
Efficient computation in groups via compression

Markus Lohrey1 and Saul Schleimer2

1 Universiẗat Stuttgart, FMI, Germany
2 School of Mathematics and Statistics, Rutgers University, Mathematics Department, New

Brunswick, New Jersey, USA
lohrey@informatik.uni-stuttgart.de, saulsch@math.rutgers.edu

Abstract. We study thecompressed word problem: a variant of the word problem
for finitely generated groups where the input word is given by a context-free
grammar that generates exactly one string. We show that finite extensionsand
free products preserve the complexity of the compressed word problem. Also,
the compressed word problem for a graph group can be solved in polynomial
time. These results allow us to obtain new upper complexity bounds for the word
problem for certain automorphism groups and group extensions.

1 Introduction

Theword problem for finitely generated groupsis a fundamental computational prob-
lem linking group theory, topology, mathematical logic, and computer science. For a
groupG, finitely generated byΣ, it is asked whether a word overΣ and the inverses
of Σ represents the identity element ofG. The word problem was introduced in the pi-
oneering work of Dehn from 1910 in relation with topologicalquestions. It took about
45 years until Novikov and later independently Boone provedthe existence of a finitely
presented group with an undecidable word problem, see [22, 31] for references. Despite
this negative result, many natural classes of groups with decidable word problems were
found. Prominent examples are finitely generated linear groups, automatic groups [12],
and one-relator groups. With the advent of computational complexity theory the com-
plexity of word problems became an active research area. Forinstance, it was shown
that for a finitely generated linear group the word problem can be solved in logarithmic
space [20, 30], that automatic groups have quadratic time word problems [12], and that
the word problem for a one-relator group is primitive recursive [5].

Group theoretic operations, which preserve (or moderatelyincrease) the complexity
of the word problem are useful for constructing groups with efficiently solvable word
problems. An example of such a construction is the free product: it is not hard to see
that the word problem for a free productG ∗ H can be reduced in polynomial time to
the word problem forG andH. In this paper, we introduce a new technique for ob-
taining upper complexity bounds for word problems. This technique is based on data
compression. More precisely, we use compressed representations of strings — so called
straight-line programs, briefly SLPs — which are able to achieve exponential compres-
sion rates for strings with repeated subpatterns. Formally, an SLPA is a context-free
grammar which generates exactly one stringeval(A). Recently, SLPs turned out to be
a very flexible compressed representation of strings, whichis well-suited for studying

algorithms on compressed data. For instance, several polynomial time algorithms for
the pattern matching problem on SLP-compressed input strings were developed [13,
19, 23]. In [21], the first author started to investigate thecompressed word problemfor a
finitely generated groupG with finite generating setΣ. For a given SLPA that generates
a string overΣ and the inverses ofΣ it is asked whethereval(A) represents the iden-
tity element inG (actually, in [21] the compressed word problem for finitely generated
monoids was studied). This problem is equivalent to the well-known circuit evaluation
problem, where we ask whether a circuit over a finitely generated groupG (i.e., an
acyclic directed graph with leafs labeled by generators ofG and internal nodes labeled
by the group multiplication) evaluates to the identity element ofG. In [3] this problem
was investigated for finite groups, and it was shown that there exist finite groups, for
which the circuit evaluation problem is complete for P (deterministic polynomial time).

In [3, 21] the main motivation for studying the compressed word problem came from
computational complexity theory. Since the input in the compressed word problem is
given in a more compact form than in the ordinary word problemit can be expected
that the compressed word problem is, in general, more difficult than the ordinary word
problem. For instance, whereas the word problem for a finitely generated free group
belongs to the class L (deterministic logspace) [20], the compressed word problem for
a finitely generated free group of rank at least two is P-complete [21].1

In [28], the second author used the polynomial time algorithm for the compressed
word problem for a free group in order to present a polynomialtime algorithm for the
ordinary word problem for the automorphism group of a free group, which answered
a question from [17]. Hence, the compressed word problem is used in order to obtain
better algorithms for the ordinary word problem. In this paper, we will continue this
program and obtain efficient algorithms for a variety of wordproblems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we give connections between the compressed word prob-
lem for a groupG and the word problem for some group derived fromG. We prove three
results of this kind:

– If H is a finitely generated subgroup of the automorphism group ofa groupG, then
the word problem forH is logspace reducible to the compressed word problem for
G (Prop. 2). This result is a straight-forward extension of Thm. 5.2 from [28].

– The word problem for the semidirect productK ⋊ϕ Q of two finitely generated
groupsK andQ is logspace reducible to (i) the word problem forQ and (ii) the
compressed word problem forK (Prop. 3).

– If K is a finitely generated normal subgroup ofG such that the quotientG/K is an
automatic group, then the word problem forG is polynomial time reducible to the
compressed word problem forK (Prop. 4).

In the second step (Section 4) we concentrate on the compressed word problem. We
prove the following results:

– If K is a finitely generated subgroup ofG such that the index[G : K] is finite, then
the compressed word problem forG is polynomial time reducible to the compressed
word problem forK (Thm. 1).

1 It is believed, although not proven, that L is a proper subclass of P.

– The compressed word problem for a free productG1 ∗ G2 is polynomial time re-
ducible (under Turing reductions) to the compressed word problem forG1 andG2

(Thm. 2). This result even holds for the more general graph product construction
[14] (Thm. 4).

– The compressed word problem for a graph group [11] can be solved in polynomial
time (Thm. 3). In a graph group, every defining relation is of the formab = ba for
generatorsa andb.

– The compressed word problem for a finitely generated linear group belongs to the
complexity class coRP (Thm. 5), which is the complementary class of randomized
polynomial time. See Section 4.4 for the definition.

We end this paper with a few direct applications of the above results. Let us mention one
of them concerning topology, see [31] for definitions: Crispand Wiest [7] have shown
shown that the fundamental group of any orientable surface (and of most non-orientable
surfaces) embeds in a graph group. This gives a new proof that, for all closed surfaces,
the word problem for the automophism group of the fundamental group can be solved
in polynomial time.

A long version containing all proofs can be obtained from theauthors.

2 Preliminaries

Let Σ be a finite alphabet. Letε denote the empty word. We useΣ−1 = {a−1 | a ∈ Σ}
to denote a disjoint copy ofΣ. Let Σ±1 = Σ ∪ Σ−1. For background in complexity
theory see [24]. For languagesK,L we write K ≤P

m L (resp.K ≤log
m L) if there

exists a polynomial time (resp. logspace) many-one reduction fromK to L. We write
K ≤P

T L if there exists a polynomial time Turing reduction fromK to L, which means
thatK can be solved in deterministic polynomial time on a Turing machine with oracle
access to the languageL. Let � ∈ {≤P

m,≤log
m ,≤P

T }. In caseK � L1 × · · · × Ln we
write K � (L1, . . . , Ln). Clearly, if L1, . . . , Ln belong to the class P (deterministic
polynomial time) andK ≤P

T (L1, . . . , Ln), thenK belongs to P as well.

2.1 Groups

For background in combinatorial group theory see [22, 31]. LetG be afinitely generated
groupand letΣ be a finitegroup generating setfor G. Hence,Σ±1 is a finitemonoid
generating setfor G and there exists a canonical monoid homomorphismh : (Σ±1)∗ →
G, which maps a wordw ∈ (Σ±1)∗ to the group element represented byw. Foru, v ∈
(Σ±1)∗ we will also say thatu = v in G in caseh(u) = h(v).

Theword problemfor G with respect toΣ is the following decision problem:

INPUT: A wordw ∈ (Σ±1)∗.
QUESTION:w = 1 in G, i.e.,h(w) = 1?

It is well known that ifΓ is another finite generating set forG, then the word problem
for G with respect toΣ is logspace many-one reducible to the word problem forG with
respect toΓ . This justifies one to speak just of the word problem for the groupG. The

word problem forG is also denoted byWP(G). Thefree groupF (Σ) generated byΣ
can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = a−1a = ε | a ∈ Σ}.

As usual, thefree productof two groupsG1 andG2 is denoted byG1 ∗ G2. Theau-
tomorphism groupof a groupG is denoted byAut(G). For the standard definition of
automatic groups, see [12]. Every automatic groupG is finitely presented and its word
problem can be solved in timeO(n2).

2.2 Trace monoids and graph groups

In the following we introduce some notions from trace theory, see [8, 10] for more
details. This material will be only needed in Section 4.3. Anindependence alphabetis
just a finite undirected graph(Σ, I) without loops. Hence,I ⊆ Σ × Σ is an irreflexive
and symmetric relation. Thetrace monoidM(Σ, I) is defined as the quotient monoid

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

It is a cancellative monoid. Elements ofM(Σ, I) are calledtraces. The trace represented
by the words ∈ Σ∗ is also denoted by[s]I . The graph groupG(Σ, I) is defined as the
quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

Note that(a, b) ∈ I impliesa−1b = ba−1 in G(Σ, I). Thus, the graph groupG(Σ, I)
can be also defined as the quotient monoid

G(Σ, I) = M(Σ±1, I)/{[aa−1]I = [a−1a]I = [ε]I | a ∈ Σ}.

Here, we implicitly extendI ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting(aα, bβ) ∈ I if
and only if(a, b) ∈ I for a, b ∈ Σ andα, β ∈ {1,−1}.

Free groups and free abelian groups arise as special cases ofgraph groups; note that
G(Σ, ∅) = F (Σ) andG(Σ, (Σ × Σ) \ idΣ) = Z

|Σ|. Graph groups were studied e.g.
in [11]; they are also known asfree partially commutative groups[9, 32], right-angled
Artin groups[4, 7], andsemifree groups[1].

2.3 Grammar based compression

In this section we introduce straight-line programs, whichare used as a compressed
representation of strings with reoccuring subpatterns. Following [26], a straight-line
program (SLP) over the alphabetΓ is a context-free grammarA = (V, Γ, S, P), where
V is the set ofnonterminals, Γ is the set ofterminals, S ∈ V is theinitial nonterminal,
and P ⊆ V × (V ∪ Γ)∗ is the set ofproductions, such that (i) for everyX ∈ V
there is exactly oneα ∈ (V ∪ Γ)∗ with (X,α) ∈ P and (ii) there is no cycle in the
relation{(X,Y) ∈ V × V | ∃α : (X,α) ∈ P, Y occurs inα}. A production(X,α)
is also written asX → α. The language generated by the SLPA contains exactly one
word that is denoted byeval(A). More generally, every nonterminalX ∈ V produces

exactly one word that is denoted byevalA(X). We omit the indexA if the underlying
SLP is clear from the context. The size ofA is |A| =

∑
(X,α)∈P |α|. The length of

eval(A) may be exponentially larger than|A|; henceA may be seen as a compressed
representation ofeval(A). Every SLP can be transformed in polynomial time into an
equivalent SLP that is inChomsky normal form(as a context-free grammar). This means
that all productions have the formA → BC or A → a for nonterminalsA,B, andC
and a terminala.

In recent years, the complexity of many decision problems onstrings, when the
input is represented by SLPs, was investigated, see e.g. [13, 19, 21, 23, 25]. A seminal
result of Plandowski [25] states that for given SLPsA and B it can be checked in
polynomial time whethereval(A) = eval(B). The currently best known algorithm for
this problem has a cubic running time [19].

Thecompressed word problemfor the finitely generated groupG with respect to the
finite generating setΣ is the following problem:

INPUT: An SLPA over the terminal alphabetΣ±1.
QUESTION: Doeseval(A) = 1 hold inG?

Here, the input size is|A|. Also, it is easy to see that the complexity of the compressed
word problem does not depend on the chosen generating set. This allows one to speak
of the compressed word problem for the groupG. The compressed word problem forG
is also denoted byCWP(G). The following fact is trivial:

Proposition 1. Assume thatH is a finitely generated subgroup of the finitely generated
groupG. ThenCWP(H) ≤log

m CWP(G).

3 Connections between the word problem and the compressed
word problem

The three propositions from this section establish a link between the word problem and
the compressed word problem. For their proofs, the following fact is crucial: LetΣ be a
finite generating set for the groupG and letϕ1, . . . , ϕn ∈ Aut(G) be automorphisms of
G which are taken from some fixed finite subset ofAut(G). Then, for everya ∈ Σ±1,
we can construct an SLPA over the terminal alphabetΣ±1 such that (i)eval(A) is a
word that represents the group elementϕ1 · · ·ϕn(a) and (ii) |A| ∈ O(n); see [28].

Proposition 2 (cf [28]). Let G be a finitely generated group and letH be a finitely
generated subgroup ofAut(G). ThenWP(H) ≤log

m CWP(G).

Proposition 3. LetK andQ be finitely generated groups and letϕ : Q → Aut(K) be
a homomorphism. Then, for the semidirect productK⋊ϕQ we haveWP(K⋊ϕQ) ≤log

m

(WP(Q),CWP(K)).

The semidirect productG = K ⋊ϕ Q is an extension ofK by Q, i.e.,K is a normal
subgroup ofG with quotientG/K ≃ Q. A reasonable generalization of Prop. 3 would
beWP(G) ≤log

m (WP(G/K),CWP(K)). But this cannot be true: there exist finitely
generated groupsG,Q,K such that (i)Q = G/K, (ii) Q andK have a decidable

word problem, and (iii)G has an undecidable word problem [2]. On the other hand,
if we require additionally, thatQ is finitely presented (in fact,Q recursively presented
suffices), thenG must have a decidable word problem [6]. For the special case that
the quotientQ = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. LetK be a finitely generated normal subgroup ofG such that the quo-
tientQ = G/K is an automatic group. ThenWP(G) ≤P

m CWP(K).

4 Upper bounds for compressed word problems

4.1 Finite extensions

Since every finite group is automatic, Prop. 4 applies to the case that the quotientQ is
finite. In this situation, we even obtain a polynomial time reduction from thecompressed
word problem ofG to the compressed word problem ofK.

Theorem 1. Assume thatK is a finitely generated subgroup of the groupG such that
the index[G : K] is finite. ThenCWP(G) ≤P

m CWP(K).

For the proof of Thm. 1 one proceeds in two steps. For a given SLP A over the
generators ofG one first checks whethereval(A) represents an element of the subgroup
K. This is possible in polynomial time using the coset automaton (whose states are the
cosets ofK) and the fact that it can be checked in polynomial time whether a given
finite automaton acceptseval(A) for a given SLPA [26]. Then, in a second step one
transformsA in polynomial time into a new SLPB over generators forK such that
eval(A) andeval(B) represent the same group element.

The reducibility relation≤P
m in Thm. 1 cannot be replaced by the stronger relation

≤log
m (unless P= L) because there exists a finite groupG with a P-complete compressed

word problem [3] (takeK = 1 in Thm. 1).

4.2 Free products

Our main result for free products is:

Theorem 2. Assume thatG = G1∗G2. ThenCWP(G) ≤P
T (CWP(G1),CWP(G2)).

Let Σi be a finite generating set forGi (i ∈ {1, 2}), whereΣ1 ∩ Σ2 = ∅. In or-
der to reduceCWP(G) to CWP(G1) andCWP(G2), we follow the strategy for free
groups [21], wherecomposition systemswere used. Composition systems extend SLPs
by allowing also productions of the formA → B[i : j] for nonterminalsA andB
and i, j ∈ N. Theneval(A) is the substring ofeval(B) from positioni to j. Hage-
nah [15] has shown that a given composition system can be transformed in polyno-
mial time into an equivalent SLP. For our proof, we use a special form of composition
systems, so called2-level composition systems. Such a system is a tuple of the form
A = (B, (BC)C∈W), whereB is a composition system, which generates a word over
the alphabetW . Moreover, for eachC ∈ W , BC is an SLP, either over the terminal

alphabetΣ±1
1 or over the terminal alphabetΣ±1

2 . Thus,A defines in a natural way a
stringeval(A) ∈ (Σ±1

1 ∪ Σ±1
2)∗.

We transform a given input SLPA over the terminal alphabet(Σ±1
1 ∪Σ±1

2)∗ into a
2-level composition systemA′ = (B, (BC)C∈W) having three additional properties:

(1) eval(A) = eval(A′) in the groupG1 ∗ G2.
(2) for everyC ∈ W , eval(BC) 6= 1 (either inG1 or in G2).
(3) for every nonterminalA of B, if C ∈ W andD ∈ W are two consecutive sym-

bols in evalB(A), then eithereval(BC) ∈ (Σ±1
1)∗ and eval(BD) ∈ (Σ±1

2)∗ or
eval(BC) ∈ (Σ±1

2)∗ andeval(BD) ∈ (Σ±1
1)∗.

Properties (2) and (3) ensures thateval(A′) is irreducible in the free productG1 ∗ G2

and henceeval(A) = 1 in G1 ∗ G2 if and only if eval(A′) = ε. In order to enforce
(2), we have to solve instances ofCWP(G1) andCWP(G2). Enforcing (3) is the main
difficulty. Here we follow the bottom-up procedure for free groups from [21] in order to
determine maximal cancellation between strings which are concatenated on the right-
hand side of some production of the SLPA.

Again, the reducibility relation≤P
T in Thm. 2 cannot be replaced by the stronger

relation≤log
m (unless P= NC, where NC is Nick’s class — the class of all problems that

can be solved with polynomially many processors in polylogarithmic time) because the
compressed word problem forZ ∗ Z is P-complete [21], whereas the compressed word
problem forZ is easily seen to be in NC.

4.3 Graph groups and graph products

The word problem for a graph group can be solved in linear timeon a RAM [9, 32]. In
order to solve the compressed word problem for a graph group in polynomial time, we
follow again the strategy for free groups [21]. For this, it is crucial that there exists a
normal form mappingNF : M(Σ±1, I) → M(Σ±1, I) on the trace monoidM(Σ±1, I)
such that for allt ∈ M(Σ±1, I): (i) t = NF(t) in the graph groupG(Σ, I) and (ii)
the traceNF(t) cannot be factorized inM(Σ±1, I) as u[aa−1]Iv or u[a−1a]Iv for
someu, v ∈ M(Σ±1, I) anda ∈ Σ [9]. Then, for a given SLPA over the terminal
alphabetΣ±1 we compute in polynomial time an SLPB over the terminal alphabetΣ±1

such that[eval(B)]I = NF([eval(A)]I). This calculation is again based on a bottom-up
process similarly to [21], but determining the maximal amount of cancellation between
composed strings ofA becomes more involved in the presence of partial commutation.
Since for everyt ∈ M(Σ±1, I) we havet = 1 in G(Σ, I) if and only if NF(t) = [ε]I ,
we obtain:

Theorem 3. Let (Σ, I) be a fixed independence alphabet. ThenCWP(G(Σ, I)) be-
longs to P (deterministic polynomial time).

Let us end this section with a generalization of both Thm. 2 and 3. A graph product
is given by a triple(Σ, I, (Gv)v∈Σ), where(Σ, I) is an independence alphabet and
Gv is a group, which is associated with the nodev ∈ Σ. W.l.o.g. assume thatΣ =
{1, . . . , n}. The groupG(Σ, I, (Gv)v∈Σ) defined by this triple is the quotient

G(Σ, I, (Gv)v∈Σ) = (G1 ∗ G2 ∗ · · · ∗ Gn)/{xy = yx | x ∈ Gu, y ∈ Gv, (u, v) ∈ I},

i.e., we take the free product(G1 ∗G2 ∗· · ·∗Gn), but let elements from adjacent groups
commute. Note thatG(Σ, I, (Gv)v∈Σ) is the graph groupG(Σ, I) in case everyGv is
isomorphic toZ. Moreover, free products and direct products appear as special cases
of the graph product construction. Graph products were firststudied by Green [14]. By
combining ideas from the proof of Thm. 2 and Thm. 3, one can show:

Theorem 4. Assume thatG is a graph product of finitely generated groupsG1, . . . , Gn.
ThenCWP(G) ≤P

T (CWP(G1), . . . ,CWP(Gn)).

4.4 Linear groups

Recall that a languageL belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithm2 A such that: (i) ifx 6∈ L
then Prob[A acceptsx] = 0 and (ii) if x ∈ L then Prob[A acceptsx] ≥ 1/2. The choice
of the failure probability1/2 in casex ∈ L is arbitrary: By repeating the algorithmc
times (wherec is some constant), we can reduce the failure probability to(1/2)c and
still have a randomized polynomial time algorithm. A languageL belongs to the class
coRP, if the complement ofL belongs to RP. This means that there exists a randomized
polynomial time algorithmA such that: (i) ifx 6∈ L then Prob[A acceptsx] ≤ 1/2 and
(ii) if x ∈ L then Prob[A acceptsx] = 1.

Using results from [20, 30], the compressed word problem fora finitely generated
linear group can be reduced to the problem whether a circuit over a polynomial ring
R[x1, . . . , xn] (whereR is eitherZ or the finite fieldFp) evaluates to the zero polyno-
mial. This problem belongs to coRP by [16]. Hence, we obtain:

Theorem 5. For a finitely generated linear groupG, CWP(G) belongs to coRP.

5 Applications

In this section, we present some immediate corollaries to the results from Section 3 and
4. We concentrate on automorphism groups. Since the automorphism group of a graph
group is finitely generated [18, 29], Prop. 2 and Thm. 4 imply:

Corollary 1. For a graph groupG, WP(Aut(G)) belongs to P.

Let Sg be the closed orientable surface of genusg. For example,S0 is the two-
sphere. Letπ1(Sg) denote the fundamental group (see [31] for definitions). Crisp and
Wiest [7] have shown that for everyg ≥ 0, π1(Sg) can be embedded in a graph group.
Hence, by Prop. 1 and Thm. 4, the compressed word problems forthese groups can be
solved in polynomial time. (This gives a new proof of a resultof [28].) SinceSg is a
double cover ofNg+1, the non-orientable surface, [31, p. 87], it follows thatπ1(Sg) is
an index-2 subgroup ofπ1(Ng+1) [31, p. 162]. With Thm. 1 and Prop. 2 we obtain:

2 A randomized algorithmA may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomialp(n) such that for every input of lengthn and every
possible outcome of the coin flips,A runs in time at mostp(n), thenA is a randomized
polynomial time algorithm.

Corollary 2. LetG be the fundamental group of a closed (orientable or nonorientable)
surface. ThenCWP(G) andWP(Aut(G)) belong to P.

Automorphism groups of fundamental groups of surfaces playan important role in
algebraic topology; they are closely related to mapping class groups.

6 Open problems

We finish this paper with some open problems concerning compressed word problems:

1. Is the compressed word problem for a hyperbolic group solvable in polynomial
time? For torsion-free hyperbolic groups one might try to attack this question using
the canonical representatives of Rips and Sela [27].

2. What about the compressed word problem for automatic groups? Is it possible to
prove a non-trivial lower bound (e.g. NP-hardness or coNP-hardness) for the com-
pressed word problem of some specific automatic group?

3. Is the uniform compressed word problem for graph groups solvable in polynomial
time? In this problem, the independence alphabet(Σ, I), which defines the under-
lying graph group, is also part of the input. Note that in Thm.3 the independence
alphabet(Σ, I) is not part of the input.

4. Can Thm. 2 be generalized from free products to (suitably restricted) amalgamated
free products and HNN-extensions?

5. Is it possible to relax the restriction to an automatic quotient groupQ in Prop. 4?
6. Thecompressed generalized word problem(CGWP) for a finitely generated group

G asks, whether for SLPsA, B1, . . . , Bn (over generators forG), the wordeval(A)
represents a group element from the subgroup〈eval(B1), . . . , eval(Bn)〉 ≤ G.
What is the complexity of CGWP(F ({a, b}))? We only know an exponential time
algorithm for this problem.

References

1. A. Baudisch. Subgroups of semifree groups.Acta Math. Acad. Sci. Hungar., 38:19–28, 1981.
2. G. Baumslag, F. B. Cannonito, and C. F. Miller, III. Infinitely generated subgroups of finitely

presented groups. I.Math. Z., 153(2):117–134, 1977.
3. M. Beaudry, P. McKenzie, P. Péladeau, and D. Th́erien. Finite monoids: From word to circuit

evaluation.SIAM J. Comput., 26(1):138–152, 1997.
4. N. Brady and J. Meier. Connectivity at infinity for right angled Artin groups. Trans. Amer.

Math. Soc., 353:117–132, 2001.
5. F. B. Cannonito and R. W. Gatterdam. The word problem and power problem in1-relator

groups are primitive recursive.Pacific J. Math., 61(2):351–359, 1975.
6. W. H. Cockcroft. The word problem in a group extension.Quart. J. Math., Oxford Ser. (2),

2:123–134, 1951.
7. J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-angled Artin

groups and braid groups.Algebr. Geom. Topol., 4:439–472, 2004.
8. V. Diekert.Combinatorics on Traces. LNCS 454, Springer, 1990.
9. V. Diekert. Word problems over traces which are solvable in linear time.Theoret. Comput.

Sci., 74:3–18, 1990.

10. V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, 1995.
11. C. Droms. Graph groups, coherence and three-manifolds.J. Algebra, 106(2):484–489, 1985.
12. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston.

Word processing in groups. Jones and Bartlett, Boston, 1992.
13. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficientalgorithms for Lempel-

Ziv encoding (extended abstract). InProc. SWAT 1996, LNCS 1097, pages 392–403.
Springer, 1996.

14. E. R. Green.Graph Products of Groups. PhD thesis, The University of Leeds, 1990.
15. C. Hagenah.Gleichungen mit regulären Randbedingungen̈uber freien Gruppen. PhD thesis,

University of Stuttgart, Institut f̈ur Informatik, 2000.
16. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line

programs.J. Assoc. Comput. Mach., 30(1):217–228, 1983.
17. I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, decision

problems in group theory, and random walks.J. Algebra, 264(2):665–694, 2003.
18. M. R. Laurence. A generating set for the automorphism group of agraph group.J. London

Math. Soc. (2), 52(2):318–334, 1995.
19. Y. Lifshits. Processing compressed texts: a tractability border. To appear inProc. CPM 2007,

Springer, 2007.
20. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace.J. Assoc. Comput. Mach.,

24(3):522–526, 1977.
21. M. Lohrey. Word problems and membership problems on compressed words. SIAM J.

Comput., 35(5):1210 – 1240, 2006.
22. R. C. Lyndon and P. E. Schupp.Combinatorial Group Theory. Springer, 1977.
23. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for

strings in terms of straight-line programs. InProc CPM 97, LNCS 1264, pages 1–11.
Springer, 1997.

24. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
25. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. InProc.

ESA’94, LNCS 855, pages 460–470. Springer, 1994.
26. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed

words. InJewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 262–272. Springer, 1999.

27. E. Rips and Z. Sela. Canonical representatives and equations in hyperbolic groups.Invent.
Math., 120:489–512, 1995.

28. S. Schleimer. Polynomial-time word problems. To appear inCommentarii Mathematici
Helvetici.

29. H. Servatius. Automorphisms of graph groups.J. Algebra, 126(1):34–60, 1989.
30. H.-U. Simon. Word problems for groups and contextfree recognition. In Proc. FCT’79,

pages 417–422. Akademie-Verlag, 1979.
31. J. Stillwell.Classical Topology and Combinatorial Group Theory. Springer, 1995.
32. C. Wrathall. The word problem for free partially commutative groups. J. Symbolic Comput.,

6(1):99–104, 1988.

