
WORD PROBLEMS AND MEMBERSHIP PROBLEMS ON

COMPRESSED WORDS

MARKUS LOHREY∗

Abstract. We consider a compressed form of the word problem for finitely presented monoids,
where the input consists of two compressed representations of words over the generators of a monoid
M, and we ask whether these two words represent the same monoid element of M. Words are
compressed using straight-line programs, i.e., context-free grammars that generate exactly one word.
For several classes of finitely presented monoids we obtain completeness results for complexity classes
in the range from P to EXPSPACE. As a by-product of our results on compressed word problems we
obtain a fixed deterministic context-free language with a PSPACE-complete compressed membership
problem. The existence of such a language was open so far. Finally, we will investigate the complexity
of the compressed membership problem for various circuit complexity classes.

Key words. grammar-based compression, word problems for monoids, context-free languages,
complexity

AMS subject classifications. 20F10, 68Q17, 68Q42

1. Introduction. During the last decade, the massive increase in the volume
of data has motivated the investigation of algorithms on compressed data, like for
instance compressed strings, trees, or pictures. The general goal is to develop algo-
rithms that directly work on compressed data without prior decompression. Let us
mention here the work on compressed pattern matching, see, e.g., [19, 23, 49, 60].

In this paper we investigate two classes of computational problems on compressed
data that are of central importance in theoretical computer science since its very
beginning: the word problem and the membership problem.

In its most general form, the word problem asks whether two terms over an alge-
braic structure represent the same element of the structure. Here, we restrict to the
word problem for finitely presented monoids, i.e., monoids that are given by a finite set
of generators and defining relations. In this case the input consists of two finite words
over the set of generators and we ask whether these two words represent the same
monoid element. The undecidability results concerning the word problem for finitely
presented monoids [47, 56] and finitely presented groups [12, 51] are among the first
undecidability results that touched “real mathematics”. Moreover, these negative re-
sults motivated a still ongoing investigation of decidable subclasses of word problems
and their computational complexity. In particular, monoids that can be presented
by terminating and confluent semi-Thue systems (i.e., string rewriting systems where
every word can be rewritten in a finite number of steps to a unique irreducible word),
see [11, 33], received a lot of attention: these monoids have decidable word prob-
lems, and if the restriction to terminating systems is suitably sharpened, then precise
complexity bounds can be deduced [10, 41, 42]. All relevant definitions concerning
semi-Thue systems and finitely presented monoids are collected in Section 3.3.

In its compressed variant, the input to the word problem for a (finitely pre-
sented) monoid consists of two compressed representations of words over the gener-
ators. Here we choose straight-line programs, or equivalently context-free grammars
that generate exactly one word, for compression — this approach is also known as
grammar-based compression. See Section 3.4 for a formal definition of straight-line

∗Institut für Formale Methoden der Informatik, Universität Stuttgart, Universitätsstr. 38, 70569
Stuttgart, Germany (lohrey@informatik.uni-stuttgart.de).

1

2 M. LOHREY

programs. Recently, straight-line programs turned out to be a very flexible com-
pressed representation of strings. Several other compressed representations, like for
instance Lempel-Ziv factorizations [73], can be efficiently converted into straight-line
programs and vice versa [55], which implies that most of our complexity results will
also hold for Lempel-Ziv factorizations. An algorithmic application of this efficient
transformation to and into straight-line programs is given in [23], where the pattern
matching problem for Lempel-Ziv compressed texts is solved efficiently via reduction
to straight-line programs. Finally, by using straight-line programs for representing
inputs, the compressed word problem becomes equivalent to the well-known circuit
equivalence problem (a generalization of the circuit evaluation problem), where we ask
whether two circuits over a finitely presented monoidM (i.e., acyclic directed graphs
with leafs labeled by generators of M and internal nodes labeled by the monoid op-
eration) evaluate to the same element of M. This problem was mainly investigated
for finite structures (e.g., finite monoids [7]) and integer circuits [48] so far. From
this perspective, the compressed word problem highlights the classical circuit versus
formula evaluation problem in the context of finitely presented monoids.

In Section 4–7 we study the complexity of compressed word problems for several
subclasses of monoids presented by terminating and confluent semi-Thue systems.
For this we will distinguish semi-Thue systems with respect to the syntactical form of
the rewriting rules. In Section 4 and 5 we will consider confluent and 2-homogeneous
semi-Thue systems, which are confluent systems where all rules are of the form w → ε
with w of length 2. For confluent and 2-homogeneous systems that satisfy a further
syntactical restriction (which we call N -freeness) we prove that the presented monoid
has a polynomial time solvable compressed word problem (Theorem 4.5). For all
other confluent and 2-homogeneous systems, the compressed word problem becomes
coNP-hard (Corollary 5.9) and is contained in PNP (Theorem 5.1). In Section 6 we
show that the complexity of the compressed word problem increases to PSPACE-
completeness if we allow also rules of the form u → v, where again u has length
2 but v may have length 0 or 1 (Theorem 6.6) — the resulting semi-Thue systems
are called 2-monadic. The largest class of semi-Thue systems that is considered in
this paper consists of confluent and weight-reducing systems. It is briefly studied in
Section 7, where it is shown that the compressed word problem for a monoid which
is presented by a confluent and weight-reducing semi-Thue system is in EXPSPACE
and is EXPSPACE-hard for some specific system (Theorem 7.1).

As a by-product of our investigation of compressed word problems we obtain sev-
eral new results concerning compressed membership problems. Here, the problem is
to decide for a fixed language L (e.g., a regular or context-free language), whether
a given straight-line compressed word w belongs to L [55]. Using Theorem 6.6 con-
cerning 2-monadic semi-Thue systems, we show that there exists a fixed determinis-
tic context-free (even deterministic linear) language with a PSPACE-complete com-
pressed membership problem (Corollary 6.7), which solves an open problem from
[23, 55]. Corollary 6.7 should be compared with a result from [24], stating that
given a straight-line compressed word w and a nondeterministic hierarchical automa-
ton A (see [24] for a precise definition) it is PSPACE-complete to decide whether
w ∈ L(A). It is straight-forward to transform a hierarchical automaton in logspace
into an equivalent nondeterministic push-down automaton of the same size. Corol-
lary 6.7 improves the result of [24] in two aspects: (i) the context-free language in
Corollary 6.7 is deterministic and (ii) it is fixed, i.e., it does not belong to the input.
Another result related to Corollary 6.7 was recently shown in [50]: it is PSPACE-

WORD PROBLEMS ON COMPRESSED WORDS 3

complete to decide for two given non-recursive context-free grammars G1 and G2

whether L(G1)∩L(G2) 6= ∅. Non-recursive context-free grammars generate finite lan-
guages, in particular, a straight-line program is a non-recursive context-free grammar.
Thus, in comparison to the result of [50], we sharpen the condition on the grammar
G1 (it has to be a straight-line program) but relax the condition on G2 (it generates
an infinite language). One should also note that for the result of [50] it is crucial that
both G1 and G2 are part of the input.

Compressed membership problems for context-free languages are also interesting
in light of recent attempts to use straight-line programs for the compressed repre-
sentation of control flow traces of procedural programming languages [36, 72]. At
a certain level of abstraction, the set of all valid control flow traces of a procedural
programming language is a context-free language.

In Section 8 we will investigate the complexity of the compressed membership
problem for various circuit complexity classes. We show that the levels of the logtime
hierarchy [63] correspond in a compressed setting to the levels of the polynomial time
hierarchy. This is another instance of a general phenomenon that we observe: in the
worst case there is an exponential jump with respect to computational complexity
when moving from the (uncompressed) word/membership problem to its compressed
variant. This exponential jump is well known also from other work on the complex-
ity of succinct problems [21, 66, 68, 69], where Boolean circuits/formulas are used
for the succinct representation of graphs. But whereas for these formalisms general
upgrading theorems can be shown, which roughly state that completeness of prob-
lem for a complexity class C implies completeness of the compressed variant for the
exponentially harder version of C, such an upgrading theorem fails for straight-line
programs: The compressed membership problem for a language may be of the same
complexity as the language itself (Proposition 8.5). Thus, the relationship between
a computational problem and its straight-line compressed variant is quite loose. A
similar phenomenon was observed in the context of hierarchical graph descriptions
[38], which can be seen as graph generating straight-line programs.

An extended abstract of this paper appeared in [43].

2. Related work. One of the most intensively studied problems on compressed
strings is the pattern matching problem, see e.g. [19, 23, 49, 60]. In these papers,
strings are either compressed using a variant of Lempel-Ziv encoding or straight-line
programs. Compressed membership problems for straight-line compressed words were
investigated for the first time in [23, 55, 59], see also [62] for a recent survey.

The problem of checking whether for a given input string s and a given integer n
there exists a straight-line program of size at most n that generates s is NP-complete
[37]. A smallest straight-line program generating a given input string is even hard
to approximate up to some constant factor unless P = NP [37]. Practical algorithms
for generating a small straight-line program that produces a given input string were
proposed and analyzed with respect to their approximation ratios in [16, 37, 61].

Algorithmic problems on compressed data were also investigated for more general
structures than only strings. Complexity theoretical investigations of computational
problems on compressed graphs can be found in [13, 20, 21, 38, 44, 53, 66, 67, 68,
69]. In [13, 21, 53, 68, 69] (resp. [66]) Boolean circuits (resp. formulas) are used
for compression, [20, 67] uses OBBDs, and in [38, 44] graphs are represented via
hierarchical graph descriptions. The latter formalism can be seen as an adaptation of
the idea of grammar-based compression to the context of graphs. Recently, grammar-
based compression was also used in the context of XML in order to obtain succinct

4 M. LOHREY

representations of large XML documents [14, 45, 46, 71]. Here, context-free tree
grammars are used as a compact representation of XML-skeletons.

3. Preliminaries.

3.1. General notations. For a binary relation → on some set, we denote by
+
→ (

∗
→) the transitive (reflexive and transitive) closure of →. For sets A, B, and

C, we write A = B] C, if A is the disjoint union of B and C (B or C may be
empty). Let Γ be a finite alphabet. The empty word over Γ is denoted by ε. Let
s = a1a2 · · · an ∈ Γ∗ be a word over Γ, where ai ∈ Γ for 1 ≤ i ≤ n. We define
wrev = anan−1 · · · a1. The alphabet of s is alph(s) = {a1, . . . , an}. The length of s is
|s| = n. Furthermore for a ∈ Γ we define |s|a = |{i | ai = a}|. For 1 ≤ i ≤ n let
s[i] = ai and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj . If i > j we set s[i, j] = ε. For
a subalphabet Σ ⊂ Γ we define the projection morphism πΣ : Γ∗ → Σ∗ by πΣ(a) = ε
if a 6∈ Σ and πΣ(a) = a if a ∈ Σ. For a language L ⊆ Γ∗ we define the language
Pref(L) = {w ∈ Γ∗ | w is a prefix of some u ∈ L}. An involution on Γ is a function

: Γ → Γ such that a = a for all a ∈ Γ. It may have fixed points, i.e., a = a for
some a ∈ Γ. The involution : Γ → Γ can be extended to an involution on Γ∗ by
setting a1 · · · an = an · · · a1. By Γ = {a | a ∈ Γ} we will always denote a disjoint
copy of the alphabet Γ. Then we can define an involution on ∆ = Γ ∪ Γ by setting
a = a; this involution will be extended to ∆∗ in the above way. A weight-function
is a homomorphism f : Γ∗ → N from the free monoid Γ∗ with concatenation to the
natural numbers with addition such that f(s) = 0 if and only if s = ε. Given a linear
oder Â on the alphabet Γ, we extend Â to a linear order on Γ∗, called the lexicographic
extension of Â, as follows: u Â v if either v is a prefix of u or there exist factorizations
u = wau′ and v = wbv′ with a, b ∈ Γ and a Â b. For two monoids M1 and M2 we
write M1

∼=M2 if M1 and M2 are isomorphic.

3.2. Complexity theory. We assume that the reader is familiar with standard
complexity classes like P, coNP, PSPACE, and EXPSPACE, see, e.g., [52] for more
details. All hardness results in this paper refer to logspace reductions unless some
stronger form of reductions is mentioned explicitly. Several times we will use the
fact that addition and multiplication of integers with nO(1) many bits can be done
in space O(log(n)). In Section 8 we will make use of alternating Turing-machines
with logarithmic running times. An alternating Turing-machine is a nondeterministic
Turing-machine, where the set of states is partitioned into existential and universal
states [15]. A configuration with a universal (resp. existential) state is accepting if
every (resp. some) successor state is accepting. An alternation in a computation of
an alternating Turing-machine is a transition from a universal state to an existential
state or vice versa. Following [15], we add a random access mechanism to the ordinary
Turing-machine model when dealing with sublogarithmic time bounds: There exists
a special address tape that contains a binary coded number p. If the machine enters
a special query state, then it has random access to the p-th symbol of the input. This
mechanism allows a Turing-machine to reach every input position in logarithmic time.
If the address tape contains a position, which is larger than the length of the input,
then querying the input yields some distinguished special symbol. With DLOGTIME
(resp. ALOGTIME) we denote the class of languages that can be recognized on a
deterministic (resp. alternating) Turing-machine in time O(log(n)). It is known that
ALOGTIME is equal to uniform NC1 [3], which is the class of all languages that
can be recognized by a uniform family of polynomial-size, logarithmic-depth, fan-in 2
Boolean circuits. Functions computable in uniform NC1 are defined analogously by

WORD PROBLEMS ON COMPRESSED WORDS 5

allowing circuits with more than one output. For the considerations in this paper,
it is not necessary to go into the quite technical details of the precise definition of
uniformity. We just remark that Ruzzo’s UE∗-uniformity of circuit families [58] would
be suitable for all purposes in this paper. A language L ⊆ {0, 1}∗ is NC1-many-one
reducible to a language K ⊆ {0, 1}∗, briefly L ≤NC1 K, if there exists a function f
which is computable in uniform NC1 such that for all x ∈ {0, 1}∗, x ∈ L if and only
if f(x) ∈ K.

3.3. Semi-Thue systems and finitely presented monoids. Presentations
for monoids are the basic concept of this work. In this section we will introduce the
necessary definitions. For more details and references see [11, 33].

Let Γ be a finite alphabet. A semi-Thue system R over Γ is a finite subset R ⊆
Γ∗×Γ∗, whose elements are called rules. A rule (s, t) ∈ R will be also written as s→ t.
The pair (Γ, R) is called a monoid presentation. The sets dom(R) of all left-hand sides
and ran(R) of all right-hand sides are defined by dom(R) = {s | ∃t : (s, t) ∈ R} and
ran(R) = {t | ∃s : (s, t) ∈ R}, respectively. We define two binary relations →R and
↔R on Γ∗ as follows:

• s →R t if there exist u, v ∈ Γ∗ and (`, r) ∈ R with s = u`v and t = urv (the
one-step rewrite relation)

• s↔R t if (s→R t or t→R s)
We also write t R← s in case s →R t. Let RED(R) = Γ∗ · dom(R) · Γ∗ be the set
of reducible words and IRR(R) = Γ∗\RED(R) be the set of irreducible words (with
respect to R). The presentation (Γ, R) is terminating if there does not exist an
infinite chain s1 →R s2 →R s3 →R · · · in Γ∗. The presentation (Γ, R) is confluent

if for all s, t, u ∈ Γ∗ with t R
∗
← s

∗
→R u there exists v ∈ Γ∗ with t

∗
→R v R

∗
←u. It

is well-known that (Γ, R) is confluent if and only if (Γ, R) is Church-Rosser, i.e., for

all s, t ∈ Γ∗, if s
∗
↔R t, then s

∗
→R u R

∗
← t for some u ∈ Γ∗. The presentation

(Γ, R) is locally confluent if for all s, t, u ∈ Γ∗ with t R← s →R u there exists v ∈ Γ∗

with t
∗
→R v R

∗
←u. By Newman’s Lemma, a terminating presentation is confluent if

and only if it is locally confluent. Moreover, if (Γ, R) is terminating and confluent,
then for every s ∈ Γ∗ there exists a unique normal form NFR(s) ∈ IRR(R) such

that s
∗
→R NFR(s). It is undecidable whether a given presentation is terminating,

confluent, or locally confluent, respectively. On the other hand, for a terminating
presentation, local confluence (and hence by Newman’s Lemma also confluence) can
be checked using critical pairs, which result from overlapping left-hand sides.

The relation
∗
↔R is a congruence relation with respect to the concatenation of

words, it is called the Thue-congruence generated by (Γ, R). Hence we can define the

quotient monoid Γ∗/
∗
↔R, which we denote byM(Γ, R). It is called a finitely presented

monoid, and we say that M(Γ, R) is the monoid presented by (Γ, R).
A decision problem that is of fundamental importance in the theory of monoid

presentations is the word problem. Let (Γ, R) be a fixed presentation. The word
problem for (Γ, R) is the following decision problem:

INPUT: Two words s, t ∈ Γ∗.

QUESTION: Does s
∗
↔R t hold, i.e., do s and t represent the same element of the

monoid M(Γ, R)?

Here, the input size is |s|+ |t|.
If (Γ, R) and (Σ, S) are presentations such that M(Γ, R) ∼=M∼=M(Σ, S), then

for every a ∈ Γ there exists a word wa ∈ Σ∗ such that a and wa represent the same

6 M. LOHREY

element of M. If we define the homomorphism h : Γ∗ → Σ∗ by h(a) = wa then for

all s, t ∈ Γ∗ we have s
∗
↔R t if and only if h(s)

∗
↔S h(t). Thus, the word problem for

(Γ, R) can be reduced to the word problem for (Σ, S) and vice versa. Moreover, this
reduction can be realized in deterministic logspace (even in uniform TC0 [35]). Thus,
the decidability and complexity of the word problem do not depend on the chosen
presentation. Since we are only interested in decidability and complexity questions
for word problems, we may just speak of the word problem for the monoid M.

It is well-known that in case (Γ, R) is a terminating and confluent presentation,

then the word problem for M(Γ, R) is decidable: in order to check whether u
∗
↔R v

it suffices to verify whether NFR(u) = NFR(v). On the other hand, this algorithm
does not yield any upper bound on the computational complexity of the word problem
[5]. Complexity results on word problems for restricted classes of finitely presented
monoids can be found for instance in [10, 41, 42].

3.4. Grammar based compression. Following [55], a straight-line program
(SLP) (over the terminal alphabet Γ) is a restricted context-free grammar G =
(V,Γ, S, P) (where V is the set of nonterminals, Γ is the set of terminals, S ∈ V
is the initial nonterminal, and P ⊆ V × (V ∪ Γ)∗ is the set of productions) such that:

• for every X ∈ V there exists exactly one production of the form (X,α) ∈ P
for α ∈ (V ∪ Γ)∗, and

• there exists a linear order ≺ on the set of nonterminals V such that X ≺ Y
whenever there exists a production of the form (X,α) ∈ P with Y ∈ alph(α).1

Clearly, the language generated by the SLP G consists of exactly one word that is
denoted by eval(G). More generally, from every nonterminal X ∈ V we can generate
exactly one word that is denoted by evalG(X) (thus eval(G) = evalG(S)). We omit
the index G if the underlying SLP is clear from the context. We also write P (G) for
the set of productions P . The size of G is |G| =

∑
(X,α)∈P |α|. Note that every SLP

can be transformed in polynomial time into an equivalent SLP in Chomsky normal
form, i.e., all productions have the form (A, a) with a ∈ Γ or (A,BC) with B,C ∈ V .

Example 3.1. Consider the straight-line program G7 over the terminal alphabet
{a, b} that consists of the following productions:

Xi → Xi−1Xi−2 for 3 ≤ i ≤ 7, X2 → a, X1 → b.

X7 is the start nonterminal. Then eval(G7) = abaababaabaab, which is the 7-th
Fibonacci word. The straight-line program G7 is in Chomsky normal form and |G7| =
12.

Sometimes we will also allow exponential expressions of the form Ai for A ∈ V
and i ∈ N in the right-hand sides of productions. Here the number i is coded binary.
Such an expression can be replaced by a sequence of ordinary productions, where the
length of that sequence is bounded polynomially in the length of the binary coding
of i. The following lemma collects several simple algorithmic properties of SLPs that
will be used several times in this paper.

Lemma 3.2. The following tasks can be easily solved in polynomial time:
1. Given an SLP G, calculate |eval(G)| and alph(eval(G)).

1The term “straight-line program” is used for such a context-free grammar, because a production
A → α corresponds to a definition A := α. Thus, the whole context-free grammar can be interpreted
as a linear sequence of instructions, i.e., a straight-line program. Usually one allows in straight-line
programs also instructions, where the defined variable appears on the right-hand side (e.g., x := x+1).
But instructions of this kind can be easily eliminated by introducing additional variables.

WORD PROBLEMS ON COMPRESSED WORDS 7

2. Given an SLP G and a number i ∈ {1, . . . , |eval(G)|}, calculate eval(G)[i].
3. Given an SLP G over the terminal alphabet Γ and a homomorphism ρ :

Γ∗ → Σ∗, calculate an SLP H such that eval(H) = ρ(eval(G)) (this is in fact
possible in logspace).

The proofs of these statements are straight-forward. The following result from
[30, 54] is much harder to obtain:

Lemma 3.3 ([30, 54]). For two given SLPs G1 and G2, we can decide in polyno-
mial time whether eval(G1) = eval(G2).

It is open, whether this problem is P-complete. In this work, we will consider the
following generalization: Let (Γ, R) be a fixed monoid presentation. The compressed
word problem for the monoid M(Γ, R) is the following problem:

INPUT: Two SLPs G1 and G2 over the terminal alphabet Γ.

QUESTION: Does eval(G1)
∗
↔R eval(G2) hold?

Here, the input size is |G1| + |G2|. Analogously to the uncompressed word prob-
lem, the complexity of the compressed word problem does not depend on the chosen
presentation (for this, Lemma 3.2, statement 3, can be used). For a fixed language
L ⊆ Γ∗ we will also consider the compressed membership problem for the language L,
which is the following problem:

INPUT: An SLP G over the terminal alphabet Γ.

QUESTION: Does eval(G) ∈ L hold?

We can view the compressed word problem also from another perspective. A circuit
C over M(Γ, R) is a finite directed acyclic graph with exactly one node of outdegree
0. The nodes of indegree 0 are labeled with elements from Γ. All nodes of indegree
greater than zero are labeled with the multiplication of the monoid M(Γ, R). Such
a circuit computes in a natural way an element of M(Γ, R). Then, the compressed
word problem for M(Γ, R) is equivalent to the question, whether two given circuits
overM(Γ, R) compute the same monoid element. This question has been considered
in [7] for the case of finite monoids. Clearly, for a finite monoid, the compressed
word problem can be solved in polynomial time. In [7], it was shown that for a finite
non-solvable monoid the compressed word problem is P-complete, whereas for every
finite solvable monoid the compressed word problem belongs to DET (the class of all
problems that are NC1-reducible to the calculation of an integer determinant [17]) and
hence to NC2. Due to the tight correspondence between finite monoids and regular
languages, every compressed word problem for a finite monoid is equivalent to the
compressed membership problem for a specific regular language and vice versa. Thus,
[7] gives a complete classification of the complexity of the compressed membership
problem for regular languages. Our work can be seen as a first step of an extension
of the work from [7] to finitely presented infinite monoids.

Finally, let us remark that most of our complexity results can be transfered to
other compression schemes, like for instance Lempel-Ziv 77, briefly LZ77 [73]. If w is a
string and G is an SLP of size n with eval(G) = w, then LZ(w) (the LZ77-compressed
representation of w) has size O(n) and can be constructed in polynomial time [55, 61].
On the other hand, if n is the size of LZ(w), then we can construct in polynomial
time an SLP of size O(n2 · log(n)) that generates w [55]. Thus, if we allow polynomial
time reductions, all our hardness results for complexity classes above P also hold, if
we use LZ77 for compression. Since the transformation from an SLP to the LZ77-
compressed representation might be P-hard, we cannot transfer directly P-hardness
results for straight-line programs to LZ77.

8 M. LOHREY

4. Compressed word problems in P. As already mentioned in the previous
section, for every finite monoid the compressed word problem is solvable in polynomial
time. In this section we will present a class of infinite monoids with polynomial time
solvable compressed word problems. This class contains all free groups. We will also
prove that the compressed word problem for every free group of rank at least 2 is
P-complete.

A presentation (Γ, R) is called 2-homogeneous if for every (`, r) ∈ R: |`| = 2
and r = ε [9]. In [42] it was shown that for every 2-homogeneous presentation the
(uncompressed) word problem is in logspace. Moreover, the uniform variant of the
word problem for 2-homogeneous presentations, where the presentation is part of the
input, is complete for symmetric logspace [42].

The following result was shown by Book [9]:
Proposition 4.1 ([9]). For every 2-homogeneous presentation (Γ, R) there exists

a 2-homogeneous and confluent presentation (Σ, S) with M(Γ, R) ∼=M(Σ, S).
For the further consideration let us fix a 2-homogeneous presentation (Γ, R). By

Proposition 4.1 we may assume that (Γ, R) is confluent. The following lemma is easy
to prove.

Lemma 4.2. Let u, v ∈ IRR(R). Then there exist factorizations u = u1u2 and

v = v1v2 such that NFR(uv) = u1v2, |u2| = |v1|, and u2v1
∗
→R ε.

The following lemma was shown in [42].
Lemma 4.3 ([42]). There exists a partition Γ = Σ`] Σr]∆ and an involution

: ∆→ ∆ with {(aa, ε) | a ∈ ∆} ⊆ R ⊆ {(aa, ε) | a ∈ ∆}∪{(ab, ε) | a ∈ Σ`, b ∈ Σr}.
We say that (Γ, R) is N -free, if there do not exist a, b ∈ Σ` and c, d ∈ Σr (where

Σ` and Σr result from Lemma 4.3) such that ac, ad, bc ∈ dom(R) but bd 6∈ dom(R).
N -freeness means that the bipartite graph (Σ` ∪ Σr, {(a, b) ∈ Σ` × Σr | (ab, ε) ∈ R})
does not contain an N -shaped induced subgraph, i.e., it is a disjoint union of complete
bipartite graphs.

Example 4.4. Let Γ = {a, a, b, b} and R = {(aa, ε), (aa, ε), (bb, ε), (bb, ε)}. Then
(Γ, R) is 2-homogeneous, confluent, and N -free. In fact, we have ∆ = Γ and Σ` =
Σr = ∅. The monoid M(Γ, R) is the free group of rank 2, see also the paragraph
before Theorem 4.9. If Γ = {a, b, c, d} and R = {(ac, ε), (ad, ε), (bc, ε)}, then (Γ, R)
is 2-homogeneous and confluent but not N -free. In fact, (Γ, R) is contained in every
2-homogeneous and confluent presentation, which is not N -free.

Theorem 4.5. If (Γ, R) is 2-homogeneous, confluent, and N -free, then the com-
pressed word problem for M(Γ, R) is in P.

In the next section we will see that Theorem 4.5 cannot be extended to non-N -free
presentations unless P = NP.

The proof of Theorem 4.5 will be presented after introducing composition sys-
tems [23] — a generalization of straight-line programs. A composition system G =
(V,Γ, S, P) is defined analogously to an SLP, but in addition to productions of the form
A→ α (A ∈ V , α ∈ (V ∪Γ)∗) it may also contain productions of the form A→ B[i, j]
for B ∈ V and i, j ∈ N. For such a production we define evalG(A) = evalG(B)[i, j],
i.e., we select from evalG(B) the subword from position i to position j.2 We also allow
more general rules like for instance A→ B[i, j]C[k, `], of course this does not lead to
higher compression rates. As for SLPs we define eval(G) = evalG(S). The following
result from [23] generalizes Lemma 3.3:

2In [23], a slightly more restricted formalism, where only productions of the form A →
B[j, |evalG(B)|]C[1, i] are allowed, was introduced. But this definition is easily seen to be equiv-
alent to our formalism.

WORD PROBLEMS ON COMPRESSED WORDS 9

Lemma 4.6 ([23]). For two given composition systems G1 and G2, we can decide
in polynomial time whether eval(G1) = eval(G2).

The following result was shown in [29, Chap. 8]:
Lemma 4.7 ([29]). A given composition system can be transformed in polynomial

time into an SLP that generates the same word.
Lemma 4.7 leads to an alternative proof of Lemma 4.6: transform the two given

composition systems in polynomial time into equivalent SLPs and apply Lemma 3.3.
Moreover, Lemma 4.7 implies that all statements from Lemma 3.2 also hold for com-
position systems.

Lemma 4.8. Assume that (Γ, R) is 2-homogeneous, confluent, and N -free. Then
the following problem belongs to P:

INPUT: Composition systems G1 and G2 with eval(G1), eval(G2) ∈ IRR(R) and
|eval(G1)| = |eval(G2)|.

QUESTION: Does eval(G1)eval(G2)
∗
→R ε hold?

Proof. Let Γ = Σ`]Σr]∆ be the partition resulting from Lemma 4.3 and : ∆→
∆ be the corresponding involution on ∆. Note that eval(G1), eval(G2) ∈ IRR(R) and

eval(G1)eval(G2)
∗
→R ε implies that eval(G1) ∈ (Σ` ∪∆)∗ and eval(G2) ⊆ (Σr ∪∆)∗.

Thus, we first check in polynomial time whether this is true; if not we can reject. Next,
from G2 we can easily construct (by reversing productions) a composition system G′

2

with eval(G′
2) = eval(G2)

rev. Since (Γ, R) is N -free, we can find partitions Σ` =⊎k

i=1 Σ`,i and Σr =
⊎k

i=1 Σr,i such that

R = {(aa, ε) | a ∈ ∆} ∪
k⋃

i=1

{(ab, ε) | a ∈ Σ`,i, b ∈ Σr,i}.

Let us take new symbols a1, . . . , ak and define homomorphisms ρ1 and ρ2 by ρ1(a) =
ρ2(a) = ai for all a ∈ Σ`,i ∪ Σr,i, 1 ≤ i ≤ k, ρ1(a) = a for all a ∈ ∆ and ρ2(a) = a
for all a ∈ ∆. From G1 and G′

2 we can construct in polynomial time composition
systems H1, H2 such that eval(H1) = ρ1(eval(G1)) and eval(H2) = ρ2(eval(G

′
2)). By

construction, we have eval(G1)eval(G2)
∗
→R ε if and only if eval(H1) = eval(H2). The

latter identity can be verified in polynomial time by Lemma 4.6.
Proof of Theorem 4.5. Let (Γ, R) be a fixed 2-homogeneous, confluent, and N -

free presentation. Given SLPs G1 and G2 over the terminal alphabet Γ, we have to
verify in polynomial time, whether NFR(eval(G1)) = NFR(eval(G2)). By Lemma 4.6,
it suffices to prove that given an SLP G in Chomsky normal form over the terminal
alphabet Γ, we can construct in polynomial time a composition system H such that
eval(H) = NFR(eval(G)). We construct H inductively by adding more and more rules.
Initially, we put into P (H) all productions from P (G) of the form A→ a with a ∈ Γ.
Now assume that A → BC belongs to P (G) and that H already contains enough
productions such that evalH(B) = NFR(evalG(B)) and evalH(C) = NFR(evalG(C)).
We first calculate the largest i such that

evalH(B) = u1u2, evalH(C) = v1v2, |u2| = |v1| = i, u2v1
∗
→R ε. (4.1)

Lemma 4.2 implies that NFR(evalG(A)) = u1v2. For a given i ∈ N, we can check
condition (4.1) in polynomial time by Lemma 4.8. Since i is bounded exponentially
in the input size, the largest i satisfying (4.1) can be calculated in polynomial time
by doing a binary search. For this largest i we add to the current H the production

10 M. LOHREY

A→ B[1, |evalH(B)|−i]C[i+1, |evalH(C)|]. This concludes the proof of Theorem 4.5.

For a finite alphabet Γ, the free group F (Γ) generated by Γ is defined as

F (Γ) =M(Γ ∪ Γ, {(cc, ε) | c ∈ Γ ∪ Γ}). (4.2)

Recall from Section 3.1 that we define an involution on Γ∪Γ by setting a = a. Clearly,
F (Γ) is indeed a group. In case |Γ| = n we also write Fn instead of F (Γ) and call it
the free group of rank n. It is known that the (uncompressed) word problem for a free
group is in logspace [40]. Moreover, the word problem for F2 hard for uniform NC1

[57]. By Theorem 4.5, the compressed word problem for every free group Fn is in P
(we have Σ` = Σr = ∅ for the presentation in (4.2)). This upper bound is also sharp:

Theorem 4.9. The compressed word problem for F2 is P-complete.
Proof. It suffices to prove P-hardness, which will be done by a reduction from the

monotone circuit value problem, i.e., the problem whether a Boolean circuit consisting
of AND and OR gates evaluates to TRUE [25]. We will use the following result, which
is proved in [57]: Let Γ = {a, b} and x, y ∈ (Γ ∪ Γ)∗ such that |x| = |y| = k and
|x|a − |x|ā = |y|a − |y|ā = 0. Then, if we interpret x and y as elements from F2, the
following holds, where 1 denoted the neutral element of F2:

(x = 1) ∨ (y = 1) ⇔ ā3kxa3kyā3kxa3ky = 1

(x = 1) ∧ (y = 1) ⇔ ā3kxa3kyā3kxa3ky = 1

Note that the words on the right of these equivalences have length 16k and that the
number of a’s minus the number ā’s is again 0.

Now let C be a monotone Boolean circuit. W.l.o.g. we can assume that C is
layered, i.e., the gates of C are partitioned into n layers and a gate in layer i > 1
receives its inputs from layer i− 1 see, e.g., [28, Problem A.1.6]. Layer 1 contains the
input gates and layer n contains the unique output gate. We now construct an SLP
G(C) as follows. For every gate z of C, G contains two nonterminals Az and Az̄. The
nonterminal Az will evaluate to a string that represents the 1 of F2 if and only if gate
z of the circuit evaluates to TRUE. The nonterminal Az̄ evaluates to the inverse of
evalG(C)(Az) in F2. Moreover, we will have |evalG(C)(Az)| = |evalG(C)(Az̄)| = 2·16i−1

if z is located in the i-th layer of the circuit (1 ≤ i ≤ n).
For every input gate x in layer 1 we introduce the productions

Ax →

{
aā if input gate x is TRUE

b2 if input gate x is FALSE

Ax̄ →

{
aā if input gate x is TRUE

b̄2 if input gate x is FALSE

If z is an OR gate in the ith layer (i ≥ 2) with input gates x and y from the (i−1)-th
layer, then the productions for Az and Az̄ are

Az → ā6·16i−2

Axa6·16i−2

Ayā6·16i−2

Ax̄a6·16i−2

Aȳ and

Az̄ → Ayā6·16i−2

Axa6·16i−2

Aȳā6·16i−2

Ax̄a6·16i−2

.

Note that the binary codings of the exponents 6 · 16i−2 have polynomial length and
hence each of the above productions can be replaced by a sequence of ordinary pro-
ductions. Moreover, if |eval(Au)| = 2 · 16i−2 for u ∈ {x, x̄, y, ȳ} (which is true if x and

WORD PROBLEMS ON COMPRESSED WORDS 11

y are located in the first layer, i.e., i = 2), then |eval(Az)| = |eval(Az̄)| = 2 ·16i−1. If z
is an AND gate in the ith layer (i ≥ 2) with input gates x and y, then the productions
for Az and Az̄ are

Az → ā6·16i−2

Axa6·16i−2

Ayā6·16i−2

Axa6·16i−2

Ay and

Az̄ → Aȳā6·16i−2

Ax̄a6·16i−2

Aȳā6·16i−2

Ax̄a6·16i−2

.

Once again, these productions can be replaced by a sequence of ordinary productions.
Let o be the unique output gate of the circuit C. Then, by the result from [57], the
circuit C evaluates to TRUE if and only if evalG(C)(Ao) = 1 in F2.

5. Compressed word problems between P and PSPACE. In this section
we will consider 2-homogeneous and confluent presentations that are not necessarily
N -free. Recall that PNP is the class of all languages that can be accepted by a
deterministic polynomial time machine that has additional access to an NP-oracle
[64]. PNP is also denoted by ∆p

2 in the literature; it is contained in the second level
of the polynomial time hierarchy and hence in PSPACE. Several complete problems
for PNP can be found in [34].

Theorem 5.1. If (Γ, R) is 2-homogeneous and confluent (but not necessarily
N -free), then the compressed word problem for M(Γ, R) is in P NP.

Proof. The key observation is that for a 2-homogeneous and confluent (but not
necessarily N -free) presentation (Γ, R) the problem from Lemma 4.8 is in coNP,
i.e., the complementary condition is in NP: If eval(G1), eval(G2) ∈ IRR(R) and
|eval(G1)| = |eval(G2)|, then

eval(G1)eval(G2)
∗
→R ε does not hold

if and only if there exists 1 ≤ i ≤ |eval(G1)| with

eval(G1)[i] eval(G2)[|eval(G2)| − i + 1] 6∈ dom(R).

For a given i, the latter condition can be checked in polynomial time. Now the
decision procedure from the proof of Theorem 4.5 in Section 4 gives us a PcoNP-, i.e.,
PNP-algorithm in the present situation.

By the next result, coNP-hardness can be obtained for every 2-homogeneous
presentations that is not N -free:

Theorem 5.2. Let Γ = {a, b, c, d} and R = {(ac, ε), (ad, ε), (bc, ε)}. The com-
pressed word problem for M(Γ, R) is coNP-hard.

Proof. The following problem is the complementary problem to SUBSETSUM
[22, Problem SP13] and hence coNP-complete:

INPUT: Binary coded integers w1, . . . , wn, t ≥ 0

QUESTION: For all x1, . . . , xn ∈ {0, 1},
∑n

i=1 xi · wi 6= t?

Let us fix binary coded integers w1, . . . , wn, t ≥ 0. Let wk = (w1, . . . , wk), and
w = wn. Let 1k = (1, . . . , 1) be the k-dimensional vector with all entries equal to 1.
For vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) we define x ·y = x1y1 + · · ·+xmym.
Finally, let sk = 1k · wk = w1 + · · ·+ wk, and s = sn = w1 + · · ·+ wn.

We construct two SLPs G1 and G2 over the terminal alphabets {a, b} and {c, d},

respectively, such that eval(G1)eval(G2)
∗
→R ε (i.e., eval(G1)eval(G2)

∗
↔R ε since R

12 M. LOHREY

is confluent and hence Church-Rosser) if and only if x ·w 6= t for all x ∈ {0, 1}n. This
will prove the theorem. First let us construct G1:

S1 → bas+w1b

Sk+1 → Skas−sk+wk+1Sk

Let Sn be the start nonterminal of G1.

Claim:3 evalG1
(Sk) =

 ∏

x∈{0,1}k\{1k}

ax·wkbas−x·wk

 askb

We prove the claim by induction on k. The case k = 1 is clear, since evalG1
(S1) =

bas+w1b = basas1b = a0bas−0as1b. For k + 1 ≤ n we obtain the following:

 ∏

x∈{0,1}k+1\{1k+1}

ax·wk+1bas−x·wk+1

 ask+1b =

 ∏

x∈{0,1}k

ax·wkbas−x·wk

︸ ︷︷ ︸
eval(Sk)as−sk

 ∏

x∈{0,1}k\{1k}

ax·wk+wk+1bas−x·wk−wk+1

 awk+1askb

︸ ︷︷ ︸
awk+1eval(Sk)

=

evalG1
(Sk)as−sk+wk+1evalG1

(Sk) = evalG1
(Sk+1),

which proves the claim.
For k = n we get

eval(G1) = evalG1
(Sn) =

∏

x∈{0,1}n

ax·wbas−x·w.

Now let G2 be an SLP such that eval(G2) = (cs−tdct)2
n

, which is easy to construct.
Let us give an example before we continue with the proof:

Example 5.3. Assume that w1 = 2, w2 = 5, w3 = 8, and t = 9. Thus,
s = 2 + 5 + 8 = 15 and

eval(G1) = ba15a2ba13a5ba10a7ba8a8ba7a10ba5a13ba2a15b

= ba17ba18ba17ba16ba17ba18ba17b

eval(G2) = (c6dc9)8 = c6dc15dc15dc15dc15dc15dc15dc15dc9.

For this example, we have eval(G1)eval(G2)
∗
→R ε, because while reducing the word

eval(G1)eval(G2), in the middle of the current word the factor bd (which cannot be
replaced by ε) will never occur.

Note that eval(G1) ∈ {a, b}∗, eval(G2) ∈ {c, d}
∗, and |eval(G1)| = |eval(G2)| =

2n · (s + 1). Thus, since bd is the only factor from {ac, ad, bc, bd} that cannot be

rewritten to ε, we have eval(G1)eval(G2)
∗
→R ε if and only if a b does not meet a d in

3The
Q

-expression on the right-hand side of this production denotes the concatenation of the
corresponding words, where the order of concatenation is given by the lexicographic order on the set
of vectors {0, 1}k, where the last position has the highest significance.

WORD PROBLEMS ON COMPRESSED WORDS 13

the unique R-derivation that starts from eval(G1)eval(G2). Hence, by construction of

G1 and G2, we have eval(G1)eval(G2)
∗
→R ε if and only if x ·w 6= t for all x ∈ {0, 1}n.

This concludes the proof.
The precise complexity of the compressed word problem for a 2-homogeneous but

not N -free presentation remains open, it is located somewhere between coNP and
PNP. On the other hand, by the previous proof, it is already coNP-hard to decide
whether eval(G)

∗
↔R ε for a given SLP G, in case R is 2-homogeneous and confluent

but not N -free. For this restricted variant of the compressed word problem we can
also prove an upper bound of coNP.

Theorem 5.4. For every 2-homogeneous and confluent (but not necessarily N -
free) presentation (Γ, R), the following problem belongs to coNP:

INPUT: An SLP over the terminal alphabet Γ.

QUESTION: Does eval(G)
∗
↔R ε (i.e., eval(G)

∗
→R ε) hold?

For the proof of Theorem 5.4 we first introduce a few notations.
Let us fix a 2-homogeneous and confluent (but not necessarily N -free) presentation

(Γ, R) for the rest of this section. Recall that by Lemma 4.3, there exist a partition
Γ = Σ`] Σr] ∆ and an involution : ∆ → ∆ such that {(aa, ε) | a ∈ ∆} ⊆ R ⊆
{(aa, ε) | a ∈ ∆} ∪ {(ab, ε) | a ∈ Σ`, b ∈ Σr}. Let S = {(aa, ε) | a ∈ ∆} ⊆ R, which
is also 2-homogeneous and confluent, but in addition N -free. Thus, by Theorem 4.5,
the compressed membership problem for the language {w ∈ ∆∗ | w

∗
→S ε} can be

solved in polynomial time.
Let us take two bracket symbols “〈” and “〉” and define the morphism ρ : Γ∗ →

{〈, 〉}∗ by ρ(a) = 〈 for a ∈ Σ`, ρ(b) = 〉 for b ∈ Σr, and ρ(c) = ε for c ∈ ∆. Let D1

be the set of all well-bracketed words over {〈, 〉}, i.e., D1 is the Dyck language over
one bracket pair. If P is the semi-Thue system that contains the single rule 〈 〉 → ε,

then D1 = {w ∈ {〈, 〉}∗ | w
∗
→P ε}. Since P is 2-homogeneous, confluent, and N -free,

Theorem 4.5 implies that the compressed membership problem for D1 can be solved
in polynomial time.

Now assume that w ∈ Γ∗ is a word such that ρ(w) ∈ D1. We say that two positions
i, j ∈ {1, . . . , |w|} are corresponding brackets, briefly match(i) = j, if w[i] ∈ Σ`,
w[j] ∈ Σr, i < j, ρ(w[i, j]) ∈ D1, and ρ(w[i, k]) 6∈ D1 for all k with i < k < j.

Example 5.5. Let Γ = {a, b, c, d, x, y, x, y} and

R = {(ac, ε), (ad, ε), (bc, ε), (xx, ε), (xx, ε), (yy, ε), (yy, ε)}.

Thus, ∆ = {x, y, x, y}, Σ` = {a, b} and Σr = {c, d}. Consider the word w =
x a y y c y x b a x x d x c y x. Then ρ(w) = 〈 〉 〈 〈 〉 〉 ∈ D1 and for instance match(8) =
14.

Lemma 5.6. The following problem can be solved in polynomial time:

INPUT: An SLP G over the terminal alphabet Γ such that ρ(eval(G)) ∈ D1 and
a position 1 ≤ i ≤ |eval(G)| such that eval(G)[i] ∈ Σ`.

OUTPUT: The unique position j = match(i) in eval(G).
Proof. In a first step we will reduce the problem to the alphabet {〈, 〉}. Let

1 ≤ i ≤ |eval(G)| such that eval(G)[i] ∈ Σ`. First we calculate in polynomial time
the unique number k such that i is the position of the k-th symbol from Σ` ∪ Σr

in eval(G). Formally, k = |πΣ`∪Σr
(eval(G)[1, i])| (by Lemma 4.7 we can calculate in

polynomial time an SLP H that generates eval(G)[1, i]; then |πΣ`∪Σr
(eval(H))| can be

calculated in polynomial time using Lemma 3.2). Now assume for a moment that we
can calculate the position ` of the bracket “〉” that corresponds to the bracket “〈” at

14 M. LOHREY

A0

A1

A2

A3

A4

B1

B2

B3

B4

〈k0

〈k1

〈k2

〈k3

〈

〉m1〈n1

〉m2〈n2

〉m3〈n3

〉m4〈n4

Fig. 5.1.

position k in ρ(eval(G)) — we call this position also match(k). Then we just calculate
the position j of the `-th symbol from Σ` ∪ Σr in eval(G) and we have match(i) = j
in eval(G). Formally, j is the unique number with ` = |πΣ`∪Σr

(eval(G)[1, j])| and
eval(G)[j] ∈ Σ` ∪ Σr. In order to calculate j from ` in polynomial time, we calculate
bottom-up |πΣ`∪Σr

(evalG(A))| as well as |evalG(A)| for every nonterminal A of the
SLP G. Then we can walk top-down in G in order to calculate j from `.

Thus, we may assume that G is an SLP with eval(G) ∈ D1 and 1 ≤ i ≤ |eval(G)|
is a position with eval(G)[i] = 〈. We compute in polynomial time the unique matching
position match(i) in eval(G). Consider the language

K = Pref(D1) \ [(D1 \ {ε}) · Pref(D1)],

i.e., K is the set of all prefixes of words from D1 that do not contain a non-empty
prefix from D1. Then

match(i) = max{j > i | eval(G)[i, j] ∈ K}+ 1.

Since K is prefix-closed, it suffices to show that the compressed membership problem
for the language K is solvable in polynomial time, because then we can find the largest
j > i with eval(G)[i, j] ∈ K using a binary search.

Thus, let H be an SLP in Chomsky normal form. We want to check, whether
eval(H) ∈ K = Pref(D1) \ [(D1 \ {ε}) · Pref(D1)]. Recall that the semi-Thue system
P consists of the single rule 〈 〉 → ε. Clearly, for a word w ∈ {〈, 〉}∗, we have
NFP (w) ∈ 〉∗〈∗. We represent a word 〉n〈m by the binary coding of n and m. Using this
representation, we can calculate bottom-up in polynomial time for every nonterminal
A of H the normal form NFP (evalH(A)) ∈ 〉∗〈∗. Clearly, for every word w ∈ {〈, 〉}∗,
w ∈ Pref(D1) if and only if NFP (w) ∈ 〈∗. Using this, we can first check whether
eval(H) = evalH(S) ∈ Pref(D1). If this is not the case, we reject. Thus, assume
that eval(H) ∈ Pref(D1). We have to check in polynomial time whether eval(H) ∈
(D1 \ {ε}) · Pref(D1) or not.

Consider the unique path of nonterminals S = A0, A1, . . . , Am such that Am → 〈
and for all i ≤ 0 < m, Ai → Ai+1Bi+1 are productions of H. This path is shown
in Figure 5.1 on the left for m = 4. Since every prefix of eval(H) also belongs to
Pref(D1), we have NFP (evalH(Ai)) = 〈ki for some numbers ki ≥ 0. Assume that
NFP (evalH(Bi)) = 〉mi〈ni for mi, ni ≥ 0, see the right tree in Figure 5.1. We claim
that eval(H) ∈ (D1 \ {ε}) · Pref(D1) if and only if there exists 1 ≤ i ≤ m such that
ki ≤ mi, which can be checked in polynomial time. If ki ≤ mi for some 1 ≤ i ≤ m,

WORD PROBLEMS ON COMPRESSED WORDS 15

i.e., NFP (evalH(Bi)) = 〉ki〉`〈ni for some `, then there exists a prefix u of evalH(Bi)
such that NFP (u) = 〉ki and thus evalH(Ai)u ∈ D1 (we may have u = ε in case
ki = 0, i.e., evalH(Ai) ∈ D1). The word evalH(Ai)u is a nonempty prefix of eval(H)
that belongs to D1. On the other hand, if there exists a nonempty prefix v ∈ D1 of
eval(H) then let i be maximal such that v is a prefix of evalH(Ai). Clearly, i < m,
since evalH(Am) = 〈. Thus, v = evalH(Ai+1)u for some prefix u of evalH(Bi+1). Since
NFP (evalH(Ai+1)) = 〈ki+1 and evalH(Ai+1)u ∈ D1 it follows that NFP (u) = 〉ki+1 .
Since NFP (evalH(Bi+1)) = 〉mi+1〈ni+1 and u is a prefix of evalH(Bi+1) we obtain
mi+1 ≥ ki+1. This proves the lemma.

Let us take again a word w ∈ Γ∗ such that ρ(w) ∈ D1. Then we can factorize
w uniquely as w = s0w[i1, j1]s1 · · ·w[in, jn]sn, where n ≥ 0, match(ik) = jk for all
k ∈ {1, . . . , n} and sk ∈ ∆∗ for all k ∈ {0, . . . , n}. We define F(w) = s0s1 · · · sn ∈ ∆∗.

Example 5.7. Take Γ, R, and the word w ∈ Γ∗ from Example 5.5. Then we have
F(w) = x y x y x.

Lemma 5.8. The following problem can be solved in polynomial time:

INPUT: An SLP G over the terminal alphabet Γ such that ρ(eval(G)) ∈ D1 and
two positions i and j such that match(i) = j in eval(G).

OUTPUT: An SLP that generates F(eval(G)[i + 1, j − 1]).
Proof. Let Θ = ∆ ∪ {〈, 〉} and consider the infinite semi-Thue system

T = {〈w〉 → ε | w ∈ ∆∗}

over the alphabet Θ. This system is clearly terminating and confluent (T has no
overlapping left-hand sides), hence every word w ∈ Θ∗ has a unique normal form
NFT (w). Note that IRR(T) = (∆∗〉∆∗)∗(∆∗〈∆∗)∗. Let µ : Γ → Θ be the morphism
with µ(a) = 〈 for all a ∈ Σ`, µ(a) = 〉 for all a ∈ Σr, and µ(a) = a for all a ∈ ∆.

In a first step we construct in polynomial time an SLP G′ such that eval(G′) =
µ(eval(G)[i + 1, j − 1]). Then NFT (eval(G′)) = F(eval(G)[i + 1, j − 1]). Hence, it
suffices to calculate a composition system H that generates NFT (eval(G)) for a given
SLP G with eval(G) ∈ Θ∗; this composition system can be transformed in polynomial
time into an equivalent SLP by Lemma 4.7. We construct H analogously to the proof
of Theorem 4.5. Assume that A → BC is a production from G and assume that
H already contains enough rules such that evalH(X) = NFT (evalG(X)) =: wX ∈
(∆∗〉∆∗)∗(∆∗〈∆∗)∗ for X ∈ {B,C}. We then calculate the numbers nB = |wB |〈 and
nC = |wC |〉, i.e., the number of opening (closing) brackets in wB (wC). Assume that
nC ≥ nB , the other case is analogous. Then we calculate the position iB of the nB-th
opening bracket 〈 in wB as well as the position iC of the nC-th closing bracket 〉 in
wC . It follows that NFT (evalG(A)) = wB [1, iB − 1]wC [iC + 1, |wC |]. Thus, we add to
the current H the production A→ B[1, iB − 1]C[iC + 1, |wC |].

Proof of Theorem 5.4. We use all notations from the previous discussion. The
following statement was shown in [42]: For w ∈ Γ∗ it holds w

∗
↔R ε if and only if

ρ(w) ∈ D1, F(w)
∗
→S ε, and for all i, j ∈ {1, . . . , |w|} with match(i) = j it holds

w[i]w[j] ∈ dom(R) and F(w[i + 1, j − 1])
∗
→S ε.

This leads to the following NP-algorithm for testing eval(G) 6
∗
↔R ε for a given

SLP G, and hence to a coNP-algorithm for testing eval(G)
∗
↔R ε:

1. produce an SLP G′ such that eval(G′) = ρ(eval(G)) and check whether
eval(G′) ∈ D1. This is possible in polynomial time by Theorem 4.5. If
eval(G′) 6∈ D1 then accept, otherwise continue.

2. Guess a position 1 ≤ i ≤ |eval(G)| (this is the only nondeterministic step) such
that eval(G)[i] ∈ Σ`, calculate in polynomial time (by Lemma 5.6) the unique

16 M. LOHREY

position j = match(i) in eval(G), and check whether eval(G)[i]eval(G)[j] 6∈
dom(R). If this is true, then accept, otherwise continue.

3. Calculate in polynomial time (by Lemma 5.8) an SLP G′′ that generates
F(eval(G)[i+1, j−1]) and test in polynomial time (by Theorem 4.5) whether

eval(G′′) 6
∗
→S ε. If this is true, then accept, otherwise reject.

This concludes the proof of Theorem 5.4.
From Theorem 4.5, 5.2, and 5.4 we obtain the following corollary:
Corollary 5.9. Let (Γ, R) be a 2-homogeneous and confluent presentation.

Consider the following computational problem:

INPUT: A word s ∈ Γ∗.
QUESTION: Does w

∗
↔R ε hold?

If (Γ, R) is N -free then this problem can be solved in polynomial time, otherwise this
problem is coNP-complete.

6. Compressed word problems in PSPACE. In the previous two sections
we have investigated 2-homogeneous systems, where every rule is of the form ab→ ε.
In this section we consider a slightly more general class of presentations, where we also
allow rules of the form ab → c. We show that this generalization leads to PSPACE-
complete compressed word problems. As a corollary we obtain a fixed deterministic
context-free language with a PSPACE-complete compressed word problem, which
solves an open problem from [23, 55].

Our PSPACE upper bounds rely all on the following simple fact:
Proposition 6.1. If the membership problem for the language L (the word prob-

lem for a finitely presented monoid M) belongs to
⋃

c>0 NSPACE(logc(n)), then the
compressed membership problem for L (the compressed word problem for M) belongs
to PSPACE.

Proof. Assume that the language L belongs to NSPACE(logc(n)). Let us fix an
SLP G. We decide eval(G) ∈ L by simulating the NSPACE(logc(n)) algorithm for
the membership problem for L on words of length |eval(G)|. Note that a number
less than |eval(G)| can be stored in polynomial space and that for a given position
i ∈ {1, . . . , |eval(G)|} we can calculate eval(G)[i] in polynomial time. Thus, the
simulation gives us a PSPACE-algorithm for the compressed membership problem
for L.

A presentation (Γ, R) is weight-reducing if there exists a weight-function f : Γ∗ →
N such that f(s) > f(t) for all (s, t) ∈ R. Typical examples of weight-reducing
presentations are length-reducing presentations (i.e., |s| > |t| for all (s, t) ∈ R).

Proposition 6.2. For every weight-reducing and confluent presentation (Γ, R),
the compressed word problem for M(Γ, R) is in PSPACE.

Proof. In [41] we have shown that for every fixed weight-reducing and confluent
presentation (Γ, R), the (uncompressed) word problem for M(Γ, R) is in LOGCFL,
which is the logspace closure of the class of context-free languages [65]. The class
LOGCFL is known to be contained in NSPACE(log2(n)) [39]. Thus, membership in
PSPACE follows from Proposition 6.1.

In the rest of this section, we will show that PSPACE-hardness can be shown
already for a quite small subclass of weight-reducing and confluent presentations.

A presentation (Γ, R) is called monadic if for every (`, r) ∈ R: |`| > |r| and |r| ≤ 1.
A 2-monadic presentation is a monadic presentation (Γ, R) such that moreover |`| = 2
for every ` ∈ dom(R). In the following, we present a construction that reduces the
reachability problem for directed forests to the (uncompressed) word problem of a

WORD PROBLEMS ON COMPRESSED WORDS 17

fixed 2-monadic and confluent presentation (Γ, R). Later in this section, we will use
this construction in order to prove that the compressed word problem forM(Γ, R) is
PSPACE-complete.

Let Γ = {b0, b1, c0, c1, c2,#, $, ., 0} and let R be the 2-monadic semi-Thue system
consisting of the following rules:

(1) b0x→ ε for all x ∈ {$, c0, c1, c2} (2) b1c0 → ε
(3) b1$→ . (4) .ci → . for all i ∈ {0, 1, 2}
(5) .$→ $ (6) #$→ ε
(7) b1c2 → 0
(8) 0x→ 0 for all x ∈ Γ (9) x0→ 0 for all x ∈ Γ

Only the rules involving the absorbing symbol 0 produce overlappings. In the
resulting critical pairs, both words can be reduced to 0. Thus, R is confluent.

A directed forest is a directed acyclic graph (V,E) (where V is the finite set of
nodes and E ⊆ V × V is the edge relation) such that moreover for every u ∈ V ,
|{v ∈ V | (u, v) ∈ E}| ≤ 1, i.e., every node has at most one outgoing edge. Assume
now that (V,E) is a directed forest, where V = {v1, . . . , vn} and (vi, vj) ∈ E implies
i < j. Let vα ∈ V be a distinguished start node (1 ≤ α ≤ n) and U ⊆ V be a set
of final nodes such that every node in U has outdegree 0 (there may be also nodes in
V \U without outgoing edges). For i ≤ j we define the interval Ii,j = {vk | i ≤ k ≤ j}.
Thus, I1,n = V . If i > j we set Ii,j = ∅. We will construct a word w(vα, U) ∈ Γ∗ such
that (vα, vi) ∈ E∗ for some vi ∈ U (i.e., there is a path from the start node to some

final node) if and only if w(vα, U)
∗
↔R 0, i.e., w(vα, U)

∗
→R 0. For every i ∈ {1, . . . , n}

define the word δi as follows:

δi =

cn−j+i+1
0 if (vi, vj) is the unique outgoing edge at node vi

c1 if vi ∈ V \ U and vi has no outgoing edge

c2 if vi ∈ U (and thus has no outgoing edge)

Note that .δi
∗
→R . for all 1 ≤ i ≤ n using the rules in (4). For an interval Ii,j (i ≤ j)

we define σ[Ii,j] = δi$δi+1$ · · · δj$. We set σ[∅] = ε. Note that .σ[Ii,j]
∗
→R $σ[Ii+1,j]

if i ≤ j using the rules in (4) and (5). Let β = |σ[I1,α−1]|. Finally, define

w(vα, U) = (#bn
1)nbβ

0σ[I1,n].

Lemma 6.3. We have w(vα, U)
∗
↔R 0 if and only if (vα, vi) ∈ E∗ for some

vi ∈ U .

Before we prove Lemma 6.3 let us first consider an example:

Example 6.4. Let (V,E) be the following directed forest. The set U only contains
the node v6. Let α = 2, i.e., v2 is the start node.

v2

v1
v5 v6

v3

v4

v7

U

18 M. LOHREY

Then w(vα, U) = (#b7
1)

7b5
0c

4
0$c

5
0$c

4
0$c

5
0$c

7
0$c2$c1$. We obtain the following derivation:

(#b7
1)

7b5
0c

4
0$c

5
0$c

4
0$c

5
0$c

7
0$c2$c1$

∗
→R (rules in (1))

(#b7
1)

7c5
0$c

4
0$c

5
0$c

7
0$c2$c1$

∗
→R (rule (2))

(#b7
1)

6#b2
1$c

4
0$c

5
0$c

7
0$c2$c1$→R (rule (3))

(#b7
1)

6#b1 . c4
0$c

5
0$c

7
0$c2$c1$

∗
→R (rules in (4))

(#b7
1)

6#b1 . $c5
0$c

7
0$c2$c1$→R (rule (5))

(#b7
1)

6#b1$c
5
0$c

7
0$c2$c1$→R (rule (3))

(#b7
1)

6# . c5
0$c

7
0$c2$c1$

∗
→R (rules in (4))

(#b7
1)

6# . $c7
0$c2$c1$→R (rule (5))

(#b7
1)

6#$c7
0$c2$c1$

∗
→R (rule (6))

(#b7
1)

6c7
0$c2$c1$

∗
→R (rule (2))

(#b7
1)

5#$c2$c1$→R (rule (6))

(#b7
1)

5c2$c1$
∗
→R (rule (7))

(#b7
1)

4#b6
10$c1$

∗
→R (rules in (8) and (9))

0

Indeed, there exists a path from v2 to a node in U . If U would only consist of the
node v7 instead of v6, then w(vα, U) = (#b7

1)
7b5

0c
4
0$c

5
0$c

4
0$c

5
0$c

7
0$c1$c2$. In this case

we obtain a similar derivation showing w(vα, U)
∗
→R (#b7

1)
5c1$c2$. But the latter

word is irreducible. Since R is confluent, w(vα, U)
∗
→R 0 cannot hold.

Proof of Lemma 6.3. First note that using the rules in (1) we obtain

w(vα, U) = (#bn
1)nbβ

0σ[I1,α−1]σ[Iα,n]
∗
→R (#bn

1)nσ[Iα,n].

Claim: For every vi ∈ V , if (vα, vi) ∈ E∗, then there exists k ≥ n − i + α such that

w(vα, U)
∗
→R (#bn

1)kσ[Ii,n].
We prove this claim by induction over the length of the unique path from vα to

vi. The case i = α is clear. Thus, assume that (vα, vj) ∈ E∗ and (vj , vi) ∈ E. Then
j < i and by induction we have

w(vα, U)
∗
→R (#bn

1)kσ[Ij,n] = (#bn
1)k−1#bn

1 cn−i+j+1
0 $σ[Ij+1,n],

where k ≥ n− j + α, i.e., k − 1 ≥ n− i + α. We obtain

(#bn
1)k−1#bn

1 cn−i+j+1
0 $σ[Ij+1,n]

∗
→R (rule (2))

(#bn
1)k−1#bi−j−1

1 $σ[Ij+1,n] →R (rule (3))

(#bn
1)k−1#bi−j−2

1 . σ[Ij+1,n]
∗
→R (rules in (4) and (5))

(#bn
1)k−1#bi−j−2

1 $σ[Ij+2,n]
∗
→R

...

(#bn
1)k−1#b0

1$σ[Ii,n] =

(#bn
1)k−1#$σ[Ii,n] →R (rule (6))

(#bn
1)k−1σ[Ii,n].

WORD PROBLEMS ON COMPRESSED WORDS 19

This proves the claim.
Thus, if (vα, vi) ∈ E∗ for some vi ∈ U , then by the above claim

w(vα, U)
∗
→R (#bn

1)kσ[Ii,n] =

(#bn
1)k−1#bn−1

1 b1c2$σ[Ii+1,n]→R (rule (7))

(#bn
1)k−1#bn−1

1 0$σ[Ii+1,n]
∗
→R 0 (rules in (8) and (9))

for some k > 0. On the other hand, if there does not exist vi ∈ U with (vα, vi) ∈ E∗,
then there exists vi ∈ V \ U with outdegree 0 and (vα, vi) ∈ E∗. Thus,

w(vα, U)
∗
→R (#bn

1)kσ[Ii,n] = (#bn
1)kc1$σ[Ii+1,n] ∈ IRR(R).

Since (Γ, R) is confluent, w(vα, U)
∗
→R 0 cannot hold. This proves the Lemma 6.3.

Lemma 6.3 yields the following result that is of independent interest; see Sec-
tion 3.2 for the definition of NC1-reductions.

Theorem 6.5. There exists a fixed 2-monadic and confluent presentation (Γ, R)
such that the word problem for M(Γ, R) is L-hard under NC1-reductions.

Proof. By [18], the reachability problem for directed forests that are ordered (i.e.,
the set of nodes is {1, . . . , n} for some n and i < j whenever there is an edge from
i to j) is L-complete under NC1-reductions. Moreover, one can assume that 1 is the
initial node. It remains to show that for such a forest G = (V,E) and U ⊆ V the
word w(1, U) can be constructed in NC1 from G and U . We leave the details to the
reader.

The existence of a fixed monadic and confluent presentation with an L-hard word
problem was also shown in [6].

Now, let us consider the compressed word problem for 2-monadic and confluent
presentations.

Theorem 6.6. For every 2-monadic and confluent presentation (Γ, R), the com-
pressed word problem forM(Γ, R) is in PSPACE. There exists a fixed 2-monadic and
confluent presentation (Γ, R) such that the compressed word problem for M(Γ, R) is
PSPACE-complete.

Proof. The upper bound follows from Proposition 6.2. For the lower bound we
will show that the compressed word problem for the 2-monadic presentation (Γ, R)
from the previous discussion is PSPACE-hard. For this we repeat a construction from
[41]. Let A = (Q,Σ, δ, q0, qf) be a fixed deterministic linear bounded automaton (Q is
the set of states, Σ is the tape alphabet, q0 (resp. qf) is the initial (resp. final) state,
and δ : Q \ {qf} × Σ → Q × Σ × {left, right} is the transition function) such that
the question whether a word w ∈ Σ∗ is accepted by A is PSPACE-complete. Such
a linear bounded automaton exists, see, e.g., [5]. The one-step transition relation
between configurations of A is denoted by ⇒A. Let w ∈ Σ∗ be an input for A with
|w| = N . We may assume that A operates in phases, where a single phase consists of a

sequence of 2·N transitions of the form q1γ1
∗
⇒A γ2q2

∗
⇒A q3γ3, where γ1, γ2, γ3 ∈ ΣN

and q1, q2, q3 ∈ Q. During the transition sequence q1γ1
∗
⇒A γ2q2 only right-moves

are made, whereas during the sequence γ2q2
∗
⇒A q3γ3 only left-moves are made. The

automaton A accepts, if it reaches the final state qf . Otherwise A does not terminate.
There exists a constant c > 0 such that if w is accepted by A, then A, started on w,
reaches the final state qf after at most 2c·N phases. Let Σ̂ = {â | a ∈ Σ} be a disjoint

copy of Σ and similarly for Q̂. Let ∆ = Σ ∪ Σ̂ ∪ {/, 0, 1,£} and Θ = Q ∪ Q̂ ∪∆. We
simulate A by the following semi-Thue system S over the alphabet Θ:

20 M. LOHREY

0q̂ → q̂£ for all q ∈ Q \ {qf} qa→ b̂p if δ(q, a) = (p, b, right)
1q̂ → 0q for all q ∈ Q \ {qf} â q̂ → p̂b if δ(q, a) = (p, b, left)
q£→ 1q for all q ∈ Q \ {qf} q/→ q̂/ for all q ∈ Q \ {qf}

(Θ, S) is length-preserving and if Â is any linear order on the alphabet Θ that

satisfies Q Â 1 Â 0 Â Σ̂ Â Q̂, then s Â t for every rule (s, t) ∈ S, i.e., S is lexicographic
(recall from Section 3.1 that we identify an order Â on the alphabet Θ with its
lexicographic extension to Θ∗. Let us choose such a linear order on Θ that moreover
satisfies Q Â ∆ Â Q̂. In [41] we have argued that w is accepted by A if and only if

1q0£
c·N−1w/

∗
→S v for some word v with alph(v) ∩ {qf , q̂f} 6= ∅. We briefly repeat

the arguments: First, note that 1q0£
c·N−1w/

∗
→S 1c·Nq0w/. From the word 1c·Nq0w/

we can simulate 2c·N phases of A. The crucial point is that the prefix from {0, 1}∗

acts as a binary counter: for every u ∈ {0, 1}i (i < c · N) and every q ∈ Q we have:

u10c·N−|u|−1q̂
∗
→S u1q̂£c·N−|u|−1 →S u0q£c·N−|u|−1 ∗

→S u01c·N−|u|−1q. Thus, if A
accepts w, then we can derive from 1q0£

c·N−1w/ a word v with alph(v)∩{qf , q̂f} 6= ∅.
On the other hand, if A does not accept w and hence does not terminate, then we can
derive from 1q0£

c·N−1w/ a word of the form q̂£c·Nu/ for some u ∈ ΣN and q 6= qf .
Since S is confluent (the left-hand sides of S do not overlap) and q̂£c·Nu/ ∈ IRR(S),
we cannot reach a word v with alph(v) ∩ {qf , q̂f} 6= ∅ from 1q0£

c·N−1w/.
To simplify the following construction, we will next expand all rules from S in

the following sense: The rule q£→ 1q for instance is replaced by all rules of the form
xq£ → x1q for all x ∈ ∆, whereas the rule 0q̂ → q̂£ is replaced by all rules of the
form 0q̂x → q̂£x for all x ∈ ∆. Let us call the resulting system again S. Then S is
still length-preserving and lexicographic and dom(S) ⊆ ∆(Q∪ Q̂)∆. The new system
S is no longer confluent, but this is not important for the further arguments. It is
only important that

∀v, v1, v2 ∈ ∆∗(Q ∪ Q̂)∆∗ : (v1 S← v →S v2)⇒ v1 = v2. (6.1)

This is easy to see by inspection of the rules. Moreover, w is accepted by A if and only
if 1q0£

c·N−1w/
∗
→S v for some word v with alph(v)∩{qf , q̂f}. Let m = (c + 1)N − 1;

thus m + 3 is the length of words in any derivation starting from 1q0£
c·N−1w/.

Let us now define the directed graph (V,E), where V =
⋃m+1

i=1 ∆i(Q∪ Q̂)∆m−i+2

and E = {(v, v′) ∈ V × V | v →S v′}. This graph is basically the transition graph
of the automaton A on configurations of length N . Since S is lexicographic, (V,E)
is acyclic. Moreover, by (6.1), every node from V has at most one outgoing edge.
Thus, (V,E) is a directed forest. If we order V lexicographically by Â and write
V = {v1, . . . , vn} with v1 Â v2 Â · · · Â vn, then (vi, vj) ∈ E implies i < j. Note that
n = |V | = 2(m + 1) · |Q| · |∆|m+2, which belongs to 2O(N). Let U be those words in
V that contain either qf or q̂f ; these words have outdegree 0 in the directed forest
(V,E). Let vα = 1q0£

c·N−1w/. Thus, α− 1 is the number of words from V that are
lexicographically larger than 1q0£

c·N−1w/. The number α can be easily calculated
in logarithmic space from the input word w using simple arithmetic. We now have
available all the data in order to construct the word w(vα, U) ∈ Γ∗ from Lemma 6.3.

The automaton A accepts w if and only if there is a path in (V,E) from vα to a

node in U . By Lemma 6.3 this holds if and only if w(vα, U)
∗
↔R 0. Thus, it remains

to show that the word w(vα, U) can be generated by a small SLP. Recall the definition
of the words σi and σ[I] ∈ Γ∗, where 1 ≤ i ≤ n = |V | and I is an interval of (V,Â)
that we introduced before Lemma 6.3.

Note that for all 1 ≤ i, j ≤ n, if vi = u1`u2 →S u1ru2 = vj with (`, r) ∈ S, then

WORD PROBLEMS ON COMPRESSED WORDS 21

j − i (i.e., the number of words from V that are lexicographically between vi and vj)
is a number that only depends on the rule (`, r) (and thus `) and |u2|. We call this
number λ(`, |u2|); it belongs to 2O(N) and can be calculated in logarithmic space from
` and |u2| using simple arithmetic. We now describe a small SLP that generates the
word σ[V] ∈ Γ∗. For this let us assume that Q = {p1, . . . , pn1

} and ∆ = {a1, . . . , an2
}

with pi Â pi+1, p̂i Â p̂i+1, and ai Â ai+1 (note that the order Â on the subalphabets

Q, Q̂, and ∆, respectively, is arbitrary except that 1 Â 0). We introduce the following
productions:4

Ai →
n2∏

j=1

Bi,jAi+1B̂i,j for 0 ≤ i < m

Am →
n2∏

j=1

Bm,jB̂m,j

Bi,j →
n1∏

k=1

n2∏

`=1

(Ci,j,k,`$)
|∆|m−i

for 0 ≤ i ≤ m, 1 ≤ j ≤ n2

Ci,j,k,` →

c
n−λ(ajpka`,m−i)+1
0 if ajpka` ∈ dom(R)

c1 if ajpka` 6∈ dom(R) and pk 6= qf

c2 if pk = qf

B̂i,j →
n1∏

k=1

n2∏

`=1

(Ĉi,j,k,`$)
|∆|m−i

for 0 ≤ i ≤ m, 1 ≤ j ≤ n2

Ĉi,j,k,` →

c
n−λ(aj bpka`,m−i)+1
0 if aj p̂ka` ∈ dom(R)

c1 if aj p̂ka` 6∈ dom(R) and p̂k 6= q̂f

c2 if p̂k = q̂f

The exponents that appear in the right-hand sides of the productions for the nonter-
minal Bi,j and B̂i,j , namely |∆|m−i, are of size 2O(N) and can therefore be replaced by
sequences of ordinary productions. Note that eval(Ci,j,k,`) = δs for every node vs from

∆iajpka`∆
m−i, whereas eval(Ĉi,j,k,`) = δs for every node vs from ∆iaj p̂ka`∆

m−i. It
follows that for all 0 ≤ i ≤ m, all u ∈ ∆i, and all 1 ≤ j ≤ n2 we have (note that
uajQ∆m−i+1 ⊆ V is an interval of (V,Â))

eval(Bi,j) = σ[uajQ∆m−i+1] and eval(B̂i,j) = σ[uajQ̂∆m−i+1]. (6.2)

Claim. Let 0 ≤ i ≤ m and let u ∈ ∆i be arbitrary. Then for the interval I =⋃m−i+1
j=1 u∆j(Q ∪ Q̂)∆m−i−j+2 of the linear order (V,Â) we have σ[I] = eval(Ai).

The claim will be shown by induction on i (for i = m down to 0). For i = m the
claim is true:

eval(Am) =

n2∏

j=1

eval(Bm,j)eval(B̂m,j) = (by (6.2))

n2∏

j=1

σ[uajQ∆]σ[uajQ̂∆] = (Q Â Q̂)

σ[u∆(Q ∪ Q̂)∆]

4The expression
Q

k

i=1
wi is an abbreviation for w1w2 · · ·wk.

22 M. LOHREY

Now let i < m and u ∈ ∆i. The words from the interval
⋃m−i+1

j=1 u∆j(Q∪Q̂)∆m−i−j+2

can be partitioned into the following decreasing sequence of consecutive intervals of
(V,Â) (recall that Q Â ∆ Â Q̂ and a1 Â a2 Â · · · Â an2

):

ua1Q∆m−i+1 Â
m−i⋃

j=1

ua1∆
j(Q ∪ Q̂)∆m−i−j+1 Â ua1Q̂∆m−i+1 Â

ua2Q∆m−i+1 Â
m−i⋃

j=1

ua2∆
j(Q ∪ Q̂)∆m−i−j+1 Â ua2Q̂∆m−i+1 Â · · · Â

uan2
Q∆m−i+1 Â

m−i⋃

j=1

uan2
∆j(Q ∪ Q̂)∆m−i−j+1 Â uan2

Q̂∆m−i+1.

By induction, we have

σ[

m−i⋃

j=1

ua1∆
j(Q ∪ Q̂)∆m−i−j+1] = · · · =

σ[

m−i⋃

j=1

uan2
∆j(Q ∪ Q̂)∆m−i−j+1] = eval(Ai+1).

Together with (6.2) we obtain

σ[

m−i+1⋃

j=1

u∆j(Q ∪ Q̂)∆m−i−j+2] =

n2∏

j=1

eval(Bi,j)eval(Ai+1)eval(B̂i,j) = eval(Ai).

This proves the claim. By setting i = 0 we get

eval(A0) = σ[

m+1⋃

j=1

∆j(Q ∪ Q̂)∆m−j+2] = σ[V].

Let β = |σ[I1,α−1]| ∈ 2O(N). Arithmetic on numbers with NO(1) many bits allows to
compute β in logspace from the input word w. Using the above productions and the
number β, we can construct an SLP G of size polynomial in the input size N with
eval(G) = (#bn

1)nbβ
0σ[V] = w(vα, U). Recall that n is of size 2O(N). Then our input

word w is accepted by A if and only if eval(G)
∗
↔R 0. This proves the theorem.

The following corollary solves an open problem from [23, 55].
Corollary 6.7. There exists a fixed deterministic context-free language L such

that the compressed membership problem for L is PSPACE-complete.
Proof. Since every context-free language is contained in DSPACE(log2(n)), the

PSPACE upper bound can be deduced from Proposition 6.1. For the lower bound,
notice that the language {w ∈ Γ∗ | w

∗
→R 0} is deterministic context-free for every

monadic and confluent presentation and every 0 ∈ Γ, see e.g. [11, Theorem 4.2.7]. If
we choose the 2-monadic and confluent presentation from the proof of Theorem 6.5
for (Γ, R), then the language {w ∈ Γ∗ | w

∗
→R 0} is PSPACE-hard by the proof of

Theorem 6.6.
In [31] a language L is called deterministic linear if it is accepted by a deterministic

1-turn pushdown automaton.

WORD PROBLEMS ON COMPRESSED WORDS 23

Corollary 6.8. There exists a fixed deterministic linear language L such that
the compressed membership problem for L is PSPACE-complete.

Proof. The language {w ∈ Γ∗ | w
∗
→R 0} ∩ (#b+

1)+b+
0 ((c+

0 ∪ c1 ∪ c2)$)
+ is easily

seen to be deterministic linear. Moreover, it contains a word of the form w(vα, U) if

and only if w(vα, U)
∗
→R 0.

7. Compressed word problems in EXPSPACE. The largest class of monoid
presentations that we consider in this paper are weight-lexicographic and confluent
presentations: A presentation (Γ, R) is weight-lexicographic if there exist a linear order
Â on the alphabet Γ and a weight-function f : Γ∗ → N such that for all (s, t) ∈ R
we have either f(s) > f(t) or (f(s) = f(t) and s Â t). If the weight-function f is the
length-function, i.e., f(w) = |w|, then (Γ, R) is called length-lexicographic.

Theorem 7.1. For every weight-lexicographic and confluent presentation (Γ, R),
the compressed word problem forM(Γ, R) is in EXPSPACE. Moreover, there exists a
fixed length-lexicographic and confluent presentation (Γ, R) such that the compressed
word problem for M(Γ, R) is EXPSPACE-complete.

Proof. For the upper bound we can use a result from [41]: for every fixed weight-
lexicographic and confluent presentation (Γ, R), the word problem for M(Γ, R) be-
longs to PSPACE. Thus, for two given SLPs G1 and G2 we can first generate the
exponentially long words eval(G1) and eval(G2) and then check in space bounded

polynomially in |eval(G1)|+ |eval(G1)| whether eval(G1)
∗
↔R eval(G2).

For the lower bound, let (Θ, S) be the presentation from the proof of Theorem 6.6,
where this time, the simulated machine A is a fixed Turing-machine that accepts an
EXPSPACE-complete language. Also for such a machine we may assume that it
operates in alternating phases of left and right sweeps. The presentation (Θ, S) is
length-lexicographic and confluent. W.l.o.g. the space bound for an input of length n
is 2n. The number of phases can be bounded by 2c·2n

for some constant c > 0. Add
to Θ an absorbing symbol 0 and add to S the following rules: qf → 0, q̂f → 0, x0→ 0
for all x ∈ Θ, and 0x → 0 for all x ∈ Θ. We call the resulting presentation again
(Θ, S); it is still length-lexicographic and confluent. Moreover, for an input word w

of length n, w is accepted by A if and only if 1q0£
c·2n−1w¤2n−|w|/

∗
↔S 0 (where q0 is

the initial state of A and ¤ is the blank symbol), see also the proof of Theorem 6 in
[41]. Finally, note that the word 1q0£

c·2n−1w¤2n−|w|/ can be generated by an SLP
of polynomial size in n.

The language {w ∈ Θ∗ | w
∗
→S 0}, where (Θ, S) is the presentation from the

previous proof is context-sensitive. Thus, we obtain the following result:
Corollary 7.2. There exists a fixed context-sensitive language L such that the

compressed membership problem for L is EXPSPACE-complete.

8. Circuit complexity and compression. In this section we will investigate
the compressed membership problem for languages from very low complexity classes.
These classes are usually defined by uniform families of small depth Boolean circuit
families. An equivalent and for our purpose more suitable definition is based on
alternating Turing-machines with logarithmic time bounds, see Section 3.2. Recall
that ALOGTIME denotes the class of all languages that can be recognized on an
alternating Turing-machine in time O(log(n)). Within ALOGTIME, we can define

the logtime hierarchy: For k ≥ 1 we denote by Σlog
k (resp. Πlog

k) the class of all
languages that can be decided by an alternating Turing-machine in time O(log(n))
within k− 1 alternations (on every computation path) starting in an existential state

(resp. universal state). In [4], Σlog
k ∪ Πlog

k is proposed as a uniform version of AC0
k,

24 M. LOHREY

which is the class of all languages that can be recognized by a polynomial size, depth
k family of unbounded fan-in Boolean circuits. The union

⋃
k≥0 Σlog

k ∪ Πlog
k is also

called the logtime hierarchy LH. By [63], LH is a strict hierarchy.
The well-known polynomial time hierarchy [64] is defined similarly to the logtime

hierarchy: For k ≥ 1 we denote by Σp
k (resp. Πp

k) the class of all languages that can be
decided by an alternating Turing-machine in polynomial time within k−1 alternations
(on every computation path) starting in an existential state (resp. universal state).

For the further investigations we will need the following lemma.
Lemma 8.1. Incrementing a binary n-bit counter C (with arbitrary initial value)

m times by 1 takes at total O(n + m) steps on a deterministic Turing machine.
Proof. W.l.o.g. assume that m is a power of 2. We assume that after each

increment, the read-write head moves back to the least significant bit of C. If the
first i bits of C are 1i−10 in that order, then we need 2i steps for the increment. For
i > log(m), this will happen only once during the m increments. Thus, it suffices
to show that incrementing a binary log(m)-bit counter m times by 1 takes at total
O(m) steps. There are at most 2log(m)−i = m

2i numbers t ∈ {0, . . . ,m} such that the
first i bits of t are 1i−10 in that order. Incrementing such a number by 1 takes 2i

steps. Thus, incrementing the counter m times by 1 takes at total
∑log(m)

i=1 2i · m
2i ≤

2m
∑∞

i=1
i
2i = 4m steps.

Of course, an analogous statement for decrementing a counter is also true.
Theorem 8.2. For every language L in Σlog

k (resp. Πlog
k) the compressed mem-

bership problem belongs to Σp
k (resp. Πp

k). Moreover, there exists a fixed language L in

Σlog
k (resp. Πlog

k) such that the compressed membership problem for L is Σp
k-complete

(resp. Πp
k-complete).

Proof. It suffices to prove the statement for Σp
k and Σlog

k , respectively, because

Πp
k and Πlog

k are the corresponding complementary classes. Let us first show that

the compressed membership problem for L belongs to Σp
k in case L belongs to Σlog

k .

Assume that L belongs to Σlog
k . Given a straight-line program G we simulate the

Σlog
k -algorithm on eval(G). Since |eval(G)| ∈ 2O(n) this simulation takes O(n) steps.

Moreover, the number of alternations during the simulation is k and we start in
an existential state. Finally note that if the Σlog

k -machine has written a position
i ∈ {1, . . . , |eval(G)|} on its address-tape and queries the i-th position of eval(G),
then in the simulation we have to determine the symbol eval(G)[i] which is possible
in polynomial time (with respect to |G|).

Next we will construct a language L in Σlog
k such that the compressed membership

problem for L is Σp
k-complete. First assume that k is odd. In this case the following

restricted version of QBF (quantified Boolean satisfiability), called Q3SATk, is Σp
k-

complete [70]:

INPUT: A quantified Boolean formula of the form

Θ = ∃x1∀x2 · · · ∃xk : ϕ(x1, . . . , xn).

Here xi = (x`i
, · · · , x`i+1−1) (where `1 = 1 and `k+1 = n+1) is a sequence of Boolean

variables and ϕ is a formula in 3-CNF (a conjunction of disjunctions, each containing
exactly three literals) over the variables x1, . . . , xn.

QUESTION: Is Θ a true quantified Boolean formula?

Let us take an instance Θ of Q3SATk of the above form. Assume that ϕ = C1 ∧C2 ∧
· · ·∧Cm where every Ci is a disjunction of three literals. Note that there are 2n truth

WORD PROBLEMS ON COMPRESSED WORDS 25

input a string w ∈ Γ∗

t := 2dlog(|w|)e (by [3, Lemma 6.1], t can be calculated in DLOGTIME)
s := |w| − 1 (again, by [3, Lemma 6.1], s can be calculated in DLOGTIME)
p := 0; n := 0;
for i = 1 to k do

while w[s] = ai and t > 0 do

t := t− 1; s := s− 1; n := n + 1;
Guess existentially (if i is odd) or universally (if i is even) the n-th bit of
the number p.

endwhile

endfor

Copy the n-bit number p to the address tape, initialize a counter q to 0, and
append q to the n bits of the address tape. When querying the input tape
via the address tape, the machine A will interpret the content of the address
tape (i.e., the concatenation of the n bits of p followed by the bits of q) as the
number p + 2n · q.
while w[p + 2n · q] = 1 and t > 0 do

q := q + 1; t := t− 1;
endwhile

if w[p + 2n · q] = 0 then reject else accept

Fig. 8.1. The alternating Turing-machine A

assignments to the variables x1, . . . , xn and each of these truth assignments can be
represented by the vector (b1, . . . , bn) where bi = 1 if the variable xi evaluates to true,
otherwise bi = 0. We order these vectors lexicographically, where the last position
gets the highest significance, i.e., (0, . . . , 0) < (1, 0, . . . , 0) < · · · < (1, . . . , 1). Thus,
we can speak of the j-th truth assignment (0 ≤ j ≤ 2n − 1). For each disjunction Ci

define the word ci = b0b1 · · · b2n−1, where bj ∈ {0, 1} is the truth value of Ci under
the j-th truth assignment. In [8] it is shown that the word ci can be generated by an
SLP of size O(n). Let di = `i+1 − `i, i.e., di is the number of variables in the i-th
block xi. Let Γ = {0, 1, $, a1, . . . , ak} Finally, we define the word w(Θ) ∈ Γ∗ by

w(Θ) = c1c2 · · · cm$2m

adk

k · · · a
d2

2 ad1

1 .

Since every ci can be generated by an SLP of size O(n), the word w(Θ) can be
generated by an SLP of polynomial size with respect to the size of the formula Θ.
Note that |w(Θ)| = m · 2n + 2m + n. Thus n ≤ log(|w(Θ)|) and also m ≤ log(|w(Θ)|).
The only use of the padding-factor $2m

is to ensure m ≤ log(|w(Θ)|). It remains

to construct a Σlog
k -machine A that accepts a given input word of the form w(Θ) if

and only if Θ is true. The behavior of this machine on inputs that are not of the
form w(Θ) is not important; it is only important that the logarithmic time bound is
respected, independently of the form of the input. This will be ensured by a counter
t. In the following, we write w[i] (i ∈ {0, . . . , |w| − 1}), where is the current content
of the address tape, for the result of querying the input w via the random access
mechanism. Note that in contrast to the definition in Section 3.1, we number the
first position of w with 0 and the last position with |w| − 1. The alternating Turing-
machine A is described in Figure 8.1. Let us consider an example before we continue
with analyzing the machine A.

26 M. LOHREY

Example 8.3. Let Θ be the quantified Boolean formula

∃x1∀x2∃x3 : (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3),

which evaluates to true. We have c1 = 11110111 and c2 = 10111111 and thus

w(Θ) = 1111011110111111$4a3a2a1.

Consider the truth assignment x1 = x2 = 1, x3 = 0. This is the third assignment
in lexicographic order (recall that we start with the 0-th assignment). The fact that
(x1 ∨x2 ∨¬x3)∧ (¬x1 ∨x2 ∨x3) is true under this assignment corresponds to the fact
that w(Θ)[3] = 1 and w(Θ)[3 + 2n] = w(Θ)[11] = 1. This is verified by the machine
A in the second while-loop, when p = 3 is guessed in the for-loop.

Now let us analyze the behavior of the alternating Turing-machine A on an input
w ∈ Γ∗. All counters (t, s, n, and q) in this algorithm only need log(|w|) bits
and are incremented (or decremented) only O(log(|w|)) times. Thus, by Lemma 8.1
all increments and decrements for the various counters need O(log(|w|)) total time.
Hence, the counter t enforces a logarithmic time bound of the whole algorithm. Since
the number of alternations is precisely k and A starts in an existential state, the
machine A is indeed a Σlog

k -machine. We claim that if the input w is of the form
w(Θ) for an instance Θ of Q3SATk, then the counter t does not reach the value 0 if A
is started on w(Θ). Let us fix an instance Θ of Q3SATk with n variables and m clauses.
Thus, n ≤ log(|w(Θ)|) and m ≤ log(|w(Θ)|). From the construction of w(Θ) it follows
that A decrements the counter t only n + m ≤ 2dlog(|w(Θ)|)e times when A runs on
the input w(Θ). Thus, t does not reach the value 0. Using this observation, it is easy
to see that A accepts w(Θ) if and only if Θ is true. This finishes the presentation of

a language in Σlog
k with a Σp

k-complete compressed membership problem for the case
that k is odd. If k is even, one can argue analogously, one only has to replace the
3-CNF formula by a 3-DNF formula. The resulting variant of Q3SATk is Σp

k-complete
[70].

Let us remark that the logtime hierarchy LH can be also characterized using
first-order logic (FO) with ordering and the BIT predicate: LH = FO[<,BIT], see,
e.g., [32] for definitions. Since for instance NP can be captured by existential second-
order logic (NP = SO∃), it follows from Theorem 8.2 that FO[<,BIT] properties on
strings cannot be translated into SO∃ properties on straight-line programs unless the
polynomial time hierarchy collapses. In a setting without the BIT predicate similar
definability issues are investigated in [1].

By Proposition 6.1, for every language in
⋃

i≥0 NSPACE(logi(n)) the compressed
membership problem belongs to PSPACE. It turns out that we find languages with
a PSPACE-complete compressed membership problem already in ALOGTIME ⊆
DSPACE(log(n)):

Theorem 8.4. There exists a fixed language L in ALOGTIME such that the
compressed membership problem for L is PSPACE-complete.

Proof. We can reuse the construction from the previous proof, except that we
start from an instance of QBF (quantified Boolean satisfiability) which is PSPACE-
complete [52].

One should note that it is not the case that for every ALOGTIME-complete
language the compressed membership problem is PSPACE-complete (unless P =
PSPACE): The word problem for the finite group S5 is ALOGTIME-complete [2]
but the compressed word problem for S5 is in P, in fact it is P-complete [7]. An-
other example is the word problem for the free group F2 of rank 2. Its compressed

WORD PROBLEMS ON COMPRESSED WORDS 27

membership problem is P-complete by Theorem 4.9, whereas the word problem for
F2 is ALOGTIME-hard [57] but not even known to be in ALOGITME. Thus, in the
framework of straight-line programs, a general upgrading theorem analogously to [68]
does not hold. The next theorem states this fact in a more general context. For this,
we introduce a parallel notion of reducibility that we call LOGDCFL-reducibility.

A deterministic logspace-bounded AuxPDA is a deterministic pushdown automa-
ton that has an auxiliary read-write working tape of length O(log(n)) for an input
of length n [65]. It is known that a language can be recognized by a deterministic
logspace-bounded AuxPDA in polynomial time if and only if it belongs to the class
LOGDCFL, which is the class of all problems that are logspace reducible to a deter-
ministic context-free language [65]. We say that a function f : Γ∗ → Σ∗ is computable
in LOGDCFL if there exists a deterministic logspace-bounded AuxPDA with an out-
put tape that computes for an input x ∈ Γ∗ the word f(x) on the output tape in
polynomial time. This leads to the notion of LOGDCFL-reductions. LOGDCFL-
reducibility is denoted by ≤LOGDCFL. It is easy to see that a LOGDCFL-computable
function belongs to the functional class LLOGCFL of [27], which is the class of all func-
tions that can be computed by a logspace transducer which has additional access to
an oracle from LOGCFL. Since LLOGCFL is contained in functional NC2 [27], we see
that LOGDCFL-computable functions also belong to functional NC2.

If R is any notion of reducibility, then we write A ≡R B for A ≤R B ≤R A.
In the following proposition, we denote for a language K by C(K) the compressed
membership problem for K.

Proposition 8.5. For every language L there exists a language K such that
L ≡NC1 K ≡LOGDCFL C(K).

Proof. Let us fix a language L ⊆ Γ∗, let # 6∈ Γ be a new symbol, and define

K = {a1#a2#
2a3 · · ·#

n−1an | a1a2 · · · an ∈ L, a1, . . . , an ∈ Γ}.

Then L ≡NC1 K is easy to see.
That K is LOGDCFL-reducible to C(K) is trivial. Thus, it remains to show

C(K) ≤LOGDCFL K. Note that if an SLP G generates a word a1#a2#
2a3 · · ·#

n−1an

(which has length n(n+1)
2), then |G| ≥ n. This is true, because if for a nonterminal

A, evalG(A) contains more than one symbols from Γ, then A can occur only once in
the whole derivation tree generated by G. Now a LOGDCFL-reduction from C(K)
to K can be implemented as follows: For a given SLP G, a deterministic logspace-
bounded AuxPDA generates the word eval(G) on the pushdown in the same way
as context-free languages are recognized on pushdown automata. Moreover, every
time the AuxPDA pushes a terminal on the pushdown, it writes that terminal on the
output tape, increments a counter by 1 and removes the terminal from the pushdown.

If the counter reaches the value |G|(|G|+1)
2 + 1 (which has O(log(|G|)) many bits in

its binary representation), then the AuxPDA terminates immediately (this ensures
a polynomial running time) and writes for instance ## on the output in order to
ensure that the generated output does not belong to K. If the counter does not reach

the value m(m+1)
2 + 1, then the AuxPDA finally has produced the word eval(G) on

the output. We have described a LOGDCFL-reduction from C(K) to K.
From Proposition 8.5 it follows that if C is a complexity class that is closed

under NC1-reductions and such that C has complete problems under some notion R
of reducibility that is weaker than LOGDCFL-reducibility (e.g., NC2-reducibility),
then C contains a language L such that both L and C(L) are complete for C under
R-reducibility.

28 M. LOHREY

We remark that also for hierarchical graph descriptions [38] (which can be viewed
as graph-generating straight-line programs) the correlation between the complexity
of a problem in its compressed and uncompressed variant, respectively, is quite loose.

9. Uniform variants. Many of the decision problems in this paper can be also
investigated in a uniform setting. For a class C of monoid presentations define the
compressed uniform word problem for the class C as the following decision problem:

INPUT: A monoid presentation (Γ, R) and two SLPs G1 and G2 over the terminal
alphabet Γ.

QUESTION: Does eval(G1)
∗
↔R eval(G2) hold?

Similarly we can define the compressed uniform membership problem for a class C
of languages. Here, we have to specify the representation of a language from C. For
various representations of regular languages, the complexity of the uniform compressed
membership problem was investigated in [55]. The upper bound in the following result
was also stated in [55].

Theorem 9.1. The compressed uniform membership problem for the class of all
context-free languages (represented by context-free grammars) is PSPACE-complete.

Proof. The lower bound follows from Corollary 6.7. For the upper bound it was
argued in [55] that one can use a DSPACE(log2(n)) algorithm for parsing context-free
languages, in the same way as in the proof of Corollary 6.7. But here, a problem arises:
The uniform membership problem for context-free languages is P-complete, and thus
probably not contained in

⋃
c>0 DSPACE(logc(n)). On the other hand, by [26] the

uniform membership problem for context-free grammars in Chomsky normal form can
be solved in DSPACE(log2(|G| + |w|)), where |G| is the size of the input grammar
and w is the word that has to be tested for membership. Since every context-free
grammar can be transformed in polynomial time into Chomsky normal form, we can
argue analogously to the proof of Proposition 6.1.

REFERENCES

[1] F. Afrati, H. Leiß, and M. de Rougemont. Definability and compression. Fundamenta Infor-
maticae, 56:155–180, 2003.

[2] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences, 38:150–164, 1989.

[3] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of
Computer and System Sciences, 41:274–306, 1990.

[4] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. Searching constant width mazes
captures the AC0 hierarchy. In M. Morvan, C. Meinel, and D. Krob, editors, Proceedings
of the 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS 98),
Paris (France), number 1373 in Lecture Notes in Computer Science, pages 73–83. Springer,
1998.

[5] G. Bauer and F. Otto. Finite complete rewriting systems and the complexity of the word
problem. Acta Informatica, 21:521–540, 1984.

[6] M. Beaudry, M. Holzer, G. Niemann, and F. Otto. McNaughton families of languages. Theo-
retical Computer Science, 290(3):1581–1628, 2003.

[7] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit
evaluation. SIAM Journal on Computing, 26(1):138–152, 1997.

[8] P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity
of pattern matching for highly compressed two-dimensional texts. Journal of Computer
and System Sciences, 65(2):332–350, 2002.

[9] R. V. Book. Homogeneous Thue systems and the Church–Rosser property. Discrete Mathe-
matics, 48:137–145, 1984.

[10] R. V. Book, M. Jantzen, B. Monien, C. P. Ó’Dúnlaing, and C. Wrathall. On the complexity of
word problems in certain Thue systems. In J. Gruska and M. Chytil, editors, Proceedings

WORD PROBLEMS ON COMPRESSED WORDS 29

of the 10th International Symposium on Mathematical Foundations of Computer Science
(MFCS’81), S̆trbské Pleso (Czechoslovakia), number 118 in Lecture Notes in Computer
Science, pages 216–223. Springer, 1981.

[11] R. V. Book and F. Otto. String–Rewriting Systems. Springer, 1993.
[12] W. W. Boone. The word problem. Annals of Mathematics (2), 70:207–265, 1959.
[13] B. Borchert and A. Lozano. Succinct circuit representations and leaf language classes are

basically the same concept. Information Processing Letters, 59(4):211–215, 1996.
[14] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML documents. In

Proceedings of the Tenth International Symposium on Database Programming Languages
(DBPL 2005), Trondheim (Norway). Springer, 2005. to appear.

[15] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

[16] M. Charikar, E. Lehman, D. Liu, R. P. abd M. Prabhakaran, A. Rasala, A. Sahai, and A. She-
lat. Approximating the smallest grammar: Kolmogorov complexity in natural models.
In Proceedings of the 34th Annual Symposium on Theory of Computing (STOC 2002),
Montréal (Canada), pages 792–801. ACM Press, 2002.

[17] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64:2–22, 1985.

[18] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal
of Algorithms, 8:385–394, 1987.

[19] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. Algorithmica,
20(4):388–404, 1998.

[20] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. The complexity of problems on
graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science, 1999.

[21] H. Galperin and A. Wigderson. Succinct representations of graphs. Information and Control,
56(3):183–198, 1983.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP–completeness. Freeman, 1979.

[23] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-Ziv
encoding (extended abstract). In R. G. Karlsson and A. Lingas, editors, Proceedings of
the 5th Scandinavian Workshop on Algorithm Theory (SWAT 1996), Reykjav́ık (Iceland),
number 1097 in Lecture Notes in Computer Science, pages 392–403. Springer, 1996.

[24] B. Genest and A. Muscholl. Pattern matching and membership for hierarchical message se-
quence charts. In S. Rajsbaum, editor, In Proceedings of the 5th Latin American Sympo-
sium on Theoretical Informatics (LATIN 2002), Cancun (Mexico), number 2286 in Lecture
Notes in Computer Science, pages 326–340. Springer, 2002.

[25] L. M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. SIGACT News, 9(2):25–99, 1977.

[26] L. M. Goldschlager. ε-productions in context-free grammars. Acta Informatica, 16:303–308,
1981.

[27] G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. Theoretical Computer
Science, 270(1–2):761–777, 2002.

[28] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -Completeness
Theory. Oxford University Press, 1995.

[29] C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis,
University of Stuttgart, Institut für Informatik, 2000.

[30] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity of
normed context-free processes. Theoretical Computer Science, 158(1&2):143–159, 1996.

[31] M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) grammars. In Z. Ésik,
editor, Proceedings of the 9th International Symposium on Fundamentals of Computation
Theory (FCT’93), Szeged (Hungary), number 710 in Lecture Notes in Computer Science,
pages 299–308. Springer, 1993.

[32] N. Immerman. Descriptive Complexity. Springer, 1999.
[33] M. Jantzen. Confluent string rewriting. In EATCS Monographs on Theoretical Computer

Science, volume 14. Springer, 1988.
[34] M. W. Krentel. The complexity of optimization problems. Journal of Computer and System

Sciences, 36(3):490–509, 1988.
[35] K.-J. Lange and P. McKenzie. On the complexity of free monoid morphisms. In K.-Y. Chwa

and O. H. Ibarra, editors, Proceedings of the ISAAC’98, Taejon (Korea), number 1533 in
Lecture Notes in Computer Science, pages 247–256. Springer, 1998.

[36] J. Larus. Whole program paths. In Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 259–269. ACM Press,

30 M. LOHREY

1999.
[37] E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression. In

Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), San Francisco (USA), pages 205–212, 2002.

[38] T. Lengauer and K. W. Wagner. The correlation between the complexities of the nonhierarchical
and hierarchical versions of graph problems. Journal of Computer and System Sciences,
44:63–93, 1992.

[39] P. M. Lewis II, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free
and context-sensitive languages. In Proceedings of the Sixth Annual IEEE Symposium on
Switching Circuit Theory and Logic Design, pages 191–202, 1965.

[40] R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the Association
for Computing Machinery, 24(3):522–526, 1977.

[41] M. Lohrey. Word problems and confluence problems for restricted semi-Thue systems. In
L. Bachmair, editor, Proceedings of the 11th International Conference on Rewrite Tech-
niques and Applications (RTA 2000), Norwich (UK), number 1833 in Lecture Notes in
Computer Science, pages 172–186. Springer, 2000.

[42] M. Lohrey. Word problems for 2-homogeneous monoids and symmetric logspace. In J. Sgall,
A. Pultr, and P. Kolman, editors, Proceedings of the 26th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2001), Marianske Lazne (Czech
Republic), number 2136 in Lecture Notes in Computer Science, pages 500–511. Springer,
2001.

[43] M. Lohrey. Word problems on compressed word. In J. Diaz, J. Karhumäki, A. Lepistö, and
D. Sannella, editors, Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), Turku (Finland), number 3142 in Lecture Notes
in Computer Science, pages 906–918. Springer, 2004.

[44] M. Lohrey. Model-checking hierarchical structures. In Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science (LICS 2005), Chicago (USA). IEEE Computer
Society Press, 2005. 168–177.

[45] M. Lohrey and S. Maneth. Tree automata and XPath on compressed trees. In Proceedings
of the Tenth International Conference on Implementation and Application of Automata
(CIAA 2005), Sophia Antipolis (France). Springer, 2005. to appear.

[46] S. Maneth and G. Busatto. Tree transducers and tree compressions. In I. Walukiewicz, editor,
Proceedings of the 7th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS 2004), Barcelona (Spain), number 2987 in Lecture
Notes in Computer Science, pages 363–377. Springer, 2004.

[47] A. Markov. On the impossibility of certain algorithms in the theory of associative systems.
Doklady Akademii Nauk SSSR, 55, 58:587–590, 353–356, 1947.

[48] P. McKenzie and K. W. Wagner. The complexity of membership problems for circuits over sets
of natural numbers. In H. Alt and M. Habib, editors, Proceedings of the20th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS 2003), Berlin (Germany),
number 2607 in Lecture Notes in Computer Science, pages 571–582. Springer, 2003.

[49] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for
strings in terms of straight-line programs. In A. Apostolico and J. Hein, editors, Proceedings
of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM 97), Aarhus
(Denmark), Lecture Notes in Computer Science, pages 1–11. Springer, 1997.

[50] M.-J. Nederhof and G. Satta. The language intersection problem for non-recursive context-free
grammars. Information and Computation, 192(2):172–184, 2004.

[51] P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory. American
Mathematical Society, Translations, II. Series, 9:1–122, 1958.

[52] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[53] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs. Infor-

mation and Control, 71(3):181–185, 1986.
[54] W. Plandowski. Testing equivalence of morphisms on context-free languages. In J. van

Leeuwen, editor, Second Annual European Symposium on Algorithms (ESA’94), Utrecht
(The Netherlands), number 855 in Lecture Notes in Computer Science, pages 460–470.
Springer, 1994.

[55] W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed
words. In J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are
Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
262–272. Springer, 1999.

[56] E. Post. Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic, 12(1):1–11,
1947.

WORD PROBLEMS ON COMPRESSED WORDS 31

[57] D. Robinson. Parallel Algorithms for Group Word Problems. PhD thesis, University of Cali-
fornia, San Diego, 1993.

[58] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22:365–383, 1981.

[59] W. Rytter. Algorithms on compressed strings and arrays. In J. Pavelka, G. Tel, and M. Bar-
tosek, editors, Proceedings of the 26th Conference on Current Trends in Theory and Prac-
tice of Informatics (SOFSEM’99, Theory and Practice of Informatics), Milovy (Czech
Republic), number 1725 in Lecture Notes in Computer Science, pages 48–65. Springer,
1999.

[60] W. Rytter. Compressed and fully compressed pattern matching in one and two dimensions.
Proceedings of the IEEE, 88(11):1769–1778, 2000.

[61] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302(1–3):211–222, 2003.

[62] W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input. In
J. Diaz, J. Karhumäki, A. Lepistö, and D. Sannella, editors, Proceedings of the 31st Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2004), Turku
(Finland), number 3142 in Lecture Notes in Computer Science, pages 15–27. Springer,
2004.

[63] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual Symposium on
Theory of Computing (STOC 1983), pages 61–69. ACM Press, 1983.

[64] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

[65] I. H. Sudborough. On the tape complexity of deterministic context–free languages. Journal of
the Association for Computing Machinery, 25(3):405–414, 1978.

[66] H. Veith. Languages represented by Boolean formulas. Information Processing Letters,
63(5):251–256, 1997.

[67] H. Veith. How to encode a logical structure by an OBDD. In Proceedings of the 13th Annual
IEEE Conference on Computational Complexity, pages 122–131. IEEE Computer Society,
1998.

[68] H. Veith. Succinct representation, leaf languages, and projection reductions. Information and
Computation, 142(2):207–236, 1998.

[69] K. W. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Informatica, 23(3):325–356, 1986.

[70] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3(1):23–33, 1976.

[71] K. Yamagata, T. Uchida, T. Shoudai, and Y. Nakamura. An effective grammar-based com-
pression algorithm for tree structured data. In T. Horváth, editor, Proceedings of the 13th
International Conference on Inductive Logic Programming (ILP 2003), Szeged (Hungary),
number 2835 in Lecture Notes in Artificial Intelligence, pages 383–400. Springer, 2003.

[72] Y. Zhang and R. Gupta. Path matching in compressed control flow traces. In Proceedings of the
12th Data Compression Conference (DCC 2002), Snowbird (Utah, USA), pages 132–141.
IEEE Computer Society Press, 2002.

[73] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory, 23(3):337–343, 1977.

