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Abstract. We study theompressed word problera variant of the word problem
for finitely generated groups where the input word is given by a coffitegt-
grammar that generates exactly one string. We show that finite exterasions
free products preserve the complexity of the compressed word prnolso,
the compressed word problem for a graph group can be solved ingrolgh
time. These results allow us to obtain new upper complexity bounds for thee wo
problem for certain automorphism groups and group extensions.

1 Introduction

Theword problem for finitely generated groujssa fundamental computational prob-
lem linking group theory, topology, mathematical logicdasomputer science. For a
group@, finitely generated by, it is asked whether a word ovér and the inverses
of X represents the identity element@f The word problem was introduced in the pi-
oneering work of Dehn from 1910 in relation with topologicgiestions. It took about
45 years until Novikov and later independently Boone prabedexistence of a finitely
presented group with an undecidable word problem, see [220B8references. Despite
this negative result, many natural classes of groups witiddéle word problems were
found. Prominent examples are finitely generated lineanpspautomatic groups [12],
and one-relator groups. With the advent of computationaiplexity theory the com-
plexity of word problems became an active research areainBtance, it was shown
that for a finitely generated linear group the word problem va solved in logarithmic
space [20, 30], that automatic groups have quadratic tinrd pmblems [12], and that
the word problem for a one-relator group is primitive reatg$5].

Group theoretic operations, which preserve (or moderatehgase) the complexity
of the word problem are useful for constructing groups witfciently solvable word
problems. An example of such a construction is the free mbdiuis not hard to see
that the word problem for a free produGt+ H can be reduced in polynomial time to
the word problem foiG and H. In this paper, we introduce a new technique for ob-
taining upper complexity bounds for word problems. Thishtéque is based on data
compression. More precisely, we use compressed représastaf strings — so called
straight-line programsbriefly SLPs — which are able to achieve exponential compres
sion rates for strings with repeated subpatterns. FormatlySLPA is a context-free
grammar which generates exactly one stringl(A). Recently, SLPs turned out to be
a very flexible compressed representation of strings, wisietell-suited for studying



algorithms on compressed data. For instance, several goiwh time algorithms for
the pattern matching problem on SLP-compressed inputgstrivere developed [13,
19, 23]. In [21], the first author started to investigate¢henpressed word problefor a
finitely generated grou@ with finite generating se¥. For a given SLR\ that generates
a string overX’ and the inverses aof’ it is asked whethegval(A) represents the iden-
tity element inG (actually, in [21] the compressed word problem for finitegngrated
monoids was studied). This problem is equivalent to the-lmdiwn circuit evaluation
problem, where we ask whether a circuit over a finitely getleergroupG (i.e., an
acyclic directed graph with leafs labeled by generator§ aihd internal nodes labeled
by the group multiplication) evaluates to the identity edgrhofG. In [3] this problem
was investigated for finite groups, and it was shown thatetlesist finite groups, for
which the circuit evaluation problem is complete for P (deti@istic polynomial time).

In[3, 21] the main motivation for studying the compresseddymroblem came from
computational complexity theory. Since the input in the poessed word problem is
given in a more compact form than in the ordinary word probleoan be expected
that the compressed word problem is, in general, more diffican the ordinary word
problem. For instance, whereas the word problem for a fingeiherated free group
belongs to the class L (deterministic logspace) [20], them@ssed word problem for
a finitely generated free group of rank at least two is P-ceted21]!

In [28], the second author used the polynomial time algorifbr the compressed
word problem for a free group in order to present a polynotiiaé algorithm for the
ordinary word problem for the automorphism group of a freeugr which answered
a question from [17]. Hence, the compressed word problersas in order to obtain
better algorithms for the ordinary word problem. In this @awve will continue this
program and obtain efficient algorithms for a variety of wambblems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we give connections betweendhgcessed word prob-
lem for a groups and the word problem for some group derived fréim\e prove three
results of this kind:

— If H is afinitely generated subgroup of the automorphism grogpgrbupG, then
the word problem foi{ is logspace reducible to the compressed word problem for
G (Prop. 2). This result is a straight-forward extension ofil5.2 from [28].

— The word problem for the semidirect produkt x, @ of two finitely generated
groupsK andq@ is logspace reducible to (i) the word problem f@rand (ii) the
compressed word problem féf (Prop. 3).

— If K is a finitely generated normal subgroup®tuch that the quotiertt/ K is an
automatic group, then the word problem fgris polynomial time reducible to the
compressed word problem féf (Prop. 4).

In the second step (Section 4) we concentrate on the conapregsrd problem. We
prove the following results:

— If K is afinitely generated subgroupGfsuch that the inde}G : K] is finite, then
the compressed word problem 1@ris polynomial time reducible to the compressed
word problem forK (Thm. 1).

! Itis believed, although not proven, that L is a proper subclass of P.



— The compressed word problem for a free prodd¢t« G is polynomial time re-
ducible (under Turing reductions) to the compressed wootdlpm forG; andG,
(Thm. 2). This result even holds for the more general gralalyct construction
[14] (Thm. 4).

— The compressed word problem for a graph group [11] can bedalvpolynomial
time (Thm. 3). In a graph group, every defining relation ist&f formab = ba for
generators andb.

— The compressed word problem for a finitely generated lineaumgbelongs to the
complexity class coRP (Thm. 5), which is the complementtagsof randomized
polynomial time. See Section 4.4 for the definition.

We end this paper with a few direct applications of the abeselts. Let us mention one
of them concerning topology, see [31] for definitions: Crspl Wiest [7] have shown
shown that the fundamental group of any orientable surface ¢f most non-orientable
surfaces) embeds in a graph group. This gives a new progffthiatll closed surfaces,
the word problem for the automophism group of the fundamemtaup can be solved
in polynomial time.

A long version containing all proofs can be obtained fromahthors.

2 Preliminaries

Let X be a finite alphabet. Letdenote the empty word. We uge™! = {a~! | a € X}

to denote a disjoint copy of. Let X*! = X U X ~!. For background in complexity
theory see [24]. For languagds, L we write K < L (resp.K <% L) if there
exists a polynomial time (resp. logspace) many-one redndtom K to L. We write
K <ZI L if there exists a polynomial time Turing reduction frdinto L, which means
that K’ can be solved in deterministic polynomial time on a Turinghiae with oracle
access to the languade Let < € {<P <los <PV IncaseK < L; x --- x L, we
write K < (L4,...,L,). Clearly, if L1, ..., L, belong to the class P (deterministic
polynomial time) andk’ <% (L4, ..., L,), thenK belongs to P as well.

2.1 Groups

For background in combinatorial group theory see [22, 3&l( be &finitely generated
groupand letX be a finitegroup generating seor G. Hence, X+ is a finitemonoid
generating sefor G and there exists a canonical monoid homomorphismX+1)* —
G, which maps a wordy € (X*1)* to the group element representedibyForu, v €
(X*+1)* we will also say that: = v in G in caseh(u) = h(v).

Theword problemfor G with respect ta¥ is the following decision problem:

INPUT: Awordw € (%),
QUESTION:w = 1in G, i.e.,h(w) = 1?

It is well known that ifI" is another finite generating set f6f, then the word problem
for G with respect to¥' is logspace many-one reducible to the word problentfevith
respect ta". This justifies one to speak just of the word problem for theugrG. The



word problem forG is also denoted byWWP(G). Thefree groupF'(X) generated by~
can be defined as the quotient monoid

F(X)=(ZE)* {aa ' =ala=c|ac T}

As usual, theree productof two groupsG; and G, is denoted byG; * Go. Theau-
tomorphism groupf a groupG is denoted byAut(G). For the standard definition of
automatic groupssee [12]. Every automatic groupis finitely presented and its word
problem can be solved in tin@(n?).

2.2 Trace monoids and graph groups

In the following we introduce some notions from trace thease [8, 10] for more
details. This material will be only needed in Section 4.3.iAdependence alphabit

just a finite undirected grapf¥’, I) without loops. Hence] C X' x X' is an irreflexive
and symmetric relation. Thieace monoidVI(X, I) is defined as the quotient monoid

M(X,I)=X*/{ab=1ba | (a,b) € T}.

Itis a cancellative monoid. ElementsM( Y, I') are calledraces The trace represented
by the words € X* is also denoted bis];. The graph groufiz(X, I) is defined as the
quotient group

G(X,I)=F(X)/{ab=ba | (a,b) € I}.

Note that(a,b) € I impliesa=1b = ba~! in G(X, ). Thus, the graph grou@ (X, I)
can be also defined as the quotient monoid

G(X,I) = M(Eil,l)/{[aaflh =[ata); =[e]; |a € T}

Here, we implicitly extend C ¥ x Y to I C X*! x £*! by setting(a®, b?) € I if
and only if (a,b) € I fora,b € ¥ anda, 3 € {1, —1}.

Free groups and free abelian groups arise as special cagepbfgroups; note that
G(X,0) = F(X) andG(X, (X x )\ ids) = ZI*!. Graph groups were studied e.g.
in [11]; they are also known d&gee partially commutative groud8, 32], right-angled
Artin groups[4, 7], andsemifree group§l].

2.3 Grammar based compression

In this section we introduce straight-line programs, whach used as a compressed
representation of strings with reoccuring subpatternowing [26], a straight-line
program (SLP) over the alphabétis a context-free grammdy = (V, I, S, P), where

V is the set ohonterminals I is the set oterminals S € V is theinitial nonterminal
andP C V x (V U I')* is the set ofproductions such that (i) for everyX € V
there is exactly oner € (V U I')* with (X, a) € P and (i) there is no cycle in the
relation{(X,Y) € V. x V | 3a : (X,a) € P,Y occurs ina}. A production(X, «)

is also written asX — «. The language generated by the SARontains exactly one
word that is denoted byval(A). More generally, every nonterminal € V' produces



exactly one word that is denoted byal, (X). We omit the indexA if the underlying
SLP is clear from the context. The size &fis |A| = >_ y , cp |af. The length of
eval(A) may be exponentially larger thaA|; henceA may be seen as a compressed
representation ofval(A). Every SLP can be transformed in polynomial time into an
equivalent SLP that is i€homsky normal forr(as a context-free grammar). This means
that all productions have the forsh — BC or A — « for nonterminalsA, B, andC
and a terminadk.

In recent years, the complexity of many decision problemstoimngs, when the
input is represented by SLPs, was investigated, see e.dl9131, 23, 25]. A seminal
result of Plandowski [25] states that for given SLRsand B it can be checked in
polynomial time whetheeval(A) = eval(B). The currently best known algorithm for
this problem has a cubic running time [19].

Thecompressed word problefor the finitely generated grou@ with respect to the
finite generating seX’ is the following problem:

INPUT: An SLPA over the terminal alphabef*".
QUESTION: Does:val(A) = 1 hold inG?

Here, the input size ig\|. Also, it is easy to see that the complexity of the compressed
word problem does not depend on the chosen generating sstalldws one to speak

of the compressed word problem for the grariprhe compressed word problem 1Gr

is also denoted b¢ WP (G). The following fact is trivial:

Proposition 1. Assume that is a finitely generated subgroup of the finitely generated
groupG. ThenCWP(H) <l CWP(G).

3 Connections between the word problem and the compressed
word problem

The three propositions from this section establish a lirtkvben the word problem and
the compressed word problem. For their proofs, the follgwact is crucial: Let” be a
finite generating set for the grodpand letyq, . . ., ¢, € Aut(G) be automorphisms of
G which are taken from some fixed finite subset'oft(G). Then, for everys € X*!,
we can construct an SLR over the terminal alphabef*! such that (ijeval(A) is a
word that represents the group element - - ¢, (a) and (ii) |A| € O(n); see [28].

Proposition 2 (cf [28]). Let G be a finitely generated group and & be a finitely
generated subgroup dfut(G). ThenWP(H) <l°8 CWP(G).

—m

Proposition 3. Let K and @ be finitely generated groups and let Q@ — Aut(K) be
a homomorphism. Then, for the semidirect prodiict.,Q we havéWP (K x,Q) <lo8
(WP(Q), CWP(K)).

The semidirect produdt = K x, () is an extension oK by @, i.e., K is a normal
subgroup of7 with quotientG/K ~ Q. A reasonable generalization of Prop. 3 would
be WP(G) <l (WP(G/K),CWP(K)). But this cannot be true: there exist finitely
generated group&', @, K such that (i)Q = G/K, (i) @ and K have a decidable



word problem, and (iii)G has an undecidable word problem [2]. On the other hand,
if we require additionally, thaf) is finitely presented (in fact) recursively presented
suffices), thenZ must have a decidable word problem [6]. For the special dase t
the quotient) = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. Let K be a finitely generated normal subgroup®@fuch that the quo-
tientQ = G/K is an automatic group. TheWP(G) </’ CWP(K).

4 Upper bounds for compressed word problems

4.1 Finite extensions

Since every finite group is automatic, Prop. 4 applies to #se ¢hat the quotier is
finite. In this situation, we even obtain a polynomial timduetion from thecompressed
word problem ofG to the compressed word problem &t

Theorem 1. Assume thak is a finitely generated subgroup of the groGpsuch that
the indexG : K] is finite. ThertCWP(G) <! CWP(K).

For the proof of Thm. 1 one proceeds in two steps. For a givelh Slover the
generators ofs one first checks whetheral(A) represents an element of the subgroup
K. This is possible in polynomial time using the coset autamdtvhose states are the
cosets ofK) and the fact that it can be checked in polynomial time whethgiven
finite automaton acceptsial(A) for a given SLPA [26]. Then, in a second step one
transformsA in polynomial time into a new SLB over generators fokK such that
eval(A) andeval(B) represent the same group element.

The reducibility relationr<” in Thm. 1 cannot be replaced by the stronger relation
<log (unless P= L) because there exists a finite gratpvith a P-complete compressed
word problem [3] (takeé< = 1in Thm. 1).

4.2 Free products
Our main result for free products is:
Theorem 2. Assume thati = G *G». ThenCWP(G) <L (CWP(G1), CWP(Gy)).

Let X; be a finite generating set fa¥; (i € {1,2}), whereX; N Xy = (. In or-
der to reduc&CWP(G) to CWP(G;) andCWP(Gs), we follow the strategy for free
groups [21], whereomposition systenvgere used. Composition systems extend SLPs
by allowing also productions of the forA — Bl[i : j] for nonterminals4 and B
andi,j € N. Theneval(A) is the substring ofval(B) from positioni to j. Hage-
nah [15] has shown that a given composition system can beftramed in polyno-
mial time into an equivalent SLP. For our proof, we use a sgdarm of composition
systems, so called@-level composition systemSuch a system is a tuple of the form
A = (B, (Bc)cew), whereB is a composition system, which generates a word over
the alphabet’. Moreover, for eaclC’ € W, B¢ is an SLP, either over the terminal



aIphabetZlil or over the terminal alphabét”gd. Thus, A defines in a natural way a
stringeval(A) € (XU £5H*,

We transform a given input SLR over the terminal alphab(el??fEl U Zzil)* into a
2-level composition systedy’ = (B, (Bo)cew ) having three additional properties:

(1) eval(A) = eval(A’) in the groupGy * Gs.

(2) foreveryC € W, eval(B¢) # 1 (either inG; or in Ga).

(3) for every nonterminal of B, if C € W andD € W are two consecutive sym-
bols in evalg(A), then eithereval(Bo) € (XF1)* andeval(Bp) € (251)* or
eval(Be) € (£51)* andeval(Bp) € ()™,

Properties (2) and (3) ensures thaal(A’) is irreducible in the free product; * G2
and henceval(A) = 1in Gy x G if and only if eval(A’) = e. In order to enforce
(2), we have to solve instances@WP(G;) andCWP(G-). Enforcing (3) is the main
difficulty. Here we follow the bottom-up procedure for fre®gps from [21] in order to
determine maximal cancellation between strings which areatenated on the right-
hand side of some production of the SAP

Again, the reducibility relation<Z in Thm. 2 cannot be replaced by the stronger
relation<!°¢ (unless P= NC, where NC is Nick’s class — the class of all problems that
can be solved with polynomially many processors in polytdhaic time) because the
compressed word problem f@r« Z is P-complete [21], whereas the compressed word
problem forZ is easily seen to be in NC.

4.3 Graph groups and graph products

The word problem for a graph group can be solved in linear tima RAM [9, 32]. In
order to solve the compressed word problem for a graph groppliynomial time, we
follow again the strategy for free groups [21]. For thissitcrucial that there exists a
normal form mappindVF : M(X*!, 1) — M(Z*!, I) on the trace monoityl( X!, I)
such that for alt € M(X*! I): (i) t = NF(¢) in the graph groug (X, I) and (ii)
the traceNF(¢) cannot be factorized iVI(X*!, I) asu[aa™!|rv or u[a='a]v for
someu,v € M(X*! I) anda € X [9]. Then, for a given SLR\ over the terminal
alphabetC*! we compute in polynomial time an SIBPover the terminal alphabéi*!
such thafeval(B)]; = NF([eval(A)];). This calculation is again based on a bottom-up
process similarly to [21], but determining the maximal amioaf cancellation between
composed strings of becomes more involved in the presence of partial commutatio
Since for every € M(X*!, ) we havet = 1in G(X, ) if and only if NF(t) = [¢];,
we obtain:

Theorem 3. Let (X, I) be a fixed independence alphabet. TREVP(G(X,I)) be-
longs to P (deterministic polynomial time).

Let us end this section with a generalization of both Thm.@&rA graph product
is given by a triple(X, I, (G, )vex), Where(X, I) is an independence alphabet and
G, is a group, which is associated with the nadee »'. W.l.0.g. assume thal’ =
{1,...,n}. The groupG(X, I, (G,),cx) defined by this triple is the quotient

G(X,1,(Gy)vex) = (G1 % Go * ~--*Gn)/{$y =yr |z € Gy y € Gy, (u,v) € I}a



i.e., we take the free produ@t; x Gy *- - - xG,,), but let elements from adjacent groups
commute. Note thats (X, I, (G, ).ex) is the graph groufiz(X, I) in case everys, is
isomorphic toZ. Moreover, free products and direct products appear asapases
of the graph product construction. Graph products wereditatied by Green [14]. By
combining ideas from the proof of Thm. 2 and Thm. 3, one camsho

Theorem 4. Assume that? is a graph product of finitely generated grou@s, . . . , G,,.
ThenCWP(G) <F (CWP(G),...,CWP(G,)).

4.4 Linear groups

Recall that a languagk belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithA such that: (i) ifz ¢ L

then ProlhA acceptse] = 0 and (i) if ¢ € L then ProA acceptse] > 1/2. The choice

of the failure probabilityl /2 in casex € L is arbitrary: By repeating the algorithm
times (wherec is some constant), we can reduce the failure probabilitl f@)¢ and

still have a randomized polynomial time algorithm. A langead. belongs to the class
coRP, if the complement df belongs to RP. This means that there exists a randomized
polynomial time algorithmA such that: (i) ifx ¢ L then ProlA acceptse] < 1/2 and

(i) if « € L then ProbA acceptse] = 1.

Using results from [20, 30], the compressed word problemaftinitely generated
linear group can be reduced to the problem whether a ciregit @ polynomial ring
Rlz1,...,z,] (whereR is eitherZ or the finite fieldF,) evaluates to the zero polyno-
mial. This problem belongs to coRP by [16]. Hence, we obtain:

Theorem 5. For a finitely generated linear grou@, CWP(G) belongs to coRP.

5 Applications

In this section, we present some immediate corollariesg¢woehlults from Section 3 and
4. We concentrate on automorphism groups. Since the aupdson group of a graph
group is finitely generated [18, 29], Prop. 2 and Thm. 4 imply:

Corollary 1. For a graph groupG, WP(Aut(G)) belongs to P.

Let S, be the closed orientable surface of gegus-or exampleSy is the two-
sphere. Letr; (S,) denote the fundamental group (see [31] for definitions)s|Cand
Wiest [7] have shown that for evegy> 0, 71(S,) can be embedded in a graph group.
Hence, by Prop. 1 and Thm. 4, the compressed word problentisese groups can be
solved in polynomial time. (This gives a new proof of a resil{28].) SinceS, is a
double cover ofV,, the non-orientable surface, [31, p. 87], it follows that.S,) is
an index-2 subgroup of; (Ny41) [31, p. 162]. With Thm. 1 and Prop. 2 we obtain:

2 A randomized algorithmd may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomialn) such that for every input of length and every
possible outcome of the coin flipg} runs in time at mosp(n), then A is a randomized
polynomial time algorithm.



Corollary 2. LetG be the fundamental group of a closed (orientable or nonaaiklie)
surface. ThelCWP(G) andWP(Aut(G)) belong to P.

Automorphism groups of fundamental groups of surfaces glaymportant role in

algebraic topology; they are closely related to mappingsctroups.

6

Open problems

We finish this paper with some open problems concerning cessgd word problems:

1.

o Ol

Is the compressed word problem for a hyperbolic groupaddévin polynomial
time? For torsion-free hyperbolic groups one might try tagk this question using
the canonical representatives of Rips and Sela [27].

. What about the compressed word problem for automatic gfoigit possible to

prove a non-trivial lower bound (e.g. NP-hardness or coldRHhess) for the com-
pressed word problem of some specific automatic group?

. Is the uniform compressed word problem for graph groupsbte in polynomial

time? In this problem, the independence alph&Bgtl), which defines the under-
lying graph group, is also part of the input. Note that in Tithe independence
alphabet X, I) is not part of the input.

. Can Thm. 2 be generalized from free products to (suitaddtricted) amalgamated

free products and HNN-extensions?

. Is it possible to relax the restriction to an automatictopm group@ in Prop. 47
. Thecompressed generalized word probl@@GWP) for a finitely generated group

G asks, whether for SLP&, By, . . ., B,, (over generators faf), the wordeval(A)
represents a group element from the subgréspl(B,),. .., eval(B,)) < G.
What is the complexity of CGWH"({a, b}))? We only know an exponential time
algorithm for this problem.
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