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ABSTRACT

Several complexity and decidability results for automatic monoids are shown: (i)

there exists an automatic monoid with a P-complete word problem, (ii) there exists an

automatic monoid such that the first-order theory of the corresponding Cayley-graph is
not elementary decidable, and (iii) there exists an automatic monoid such that reacha-

bility in the corresponding Cayley-graph is undecidable. Moreover, it is shown that for
every hyperbolic group the word problem belongs to LOGCFL, which improves a result
of Cai [8].

Keywords: automatic monoids, hyperbolic groups, word problems, Cayley-graphs, com-
plexity, decidability

1. Introduction

Automatic groups attracted a lot of attention in combinatorial group theory

during the last 15 years, see e.g. the textbook [15]. Roughly speaking, a finitely

generated group G, generated by the finite set Γ, is automatic, if the elements of G

can be represented by words from a regular language over Γ, and the multiplication

with a generator can be recognized by a synchronized 2-tape automaton. This con-

cept easily yields a quadratic time algorithm for the word problem of an automatic

group.

It is straight forward to extend the definition of an automatic group to the

monoid case; this leads to the class of automatic monoids, see e.g. [10, 18, 22, 36].

In the present paper, we study the complexity and decidability of basic algorithmic

questions in automatic monoids. In Section 4 we consider the complexity of the word

problem for automatic monoids. Analogously to the group case, it is easy to show

that for every automatic monoid the word problem can be solved in quadratic time.

Here, we prove that there exists a fixed automatic monoid with a P-complete word

problem. Thus, unless P = NC, where NC is the class of all problems that can be

solved in polylogarithmic time using a polynomial amount of hardware, there exist

∗This work was partly done while the author was at RWTH Aachen, Germany.
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automatic monoids for which the word problem cannot be efficiently parallelized.

Whether there exists an automatic group with a P-complete word problem was

asked for the first time by Cai [8]. This problem remains open.

An important subclass of the class of automatic groups is the class of hyperbolic

groups, which are defined via a geometric hyperbolicity condition on the Cayley-

graph [16]. In [8], Cai has shown that for every hyperbolic group the word problem

belongs to the parallel complexity class NC2. Cai also asked, whether the upper

bound of NC2 can be improved. Using known results from formal language theory,

we show in Section 4 that the word problem for every hyperbolic group belongs to

the complexity class LOGCFL ⊆ NC2. LOGCFL is the class of all problems that

are logspace reducible to a context-free language [44]. We also present a class of

automatic monoids, namely monoids that can be presented by finite, terminating,

confluent, and left-basic semi-Thue systems [41], for which the complexity of the

word problem captures the class LOGDCFL (the logspace closure of the determin-

istic context-free languages [44]).

In Section 5 we study Cayley-graphs of automatic monoids. The Cayley-graph

of a finitely generated monoid M with respect to a finite generating set Γ is a

Γ-labeled directed graph with node set M and an a-labeled edge from a node x

to a node y if y = xa in M. Cayley-graphs of groups are a fundamental tool in

combinatorial group theory [32] and serve as a link to other fields like topology,

graph theory, and automata theory, see, e.g., [34, 35]. Results on the geometric

structure of Cayley-graphs of automatic monoids can be found in [42, 43]. Here

we consider Cayley-graphs from a logical point of view, see [26, 27] for previous

results in this direction. More precisely, we consider the first-order theory of the

Cayley-graph of an automatic monoid M. This theory contains all true statements

of the Cayley-graph that result from atomic statements of the form “there is an a-

labeled edge between two nodes” using Boolean connectives and quantification over

nodes. From the definition of an automatic monoid it follows immediately that the

Cayley-graph of an automatic monoid is an automatic graph in the sense of [3, 24];

hence, by a result from [24], its first-order theory is decidable. This allows to verify

non-trivial properties for automatic monoids, like for instance right-cancellativity,

which are undecidable for arbitrary monoids. Here, we prove that there exists an

automatic monoid such that the first-order theory of the corresponding Cayley-

graph is not elementary decidable. This result sharpens a corresponding statement

for general automatic graphs [3]. We remark that, using a result from [30], the

Cayley-graph of a right-cancellative automatic monoid has an elementarily decidable

first-order theory. Finally we prove that there exists an automatic monoid M such

that reachability in the Cayley-graph (i.e., the question whether for given monoid

elements u and v there exists x ∈ M with u = vx in M) is undecidable.

The short version of this paper can be found in [31].

2. Monoids and Word Problems

More details and references concerning the material in this section can be found

in [7]. In the following, let Γ be always a finite alphabet of symbols. A semi-Thue
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system R over Γ is a (not necessarily finite) set R ⊆ Γ∗×Γ∗; its elements are called

rules. A rule (s, t) will be also written as s→ t. Without loss of generality we may

assume that every symbol from Γ appears in a rule of R; thus, Γ is given uniquely

by R. Let dom(R) = {` | ∃r : (`, r) ∈ R} and ran(R) = {r | ∃` : (`, r) ∈ R}. We

define the binary relation →R on Γ∗ by: x→R y if ∃u, v ∈ Γ∗ ∃(s, t) ∈ R : x = usv

and y = utv. Let
∗
↔R be the smallest equivalence relation on Γ∗ containing →R;

it is a congruence with respect to the concatenation of words and called the Thue-

congruence associated with R. Hence, we can define the quotient monoid Γ∗/
∗
↔R,

which is briefly denoted by Γ∗/R. Let πR : Γ∗ → Γ∗/R be the canonical surjective

monoid homomorphism that maps a word w ∈ Γ∗ to its equivalence class with

respect to
∗
↔R. A monoid M is finitely generated if it is isomorphic to a monoid

of the form Γ∗/R. In this case, we also say that M is finitely generated by Γ. If

in addition to Γ also R is finite, then M is a finitely presented monoid. The word

problem of M ' Γ∗/R with respect to R is the set {(u, v) ∈ Γ∗×Γ∗ | πR(u) = πR(v)};

it is undecidable in general [33, 37]. If a monoid M is isomorphic to both Γ∗/R and

Σ∗/S for semi-Thue systems R and S, then the word problem of M with respect

to R is logspace-reducible to the word problem of M with respect to S. Thus, it

makes sense to speak just of the word problem of M since we are only interested

in the decidability (resp. complexity) status of word problems. Complexity results

for monoids that are presented by various subclasses of semi-Thue systems can be

found for instance in [1, 5, 6, 28, 29].

The semi-Thue system R is terminating if there does not exist an infinite chain

s1 →R s2 →R s3 →R · · · in Γ∗. The set of irreducible words with respect to R is

IRR(R) = {s ∈ Γ∗ | ¬∃t ∈ Γ∗ : s →R t}. The system R is confluent (resp. locally

confluent) if for all s, t, u ∈ Γ∗ with s
∗
→R t and s

∗
→R u (resp. s→R t and s→R u)

there exists w ∈ Γ∗ with t
∗
→R w and u

∗
→R w. If R is terminating, then by

Newman’s lemma R is confluent if and only if R is locally confluent. Using critical

pairs [7] which result from overlapping left-hand sides of R, local confluence is

decidable for finite terminating semi-Thue systems. The system R is length-reducing

if |s| > |t| for all (s, t) ∈ R, where |w| is the length of a word w. The system R is

called length-lexicographic if there exists a linear order Â on the alphabet Γ such

that for every rule (s, t) ∈ R either |s| > |t| or (|s| = |t| and there are u, v, w ∈ Γ∗

and a, b ∈ Γ such that s = uav, t = ubw, and a Â b). Clearly, every length-

lexicographic semi-Thue system is terminating. In the case when R is terminating

and confluent, then every word s has a unique normal form NFR(s) ∈ IRR(R) such

that s
∗
→R NFR(s) and moreover, the function πR¹IRR(R) (i.e., πR restricted to

IRR(R)) is bijective. Thus, if R is in addition finite, then the word problem of Γ∗/R

is decidable: πR(s) = πR(t) if and only if NFR(s) = NFR(t).

3. Automatic Monoids

Automatic monoids were investigated for instance in [10, 18, 20, 22, 36]. They

generalize automatic groups, see [15]. Let us fix a finite alphabet Γ. Let # 6∈ Γ

be an additional padding symbol and let Γ# = Γ ∪ {#}. We define two encodings

ν`, νr : Γ∗ × Γ∗ → (Γ# × Γ#)∗ as follows: Let u, v ∈ Γ∗ and let k = max{|u|, |v|}.
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Define w = u#k−|u|, x = v#k−|v|, y = #k−|u|u, and z = #k−|v|v. Let w[i] denote

the i-th symbol of w and similarly for x, y, and z. Then

νr(u, v) = (w[1], x[1]) · · · (w[k], x[k]) and ν`(u, v) = (y[1], z[1]) · · · (y[k], z[k]).

For instance,

νr(aba, bbabb) = (a, b)(b, b)(a, a)(#, b)(#, b) and

ν`(aba, bbabb) = (#, b)(#, b)(a, a)(b, b)(a, b).

In the following let α, β ∈ {`, r}. A relation R ⊆ Γ∗×Γ∗ is called α-automatic if the

language {να(u, v) | (u, v) ∈ R} is a regular language over the alphabet Γ# × Γ#.

A relation R ⊆ Γ∗ × Γ∗ has bounded length-difference if there exists a constant γ

such that for all (u, v) ∈ R, |(|u| − |v|)| ≤ γ. The following simple lemma will turn

out to be useful. Its simple proof is left to the reader.

Lemma 1 Let R,S ⊆ Γ∗ × Γ∗ have bounded length-difference. Then R is `-

automatic if and only if R is r-automatic. Moreover, if R and S are α-automatic,

then R · S = {(st, uv) | (s, u) ∈ R, (t, v) ∈ S} is α-automatic as well.

Let M be a monoid. A triple (Γ, R, L) is an αβ-automatic presentation for

M if: (i) R is a semi-Thue system over the finite alphabet Γ such that M '

Γ∗/R, (ii) L ⊆ Γ∗ is a regular language such that πR¹L maps L surjectively to

M, (iii) the relation {(u, v) ∈ L × L | πR(u) = πR(v)} is α-automatic, and (iv)

if β = ` (resp. β = r), then the relation {(u, v) ∈ L × L | πR(au) = πR(v)}

(resp. {(u, v) ∈ L × L | πR(ua) = πR(v)}) is α-automatic for every a ∈ Γ. Let

T ⊆ {``, `r, r`, rr} with T 6= ∅. Then the monoid M is T -automatic if there exists

a triple (Γ, R, L), which is a t-automatic presentation for M for all t ∈ T (thus,

by definition M is finitely generated). For t ∈ {``, `r, r`, rr} we write t-automatic

instead of {t}-automatic. Usually, rr-automaticity (i.e., padding and multiplication

on the right) is meant, when only the term automatic is used. If M is {r`, rr}-

automatic, then M is also called biautomatic. In [18, 20], it was shown that for all

T1, T2 ⊆ {``, `r, r`, rr} with ∅ 6= T1 6= T2 6= ∅ there exists a T1-automatic monoid,

which is not T2-automatic. Thus, for monoids there are 15 different notions of

automaticity. For groups, the situation is different. For instance, it is not hard to

see that for t1, t2 ∈ {``, `r, r`, rr} with t1 6= t2, a group is t1-automatic if and only

if it is t2-automatic. On the other hand, it is open whether every (rr-)automatic

group is already biautomatic. For our lower bounds we will mostly work with the

strongest possible notion of automaticity, i.e., {``, `r, r`, rr}-automaticity. Various

classes of semi-Thue systems that present automatic monoids can be found in [36].

4. Complexity of the Word Problem

The word problem for an automatic group can be solved in quadratic time [15].

Moreover, the same algorithm also works for αβ-automatic monoids [10]. Here we

will show that P is also a lower bound for the monoid case.

Theorem 1 There is a finite, length-lexicographic, and confluent semi-Thue system

R ⊆ Γ∗×Γ∗ such that the word problem for Γ∗/R is P-complete and (Γ, R, IRR(R))

is an αβ-automatic presentation for Γ∗/R for all α, β ∈ {`, r}.
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Proof. We start with a fixed deterministic Turing machine S that accepts a

P-complete language. Let p(n) be a polynomial such that S terminates on an input

w ∈ L(S) after exactly p(|w|) steps; this exact time bound can be easily enforced.

We may assume that the tape is restricted to size p(|w|). It is straight forward to

simulate S by a new deterministic Turing machine T that operates in a sequence

of complete left/right sweeps over the whole tape (of size p(|w|)). During a right

sweep, the head runs from the left tape end to the right tape end in a sequence of

right moves. When reaching the right tape end, the head turns back and starts a

left sweep. Let Σ be the tape alphabet of T , Q be the set of states, q0 be the initial

state, and qf be the final state. With � ∈ Σ we denote the blank symbol. We write

qa⇒T bp (aq ⇒T pb), in case T writes b, moves right (left), and enters state p, when

reading a in state q. The machine T terminates (and accepts its input) if and only if

it finally reaches the final state qf . Thus, T cannot make any transitions out of qf .

Moreover, we may assume that the tape is blank and that the tape head is scanning

the first cell when T terminates in state qf . Define Γ = Σ ∪ Σ ∪ Q ∪ Q ∪ {$, $},

where Σ = {a | a ∈ Σ} is a disjoint copy of Σ and similarly for Q. Let R be the

following semi-Thue system over Γ:

qa→ bp if qa⇒T bp a q → pb if aq ⇒T pb

q$ → q for all q ∈ Q $q → q for all q ∈ Q

R is length-lexicographic and confluent (there are no critical pairs since T is

deterministic). Next, let w ∈ Σ∗ be an arbitrary input for T and let m = p(|w|).

Then w is accepted by T if and only if $
m
q0w � m−|w|$m ∗

→R qf � m if and only if

$
m
q0w � m−|w|$m ∗

↔R qf � m. Thus, the word problem for Γ∗/R is P-hard.

Next, we show that for all α, β ∈ {`, r}, (Γ, R, IRR(R)) is an αβ-automatic

presentation for Γ∗/R (then in particular, the word problem for Γ∗/R belongs to P).

Due to the symmetry of R, we can restrict to β = `. Thus, we have to show that the

relation Ec = {(u, v) ∈ IRR(R) × IRR(R) | cu
∗
→R v} is α-automatic for all c ∈ Γ

and α ∈ {`, r}. Note that all relations that appear in the following consideration

have bounded length-difference. This allows to make use of Lemma 1. First, note

that the following relations are α-automatic:

Aq = {(u, vp) | p ∈ Q, u ∈ Σ∗, v ∈ Σ
∗
, qu

∗
→R vp}

Bq = {(u, pv) | p ∈ Q, u ∈ Σ
∗
, v ∈ Σ∗, u q

∗
→R pv}

The relation Aq (resp. Bq) describes a single right (resp. left) sweep over the whole

tape started in state q, which is just a rational transduction. Since α-automatic

relations are closed under composition, the relation

Cq = {(u$, pv) | p ∈ Q, u, v ∈ Σ∗, qu$
∗
→R pv}

is α-automatic as well. Now the α-automaticity of the relations Ec for c ∈ Γ follows

easily: For c ∈ Q ∪ Σ ∪ {$} we have Ec = {(u, cu) | u ∈ IRR(R)}, which is clearly
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α-automatic. For c = a ∈ Σ and c = q ∈ Q, respectively, we have:

Ea = {(u, au) | u ∈ IRR(R), u 6∈ QΓ∗} ∪

{(qu, pbu) | u ∈ IRR(R), q, p ∈ Q, b ∈ Σ, (a q, pb) ∈ R}

Eq = {(uw, vw) | (u, v) ∈ Aq, w ∈ IRR(R), w 6∈ (Σ ∪ {$})Γ∗} ∪

{(uw, vw) | (u, v) ∈ Cq, w ∈ IRR(R)}.

Finally, E
$

= {(u, $u) | u ∈ IRR(R), u 6∈ QΓ∗} ∪
⋃

q∈Q{(qu, v) | (u, v) ∈ Eq}. This

concludes the proof of the α-automaticity of the relations Ec. 2

Corollary 1 There exists a fixed finitely presented {``, `r, r`, rr}-automatic monoid

with a P-complete word problem.

It is open, whether there exists an automatic group (or at least a cancellative

automatic monoid) with a P-complete word problem. An important subclass of the

class of automatic groups is the class of hyperbolic groups, which are defined via a

geometric hyperbolicity condition on the Cayley-graph [16]. The precise definition

is not important for the purpose of this paper. In [8], Cai has shown that for

every hyperbolic group the word problem belongs to the parallel complexity class

NC2, which is the class of all problems that can be recognized by a polynomial size

family of Boolean circuits of depth O(log2(n)), where only Boolean gates of fan-in

at most 2 are allowed. Cai also asked, whether the upper bound of NC2 can be

improved. Using a known result from formal language theory, we will show that

for every hyperbolic group the word problem belongs to LOGCFL ⊆ NC2, which is

the class of all problems that are logspace reducible to a context-free language [44].

For alternative characterizations of LOGCFL see [39, 45].

Theorem 2 The word problem for every fixed hyperbolic group is in LOGCFL.

Proof. By [12], a group G is hyperbolic if and only if G ∼= Γ∗/R, where R

is finite, length-reducing, and {s ∈ Γ∗ | s
∗
→R ε} = {s ∈ Γ∗ | s

∗
↔R ε}. Let

L be the latter language. Since G is a group, the word problem for G is logspace

reducible to L. Since R is length-reducing, L is growing context-sensitive, i.e., it can

be generated by a grammar, where every production is strictly length-increasing.

Since every fixed growing context-sensitive language belongs to LOGCFL [13], the

theorem follows. 2

In [14, 19], hyperbolic groups were generalized to hyperbolic monoids. It is not

clear whether Theorem 2 can be extended to hyperbolic monoids. It is also open,

whether the upper bound of LOGCFL from Theorem 2 can be further improved,

for instance to LOGDCFL, which is the class of all problems that are logspace re-

ducible to a deterministic context-free language [44]. For another class of automatic

monoids, we can precisely characterize the complexity of the word problem using

LOGDCFL: A semi-Thue system R over the alphabet Γ is called left-basic [41] if:

(i) if ` ∈ dom(R), r ∈ ran(R) and r = u`v then u = v = ε and (ii) if ` ∈ dom(R),

r ∈ ran(R), ur = `v, and |`| > |u|, then v = ε. Condition (i) means that a right-

hand side does not strictly contain a left-hand side. Condition (ii) means that the

following kind of overlapping is not allowed:
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u
` ∈ dom(R)

r ∈ ran(R)
v 6= ε

Let us define the suffix-rewrite relation ³R by s ³R t if and only if s = u` and

t = ur for some u ∈ Γ∗ and (`, r) ∈ R. The following lemma is obvious:

Lemma 2 If R is left-basic, then for every s ∈ IRR(R) and a ∈ Γ we have sa
∗
→R t

if and only if sa
∗
³R t.

Left-basic semi-Thue systems generalize monadic semi-Thue systems (where

|`| > |r| ≤ 1 for every rule ` → r). Systems that are finite, monadic, and con-

fluent present monoids that are simultaneously rr- and ``-automatic, but in general

neither r`- nor `r-automatic [36]. For left-basic systems we obtain the following

result:

Proposition 1 If R is a terminating, confluent, and left-basic semi-Thue system

over the alphabet Γ, then Γ∗/R is rr-automatic.

Proof. Let R be terminating, confluent, and left-basic. We define the semi-

Thue system S by S = {(s, t) | ∃(`, r) ∈ R : ` = s ∧ t = NFR(r)}. Since S is

left-basic, we have ran(S) ⊆ ran(R). Since moreover dom(S) = dom(R), the system

S is still left-basic. By [7, Lemma 2.2.11], S is also terminating and confluent,

and Γ∗/R ∼= Γ∗/S. We claim that (Γ, S, IRR(S)) is an rr-automatic presentation

for Γ∗/S. For this, it suffices to prove the following claim, which implies that

{(s, t) ∈ IRR(S) × IRR(S) | sa
∗
→S t} is r-automatic for every a ∈ Γ.

Claim: Let s ∈ IRR(S) = IRR(R) and a ∈ Γ. Then, sa
∗
→S t if and only if sa = t

or there exist u ∈ IRR(S), k ≥ 0, rules (`i, ri) ∈ S for 0 ≤ i ≤ k, and words

`′i ∈ Γ∗ \ {ε} such that `i = `′iri−1 (1 ≤ i ≤ k), sa = u`′k`
′
k−1 · · · `

′
1`0, and t = urk.

The “if” direction in this claim is obvious. For the “only if”-direction let us

take s ∈ IRR(S) and a ∈ Γ and assume that sa
∗
→S t. If we do not have sa = t,

then there exists some s′ with sa→S s
′ ∗
→S t. Lemma 2 implies that sa = s0`0 and

s′ = s0r0
∗
→S t for some s0 ∈ IRR(S) and some rule (`0, r0) ∈ S. We now prove by

induction on the length of the derivation s0r0
∗
→S t that there exist u ∈ IRR(S),

k ≥ 0, rules (`i, ri) ∈ S and words `′i ∈ Γ∗ \ {ε} (1 ≤ i ≤ k) such that `i = `′iri−1

(1 ≤ i ≤ k), s0 = u`′k`
′
k−1 · · · `

′
1, and t = urk, which implies the claim. If we have

s0r0 = t, then we choose k = 0 and u = s0. Otherwise, we have s0r0 →S s′0
∗
→S t

for some s′0. Since S is left-basic and r0 ∈ ran(S) ⊆ IRR(S), there exists a rule

(`1, r1) ∈ S and a word `′1 ∈ Γ∗ \ {ε} such that `1 = `′1r0, s0 = s1`
′
1 for some

s1 ∈ IRR(S), and s′0 = s1r1
∗
→S t. Now we can conclude by induction. 2

Theorem 3 The following problem is in LOGDCFL:

INPUT: A finite, terminating, confluent, and left-basic semi-Thue system R

over an alphabet Γ, and two words s, t ∈ Γ∗

QUESTION: s
∗
↔R t?

Moreover, there exists a finite, length-reducing, confluent, and left-basic semi-Thue

system R over an alphabet Γ such that the word problem for Γ∗/R is LOGDCFL-

complete.

Proof. Note that the upper bound in the first statement holds in a uniform

setting, i.e., the semi-Thue system is part of the input. In order to prove this upper
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bound, we will use a machine-based characterization of LOGDCFL: A logspace

bounded deterministic AuxPDA is a deterministic pushdown automaton that has

an auxiliary read-write tape of size O(log(n)) (where n is the input size). A problem

belongs to LOGDCFL if and only if it can be decided by a logspace bounded

deterministic AuxPDA that moreover works in polynomial time [44].

Now, let us assume that the input consists of a tuple (Γ, R, s, t), where R is a

finite, terminating, confluent, and left-basic semi-Thue system over the alphabet

Γ and s, t ∈ Γ∗. Let n be the length of the binary coding of this input. We will

construct a logspace bounded deterministic AuxPDA that checks in polynomial

time, whether NFR(s) = NFR(t). For this, we will first show how to calculate

NFR(s) on a deterministic AuxPDA in logspace and polynomial time. The basic

idea of how to do this appeared many times in the literature, see e.g. [7, Thm. 4.2.7].

The only slight complication in our situation results from the fact that the semi-

Thue system R belongs to the input. To overcome this, we need the logspace

bounded auxiliary store of our AuxPDA. The correctness of the following procedure

follows from Lemma 2. Our algorithm for computing NFR(s) works in stages. At the

beginning of a stage the pushdown contains a word from IRR(R) and the auxiliary

store contains a pointer to a position i in the input word s. Note that a symbol

a ∈ Γ can be represented as a bit string of length O(log(n)), thus the pushdown

content is a sequence of blocks of length O(log(n)), where every block represents a

symbol from Γ. The stage begins by pushing the i-th symbol of s onto the pushdown

(which is a bit string of length O(log(n))) and incrementing the pointer to position

i+1 in s. Now we have to check whether the pushdown content is from Γ∗dom(R).

For this we have to scan every left-hand side of R using a second pointer to the

input. Every ` ∈ dom(R) is scanned in reverse order and thereby compared with the

top of the push-down. During this phase, symbols are popped from the pushdown.

If it turns out that the left-hand side that is currently scanned is not a suffix of the

pushdown content, then these symbols must be “repushed”. This can be done, since

the suffix of the pushdown content that was popped so far is a suffix of the currently

scanned left-hand side ` ∈ dom(R), which is still available on the read-only input

tape. If a left-hand side ` is found on top of the pushdown, then the corresponding

right-hand side is pushed on the pushdown and we try to find again a left-hand

side on top of the pushdown. If finally no left-hand side matches a suffix of the

pushdown content, then we know that the pushdown content belongs to IRR(R)

and we can proceed with the next stage. Finally, if the first pointer has reached the

end of the input word s (or more precisely points to the first position following s),

then the pushdown content equals NFR(s).

Claim: In the above procedure, after the i-th stage the pushdown has length at

most i · α, where α = max({1} ∪ {|r| | r ∈ ran(R)}). Moreover, every stage needs

only polynomial time.

The first statement can be shown by induction on i. Since R is left-basic, it follows

that if w is the pushdown content at the end of the (i − 1)-th stage, then the

pushdown content at the end of the i-th stage either belongs to wΓ or is of the form

ur for some r ∈ ran(R) and some prefix u of w. Moreover, since R is terminating
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and left-basic, the i-th stage simulates at most |w| · |R| rewrite steps of R.

In order to check whether NFR(s) = NFR(t), we have to solve one more problem:

If we would calculate NFR(t) in the same way as above, then the pushdown would

finally contain the word NFR(s)NFR(t). But now there seems to be no way of

checking, whether NFR(s) = NFR(t). Thus, we have to apply another strategy.

Note that for a fixed binary coded number 1 ≤ i ≤ α · |s|, it is easy to modify our

algorithm for calculating NFR(s) such that some specified auxiliary storage cell S

contains always the i-th symbol of the pushdown content (or some special symbol if

the pushdown is shorter than i). For this we have to store the current length of the

pushdown, for which we need only space O(log(n)). Moreover, also S only needs

space O(log(n)). Thus, at the end of our modified algorithm for computing NFR(s),

S contains the symbol NFR(s)[i] (the i-th symbol of NFR(s)) or some special symbol

in case |NFR(s)| < i. Next, we flush the pushdown and repeat the same procedure

with the other input word t and the same i, using another storage cell T . In this

way we can check, whether NFR(s)[i] = NFR(t)[i]. Finally, we repeat this step for

every 1 ≤ i ≤ max{α · |s|, α · |t|}. The latter bound is the maximal pushdown-length

that may occur, which follows from the above claim. Note that also i needs only

space O(log(n)). This concludes the description of our LOGDCFL-algorithm.

It remains to construct a finite, length-reducing, confluent, and left-basic semi-

Thue system R such that the corresponding word problem is LOGDCFL-hard.

In [44], Sudborough has shown that there exists a fixed deterministic context-free

language L ⊆ Σ∗ with a LOGDCFL-complete membership problem. Let A =

(Q,∆,Σ, δ, q0,⊥) be a deterministic pushdown automaton with L = L(A), where Q

is the set of states, q0 ∈ Q is the initial state, ∆ is the pushdown alphabet, ⊥ ∈ ∆ is

the bottom symbol, and δ : ∆×Q×Σ → ∆∗×Q is the transition function. By [44,

Lem. 7] we may assume that A makes no ε-moves and that A accepts L by empty

store in state q0. Let m = max{|γ| | δ(A, q, a) = (γ, p), q, p ∈ Q,A ∈ ∆, a ∈ Σ};

thus, m is the maximal length of a sequence that is pushed on the pushdown in one

step. Let # 6∈ ∆ ∪ Q ∪ Σ be an additional symbol and let Γ = ∆ ∪ Q ∪ Σ ∪ {#}.

Define the semi-Thue system R by R = {Aqam# → γp | δ(A, q, a) = (γ, p)}; it is

length-reducing, confluent, and left-basic. Moreover, if h : Σ∗ → (Σ∪{#})∗ denotes

the homomorphism defined by h(a) = am#, which can be computed in logspace,

then w ∈ L if and only if ⊥q0h(w)
∗
→R q0 if and only if ⊥q0h(w)

∗
↔R q0. 2

5. Cayley-graphs

Let M = (M, ◦, 1) be a monoid, which is finitely generated by Γ. The right

Cayley-graph of M with respect to Γ is the Γ-labeled rooted directed graph

C(M,Γ) = (M, ({(u, v) | u ◦ a = v})a∈Γ, 1).

Thus, edges are defined via multiplication with generators on the right and the neu-

tral element 1 is added as a constant (the root). The graph that is defined analo-

gously via multiplication with generators on the left is called the left Cayley-graph of

M with respect to Γ. In the following, we will always refer to the right Cayley-graph

when just speaking of the Cayley-graph. Cayley-graphs were mainly investigated

9



for groups, in particular they play an important role in combinatorial group theory

[32] (see also the survey of Schupp [40]). Combinatorial properties of Cayley-graphs

of monoids are studied in [23, 46]. In [42, 43], Cayley-graphs of automatic monoids

are investigated. The work of Calbrix and Knapik on Thue-specifications [9, 25]

covers Cayley-graphs of monoids that are presented by terminating and confluent

semi-Thue systems as a special case.

In [26, 27], an investigation of Cayley-graphs from a logical point of view was

initiated. For a given Cayley-graph C = (M, (Ea)a∈Γ, 1) we consider first-order

formulas over the structure C. Atomic formulas are of the form x = y, x = 1,

and Ea(x, y), (there is an a-labeled edge from x to y) where x and y are variables

that range over M . Instead of (x, y) ∈ Ea we write x ◦ a = y, or briefly xa = y.

First-order formulas are built from atomic formulas using Boolean connectives and

quantifications over variables. The notion of a free variable is defined as usual.

A first-order formula without free variables is called a first-order sentence. For a

first-order sentence ϕ, we write C |= ϕ if ϕ evaluates to true in C. The first-order

theory of the Cayley-graph C, denoted by FOTh(C), is the set of all first-order

sentences ϕ such that C |= ϕ. We will also use more general atomic formulas of

the form xu = y and xu = yv for variables x, y and words u, v ∈ Γ∗, with the

obvious interpretation. These new atomic formulas can be easily eliminated using

fresh existentially quantified variables. For a detailed introduction into first-order

logic over arbitrary structures see [17].

Many interesting monoid properties can be expressed using first-order logic over

the Cayley-graph. For instance the following first-order sentence expresses that the

monoid M (with generating set Γ) is right-cancellative:

∧

a∈Γ

∀x ∀y{xa = ya → x = y}

If the monoid M is finitely generated both by Γ and Σ, then FOTh(C(M,Γ)) is

logspace reducible to FOTh(C(M,Σ)) and vice versa [27]. Thus, analogously to

word problems, the decidability (resp. complexity) status of the first-order theory

of a Cayley-graph does not depend on the chosen set of generators, and with respect

to decidability and complexity questions we can just speak of the Cayley-graph of

M. From the definition of an αr-automatic monoid M it follows immediately that

C(M,Γ) is an automatic graph in the sense of [3, 24] (but the converse is even false

for groups, see e.g. [4]). Thus, since every automatic graph has a decidable first-

order theory [24], FOTh(C(M,Γ)) is decidable in case M is αr-automatic (α = `

or α = r). If M is an α`-automatic monoid (α = ` or α = r), then the first-order

theory of the left Cayley-graph of M is decidable.

A problem is elementarily decidable if it can be solved in time O(2··
·
2n

), where

the height of this tower of exponents is constant. By [3], there exists an automatic

graph with a nonelementary first-order theory. This complexity is already realized

by Cayley-graphs of automatic monoids:

Theorem 4 There is a finite, length-lexicographic, and confluent semi-Thue system

R ⊆ Γ∗ × Γ∗ such that (Γ, R, IRR(R)) is an αβ-automatic presentation for Γ∗/R
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for all α, β ∈ {`, r} and FOTh(C(Γ∗/R,Γ)) is nonelementary.

Proof. Let Γ = {a, b, ā, b̄, $1, $2, $a} and let the semi-Thue system R over Γ

consist of the following rules, where c ∈ {a, b} are arbitrary:

c $1 → $1c c $2 → $2c ā $a → a c $a → $ac
c̄ $1 → c c̄ $2 → $1c̄ b̄ $a → $ab̄

R is length-lexicographic and confluent. Arguments similar to those from the

proof of Theorem 1 show that (Γ, R, IRR(R)) is an αβ-automatic presentation of

M = Γ∗/R. Let C = C(M,Γ). It remains to show that FOTh(C) is not elementarily

decidable. For this we reduce the first-order theory of finite words over {a, b} to

FOTh(C). The former theory is defined as follows: A word w = a1a2 · · · an ∈ {a, b}∗

of length n is identified with the relational structure Sw = ({1, . . . , n}, <,Qa),

where < is the usual order on natural numbers and Qa is the unary predicate

{i ∈ {1, . . . , n} | ai = a}. Then the first-order theory of finite words over {a, b}

consists of all first-order sentences φ that are built up from the atomic formulas

x < y and Qa(x) such that Sw |= φ for every word w ∈ {a, b}∗. It is known that

the first-order theory of finite words is decidable but not elementary, see e.g. [11,

Example 8.1] for a simplified proof and further references.

For our reduction first notice that IRR(R) = {$1, $2, $a}
∗{a, b, ā, b̄}∗. Hence,

the latter set can be identified with the monoid M. For x ∈ IRR(R) we have x ∈

{$1, $2, $a}
∗{a, b}∗ if and only if x$2$1 6= x$1$1 in M. This allows us to represent all

words from {a, b}∗ in C. The fact that a word w ∈ {a, b}∗ is represented by infinitely

many nodes of C, namely by all elements from {$1, $2, $a}
∗w does not cause any

problems; it is only important that every word w ∈ {a, b}∗ is represented at least

once. In the sequel let us fix x = vw with v ∈ {$1, $2, $a}
∗ and w ∈ {a, b}∗. The set

of all positions within the word w is in one-to-one correspondence with the set of all y

such that y$1 = x in M: the latter holds if and only if ∃w1, w2 ∈ {a, b}∗ ∃c ∈ {a, b} :

w = w1cw2 and y = vw1c̄w2. Thus, we can quantify over positions of the word w

by quantifying in C over all those nodes y such that y$1 = x in M. Next, assume

that y = vw1c̄w2 and w = w1cw2, i.e., y represents the position |w1|+1 of w. Then

c = a if and only if y$a = x in M; thus we can express that a position is labeled

with the symbol a. It remains to express that a position is smaller than another

one. Assume that y = vw1c̄w2, y
′ = vw′

1d̄w
′
2, w1cw2 = w′

1dw
′
2 = w, and w1 6= w′

1,

i.e., the two positions represented by y and y′ are different. Then |w1| < |w′
1| if and

only if ∃z ∈ M : z$1 = y ∧ z$2 = y′ in M.

From the preceding discussion it follows that for every first-order sentence ψ over

the signature (<,Qa) we can construct in polynomial time a first-order formula φ(x)

over the Cayley-graph C such that ψ belongs to the first-order theory of finite words

if and only if C |= ∀x : φ(x). This proves the theorem. 2

Corollary 2 There exists a finitely presented {``, `r, r`, rr}-automatic monoid M

such that FOTh(C(M,Γ)) is not elementarily decidable.

In [26] it was shown that for a group G, FOTh(C(G)) is elementarily reducible

to the word problem for G. Since the word problem of an automatic group can be
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solved in time O(n2), it follows that the nonelementary lower bound from Corol-

lary 2 cannot be realized by an automatic group. This fact even holds for automatic

monoids of finite geometric type: A finitely generated monoid M has finite geomet-

ric type if for some (and hence every) finite generating set Γ, the (undirected version

of the) Cayley-graph C(M,Γ) has bounded degree [43], i.e., the number of neigh-

bors of any node is bounded by a fixed constant. Every right-cancellative monoid

has finite geometric type, but for instance the bicyclic monoid {a, b}∗/{(ab, ε)} is

not right-cancellative but has finite geometric type. Since the Cayley-graph of an

αr-automatic monoid of finite geometric type is an automatic graph of bounded de-

gree, and the first-order theory of every automatic graph of bounded degree belongs

to DSPACE(222O(n)

) [30], we obtain:

Theorem 5 Let M be an αr-automatic monoid (α ∈ {r, `}) of finite geometric

type. Then FOTh(C(M,Γ)) belongs to DSPACE(222O(n)

) and thus is elementary.

We conclude this paper with an undecidability result for automatic monoids.

Note that for an αr-automatic monoid M (α ∈ {r, `}) it is decidable whether for

given u, v ∈ M there exists x ∈ M such that xu = v in M, because this is a

first-order property of the Cayley-graph. On the other hand, the reverse question

(∃x : ux = v, i.e., reachability in the Cayley-graph) is undecidable in general:

Theorem 6 There exists a finitely presented {`r, rr}-automatic monoid M such

that for given u, v ∈ M it is undecidable whether ∃x ∈ M : ux = v in M.

Proof. Analogously to the proof of Theorem 1 we may start from a determin-

istic Turing machine T with an undecidable acceptance problem that operates in a

sequence of complete left/right sweeps. This time, we cannot work with a fixed size

portion of the tape. Therefore, we assume that each time the tape head reaches the

right end of the tape, an additional blank cell is added to the tape. This ensures

that there is always enough space available. Let Q be the state set of T , Σ be the

tape alphabet, q0 be the initial state, and qf be the final state. T cannot make

any transitions out of the final state qf and the tape head points to the first cell

when T reaches qf . Define Γ = Σ∪Σ∪Q∪Q∪ {., /, $} and let R be the following

semi-Thue system over Γ:

qa→ bp if qa⇒T bp a q → pb if aq ⇒T pb
q / $ → q2/ for all q ∈ Q .q → .q for all q ∈ Q
.qfa→ .qf for all a ∈ Σ

Then R is length-lexicographic (when strings are compared from right to left),

and by analyzing critical pairs, we see that R is confluent. Thus Γ∗/R is in one-to-

one correspondence with IRR(R). We claim that an input word w ∈ Σ∗ is accepted

by T if and only if there exists x ∈ Γ∗ such that .q0w / x
∗
↔R .qf/. Clearly, if w is

accepted by T , then there exists m ≥ 0 such that .q0w/$m ∗
↔R .qf/. On the other

hand, assume that .q0w / x
∗
↔R .qf/, i.e., .q0w / x

∗
→R .qf/ for some x ∈ Γ∗. Let

x = $my for some m ≥ 0 and y 6∈ $Γ∗. In order to deduce a contradiction, assume

that T does not terminate on input w. Hence, for some state q 6= qf and v ∈ Σ
∗

we have .q0w / x = .q0w / $my
∗
→R .vq / y ∈ IRR(R). Since R is confluent, this

contradicts .q0w / x
∗
→R .qf/ ∈ IRR(R). This proves the undecidability statement
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from the theorem. The αr-automaticity (α = ` and α = r) of the presentation

(Γ, R, IRR(R)) can be shown as in the proof of Theorem 1. 2

6. Final remarks

Many interesting open problems concerning the complexity of word problems

remain:

� Is LOGCFL an optimal upper bound for the word problem of a hyperbolic

group? Let us mention that the word problem of a hyperbolic group can be

recognized in real time [21].

� What is the complexity of the word problem for monoids that can be presented

by monadic and confluent presentations, both in the uniform (where the pre-

sentation is part of the input) and nonuniform setting? From Theorem 3 one

obtains a LOGDCFL-upper bound. Equivalent questions were investigated in

[2] in the context of McNaughton languages.

� Does there exist an automatic group or at least an automatic cancellative

monoid with a P-complete word problem?

Concerning the undecidability result in Theorem 6 one might try to characterize

more general classes of monoid properties that are in general undecidable for au-

tomatic monoids. Note that the property ∃x ∈ M : ux = v in M in Theorem 6

is an existential first-order property of the monoid M. Thus, Theorem 6 can be

rephrased by saying that there is a fixed automatic monoid with an undecidable

existential first-order theory. Whether there exists a fixed automatic group with an

undecidable existential first-order theory is again open. It is even open, whether

the solvability of a single word equation over an automatic group is decidable. Let

us mention here a result of [38]: Solvability of word equations over a torsion-free

hyperbolic group is decidable.
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