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Abstract. The computational complexity of two simple string problems on com-
pressed input strings is considered: the querying problem (What igititeod at a
given position in a given input string?) and the embedding problem (Gafirgh
input string be embedded into the second input string?). Straight-linegmsg
are used for text compression. It is shown that the querying probkzrarbes
P-complete for compressed strings, while the embedding problem lesduand
for the complexity clas®?5.

1 Introduction

During the last decade, the massive increase in the volundatafhas motivated the
need for algorithms onompressed datdike for instance compressed strings, trees, or
pictures. The general goal is to develop efficient algorghihat directly work on com-
pressed data without prior decompression, or to prove ugeleeral assumptions from
complexity theory that such efficient algorithms do not exis this paper we concen-
trate on algorithms on compressed strings. We investigatedmputational problems,
which can be trivially solved in linear time for uncompreg$eput strings: the query-
ing problem and the embedding problem. In the embeddingg@motve have given two
input stringsp (the pattern) and (the text), and we ask whethgran be embedded into
t, i.e.,p can be obtained by deleting some letters of the tettarbitrary positions, see
Section 4 for a formal definition. In the querying problem ifyut consists of a string
s, a position; € N, and a letter, and we ask, whether thieh symbol ofs is a.

For string compression, we choosteaight-line programgSLPs), i.e., context-free
grammars that generate exactly one word. Straight-lingraros turned out to be a very
flexible and mathematically clean compressed representafistrings. Several other
dictionary-based compressed representations, like $taumce Lempel-Ziv (LZ) factor-
izations [24], can be converted in polynomial time into igin&line programs and vice
versa [18]. This implies that complexity results, whichergb classes above determinis-
tic polynomial time, can be transfered from SLP-encodediirgprings to LZ-encoded
input strings. It turns out that the computational comgiexif the querying problem
and the embedding problem becomes very different, whert stgags are encoded via
SLPs: While for SLP-compressed strings the querying prolgédso calleccompressed
querying problemmbecomes complete for deterministic polynomial time (Tl .the
embedding problem (also callédly compressed embedding probtgire term “fully”
is used because both, the pattern and the text are assumeddoipressed) becomes
hard for the clas®? (Thm. 1). The latter class consists of all problems that can b



accepted by a deterministic polynomial time machine witteas to an oracle frotiP
and such that furthermore all questions to the oracle aredaskparallel [23].6% is
located between the first and the second level of the polyaldime hierarchy; it con-
tainsNP andcoNP and is contained it’5 N II5. We are currently not able to prove
a matching upper bound. The best upper bound for the fullypressed embedding
problem that we can prove BSPACE (Prop. 1). A corollary of the9%-hardness of
the fully compressed embedding problen®¥s-hardness of thlongest common subse-
quence problerand theshortest common supersequence proldensLP-compressed
strings, even when both problems are restricted to two igpurigs. These problems
have many applications e.g. in computational biology [10].

The paper is organized as follows. After introducing theessary concepts in
Sec. 2, we prove in Sec. 3, based on a reduction from the sogresaising subset sum
problem [11],P-completeness of the compressed querying problem for aybinput
alphabet. For a variable input alphabet, we sharpen thigtigg showing that even for
RLZ-encoded strings the compressed querying probleRrégemplete, which solves
an open problem from [7]. RLZ-encodings (restricted Lemfiglencodings) can be
seen as a restricted form of straight-line programs. In 8ege show that the fully
compressed embedding problen&$-hard. The proof is divided into two main parts.
First we proveNP-hardness by a reduction from the subset sum problem (SEc. 4.
Second, we show how to simulate boolean operations via éoltypressed embedding
(Sec. 4.2). By taking together these two parts we can dedarcibss fob? (Sec. 4.3).

Let us briefly discuss related work. Research on pattern himaggoroblems for
dictionary-based compressed strings started with thersdpaper [1]. In [17], a poly-
nomial time algorithm for testing whether two SLPs représba same text was pre-
sented. The technique of [17] was extended in [8, 14] in otdeshow that theully
compressed pattern matching problean be solved in polynomial time as well. The
fully compressed pattern matching problem is the comptkessesion of the classi-
cal pattern matching problem: for two given SLPsandT" we ask, whether the text
represented by’ can be written aspwv, wherep is the text represented by the SLP
P. Note the difference between thdly compressed pattern matching problamdthe
fully compressed embedding problstadied in this paper: In the latter problem we also
search for a compressed pattern in a compressed text, butowetlaat the pattern oc-
curs scattered, i.e., with gaps, in the text. This more éibeotion of pattern-occurrence
makes the application of periodicity properties of word$jak are crucial in [8, 14,
17], impossible, and is in some sense the reason for the hagimeplexity of the fully
compressed embedding problem. A similar complexity jump alaserved when mov-
ing from ordinary (1-dimensional) to 2-dimensional texis,, rectangular pictures: In
this framework, fully compressed pattern matching becomigscomplete [3].

The computational problems mentioned so far can be all fated as particular
compressed membership problems, where we ask whetherraggivgpressed text be-
longs to some formal language, which may either be fixed agrgin the input, e.g.,
in form of an automaton or a grammar. Precise complexitylte$or these problems
were obtained in [2, 13] for regular languages and [12] fortegt-free languages.

Whereas it ifNP-complete to compute (and even hard to approximate up to-a con
stant factor) a minimal SLP that generates a given inputgi{d], several approaches



for generating a small SLP that produces a given input striege proposed and ana-
lyzed in the literature, see e.g. [4, 21].

We referto[7, 15, 18-20, 22] for a more detailed discussfaigorithmic problems
on compressed strings.

2 Preliminaries

We assume that the reader has some basic background in sipngiieory [16]. Let>
be a finite alphabet. Thempty wordbver Y is denoted by. Forawords = a; ---a,, €
X* (a; € D) let|s| =n, |s|, = {i | a; = a}| (fora € X), s[i] = a; (for 1 < i < n),
ands[i, j] = a;ait1---a; (for1 < i <j <n).If i > j we sets[i, j| = €.

Following [18], astraight-line program (SLP) over the terminal alphahBtis
a context-free grammat’ with ordered non-terminal symbol&, ..., X,, (X,, is
the starting symbol) such that there is exactly one prododor each symbol: either
Xi; — a, wherea € X is a terminal, orX; — X;X;, for someyj, k < i. The lan-
guage generated by the SkdPcontains exactly one word that is denoteddyl(G).
More generally, every nontermin&; produces exactly one word that is denoted by
evalg(X;). We omit the indexG if the underlying SLP is clear from the context. The
size of G is |G| = m.

We may allow in SLPs more general productions of the fofin— w with w €
(Y U{Xy,...,X;_1})*. We may even allow exponential expressions of the faffn
for 7 < i and a binary coded integére N in the right-hand sides. Such a production
can be replaced b@ (log(k)) many ordinary productions.

3 Queryingthei-th symbol

In this section, we study the following computational perhiCompressed Querying:
INPUT: SLPG (over the terminal alphabet), positioni € N, anda € X
QUESTION:eval(G)[i] = a?

We prove thaCompressed Querying is P-complete. This means that unldds= NC,

whereNC is the class of all problems that can be solved in polylogarit time using

polynomially many processors, there does not exist an efffigharallel algorithm for

Compressed Querying, see [9] for background oR-completeness. All reductions in

this section aré&lC-reductions, i.e., they can be computed in polylogarithtime with

only polynomially many processors.

Theorem 1. Compressed Querying is P-complete. Hardness fd? even holds for a
binary terminal alphabet.

Proof. Membership inP is easy to see: first compute for every non-termikiadf the
input SLP the lengtlix of the generated stringral(X ). Now, if we have a production
X — Y Z and we want to determineval(X)[:] then we first check whether< ¢y.
In this case we have to fingal(Y')[:]. On the other hand, if > ¢y, then we have to
determinesval(Z)[i — £x]. This simple idea leads to a polynomial time algorithm.



We proveP-hardness by aNC-reduction from thé>-complete problenSuper In-
creasing Subset Sum [11]: 4

INPUT: Integersw, ..., w,,t in binary form such thato; > 37~} w; for all
1 <4 < n (in particularw; > 0).

QUESTION: Do there existy, ..., z, € {0,1} suchthad """ | z; - w; = ¢?
Thus, letw, ..., w,,t be integers such that; > Z;;ll wj. Letgy,...,g, € {0,1}*
be defined as follows, wherg = w; +--- +w; for1 < j < n:

g1 =10""11 g =g;10" 1 g, for2<j<n

It is straightforward to construct from the instange,, . .., w,,¢) in NC an SLP that
generates the string,. Note thatw; > s;_; and hencev; — s;_; — 1 > 0. Moreover,
we claim thatg,| = s;+1. This is certainly true foj = 1 sinces; = w;. Forj > 2we
obtain inductiveng| = 2|gj_1|+wj—sj_1—1 = 28j_1 +2+wj—sj_1—1 = Sj+1.

We claim thaty, [t + 1] = 1 if and only if there existz1, . .., z, € {0,1} such that
S, x; - w; = t, which proves the theorem. For this, we prove by induction tmat
for everyp > 0: g;[p+ 1] = 1lifand only if 3z1,...,2; € {0,1} : >°7_, @ - w; = p.
If j =1, thengip+ 1] = (10»*~1)[p+ 1] = 1ifand only ifp = 0 or p = wy,
which proves the induction base. Now assume that 2. Theng,[p + 1] = 1 if
and only if (gj_10%=%-1"1g; 1)[p+ 1] = 1if and only if (g;—1[p + 1] = 1 or
gi—ilp + 1 —|gj—1| — w; + sj—1 + 1] = 1) if and only if (g;—_1[p + 1] = 1 or
gj—1lpH1=sj1—1-wj+s;1+1] = gj1[p+1—w;] = 1) (sincelg; 1| = 5,1 +1).
By induction, this is true if and only if

j—1 j—1
Hxl,...,xj_le{O,l}{Zmi-wi:p or in-wi:p—wj}.
i=1 i=1

But this is equivalent t&zy, . .., z; € {0,1} : S0, @ - w; = p. O

Note that in Thm. 1P-hardness already holds for a binary alphabet. If we all@teéin-
minal alphabet to be part of the input, then we can pfN&rdness even for a restricted
form of SLPs, so calledestricted Lempel-Ziv encodingbriefly RLZ-encodings [7].
For a given stringw € X, the RLZ-factorizationof w is the unique factorization
w = f1fo--- fn such that for every > 1, f; is either the longest non-empty prefix of
fifit1 -+ fn such that there exists < j < k < ¢ with f; = f;--- fg, or (if such a
prefix does not existyf; is the first symbol off; fi+1 - - - fn. In this situation, thRLZ-
encodingof w, briefly RLZ(w) is the sequence;cs - - - ¢,,, Wherec; = f; if f; € X
orc¢; = [j,k]if f; ¢ X andf; = f;--- fi. Note that from RLZw) one can easily
construct an SLP generating

Example 1.Let w = abaababaabaababaababa. Then the RLZ-factorization ofv is
a|b|a|aba|baaba | ababaaba|ba and RLZAw) = aba[l, 3][2,4][4, 5][2, 3].

The next theorem solves an open problem from [7], where a&spanding result for
LZ-encoded input strings (see [7] for the definition) wasveholt should be noted
that there are polynomial time transformations between -Rarfd LZ-encodings [7,
Lemma 1], but by the results from [7] there cannot beN&itransformation from LZ-
encodings to RLZ-encodings unleRs= NC.



Theorem 2. The following problem i®-complete:

INPUT: An alphabety, a stringw € X* given by its RLZ-encoding, a position
i€ N,anda € ¥

QUESTIONw[i] = a?

Proof. Membership irP follows from Thm. 1. FoP-hardness we use almost the same
construction as in the proof of Thm. 1. For a given instafiee, . . . , w,,, t) of Super
Increasing Subset Sum we define stringg,...,9, € {1,%1,...,%,}* as follows,
wheres; = wy +--- +w; forl <j <n:

wj—8j71—1
J

g =181 g =g; 18 gj—1for2<j<n

The proof of Thm. 1 shows that,[t + 1] = 1 if and only if there existy,...,z, €
{0,1} such thad~""_, z; - w; = t. It remains to prove that RL(,,) can be constructed
in NC from (w1, . . ., wy, t). In the following let/(7) for i € N be the number of factors
in the RLZ-factorization of:’. One can show that(i) € O(log(i)) and RLZa') can
be calculated itNC from the binary encoding of Now we determine the numbay of
factors of the RLZ-factorization of the string. We have\; = 2+ ¢(w; — 1) and); =
Nic1+(w;—si—1—1)+1fori > 1. Thus,\; = (i+1)+> ", _, {(wi—sk—1—1). Also
the numbers\; (1 < ¢ < n) can be calculated iNC using the prefix sum algorithm.
Now we can set in parallel for all < i < n the factor from positior\;_; + 1 to \; of
RLZ(g,) (Wherex, = 0) to RLZ($."" "~ ~1)*Xi-1[1, A;_4], where RLZw)* is the
same as RLZw) but wherej is added to all numbers. O

4 Complexity of Embedding

Astringp = a; - - - ap, can beembeddednto a stringt = by - - - by, (a4, b; € X), briefly
p — t, if there exist positiond < i; < iy < -+ < i, < n such thab;, = ay, for
1 < k < m. We also say that is asubsequencef ¢, see the following diagram:

I8 3 e =

— N\ N T~
[ fan [ Jaa|- Jas| - o ] o ]

In this section, we study the complexity of the following plem Fully Compressed
Embedding, for shortEmbedding:

INPUT: SLPsP andT

QUESTION:eval(P) — eval(T')?
The following upper bound foEmbedding is easy to prove:

Proposition 1. Embedding belongs taPSPACE.

Proof. The straightforward greedy algorithm that solves the erdlvepproblem for un-
compressed strings in linear time results iR$PACE-algorithm for SLP-compressed
strings. The crucial observation is that a position in angtrivhich is represented by an
SLP, can be stored in polynomial space with respect to tleeddithe SLP. ad



A simple greedy algorithm for checkingal(P) — eval(T") can be easily imple-
mented within the time boung@val(P)| - |T|°®) < 20D .|7|9() This shows in
particular thatEmbedding is fixed parameter tractable in the sense of [5], when the
size of the pattern-SLP is chosen as the parameter (whickasonable, because in
most pattern matching applications the pattern is muchlentalan the text).

Our main result states th&mbedding is hard for the complexity clas®?. In
Sec. 4.1, we prov@lP-hardness. Then, in Sec. 4.2 we show how to simulate boolean
operations wittEmbedding. From this, we deduce hardness & in Sec. 4.3.

4.1 NP-hardness of Embedding

Let us recall the well-knowh P-complete problenSubset Sum (see [6]):
INPUT: Integerswy, .. . ,w,, t in binary form
QUESTION: Do there existy, ..., z, € {0,1} with > | z; - w; = t?

Theorem 3. Embedding is NP-hard.

Proof. We prove the theorem by a polynomial time reduction fr8obset Sum to
Embedding. Let¢,w = (w1, ...,w,) be input data foSubset Sum. W.l.0.g. assume
thatn > 2. We are going to construct SLPsand H such that there exists a subset of
{w1,...,wy,} with sum equal ta if and only if eval(G) — eval(H).

We begin with some notation. Let= w; + - - - +w, andN = 2"s. We can assume
thatt < s. Letx € {0,1,...,2™ — 1} be an integer. With;; (1 < ¢ < n) we denote
thei-th bit in the binary representation of wherez; is the least significant bit. Thus,
z=> 1 ;271 We definecow = 37" | x;w;. Henceg ow is the sum of the subset
of {wy,...,w,} encoded by the integar. Hence, w is a positive instance @ubset
Sumifandonly if3z € {0,...,2" — 1} : x ow = t. We now define stringg andh as
follows:

2 2" 1

h1 = H (105) — (103)2" h2 — 02N h3 — H (Omoﬁlos—zoﬁ)
v=0 =0

hy = 0tH! ho = hihohshy h = th

go = 103NN+ g=giN1

We use the symbo]] to denote the concatenation of the corresponding words per-
formed in the ordex: = 0,...,2" — 1.

We first claim that the stringg andh can be generated by SLPs of polynomial size
with respect to the size of the inptizo. Note that with only one exception, namely the
definition of h3, only a constant number of concatenations and integer expsnvith
polynomially many bits are used in the definitiongfndh. These constructions can
be directly realized by SLPs. Finally, a construction of &/pomial size SLP forhs
was presented in [12].

Now we prove thay — h if and only if 3z € {0,...,2" — 1} : zow = t.
First assume that thereise {0, ...,2"™ — 1} such thatc o w = ¢. Consider the prefix
hihohshahy Of h. We can embegy = 103N T*10Y*1 into hy hohshahe: map the initial



1 of gg to thex-th block10® of h;. Sincexow = ¢, the number of O’s ith; hohg between
thel in the z-th block 10° of h; and thez-th block 0*°®105—%°% = (*10°~* of hs is
preciselyN — (z — 1)s + 2N + (z — 1)s + t = 3N + t, see the following diagram:

h1 h2 h3
x-th block a-th block
(w0 [T [ J1w Jo - of - Jorro
N—(z—1)s zeros 2N zeros (x—1)s+t zeros

To these3 N + ¢ many 0’s we map the firstNV + ¢ many 0's ofgy. Then the second
1 of go is mapped to thd in the z-th block 0°10°~¢ of hs. The nextN + 1 many
0's following this1 are used for embedding the remainiNg+ 1 many 0's ofgy. The
crucial point is that after this embedding, we again arrivéhal in the z-th block 10°
of hy, see the following diagram:

hs hy hy
—
z-th block z-th block
|0t105—t| |()...()| 108 || 103 | | 103 ‘
A —
Nlad Tt e e

This observation shows thgf can be embedded intg ™ = (h;hahshg)**! for every
k > 1. In particularg = g0V ! < B3N = h.

Next, we prove the reverse direction. Assume that> h. We have to show that
there isz € {0,...,2™ — 1} such thatz o w = ¢. In order to deduce a contradiction,
assume that o w # ¢ for all z € {0,...,2" — 1}. It turns out that not every 0 in
h can be the image of a 0 frogunder our embedding — h. Let us estimate the
total number of such unused 0’s. Our embeddjng- h consists ob N — 1 disjoint
embeddings ofyy into h. There are two 1's iy and there are exactlyN + ¢t many
0's between them. We claim that there is no pair of two 1's witactly3N + ¢ many
0’s between them in. In order to prove this, we consider two 1'sirand make a case
distinction on the position of the first 1. First assume thatleft 1 belongs té;. More
precisely, assume that the left 1 is the 1 in gkt block10° of h;. By reading exactly
3N +t many 0's inh, we arrive at position+ 1 (if t < yow)ort+2 (if t > yow)in
they-th block of h3; note thatt < s. But sincey o w # t, this position cannot contain
a 1. This proves the case that the left 1 belongs;tal'he following diagram visualizes
the situation (where we assume that y o w):

h1 ha hs
y-th block y-th block
’ 105 | | 105 | | 108 |O O| |0yoﬁlosfyoﬁ ‘
N —(y—1)s zeros 2N zeros (y—1)s+t zeros
3N+t zeros

In the second case, the left 1 in our pair is situateddnThen, by reading exactly
3N + t many Q’s inh, we end up im3, which does not contain 1's at all:



hs hahy hao

‘ IO...Olo...Ol | 0 0

N zeros N+t+1 zeros 2N zeros

We have now shown that for each embeddingqgin 2 between the images of the two
1'sin go, there must be at lea8tV + ¢ 4+ 1 many 0's ink. Thus, for every embedding
of go = 103N *+*10V*1 in h we need atleatN 4+t + 14+ N + 1 = 4N +t + 2 many

0'sin h. Sinceg = g5V !, we need at least

(4N +1t+2)- (5N —1) =5N - (4N +t+ 1)+ (N —t —2) > 5N - (4N +t + 1)

many 0's inh. For the last inequality note th&f = s-2" > 4s > s+ 2 > ¢t + 2.
We obtain a contradiction, because from the constructioin, @fe see that contains
precisely5N - (4N +t + 1) many O's. O

4.2 Simulating boolean operations

Proposition 2. For SLPsG and H over a terminal alphabef’, |X| > 1, we can
construct in polynomial time SLR® and H' over the terminal alphabe¥ such that

eval(G) — eval(H) <&  eval(G') & eval(H'). 1)

Proof. Let eval(G) = g1---gr andeval(H) = hy---hy,. Fora € X let X, =
(ay---a,)™*, where{ay,...,a,} = X\ {a} (the order onX \ {a} is arbitrary
here; ifn = 0, thenX, = ¢). Leta € X be arbitrary and le&’ and H' be SLPs with

eval(G') = eval(H)a = hy -+ hyya and eval(H') = Xy, 01+ Xy, gi-

These SLPs can be constructed in polynomial time fé@@nd H. For G’ this is clear.
For H' we have to replace every terminal symhkoin G by a new nonterminald
and add the ruled — X,a. It remains to show (1). First assume thatl(G) +
eval(H). Then we can writeval(H) = Ryg1--- RigiRi+1, wherel < k and for
1 < i <1+ 1,the wordR; does not contain the lettgt. Since|R;| < m, for every
1 < i <1+ 1we haveR, — X,,. Thus, we can embed the prefixal(H) =
Ryg1 - Rigi R4 of eval(G') into the prefixXg, g1 - - - Xy, g1 Xy, ,, Of eval(H'). The
final lettera of eval(G”) can be either also mapped 19, ., (if a # gi41; here it is
important that X, | > m so thatR,;,, does not completely occup¥,,. ) or it can
be mapped tgy1 (if @ = gi+1):

‘ Ry |gl| Ry |92| | Ry |gl|Rl+1|?L“
Loyl
(X [91[ Xo 92| [ X [0 [Xo|o] -

Now assume thatval(G) — eval(H ). Then we canwriteval(H) = Ryg; - - - Rxgx R,
where forl < i < k, the wordR; does not contain the lettgr. We claim that

Vi<i<k:Rigi - Rigi  Xg,91 - Xg,_,9i—1Xy,. (2



Our proof goes by induction ohIn the caseé = 1 this follows, sincey; does not occur
in X, . For the induction step assume that (2) is true for sotrel and that moreover

Rig1--- RigiRiv19i41 — Xg 01+ Xg, 19i-1Xg,9iXg, - 3)

Recall that the last symbg) , ; of R1g; - - - Ri119:11 does not occur in the suffiX,, ,
of Xg, 91+ Xg,0:Xg,,,. Thus, (3) implies that alreadR®,g; - - - RigiRi+19i+1 —
Xglgl s Xgi71gi*1X . 9i and hencengl s RigiRi+1 — Xglgl s Xgi71gi*1X i
But this contradicts (2).

Fori = k, (2) impliesRigi -+ Rrgr % X491 Xg,_,96—1Xg,. But then
eval(G') = Rig1 -+ RipgrRa /> Xg, 01+ Xg,_ gu—1X g, g1 = eval(H’). O

Thm. 3 and Prop. 2 immediately imply thembedding is alsocoNP-hard.

Proposition 3. For SLPsG1, Hy, G2, Ho over a terminal alphabel, | X| > 2, we can
construct in polynomial time SLRs, H over the terminal alphabe¥ such that

(eval(G1) — eval(H;) and eval(G3) — eval(Hy)) < eval(G) — eval(H).

Proof. W.l.0.g. assume tha¥; andG, (resp.H; and Hs) have disjoint sets of non-
terminals. LetS; (resp.T;) be the start non-terminal @¥; (resp.H;). Let N = 1 +
max{|eval(H,)|, |eval(Hz)|}. ThenG (resp.H) contains all productions off; and
G> (resp.H; and H,) and the additional productiof — S;1V01V .S, (resp.T —
T 1N01NTy), where0, 1 € X. Here,S (resp.T) is the start non-terminal af (resp.
H). Thus,

eval(G) = eval(G1) 1V 01V eval(G3) and
eval(H) = eval(H;) 1V 017 eval(Hy).

Clearly, ifeval(G1) — eval(H;) andeval(G3) — eval(Hs), then we haveval(G) —
eval(H). For the other direction note thatifal(G1)1" 01" eval(G) can be embedded
into eval(H;)1V01Veval( H-), then by the choice oWV, the 0 at positioneval (G )| +

N + 1in eval(G;)1V01"eval(G2) can neither be mapped to the prefixl(H;) nor

to the suffixeval(H>) of eval(H). Thus, this 0 has to be mapped to the 0 at position
leval(Hy)| + N + 1in eval(H; )1V 01N eval(H,). This implies that botlval(G;) —
eval(H;) andeval(Gz) — eval(Hs). O

Proposition 4. For SLPsG,, Hy, G, H, over a terminal alphabel, | X| > 2, we can
construct in polynomial time SLRs, H over the terminal alphabe¥’ such that

(eval(G1) — eval(Hy) or eval(Gy) — eval(Hy)) < eval(G) — eval(H).

Proof. W.l.0.g. assume thaf';, Go, H;, and H, have pairwise disjoint sets of non-
terminals. LetS; (resp.T;) be the start non-terminal @¥; (resp.H;). Let N = 1 +
leval(G1)| + |eval(G2)|. ThenG contains all productions aff; andG, and the addi-
tional productionS — S;0170S5,. The SLPH contains all productions @, H;, G,
H, and the additional productidfi — 7;01"V 5;05,1V075. Thus, we have

eval(GQ) = eval(G1) 017 0 eval(Gs) and
eval(H) = eval(H;) 01" eval(G1) O eval(G2) 17V 0 eval (Hy).



Clearly, ifeval(G1) — eval(H;) oreval(Gy) — eval(Hz), theneval(G) — eval(H).
For the other direction assume thatl(G) = eval(G;) 01" 0eval(Gy) can be em-
bedded intceval(H) = eval(H;) 01" eval(G) 0eval(Gy) 1V 0 eval(Hs). Consider
the 1¥-block of eval(G). If a 1 from this block is mapped to the prefixal(H;) of
eval(H), theneval(G;) — eval(H,). If a 1 from the1” -block of eval(G) is mapped
to the first1V-block ofeval (H ), then the 0 at positiofeval (G1)| + 1 in eval(G) cannot
be mapped to the right of the 0 at positiral(H; )| + 1 in eval(H). But then again
the prefixeval(G;) of eval(G) is embedded into the prefixal(H;) of eval(H). Com-
pletely analogously it follows that if a 1 from tHé" -block of eval(G) is mapped to the
suffix eval(Hs) of eval(H) or to the second ™ -block of eval(H), theneval(Gs)
eval(Hz). The only remaining case, namely that every 1 initiieblock of eval(G) is
mapped int@val(G1) 0 eval(G2) cannot occur, sincd > |eval(Gy)eval(G2)|. O

4.3 Hardnessfor @F

Recall that9}, is the class of all problems that can be accepted by a detistinipoly-
nomial time machine with access to an oracle fridfd and such that furthermore all
questions to the oracle are asked in parallel [23].

Proposition 5. If A C {0,1}* is NP-complete, then the following problem -
complete:
INPUT: A boolean circuitC (i.e., a circuit with AND-gates, OR-gates, NOT-gates,
and input gates), where every input gates labeled with a wordu(g) € {0, 1}*.
QUESTION: Doeg” evaluate to true when every input gajeevaluates to true
(resp. false) ifw(g) € A (resp.w(g) & A)?

Proof. For membership ir®} note that we can evaluate all input gates’oin paral-

lel by using the languagd as an oracle. Then, the whole circuit can be evaluated in
polynomial time. Hardness fa@?} follows from a result from [23]: It is9%-complete

to decide for a given list of strings, wo,...,w, € {0,1}*, whether the number
|{i | w; € A}|is odd. By taking a boolean circuit for parity, this probleemde easily
encoded into a boolean circuit witlirinstances at input gates. ad

Theorem 4. Even for SLPs over a binary terminal alphabEmbedding is ©%-hard.

Proof. Let C' be a circuit with input gates labeled with instances of e complete
Subset Sum problem. By the usual doubling argument, we can assume #ugtion
gates only occur directly above input gates. We first defidedtively for every gate
stringsu(c) andwv(c) and then argue that (i) evaluates to true if and only #(c) —
v(c) and (i) u(c) andv(c) can be generated by “small” SLPsclis an unnegated input
gate that is labeled with tifeubset Sum instancel thenu(c) = g andv(c) = h, where

g andh are the two strings that are constructed fromn the proof of Thm. 3. Ifcis a
negated input gate that is labeled with Bgbset Sum instancel, then again we first
construct from/ the wordsg andh as described in the proof of Thm. 3. Then we apply
the construction from the proof of Prop. 2g¢@ndh and assign the resulting strings to



u(c) andv(c), respectively. For AND- and OR-gates we use the constrogtimm the
proofs of Prop. 3 and 4, resp.:dfis an AND-gate with inputg; andcs, then

u(e) = u(e)) 1V 01N u(er) and v(e) = v(ey) 1V 01V v(ey), 4)
whereN = 1 + max{|v(c1)|, |v(cz)|}. If cis an OR-gate with inputs; andcsg, then
u(c) = u(c1) 01V 0ulep) and v(c) = v(er) 01V u(er) 0ulez) 1V 0v(cs),  (5)

whereN = 1 + |u(cy)| + |u(cz)|. From Thm. 3 and Prop. 2—4 it follows immediately
thatC evaluates to true if and only if(o) — wv(0), whereo is the output gate of’.

It remains to argue that for every gatethe stringsu(c) andwv(c) can be generated
by SLPs of size polynomially bounded in the size of the cir€u{which is the number
of gates plus the size of eubset Sum instances at the input gates@j. Note that if
we definen(c) = max{|u(c)|, |v(c)|} then we havei(c) < 8 - max{n(c1),n(c2)} +5
in casec is an AND- or OR-gate with inputs; andc,.2 It follows thatn(c) is bounded
exponentially in the size of the circuit. Moreover, we can calculate the binary repre-
sentations of the lengths(c)| and|v(c)| for every gate: in polynomial time. Thus, we
can construct SLPs of polynomial size for the factotsin (4) and (5). This implies
that for every gate, u(c) andv(c) can be generated by SLPs of polynomial sizeO

Let us close this paper with a corollary of Thm. 4. In the peobL ongest Common
Subsequence (LCS) (resp.Shortest Common Super sequence (SCS)), one asks for
a finite setR of strings andn € N whether there is a strings with |w| > n and
Yv € R:w— v (resp.Jw| < nandVv € R : v — w). These problems are known to
be NP-complete, but fof R| = 2 they can be solved in polynomial time (see [6]). For
SLP-encoded input strings CS andSCS can be both solved iRSPACE.

Corollary 1. The problem& CSandSCS for SLP-encoded input strings aé-hard,
even if|[R| = 2 for the input setR.

Proof. Foru,v € X* we haveu — v if and only if ({u, v}, |u]) (resp.({u, v}, |v])) is
atrue instance df CS (resp.SCS). Hence, the corollary follows from Thm. 4. O

5 Open problems

The main open problem that remains from this paper conckengrecise complexity of
Embedding. Our results leave a gap fro@% to PSPACE. In Thm. 2 P-completeness
of querying RLZ-encoded input strings) it is open, whetlheranderlying alphabet can
be fixed to, e.g., a binary alphabet.
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3 Such a bound would not hold for a NOT-gate, since one application ofdhstraiction for
Prop. 2 may lead to a quadratic blow-up in the size of the generated sifimg®fore we have
to assume that NOT-gates only appear at input gates.
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