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Abstract

Hierarchical graph definitions allow a modular descrip-
tion of graphs using modules for the specification of re-
peated substructures. Beside this modularity, hierarchi-
cal graph definitions allow to specify graphs of exponen-
tial size using polynomial size descriptions. In many cases,
this succinctness increases the computational complexity
of decision problems when input graphs are defined hier-
archically. In this paper, the model-checking problem for
first-order logic (FO), monadic second-order logic (MSO),
and second-order logic (SO) on hierarchically defined input
graphs is investigated. Several new complete problems for
the levels of the polynomial time hierarchy and the expo-
nential time hierarchy are obtained. Two restrictions on the
structure of hierarchical graph definitions that lead to more
efficient model-checking algorithms are presented.

1 Introduction

Hierarchical graph definitions specify a graph via mod-
ules, where every module is a graph that may refer to mod-
ules of a smaller hierarchical level. In this way, large struc-
tures can be represented in a modular and succinct way. Hi-
erarchical graph definitions were introduced in [17] in the
context of VLSI design. Formally, hierarchical graph defi-
nitions can be seen as hyperedge replacement graph gram-
mars [5] that generate precisely one graph.

In this paper we consider the complexity of the model-
checking problem for first-order logic (FO), monadic
second-order logic (MSO), and second-order logic (SO) on
hierarchically defined input graphs. FO allows only quan-
tification over elements of the universe, MSO allows quan-
tification over subsets (unary predicates) of the universe,
and SO allows quantification over relations of arbitrary arity
over the universe. The model-checking problem for some
fixed logic (e.g. FO or MSO) asks, whether a given sen-
tence from that logic is true in a given finite structure (e.g.
a graph). Usually, the structure is given explicitly, for in-
stance by listing all tuples in each of the relations of the

structure. In this paper, the input structure will be given in
a compressed form via a hierarchical graph definition.

Each of the logics FO, MSO, and SO has many fasci-
nating connections to other parts of computer science, e.g.,
automata theory, complexity theory, database theory, and
verification, see for instance [18] for more details and refer-
ences. It is therefore not surprising that the model-checking
problem for these logics on explicitly given input structures
is a very well-studied problem with many deep results. Let
us just mention a few references: [6, 8, 9, 12, 13, 20, 22,
27, 28]. But whereas several papers study the complex-
ity of specific algorithmic problems on hierarchically de-
fined input graphs, like for instance reachability, planarity,
circuit-value, and 3-colorability [15, 16, 17, 23], there is
no systematic investigation of model-checking problems for
hierarchically defined structures so far (one should notice
that all the algorithmic problems mentioned above can be
formulated in SO). The only exception is the work from
[1, 24], where the complexity of temporal logics (LTL,
CTL, CTL∗) over hierarchically defined strings [24] and hi-
erarchical state machines [1] is investigated. Hierarchical
state machines can be seen as a restricted form of hierarchi-
cal graph definitions that are tailored towards the modular
specification of large reactive systems. We think that the
investigation of model-checking problems for “general pur-
pose logics” like FO and MSO over hierarchically defined
graphs leads to a better understanding of hierarchical struc-
tures in a broad sense.

Our investigation of model-checking problems for hier-
archically defined graphs will follow a methodology intro-
duced by Vardi [27]. For a given logic L and a class of
structures C, Vardi introduced three different ways of mea-
suring the complexity of the model-checking problem for L
and C: (i) One may consider a fixed sentence ϕ from the
logic L and consider the complexity of verifying for a given
structure A ∈ C whether A |= ϕ; thus, only the structure
belongs to the input (data complexity or structure complex-
ity). (ii) One may fix a structure A from the class C and
consider the complexity of verifying for a given sentence ϕ
from L, whether A |= ϕ; thus, only the formula belongs
to the input (expression complexity). (iii) Finally, both the



structure and the formula may belong to the input (com-
bined complexity). In the context of hierarchically defined
graphs, expression complexity will not lead to new results.
Having a fixed hierarchically defined graph makes no dif-
ference to having a fixed explicitly given graph. Thus, we
will only consider data complexity and combined complex-
ity for hierarchically defined graphs.

Let us mention that also other formalisms for the suc-
cinct description of structures were studied under a com-
plexity theoretical perspective: boolean circuits [11, 25,
31], boolean formulas [13, 29], and binary decision dia-
grams [7, 30]. For these formalisms, general upgrading the-
orems can be shown, which roughly state that if a problem
is complete for a complexity class C, then the compressed
variant of this problem is complete for the exponentially
harder version of C. For hierarchical graph definitions such
an upgrading theorem fails [16].

After introducing the necessary concepts in Section 2–4,
we study model-checking problems for FO over hierarchi-
cally defined graphs in Section 5. Section 5.1 deals with
data complexity whereas in Section 5.2, combined com-
plexity is briefly considered. Section 6 carries out the same
program for MSO and SO. In all cases, we measure the
complexity of the model-checking problem in dependence
on the structure of the quantifier prefix of the input formula.
In some cases we observe an exponential jump in computa-
tional complexity when moving from explicitly to hierarchi-
cally defined input graphs. In other cases there is no com-
plexity jump at all. We also consider structural restrictions
of hierarchical graph definitions that lead to more efficient
model-checking algorithms. Our results are collected in Ta-
ble 1 and Table 2 at the end of the paper, see Section 2–4
for the relevant definitions.

Complete proofs can be found in the full version [19].

2 Preliminaries

Let ≡ be an equivalence relation on a set A. Then, for
a ∈ A, [a]≡ = {b ∈ A | a ≡ b} denotes the equiva-
lence class containing a. With [A]≡ we denote the set of
all equivalence classes. With π≡ : A → [A]≡ we denote
the function with π≡(a) = [a]≡ for all a ∈ A. For sets
A,A1, and A2 we write A = A1 ] A2 if A = A1 ∪ A2

and A1 ∩ A2 = ∅. For a function f : A → B let
ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}. For C ⊆ A let
f¹C be the restriction of f to C. For functions f : A → B
and g : B → C we define the composition g ◦ f : A → C
by (g ◦ f)(a) = g(f(a)) for all a ∈ A. For functions
f : A → C and g : B → D with A ∩ B = ∅ we define the
function f ] g : A]B → C ∪D by (f ] g)(a) = f(a) for
a ∈ A and (f ] g)(b) = g(b) for b ∈ B.

We assume that the reader has some basic background in
complexity theory. In particular, we assume that the reader

is familiar with the classes NL (nondeterministic logarith-
mic space) and P (deterministic polynomial time). Sev-
eral times we will use alternating Turing-machines, see [3]
for more details. Roughly speaking, an alternating Turing-
machine M is a nondeterministic Turing-machine, where
the set of statesQ is partitioned into three sets: Q∃ (existen-
tial states), Q∀ (universal states), and F (accepting states).
A configuration C with current state q is accepting, if either
q ∈ F , or q ∈ Q∃ and there exists a successor configuration
of C that is accepting, or q ∈ Q∀ and every successor con-
figuration of C is accepting. An input word w is accepted
byM if the corresponding initial configuration is accepting.
An alternation on a computation path of M is a transition
from a universal state to an existential state or vice versa.

The levels of the polynomial time hierarchy are defined
as follows: Let k ≥ 1. Then Σ

p

k (resp. Π
p

k) is the set
of all problems that can be recognized on an alternating
Turing-machine within k − 1 alternations and polynomial
time, where furthermore the initial state is assumed to be in
Q∃ (resp.Q∀). If we replace in these definitions the polyno-
mial time bound by an exponential time bound (i.e., 2nO(1)

),
then we obtain the levels Σ

e
k (resp. Πe

k) of the (weak) EXP
time hierarchy. If we replace the polynomial time bound
by a logarithmic time bound O(log(n)), then we obtain the
levels Σ

log
k (resp. Π

log
k ) of the logtime hierarchy, which is

contained in deterministic logspace. Here one assumes that
the basic Turing-machine model is enhanced with a random
access mechanism; details are not important for this paper.
The logtime hierarchy is a uniform version of the circuit
complexity class AC

0.

3 Hierarchical graph definitions

A ranked alphabet is a pair (Γ, rank), where Γ is a fi-
nite alphabet and rank : Γ → N = {0, 1, 2, . . .} assigns
to every a ∈ Γ its rank. If the rank-function is clear from
the context, we will omit it. Let Γ be a ranked alphabet. A
Γ-labeled hypergraph is a tuple H = (V,E, λ), where V
is a finite set of nodes, E is a finite set of hyperedges, and
λ : E → {(A, τ) | A ∈ Γ, τ : {1, . . . , rank(A)} → V } is
the labeling function. We also write V H = V , EH = E,
and λH = λ. If λ(e) = (A, τ), then we say that e is an
A-labeled hyperedge. For an equivalence relation ≡ on the
set of nodes V , we define the quotient hypergraph H/≡ =
([V ]≡, E, µ), where for all e ∈ E, µ(e) = (A, π≡ ◦ τ)
if λ(e) = (A, τ). For a hyperedge e ∈ E we define the
hypergraph H \ e = (V,E \ {e}, λ¹E\{e}). Two hyper-
graphs H1 = (V1, E1, λ1) and H2 = (V2, E2, λ2) are dis-
joint if V1 ∩ V2 = E1 ∩ E2 = ∅. In this case, we define
the hypergraph H1 ⊕ H2 = (V1 ] V2, E1 ] E2, λ1 ] λ2).
For n ≥ 0, an n-pointed (Γ-labeled) hypergraph is a pair
G = (H,σ), where H is a (Γ-labeled) hypergraph and
σ : {1, . . . , n} → V H is an injective mapping. The nodes



σ(i) (1 ≤ i ≤ n) are also called the pin nodes of G.
Nodes in V H \ ran(σ) are called internal nodes of G. For
A ∈ Γ with rank(A) = n we define the n-pointed hyper-
graphGA = (({1, . . . , n}, {e}, λ), id) with λ(e) = (A, id),
where id is the identity function on {1, . . . , n}.

A hierarchical graph definition [17] is a tuple D =
(Γ, N, S, P ), where:

(1) Γ]N is a ranked alphabet,N is the set of nonterminals,
Γ is the set of terminals.

(2) S ∈ N is the start nonterminal, where rank(S) = 0.

(3) P is a set of productions. For every A ∈ N , P contains
exactly one production A → G, where G = (H,σ)
is a rank(A)-pointed (Γ ]N)-labeled hypergraph. We
require that if λH(e) = (B, τ) with e ∈ EH and B ∈
N , then τ is injective.

(4) Define the relation ED on N as follows: (A,B) ∈ ED

if and only if for the unique production of the formA→
G, G contains a B-labeled hyperedge. Then we require
that ED is acyclic.

By (4), the transitive closure ÂD of the relation ED is a
partial order, we call it the hierarchical order. The size |D|
of D is defined by

∑

(A→(H,σ))∈P |V H | + |EH |.
Let us fix a hierarchical graph definition D =

(Γ, N, S, P ). For i ∈ {1, 2} let Gi = (Hi, σi) be an n-
pointed (Γ ] N)-labeled hypergraph for some n ≥ 0 (thus
σi is injective). Then we write G1 ⇒D G2 if and only if
there exists a hyperedge e ∈ EH1 such that:

• λH1(e) = (A, τ) with A ∈ N ,

• A → (H,σ) is the unique production with left-hand
side A (thus, also σ is injective),

• w.l.o.g. H and H1 are disjoint,

• H2 = (H1\e⊕H)/≡ with ≡ the smallest equivalence
relation on V H1]V H that contains all pairs of the form
(τ(i), σ(i)) for 1 ≤ i ≤ rank(A), and

• σ2 = π≡ ◦ σ1.

Note that the injectivity of σ2 follows from the injectivity of
σ and σ1. It is easy to see that for every A ∈ N , there exists
a unique Γ-labeled rank(A)-pointed hypergraph evalD(A)

such that GA
∗

⇒D evalD(A), where
∗

⇒D is the reflexive
and transitive closure of ⇒D. Finally, we define eval(D) =
evalD(S).

We assume the following conventions for the graphical
representation of hypergraphs and productions of hierarchi-
cal graph definitions: A hyperedge e with λ(e) = (A, τ)
for a nonterminal A is drawn as a big circle with inner la-
bel A. This circle is connected via dashed lines with the

nodes τ(i) for 1 ≤ i ≤ rank(A), where the connection to
τ(i) is labeled with i. These dashed lines are also called
tentacles. Only terminals of rank 1 or rank 2 will occur in
diagrams and lower bound proofs. A terminal hyperedge e
with λ(e) = (f, τ) and rank(f) = 2 is drawn as a solid
directed edge from τ(1) to τ(2) with label f . A terminal
hyperedge e with λ(e) = (a, τ) and rank(a) = 1 is repre-
sented by just labeling the node τ(1) with a. Our definition
allows multiple edges with the same label as well as several
node labels for a single node. IfG = (H,σ) is an n-pointed
hypergraph, i.e., σ : {1, . . . , n} → V H is an injective map-
ping, then we label the pin node σ(i) with i. In order to
distinguish this label i better from node labels that corre-
spond to terminals of rank 1, we will use a smaller font for
the label i.

Example 3.1 Let us consider the hierarchical graph defini-
tion D = (Γ, N, S, P ), where Γ = {α, β} with rank(α) =
1 and rank(β) = 2, N = {S,A1, A2, A3} with rank(S) =
0, rank(A1) = 1, and rank(A2) = rank(A3) = 2. The
set P of productions contains the following rules (all solid
edges are labeled with β, hence we omit the β-labels):

S
A1

A1

A2 A2

A2

A3 A3

A3

α

1

1

2 21 1

2 1

2 21 1

2 1

Here, the hierarchical order on the nonterminals N is
S ÂD A1 ÂD A2 ÂD A3 and eval(D) is the following
graph:

α

With a hierarchical graph definition D = (Γ, N, S, P )
we associate an ordered dag (directed acyclic graph)
dag(D) = (N,E, S). The set of nodes is N , the root node
is the start nonterminal S. The edge relation E is defined as
follows: Let A → G be the unique production with left-
hand side A ∈ N and let e1, . . . , en be an enumeration
of all hyperedges in G that are labeled with a nonterminal
(this enumeration is somehow given by the input encoding
of D). Assume that ei is labeled with the nonterminal Ai.



Then (A, i, Ai) ∈ E, i.e., there is an i-labeled edge from
A to Ai. A path in dag(D) that starts in the root S can be
uniquely encoded by the sequence of numbers labeling the
edges along that path. Such a sequence is called a root-path
of dag(D).

For instance, dag(D) for the hierarchical graph defini-
tion from Example 3.1 looks as follows:

S A1 A2 A3
1

1

2

1

2

The following remark states some simple algorithmic
properties of hierarchical graph definitions:

Remark 3.2 A node of eval(D) can be uniquely repre-
sented by a pair (p, v) such that (i) p is a root-path in
dag(D) that ends in the nonterminalA and (ii)A→ (H, τ)
is the unique production with left-hand side A, where v ∈
V H \ ran(τ) is an internal node.1 This representation is of
size O(|D|) and given a pair (p, v) we can check in time
O(|D|) (or alternatively in space O(log(|D|)), whether
(p, v) represents a node of eval(D).

Given nodes ui = (pi, vi) for 1 ≤ i ≤ rank(a), where
a ∈ Γ is a terminal, we can verify in time O(|D|) (or al-
ternatively in space O(log(|D|))), whether H = eval(D)
contains a hyperedge e with λH(e) = (a, τ) and τ(i) = ui

for 1 ≤ i ≤ rank(a).

4 Logic

We identify a ranked alphabet Γ with the relational sig-
nature, where every a ∈ Γ is viewed as a relation symbol of
arity rank(a). Thus, a Γ-labeled hypergraphH = (V,E, λ)
is identified with the relational structure (V, (Ra)a∈Γ),
where Ra = {(v1, . . . , vrank(a)) ∈ V rank(a) | ∃e ∈ E :
λ(e) = (a, τ), vi = τ(i) for 1 ≤ i ≤ rank(a)}. Let us
fix a ranked alphabet (i.e., a relational signature) Γ for the
further discussion.

In this paper, we consider the logics FO (first-order
logic), MSO (monadic second-order logic), and SO
(second-order logic) over relational structures. More details
on these logics can be found for instance in [18]. Atomic
FO formulas over the signature Γ are of the form x = y
and a(x1, . . . , xn), where a ∈ Γ with rank(a) = n, and
x, y, x1, . . . , xn are first-order variables ranging over nodes.
The interpretation of a(x1, . . . , xn) is (x1, . . . , xn) ∈ Ra.
In case rank(a) = 2 we also write x1

a
→ x2, in case

rank(a) = 1 we also write x1 ∈ a, i.e, we identify the
node label a with the set of all a-labeled nodes. From these
atomic formulas we construct arbitrary FO formulas over

1The nodes in ran(τ), i.e., the pin nodes of the right-hand side of A,
are excluded here, because they were already generated by some larger
(with respect to the hierarchical order ÂD) nonterminal.

the signature Γ using boolean connectives and (first-order)
quantifications over nodes. A Σk-FO formula (resp. Πk-FO
formula) is an FO formula of the form B1B2 · · ·Bk : ϕ,
where: (i) ϕ is a quantifier-free FO formula, (ii) for i odd,
Bi is a block of existential (resp. universal) quantifiers,
whereas (iii) for i even, Bi is a block of universal (resp. ex-
istential) quantifiers. An FOm-formula (m ≥ 2) is an FO
formula that only uses at mostm different (bounded or free)
variables.

SO extends FO by allowing the quantification over re-
lations of arbitrary arity. For this, there exists for every
m ≥ 1 a set of second-order variables of arity m that range
over m-ary relations over the universe. In addition to the
atomic formulas of FO, SO allows atomic formulas of the
form (x1, . . . , xm) ∈ X , whereX is anm-ary second-order
variable and x1, . . . , xm are first-order variables. MSO is
the fragment of SO (and the extension of FO) that only al-
lows to use second-order variables of arity 1, i.e., quantifi-
cation over subsets of the universe is allowed. A Σk-SO for-
mula (resp. Πk-SO formula) is an SO formula of the form
B1B2 · · ·Bk : ϕ, where: (i) ϕ is an SO formula that con-
tains only first-order quantifiers, (ii) for i odd, Bi is a block
of existential (resp. universal) SO quantifiers, whereas (iii)
for i even, Bi is a block of universal (resp. existential) SO
quantifiers. For an SO sentence ϕ, i.e., an SO formula with-
out free variables, and a relational structure A, we write
A |= ϕ if the sentence ϕ is true in the structure A.

Note that the negation of a Σk-FO (resp. Σk-SO) for-
mula is logically equivalent to a Πk-FO (resp. Πk-SO) for-
mula and vice versa. Thus, it suffices to state complexity
results for Σk-fragments. Then, corresponding results for
Πk-fragments with respect to the complementary complex-
ity classes follow automatically.

Let us briefly recall the known results concerning the
complexity of the model-checking problem for the logics
introduced above on explicitly given input graphs. For Σk-
FO the data complexity is Σ

log
k [14], whereas the combined

complexity goes up to Σ
p

k [6, 26]. For Σk-MSO, both the
data and combined complexity is Σ

p

k [6, 22, 26]. For full
second-order logic, the data complexity of Σk-SO is still
Σ

p

k [6, 26], whereas the combined complexity becomes Σ
e
k

[13]. For every fixed m ≥ 2, the combined complexity of
FOm is P [28].

5 FO over hierarchically defined graphs

In this section we study the model-checking problem
for FO on hierarchically defined input graphs. Section 5.1
deals with data complexity. Our first result states that the
data complexity of Σ1-FO for hierarchically defined input
graphs is NL (Proposition 5.1 and Theorem 5.2). Using
this result, we show that for Σk-FO with k > 1 the data
complexity becomes Σ

p

k−1 (Theorem 5.3). Next, we study



structural restrictions on hierarchical graph definitions that
lead to more efficient model-checking algorithms. We in-
troduce the apex restriction, which means that tentacles in
a right-hand side are not allowed to access the pin nodes.
Under the apex restriction the data complexity of FO goes
down to NL (Theorem 5.4). Finally, we consider hierar-
chical graph definitions, for which the rank of every nonter-
minal as well as the number of nonterminal hyperedges in
a right-hand side is bounded by some fixed constant c (c-
boundedness). Under this restriction the data complexity of
FO reduces to P (Theorem 5.5), but we cannot provide a
matching lower bound.

In Section 5.2 we briefly consider combined complexity.
We argue that the combined complexity for Σk-FO does not
change when moving from explicitly to hierarchically de-
fined input graphs (namely Σ

p

k , Theorem 5.6).

5.1 Data complexity

A trivial lower bound for model-checking a fixed FO
sentence on hierarchically defined input graphs is given by
the following statement:

Proposition 5.1 It is NL-hard to verify for a given hier-
archical graph definition D whether eval(D) is the empty
graph. Thus, given D, it is NL-hard to verify whether
eval(D) |= ∃x : x = x. Moreover, for the hierarchical
graph definition D we can assume that the rank of every
nonterminal is 0 and that every right-hand side of a pro-
duction contains at most two nonterminal hyperedges.

Proposition 5.1 can be shown by a straight-forward re-
duction from the NL-complete graph accessibility prob-
lem. For Σ1-FO, i.e., existential first-order logic, we can
also prove a matching NL upper bound:

Theorem 5.2 For every fixed Σ1-FO or Π1-FO formula
ϕ(y1, . . . , ym), the following problem is in NL (and hence
in P):

INPUT: A hierarchical graph definition D and nodes
u1, . . . , um from eval(D) (encoded as described in Re-
mark 3.2).

QUESTION: eval(D) |= ϕ(u1, . . . , um)?

The basic idea behind the proof of Theorem 5.2 is to sim-
ply guess for each quantified variable x a node of eval(D).
Of course, this would lead to an NP-algorithm. Roughly
speaking, we guess the values for the variables incremen-
tally, by recursively traversing the hierarchical graph defi-
nition in a top-down way. It can be shown that only a log-
arithmic amount of information has to be stored during this
traversal.

Theorem 5.3 For every fixed Σk+1-FO sentence ψ, the
question, whether eval(D) |= ψ for a given hierarchical
graph definition D is in Σ

p

k .
Moreover, for every k ≥ 1, there exists a fixed Σk+1-

FO sentence ψ such that the question, whether eval(D) |=
ψ for a given hierarchical graph definition D, is Σ

p

k-
complete. Finally, the sentence ψ is logically equivalent
to an FO2-sentence.

Proof. For the upper bound assume that

ψ ≡ ∃x1 · · · ∀xk∃xk+1 θ(x1, . . . , xk, xk+1)

is a fixed Σk+1-FO formula, where k is assumed to be
even (for the case that k is odd, we can argue analogously)
and xi is a tuple of FO variables. Our alternating polyno-
mial time algorithm guesses for every 1 ≤ i ≤ k a tuple
ui (of the same length as xi) of nodes from eval(D), us-
ing the representation for nodes from Remark 3.2. Since
the size of this representation for a node is of polynomial
size, this guessing needs polynomial time. Moreover, if
i is odd (resp. even) we guess the tuple ui in an existen-
tial (resp. universal) state. It remains to verify, whether
eval(D) |= ∃xk+1 θ(u1, . . . , uk, xk+1), which is possible
in polynomial time by Theorem 5.2.

For the proof of the second statement, we will show
that for k odd (resp. k even) there exists a fixed Πk+1-FO
sentence (resp. Σk+1-FO sentence) for which the model-
checking problem is Π

p

k-complete (resp. Σ
p

k-complete).
This suffices in order to prove the second statement, see
the remarks in Section 4. For k odd, the following problem
QSATk is Π

p

k-complete [26, 32]:

INPUT: A quantified boolean formula Θ of the form

∀x1 · · · ∀x`1−1∃x`1 · · · ∃x`2−1 · · · ∀x`k−1
· · · ∀xn : ϕ,

where 1 < `1 < `2 < · · · < `k−1 ≤ n and ϕ is a boolean
formula in 3-DNF over the variables x1, . . . , xn.

QUESTION: Is Θ true?

For k even, the corresponding problem that starts with a
block of existential quantifiers is Σ

p

k-complete. In the fol-
lowing, we will only consider the case that k is odd, the
case k even can be dealt analogously. Thus, let us take
an instance Θ of QSATk of the above form. Assume that
ϕ ≡ C1 ∨ C2 ∨ · · · ∨ Cm where every Ci is a conjunction
of exactly three literals.

We define a hierarchical graph definition D =
(Γ, N, S, P ) as follows: Let N = {S} ∪ {Ai | 0 ≤
i ≤ n}, where rank(S) = 0 and rank(Ai) =
i + 1. The terminal alphabet Γ contains the symbols
g, c, t, f, n1, n2, n3, p1, p2, p3, and root where rank(x) = 2
for x ∈ {g, c, t, f, n1, n2, n3, p1, p2, p3} and rank(root) =
1. Exactly one node is labeled with root; it is generated in
the first step starting from the start nonterminal S:



S
A0

root

1

The root-labeled node will become the root of a binary tree
which is generated with the following productions, where
1 ≤ i ≤ n:

Ai−1

Ai Ai

1

i − 1

i

1

i − 1

ii + 1

1

i − 1

i i + 1

f t

...

Note that for a non-leaf of the generated binary tree, the
edge from the left (resp. right) child is labeled with f for
false (resp. t for true). Thus, a path in the tree defines a
truth assignment for the boolean variables xi (1 ≤ i ≤ n).
Via the j-labeled tentacles (1 ≤ j ≤ i+1), everyAi-labeled
hyperedge e gets access to all nodes of the binary tree that
were produced by ancestor-hyperedges of e. These nodes
form a path in the tree starting at the root.

Finally, for An we introduce the production An → G,
where G is the following (n+ 1)-pointed hypergraph:

• The node set contains the n+ 1 pin nodes (which cor-
respond to the n + 1 nodes along a path from the root
to a leaf in the generated tree) plus m additional in-
ternal nodes c1, . . . , cm, where node ci corresponds to
the conjunction Ci.

• There is a g-labeled (g for guess) edge from pin 1
(which accesses the root) to pin `1, there is a g-labeled
edge from pin `i−1 to pin `i for 1 < i < k, and there is
a g-labeled edge from pin `k−1 to pin n+ 1. These g-
labeled edges allow to go from the root to a leaf of the
tree in only k steps; thus, they provide shortcuts in the
tree and will enable us to produce a truth assignment
for the boolean variables x1, . . . , xn with only k edge
traversals (recall that k is a constant).

• There is a c-labeled (c for conjunction) edge from pin
n + 1 (which accesses a leaf in the tree) to each of
the internal nodes c1, . . . , cm, i.e., to each of the m
conjunctions.

• There is a pr-labeled edge (resp. nr-labeled edge),
where r ∈ {1, 2, 3}, from node ci to pin j + 1 (1 ≤
j ≤ n) if and only if xj (resp. ¬xj) is the r-th literal
in the conjunction Ci.

This concludes the description of the hierarchical graph def-
inition D. Let us consider an example for the last rule. As-
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sume that

Θ ≡ ∀x1∀x2∃x3∃x4∀x5∀x6 :

(¬x1 ∧ ¬x3 ∧ x4) ∨ (x1 ∧ x2 ∧ x3)∨

(x3 ∧ x4 ∧ x5) ∨ (¬x4 ∧ ¬x5 ∧ ¬x6).

Thus, k = 3, n = 6, m = 4. The right-hand side for A6

is shown in Figure 1. We have labeled the nodes c1, . . . , cm
with the corresponding conjunctions, but these conjunctions
do not appear as actual node labels in the right-hand side.
For the above formula, Figure 2 shows the path in eval(D)
that corresponds to the truth assignment x1 = f, x2 = x3 =
t, x4 = x5 = x6 = f . By construction of D, a leaf z of the
binary tree, which corresponds to a boolean assignment for
the variables x1, . . . , xn, satisfies the disjunction C1 ∨C2 ∨
· · · ∨ Cm of the m conjunctions if and only if

∃y, y1, y2, y3, y
′
1, y

′
2, y

′
3 :

z
c
→ y ∧

3∧

i=1

(y
pi

→ yi
t
→ y′i ∨ y

ni→ yi
f
→ y′i). (1)

Using the edge z
c
→ y we guess a conjunction that will

evaluate to true under the assignment represented by the leaf

z. Then y
pi

→ yi
t
→ y′i ∨ y

ni→ yi
f
→ y′i checks whether

the i-th literal of the guessed conjunction evaluates to true.
For instance, for the path in Figure 2, the formula in (1) is
indeed true; we have to choose the conjunction ¬x4∧¬x5∧
¬x6 for the variable y. From this observation, it follows that
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for the FO sentence

ψ ≡ ∀z0 ∈ root ∀z1 : z0
g
→ z1 ⇒ ∃z2 : z1

g
→ z2 ∧

· · · ∀zk : zk−1
g
→ zk ⇒ ∃y, y1, y2, y3, y

′
1, y

′
2, y

′
3 :

zk
c
→ y ∧

3∧

i=1

(y
pi

→ yi
t
→ y′i ∨ y

ni→ yi
f
→ y′i)

we have eval(D) |= ψ if and only if Θ is a true instance of
QSATk. If we bring ψ into prenex normal form, we obtain
a Πk+1-FO sentence. Finally, it is easy to transform ψ into
an equivalent FO2-sentence. In fact, eval(D) |= ψ if and
only if the following sentence of modal logic is true in the
unique root-labeled node ([α]ζ (resp. 〈α〉ζ) means that for
every (resp. for some) α-successor of the current node, ζ
holds):

[g]〈g〉 · · · [g]
︸ ︷︷ ︸

k many

〈c〉
3∧

i=1

(〈pi〉〈t〉true ∨ 〈ni〉〈f〉true)

It is well-known that every sentence of modal logic can be
transformed into an equivalent FO2-sentence, see e.g. [18].
This proves the theorem. ut

In the rest of this section we consider two structural re-
strictions of hierarchical graph definitions that lead to more
efficient model-checking algorithms for FO.

A hierarchical graph definitionD = (Γ, N, S, P ) is apex
if for every production A → (H,σ) from P the following
holds: For every e ∈ EH such that λH(e) = (B, τ) for
some B ∈ N we have ran(σ) ∩ ran(τ) = ∅. Thus, pin
nodes of a right-hand side cannot be accessed by nonter-
minal hyperedges. Apex hierarchical graph definitions are
called 1-level restricted in [23].

Theorem 5.4 For every fixed FO sentence ϕ, the question,
whether eval(D) |= ϕ for a given apex hierarchical graph
definition D, is in NL.

The proof of Theorem 5.4 is based on Gaifman’s local-
ity theorem [10], which states that every FO sentence is
logically equivalent to a boolean combination of local FO
sentences. Roughly speaking, a local sentence states that
there are at least m disjoint spheres of radius r in eval(D)
that satisfy some first-order property.2 Since we consider a
fixed FO sentence, m and r are fixed constants. Now, the
crucial point is that for an apex hierarchical graph definition
D, the size of a sphere of constant radius r is bounded poly-
nomially in the size of D, and nodes of that sphere can be
represented in logarithmic space. For non-apex hierarchical
graph definitions this is false. For instance, a generalization
of Example 3.1 shows that we can generate with n+ 1 pro-
ductions a binary tree of height n such that moreover every
leaf is adjacent to the root of the tree. Thus, the sphere of
radius 1 around the root contains O(2n) many nodes.

For c ∈ N, a hierarchical graph definition D =
(Γ, N, S, P ) is c-bounded if rank(A) ≤ c for every A ∈ N
and every right-hand side of a production from P contains
at most c hyperedges that are labeled with a nonterminal.

Theorem 5.5 For every fixed FO sentence ϕ, every fixed
c ∈ N, and every fixed ranked alphabet Γ, the question,
whether eval(D) |= ϕ for a given c-bounded hierarchical
graph definition D with terminal alphabet Γ, is in P.

The basic idea behind the proof of Theorem 5.5 is based
on Courcelle’s technique for evaluating fixed MSO formu-
las in linear time over graph classes of bounded tree width
[4]. Starting from a fixed FO sentence ϕ and a given hier-
archical graph definition D we can construct in polynomial
time a (deterministic bottom-up) tree automatonA such that
eval(D) |= ϕ if and only if A accepts the derivation tree of
the hierarchical graph definition D (which is the unfolding
of dag(G)). For this step it is crucial that D is c-bounded
for a constant c, and that the terminal alphabet Γ is fixed.
The size of the derivation tree of D is exponential in the
size of D. But we do not have to generate the derivation
tree explicitly, it suffices to run the automatonA on dag(G),
which has polynomial size. Let us mention that if the quan-
tifier nesting depth of ϕ is k, then the states ofA are subsets
of the set of all FO sentences of quantifier nesting depth at
most k. The later set is finite up to logical equivalence, but
its size is non-elementary in k. Thus,A is a fixed automaton
that only depends on ϕ, but its size is non-elementary in the
size of ϕ.

2The notion of a sphere is defined w.r.t. the Gaifman graph of eval(D).
The node set of the Gaifman graph is the node set of eval(D) and two
nodes are adjacent if they are related by some terminal hyperedge. Then
the sphere of radius r around a node v contains all nodes that have distance
at most r from v in the Gaifman graph.



Theorem 5.3–5.5 give us a clear picture on the conditions
that make the model-checking problem for FO on hierarchi-
cally defined input graphs difficult: nonterminals have to
access pin nodes (i.e., references can be passed along non-
terminals) and nonterminals have to access an unbounded
number of nodes.

5.2 Combined complexity

In the previous section, we have seen that for Σk-FO,
data complexity increases considerably when moving from
explicitly given input graphs to hierarchically defined input
graphs (from Σ

log
k to Σ

p

k−1). For the combined complexity
of Σk-FO, such a complexity jump does not occur (recall
that the combined complexity of Σk-FO for explicitly given
input graphs is Σ

p

k):

Theorem 5.6 The following problem is Σ
p

k-complete:

INPUT: A hierarchical graph definition D and a Σk-FO
sentence ϕ

QUESTION: eval(D) |= ϕ ?

Proof. The lower bound follows from the corresponding
result for explicitly given input graphs. For the upper bound
we can follow the arguments for the upper bound from The-
orem 5.3. ut

For explicitly given input graphs, the combined com-
plexity reduces from PSPACE to P when moving from
FO to FOm for some fixed m [28]. A slight modification
of the proof of Theorem 5.3 shows that for hierarchically
defined graphs, PSPACE-hardness already holds for the
combined complexity of FO2. We just have to start with an
instance of QBF (quantified boolean satisfiability) and carry
out the construction in the proof of Theorem 5.3.

6 MSO and SO over hierarchically defined
graphs

In this section we study the model-checking problem
for MSO and SO on hierarchically defined input graphs.
Both, the data and combined complexity of Σk-SO for hi-
erarchically defined input graphs turn out to be Σ

e
k (The-

orem 6.2 and Theorem 6.4). In fact, the lower bound
for the data complexity already holds for Σk-MSO. For c-
bounded hierarchical graph definitions we can show that
the data complexity of Σk-MSO goes down to Σ

p

k (The-
orem 6.3), whereas the combined complexity remains Σ

e
k

(Theorem 6.5), even for c = 2.
We should remark that the apex restriction from Sec-

tion 5.1 does not lead to more efficient model-checking al-
gorithms in the context of MSO. For an arbitrary hierar-

chical graph definition D we can enforce the apex restric-
tion by inserting additional edges (labeled with some new
terminal α) whenever a tentacle of a nonterminal hyper-
edge accesses a pin node. If D′ denotes this new hierar-
chical graph definition, then eval(D) results from eval(D′)
by contracting all α-labeled edges. But this contraction is
MSO-definable.

6.1 Data complexity

In order to obtain a sharp lower bound on the data com-
plexity of MSO over hierarchically defined graphs, we will
use the following computational problem QOΣk-SAT for
k ≥ 1 (where QO stands for “quantified oracle”). For
m ≥ 1 let Fm be the set of all m-ary boolean functions.
If k is even, then the input for QOΣk-SAT is a formula Θ
of the form

∃f1 ∈ Fm · · · ∀fk ∈ Fm :

∃x1 · · · ∃xk ∈ {0, 1}m ∃y ∈ {0, 1}` :

ϕ((xi)1≤i≤k, y, (fi(xj))1≤i,j≤k),

where ϕ is a boolean formula in mk+ `+ k2 boolean vari-
ables. For k odd, an input Θ for QOΣk-SAT has the form

∃f1 ∈ Fm∀f2 ∈ Fm · · · ∃fk ∈ Fm :

∀x1 · · · ∀xk ∈ {0, 1}m ∀y ∈ {0, 1}` :

ϕ((xi)1≤i≤k, y, (fi(xj))1≤i,j≤k).

In both cases, we ask whether Θ is a true formula. Using a
generic reduction we can prove:

Proposition 6.1 For all k ≥ 1, the problem QOΣk-SAT is
Σ

e
k-complete.

For k = 1 a proof of Proposition 6.1 can be found in [2].

Theorem 6.2 For every fixed Σk-SO sentence ϕ, the ques-
tion, whether eval(D) |= ϕ for a given hierarchical graph
definition D, is in Σ

e
k.

Moreover, for every k ≥ 1, there exists a fixed Σk-MSO
sentence ϕ such that the question, whether eval(D) |= ϕ
for a given hierarchical graph definition D, is Σ

e
k-hard.

The upper bound in Theorem 6.2 follows from Theo-
rem 6.4 in the next section. For the lower bound we use
Proposition 6.1. In order to make quantification over m-ary
boolean functions possible, we generate with a hierarchi-
cal graph definition 2m many nodes that correspond to the
arguments of an m-ary boolean function. Then, quantifi-
cation over m-ary boolean functions can be simulated by
quantification over an arbitrary subset of these 2m many
nodes. An additional graph structure is necessary for evalu-
ating boolean functions that are encoded in this way.



By the next theorem, for c-bounded hierarchical graph
definitions the data complexity of Σk-MSO goes down to
the level Σ

p

k of the polynomial time hierarchy. Thus, the
same complexity as for explicitly given input graphs is ob-
tained.

Theorem 6.3 For every fixed Σk-MSO sentence ϕ, every
fixed c ∈ N, and every fixed ranked alphabet Γ, the ques-
tion, whether eval(D) |= ϕ for a given c-bounded hierar-
chical graph definition D with terminal alphabet Γ, is in
Σ

p

k .

Similarly to Theorem 5.5 the basic idea behind the proof
of Theorem 6.3 is based on Courcelle’s technique for eval-
uating fixed MSO formulas in linear time over graphs of
bounded tree width. In fact, we might again construct from
the fixed MSO sentence ϕ and D a tree automaton A such
that eval(D) |= ϕ if and only ifA accepts the derivation tree
of D. But in the context of MSO, the calculation of the tree
automatonAwould lead to a P

Σ
p

k -algorithm, i.e., a polyno-
mial time algorithm with access to an oracle for Σp

k . It is be-
lieved that Σp

k is a proper subset of P
Σ

p

k . In order to obtain
a Σ

p

k-algorithm we have to apply some additional ideas. In
particular a refinement of the well-known Feferman-Vaught
decomposition theorem for MSO, see e.g. [21], is necessary.

6.2 Combined complexity

Theorem 6.4 For every k ≥ 1, the following problem is
Σ

e
k-complete:

INPUT: A hierarchical graph definition D and a Σk-SO
sentence ϕ

QUESTION: eval(D) |= ϕ ?

Proof. The lower bound follows from Theorem 6.2. For
the upper bound, one has to notice that an arbitrary m-ary
relation over the node set of eval(D) can be guessed in time
2O(m|D|), i.e., in exponential time. Once we have guessed
all quantified relations of the input SO sentence, the remain-
ing FO-kernel can be evaluated in deterministic exponential
time by explicitly generating eval(D). ut

Due to the following theorem, Σ
e
k-hardness even holds

for 2-bounded hierarchical graph definitions and Σk-MSO:

Theorem 6.5 For every k ≥ 1 and every c ≥ 2, the follow-
ing problem is Σ

e
k-complete:

INPUT: A c-bounded hierarchical graph definition D
and a Σk-MSO sentence ϕ

QUESTION: eval(D) |= ϕ ?

In fact it suffices in Theorem 6.5 to take a hierarchical
graph definition D that generates a linear chain of exponen-
tial size. The proof in the full version [19] uses ideas from
[20].

Σk-FO
explicit

[6, 14, 26]
apex c-bounded general

data Σ
log

k NL NL · · ·P
NL(k = 1)

Σ
p

k−1 (k > 1)

combined Σ
p

k

Table 1. FO over hierarchical graphs

Σk-MSO
explicit

[6, 22, 26]
c-bounded general

data
Σ

p

k

combined
Σ

e
k

Table 2. MSO over hierarchical graphs

7 Conclusion and open problems

In Table 1 and 2 our complexity results for hierarchically
defined graphs together with the known results for explicitly
given input graphs are collected. The only open problem
that remains from these tables is the precise complexity of
the model-checking problem for FO and c-bounded hierar-
chical graph definitions. There is a gap between NL and P

for this problem. Currently, we are investigating the com-
plexity of parity games and various fixed point logics over
hierarchically defined graphs.
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