and tries to pop u⊥ from the pushdown. If this succeeds, then A accepts,
otherwise A rejects.

• A tries to apply one of the productions from P . For this, A guesses
nondeterministically a production α1, . . . , αk → β. Then, A tries to pop
β from the pushdown. If this does not succeed, then A rejects. Otherwise
A branches universally (i.e., in a state from Q∀) into k different branches.
In the i-th branch, A pushes the word αi onto the pushdown.

1If L is an EXPTIME-complete language that can be decided in time 2p(n) for some poly-

nomial p(n), then the language K = {w$p(|w|) | w ∈ L}, where $ is a new symbol, belongs to

ETIME and L can be reduced to K in logspace.

TITLE WILL BE SET BY THE PUBLISHER 9

The intuition behind the automaton A is the following: Instead of trying to derive
the word w from the axioms in S by using the productions from P , A tries to
construct a proof tree for the fact that w ∈ L(G). This proof tree is constructed by
starting from the root of the tree (i.e., the word w) and by applying the productions
of P in reverse order. Automaton A chooses a specific production that is applied to
the current pushdown contents by branching existentially. The several words that
result by applying a production from P in reverse order are verified by branching
universally. Note that the additional logspace bounded read-write tape is actually
not needed. On the other hand, the possibility of auxPDA to read the input tape
in a two-way mode is crucial for the above construction.

To sum up, the alternating auxPDA A accepts its input (w,G) if and only if
w ∈ L(G). This shows that membership for prefix grammars with several premises
belongs to EXPTIME.

In order to prove EXPTIME-hardness, it suffices by Lemma 4.5 to simulate a
specific alternating PDA by a prefix grammar with several premises. Let us fix
an alternating PDA A = (Q,Σ,Γ, q0, F,⊥, δ) that accepts an EXPTIME-complete
language. Let w ∈ Σ∗ be an input for A. We will construct a prefix grammar
G(w) with several premises such that wq0⊥ ∈ L(G(w)) if and only if w ∈ L(A).
W.l.o.g. we may assume that if A enters a final state from F , then the pushdown
only contains the bottom symbol ⊥ and the input word w is completely read. The
alphabet of G(w) is Σ∪Γ∪Q (here we assume that the three sets Σ, Γ, and Q are
pairwise disjoint). The set of axioms of G(w) is S = {q⊥ | q ∈ F}. To define the
set of productions of G(w), let us fix a triple (q,A, a) ∈ Q × Γ × Σ ∪ {ε} and let
δ(q,A, a) = {(p1, α1), . . . , (pk, αk)}. If q ∈ Q∃, then for every 1 ≤ i ≤ k and every
factorization w = uav of the word w we put the production vpiαi → avqA into the
set of productions. Now assume that q ∈ Q∀. Then for every factorization w = uav

we put the production vp1α1, . . . , vpkαk → avqA into the set of productions. For
the resulting grammar G(w) one can easily prove by induction that a configuration
(q, u, v) ∈ Q×Γ∗ ×Σ∗, which is reachable from the initial configuration (q0,⊥, w)
of A, is accepting if and only if vqu ∈ L(G(w)). Thus, wq0⊥ ∈ L(G(w)) if and
only if w ∈ L(A). ¤

5. Conclusion

We have shown that equivalence and inclusion for prefix grammars are complete
in PSPACE, a property shared by the corresponding problems for regular expres-
sions and nondeterministic finite automata. Membership however is complete in P
for prefix grammars, which appears to be harder than for the two other formalisms,
where the problem is complete in NL. With several premises membership is even
complete in EXPTIME.

The following table collects our results together with the well-known bounds for
NFA. For the equivalence problem, the same results as for the inclusion problem
hold. With two exceptions the bounds are shown in Section 4 or follow imme-
diately. The EXPSPACE upper bound on inclusion for prefix grammars with

10 TITLE WILL BE SET BY THE PUBLISHER

multiple premises can be derived by an analysis of the construction from [3]. It
leads to NFA of exponential size which are equivalent to the original grammars.
An inclusion test can then be applied to the automata. The EXPTIME upper
bound on inclusion for monotonic prefix grammars with multiple premises is ob-
tained by enumerating all possible words (their length is bounded by the longest
axiom) and checking for membership.

membership inclusion

NFA NL PSPACE

prefix grammars P PSPACE

monotonic prefix grammars NL · · · P Co-NP

prefix grammars with multiple
premises

EXPTIME
EXPTIME · · ·
EXPSPACE

monotonic prefix grammars
with multiple premises

PSPACE · · ·
EXPTIME

PSPACE · · ·
EXPTIME

An entry with a single complexity class means completeness for that class. An
entry C1 · · · C2 for complexity classes C1 and C2 means that C1 is a lower bound for
the corresponding problem, whereas C2 is an upper bound.

Acknowledgments

Helpful comments of the referees of DCFS 2003 on a preliminary version of
this paper are gratefully acknowledged. This work has been supported by the
Hungarian-German research project No. D 39/2000 of the Hungarian Ministry of
Education and the German BMBF.

References

[1] J. R. Büchi. Regular canonical systems. Archiv Math. Logik und Grundlagenforschung, 6:91–
111, 1964.

[2] J. R. Büchi. Finite Automata, their Algebras and Grammars. Springer, Berlin-Heidelberg-
New York, 1989.

[3] J. R. Büchi and W. H. Hosken. Canonical systems which produce periodic sets. Mathematical

Systems Theory, 4:81–90, 1970.

[4] D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science,

106:61–86, 1992.
[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association

for Computing Machinery, 28(1):114–133, 1981.
[6] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-

ing pushdown systems. In E. A. Emerson and A. P. Sistla, editors, Proc. of 12th Interna-

tional Conference on Computer Aided Verification (CAV), number 1855 in Lecture Notes

in Computer Science, pages 232–247. Springer, 2000.

[7] J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL with regular valuations for

pushdown systems. Information and Computation, 186:355–376, 2003.

TITLE WILL BE SET BY THE PUBLISHER 11

[8] M. Frazier and C. D. Page Jr. Prefix grammars: An alternative characterization of the

regular languages. Information Processing Letters, 51:67–71, 1994.

[9] S. A. Greibach. A note on pushdown store automata and regular systems. Proceedings of

the AMS, 18:263–268, 1967.

[10] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing the equivalence of finite

automata. Report TR 71-114, Department of Computer Science, Cornell University, 1971.

[11] N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial time. The-

oretical Computer Science, 3:105–117, 1977.

[12] M. Kratko. Formal post calculi and finite automata. Problemy Kibernet., 17:41–65, 1966. In

Russian.

[13] R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack automata.

SIAM Journal on Computing, 13(1):135–155, 1984.

[14] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with

squaring requires exponential space. In Proceedings of the 13th Annual IEEE Symposium

on Switching and Automata Theory, College Park (Maryland), pages 125–129, 1972.

[15] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[16] H. Petersen. Prefix rewriting and descriptional complexity. Journal of Automata, Languages

and Combinatorics, 5:245–254, 2000.

[17] B. Ravikumar and L. Quan. Efficient algorithms for prefix grammars. Available at:

http://www.cs.sonoma.edu/∼ravi, 2002.

[18] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings
of the 5th ACM Symposium on Theory of Computing (STOC’73), Austin (Texas), pages
1–9, 1973.

[19] H. Straubing Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

