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Abstract. It is shown that the membership problem in a finitely generated sub-
monoid of a graph group (also called a right-angled Artin group or gdfeetally
commutative group) is decidable if and only if the independence graphrw-
tation graph) is a transitive forest. In particular, we obtain the first elamf

a finitely presented group with a decidable generalized word problem oleat d
not have a decidable membership problem for finitely generated subidsoiVe

also show that the rational subset membership problem is decidablegyfaph
group if and only if the independence graph is a transitive forest. Tisiwens a
question of Kambites, Silva, and the second author [25].

1 Introduction

Algorithmic problems concerning groups are a classicattopalgebra and theoretical
computer science. Since the pioneering work of Dehn from0120], decision prob-
lems like the word problem or the generalized word problerigtvis also known as
the subgroup membership problem since it asks whether ongecdde if a given group
element belongs to a given finitely generated subgroup) heee intensively studied
for various classes of groups. A first natural generaliratibthese classical decision
problems is the submonoid membership problem: given a feit§ of elements of=
and an elemenry € G, can one decide whethgrbelongs to the submonoid generated
by S. Notice thaty has finite order if and only if—! is in the submonoid generated by
g and so decidability of the submonoid membership problemdet determine algo-
rithmically the order of an element of the grotp A recent paper on the submonoid
membership problem is Margolis, Meakin adnik [28].

A further generalization is the rational subset memberphifplem: for a given ra-
tional subsetl of a groupG and an elemeng € G it is asked whethey € L. The
class of rational subsets of a grogiis the smallest class that contains all finite subsets
of G, and which is closed under union, product, and the KleengtuKleene star; it
associates to a subsetC G the submonoid.* generated by.). Rational subsets in
arbitrary groups and monoids are an important research toganguage theory, see,
e.g., [3]. The rational subset membership problem gerzsthe submonoid member-
ship problem and the the generalized word problem for a groepause every finitely
generated submonoid (and hence subgroup) of a group isahtio

* The second author would like to acknowledge the support of an NSE&®.gr



It is easy to see that decidability of the rational subset bemship problem trans-
fers to finitely generated subgroups. Grunschlag has shuatiite property of having a
decidable rational subset membership problem is presemveel finite extensions, i.e.,
if G has a decidable rational subset membership problentzandH , where the index
of G in H is finite, thenH also has a decidable rational subset membership problem
[21]. Kambites, Silva, and the second author [25] proved the fundamental group
of a finite graph of groups [36] with finite edge groups has ddigate rational sub-
set membership problem provided all vertex groups have alalele rational subset
membership problem. In particular, this implies that dabitity of the rational subset
membership problem is preserved by free products, see3l$o [

The main result of this paper is to characterize the deditiabif the submonoid
membership problem and the rational subset membershipepndor graph groups. In
particular we provide the first example, as far as we know, grioaip with a decidable
generalized word problem that does not have a decidableautich(and hence rational
subset) membership problem.

A graph group[15] G(X, I) is specified by a finite undirected grafh, I), which
is also called arindependence alphabgbr commutation graph The graph group
G(X, 1) is formally defined as the quotient group of the free groupegated by’
modulo the set of all relationgh = ba, where(a, b) € I. Graph groups are a group ana-
logue to trace monoids (free partially commutative monpiddich play a prominent
role in concurrency theory [14]. Graph groups are also dditee partially commutative
groups[12, 38],right-angled Artin group$7, 9], andsemifree groupf2]. They are cur-
rently a hot topic of interest in group theory, in particut@cause of the richness of the
class of groups embeddable in graph groups. For instane®dktvina-Brady groups,
which were used to distinguish the finiteness propertigand FR, [4] (and were also
essential for distinguishing the finiteness properties D@ FHT for string rewriting
systems [33]), are subgroups of graph groups. Crisp andt\8hesv that the fundamen-
tal group of any orientable surface (and of most non-orlaetaurfaces) embeds in a
graph group [9].

Algorithmic problems concerning graph groups have beeensitvely studied in
the past, see, e.g., [12, 13,17, 25, 26, 38]. In [12, 38] it gfamvn that the word prob-
lem for a graph group can be decided in linear time (on a randooess machine).
A recent result of Kapovich, Weidmann, and Myasnikov [263wh that if (X, I) is a
chordal graph (i.e., if ¥, I) does not have an induced cycle of length at least 4), then
the generalized word problem f&¥(3, I) is decidable. On the other hand, a classical
result of Mihailova [30] states that already the generdlig®rd problem for the direct
product of two free groups of rank 2 is undecidable. Note thiatgroup is the graph
groupG (X, I), where the grapliX’, I) is a cycle on 4 nodes (also call€d). In fact,
Mihailova proves a stronger result: she construcliged subgroupH of G(C4) such
that it is undecidable, whether a given element0€4) belongs toH . Recently, it was
shown by Kambites that a graph groGgX’, I) contains a direct product of two free
groups of rank 2 if and only if X, I) contains an induce@4 [24]. This leaves a gap
between the decidability result of [26] and the undecidghiesult of Mihailova [30].

In [25] it is shown that the rational subset membership probis decidable for
a free product of direct products of a free group with a freeslfim group. Such a



group is a graph groufs (X, I), where every connected component(&f, I) results
from connecting all nodes of a clique with all nodes from agesttee graph. On the
other hand, the only undecidability result for the ratiosialbset membership problem
for graph groups that was known so far is Mihailova’s resalifidependence alphabets
containing an induce@4.

In this paper, we shall characterize those graph groupsfi@hhe rational subset
membership problem is decidable: we prove that these algxhose graph groups
G(X, 1), where(X, I) is a transitive forest (Theorem 2). The gragh, 7) is a transitive
forest if it is the disjoint union of comparability graphs mfoted trees. An alternative
characterization of transitive forests was presenteddh [&, I) is a transitive forest if
and only if it neither contains an induc€d nor an induced path on 4 nodes (also called
P4). Graph group$s (X, I), where(X, I) is a transitive forest, have also appeared in
[29]: they are exactly those graph groups which are subgsepprable (the case B#
appears in [32]. Recall that a grotpis called subgroup separable if, for every finitely
generated subgroufl < G and everyg € G \ H there exists a normal subgroup
N < @G having finite index such thalf < N andg ¢ N. Subgroup separability
implies decidability of the generalized word problem.

One half of Theorem 2 can be easily obtained from a result dbekaberg and
Hoogeboom [1]: The problem of deciding whether the intetisaf two rational sub-
sets of the trace monoid (free partially commutative mondid X, 7) is nonempty is
decidable if and only if X, I) is a transitive forest. Nowl. N K # () for two given
rational subseté, K C M(X, I) ifand only if 1 € LK~ in the graph groug (X, I).
Hence, if(X, I) is not a transitive forest, then the rational subset menhijeroblem
for G(X, I) is undecidable. In fact, we construct a fixed rational suliset G(X, I)
such that it is undecidable, whethee L for a given group elemente G(X, I).

The converse direction in Theorem 2 is an immediate cogob&iour Theorem 1,
which is one of the main group theoretic results of this pafiestates that the ra-
tional subset membership problem is decidable for everymtbat can be built up
from the trivial group using the following four operatior(§: taking finitely generated
subgroups, (ii) finite extensions, (iii) direct productgiwZ, and (iv) finite graphs of
groups with finite edge groups. Note that the only operatian is not covered by the
results cited earlier is the direct product with In fact, it seems to be an open ques-
tion whether decidability of the rational subset membgqrginoblem is preserved under
direct products wittZ. Hence, we have to follow another strategy. We will introgluc
a property of groups that implies the decidability of thaama&l subset membership
problem, and which has all the desired closure propertiasp@of of Theorem 1 uses
mainly techniques from formal language theory (e.g., Serdlr sets, Parikh’s theorem)
and is inspired by the methods from [1, 6].

It should be noted that due to the above reduction from tleesettion problem for
rational trace languages to the rational subset membepshipem for the correspond-
ing graph group, we also obtain an alternative to the quifecdit proof from [1] for
the implication (X, I) is a transitive forest- intersection problem for rational subsets
of M(X,I) is decidable”.

In Section 4 we consider treabmonoid membership probldar groups. We prove
that the rational subset membership problem for a g@wgan be reduced to the sub-



monoid membership problem for the free proddctZ (Theorem 4). The idea is to en-
code the state of a finite automaton into #xeomponent of the free produ€t« Z. Us-
ing similar techniques, we are also able to prove that thensumloid membership prob-
lem is undecidable for the graph groGg X, I), where(X, I) is P4 (Theorem 5). The
result of [26] shows that this graph group does have a del@dpimeralized word prob-
lem, thereby giving our example of a group with a decidableegalized word problem
but an undecidable submonoid membership problem. TogeiitleMihailova’s unde-
cidability result forC4 and our decidability result for transitive forests (Theorg)

it also follows that the submonoid membership problem forapg groupG (X, I) is
decidable if and only if X, I) is a transitive forest (Corollary 1).

2 Preliminaries

We assume that the reader has some basic knowledge in fangaldge theory (see,
e.g., [3,23]) and group theory (see, e.g., [27, 35]).

2.1 Formal languages

Let X be a finite alphabet. We use~! = {a~! | « € X'} to denote a disjoint copy of
Y. Letx*! = YU £~ Define(a!)~! = q; this defines an involution! : X+ —
Y*1 which can be extended t&+')* by setting(a; - --a,)"' = a,;'---a;*. Fora
wordw € X* anda € X we denote byw|, the number of occurrences @fin w. For
a subsef” C X, we denote byr(w) the projection of the wora to the alphabet”,
i.e., we erase iw all symbols fromX' \ I".

Let N¥ be the set of all mappings frod to N. By fixing an arbitrary linear order
on the alphabel’, we may identify a mapping € N~ with a tuple fromN/*!. For a
wordw € X*, the Parikh imag@ (w) is defined as the mapping(w) : X — N such
that [ (w)](a) = |w|, for all a« € X. For a languagd. C X*, the Parikh image is
U(L) = {¥(w) |we L}. Forasetk C N¥ andl" C Yletwr(K) = {f|r € N |
f € K}, wheref[r denotes the restriction ¢f to I". We also need a notation for the
composition of erasing letters and taking the Parikh imaggefor . C X* andl” C X,
let¥ (L) =7 (W(L))(= ¥(xr(L))); it may be viewed as a subset®f’|. A special
case occurs whef' = (). Then eithewy(L) = 0 (if L = 0) or ¥y(L) is the singleton
set consisting of the unique mapping fr@nto N.

A subsetK C N* is said to bdinear if there arex, z;,...,z, € N¥ such that
K ={x+ Mz + -+ Mg | M1,..., ¢ € N}, i.e. K is a translate of a finitely
generated submonoid BF. A semilinearset is a finite union of linear sets.

LetG = (N, IS, P) be a context-free grammar, whekéis the set of nontermi-
nals,I" is the terminal alphabe$ € N is the start nonterminal, afd C N x (NUI")*
is the finite set of productions. Farv € (NUI")* we writeu =¢ v if v can be derived
from v by applying a production fron®. For A € N, we defineL(G, A) = {w € I'™* |
A =S¢ w}yandL(G) = L(G, S). Parikh’s theorem states that the Parikh image of a
context-free language is semilinear [34].

We will allow a more general form of productions in contesed grammars, where
the right-hand side of a production is a regular language tinealphabefv U I'. Such



a productiond — L represents the (possibly infinite) set of productigas — s |
s € L}. Clearly, such an extended context-free grammar can beftnamed into an
equivalent context-free grammar with only finitely many gwotions.

Let M be a monoid. The s&® AT (M) of all rational subset®f M is the smallest
subset o2, which contains all finite subsets 81, and which is closed under union,
product, and Kleene hull (the Kleene hillt of a subset, C M is the submonoid of
M generated by.). By Kleene’s theorem, a subsktC X* is rational if and only ifL
can be recognized by a finite automatonMfis generated by the finite sét andh :
X* — M is the corresponding canonical monoid homomorphism, thenRAT (M)
if and only if L = h(K) for someK € RAT(X™*). In this caseL can be specified by
a finite automaton over the alphab®Bt The rational subsets of the free commutative
monoidN* are exactly the semilinear subsetS\df[16].

2.2 Groups

Let G be a finitely generated group and IBtbe a finite group generating set fat.
Hence,X*! is a finite monoid generating set fGrand there exists a canonical monoid
homomorphisnh : (X*!)* — G. The language

WPx(G) =h™'(1)

is called theword problemof G with respect ta¥, i.e., WP:(G) consists of all words
over the alphabeE*! which are equal td in the groupG. It is well known and easy
to see that ifl” is another finite generating set f6f, then WR;(G) is decidable if and
only if WP (G) is decidable.

Thesubmonoid membership probldar G is the following decision problem:

INPUT: A finite set of wordsA C (2*1)* and a wordw € (X+!)*.
QUESTION:h(w) € h(A*)?

Note that the subsét(A*) C G is the submonoid ofy generated by.(A) C G. If
we replace in the submonoid membership problem the finitelyegated submonoid
h(A*) by the finitely generated subgroap(A U A~1)*), then we obtain theubgroup
membership problemvhich is also known as thgeneralized word problefior G. This
term is justified, since the word problem is a particularanse, namely withA = (.
A generalization of the submonoid membership problemdads therational subset
membership problem

INPUT: A finite automaton4 over the alphabeE*! and a wordw € (£+1)*.
QUESTION:h(w) € h(L(A))?

Note thath(w) € h(L(A)) if and only if 1 € h(w='L(A)). Sincew *L(A) is again a
rational language, the rational subset membership profiled is recursively equiva-
lent to the decision problem of asking whethet h(L(A)) for a given finite automaton
A over the alphabeE*!.

In the rational subset (resp. submonoid) membership pmhiee rational subset
(resp. submonoid) is part of the input. Non-uniform varsaof these problems, where
the rational subset (resp. submonoid) is fixed, have beeiestas well. More generally,
we can define for a subsgtC G themembership problem fd§ within G:
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Fig. 1.Case (3) in Lemma 1

INPUT: Awordw € (%1).
QUESTION:h(w) € 5?

It should be noted that for all the computational problentsituced above the decid-
ability/complexity is independent of the chosen genegpsiet forG.
Thefree groupF'(X') generated by~ can be defined as the quotient monoid

F(X) = (XY /{aa ™ =¢|a € ZF}.

As usual, thefree productof two groupsG; and G is denoted byG, * Go. We will
always assume that'; N G, = 0. An alternating wordin G; * G is a sequence
g192 - - Gm with g; € G1 UGs andgi e G & gi+1 € Go. Its Iength ism. The
alternating wordgy gz - - - g, IS irreducibleif g; # 1 for everyl < i < m. Every
element ofG; * G5 can be written uniquely as an alternating irreducible wavd.will
need the following simple fact about free products:

Lemma 1. Let g1 9> - - - g,n, be an alternating word irGy * Ga. If g1g2-+-gm = 11in
G4 * G, then one of the following three cases holds:

@) m<1

(2) there existd < ¢ < msuchthatyigs---¢g;i = giv1- - gm = 1IN Gy * Gy

(3) there existt € {1,2}, k > 2,and1 = j; < jo < --- < jr = m such that
9511952595, € Gi, 951952 " Gjr = Lin Gi, andgszrlgjeJr? GG -1 = Lin
GixGoforalll </ <k.

Proof. Case (3) from the Lemma is visualized in Figure 1 for= 5. Shaded areas
represent alternating sequences, which are equaht6; «Gs. The non-shaded blocks
are either all fromG; or from G5, and their product equalsin G or G4, respectively.

We prove the lemma by induction over, the casen < 1 being trivial. So assume
thatm > 2. Sincegigs - - - gm = 1in G1 %Gy, there must exist < j < mwith g; = 1.
If 7 = 1orj = m, then we obtain case (2) from the lemma. Hence, we may assume
thatm > 3 and that < j < m — 1. It follows

g1 gi—2(95-19j41)9542 - Gm =1

in G1 * G2. Since the alternating worgh - - - g;_2(g;-19;+1)gj+2 - - - gm. has length
m — 2, we can apply the induction hypothesis to itnif — 2 = 1, i.e.,m = 3, then
we obtain case (3) from the lemma (with= 2, j; = 2, andj, = 3). If a non-empty
and proper prefix offy - - - gj—2(gj-19;+1)gj+2 - - - gm €Qualsl in the groupG * G,
then the same is true fap gs - - - g,,. Finally, if case (3) from the lemma applies to
the alternating word - - - g;—2(g;-19;+1)gj+2 - - - gm, then again the same is true for

9192 - Gm- O



Notice that (3) in Lemma 1 can only occur whenis odd.

We will also consider fundamental groups of finite graphs mfugs, which is a
group theoretic construction generalizing free produce® products with amalgama-
tion and HNN-extensions, see e.g. [36]. We omit the quiterieal definition. In order
to deal with the rational subset membership problem for lygoups, free products
suffice.

2.3 Trace monoids and graph groups

In the following we introduce some notions from trace the@se [11, 14] for more
details. Anindependence alphabistjust a finite undirected gragtt’, I') without loops.
Hence,l C ¥ x X'is an irreflexive and symmetric relation. Ttrace monoidVi(X, I)
is defined as the quotient

M(X,I) = X*/{ab="ba | (a,b) € I}.

Elements ofMI(X, I) are calledraces

Traces can be represented convenientlydbpendence graphsvhich are node-
labelled directed acyclic graphs. Let a; - - - a,, be aword, where; € X. The vertex
set of the dependence graphewofs {1,...,n} and vertex: is labelled witha; € X.
There is an edge from vertéxo j if and only ifi < j and(a;, a;) ¢ I. Then, two words
define the same traceMi(X, I) if and only if their dependence graphs are isomorphic.
The set of minimal (resp. maximal) elements of a traeeM(X, I) ismin(t) = {a €
Y| 3ueM(X,I):t=au} (respmax(t) ={a € ¥ | Jue M(X,I): ¢t =ua}). A
trace rewriting systenfk overM (X, I) is just a finite subset &¥I(X, I) xM(X, I) [11].
We can define thene-step rewrite relatior-p C M(X, 1) x M(X,I) by:z —p y if
and only if there arer,v € M(X,I) and(¢,r) € R such thatt = ufv andy = urv.
The notion of aconfluentandterminatingtrace rewriting system is defined as for other
types of rewriting systems [5]. A traaeis irreducible with respect toR if there does
not exist a tracex with t — g . If R is terminating and confluent, then for every trace
t, there exists a uniqueormal formNF () such that = NF(t) andNFg(t) is
irreducible with respect té.

Thegraph groupG (X, I) is defined as the quotient

G(2,1) = F(X)/{ab = ba | (a,b) € I}.

If (X, 1) is the empty graph, i.e’ = 0, then we seM(X, 1) = G(X,I) = 1 (the
trivial group). Note thata,b) € I impliesa='b = ba~! in G(X,I). Thus, the graph
groupG(X, I) can be also defined as the quotient

G(X,I)=M(ZH 1) /{aa ' =c | a € ZF}.

Here, we implicitly extend C ¥ x X toI C X+ x ¥+ py setting(a®, b°) € I if
and only if(a,b) € I fora,b € X anda, 5 € {1, —1}. Note thatM(X, I) is a rational
subset ofG(X, I).

Define a trace rewriting systef overM(X*!, ) as follows:

R={(aa"',¢) | a € X*1}. 1)



One can show thak is terminating and confluent and that for allv € M(X*!, I):
u =vin G(X,I) if and only if NFp(u) = NFg(v) [12]. This leads to a linear time
solution for the word problem d& (X, I) [12, 38].

If the graph(X, I) is the disjoint union of two graph&¥, I;) and (X5, I5), then
G(Z, I) = G(El, ]1) * (G(EQ, IQ) If (Z, I) is obtained fron'(El, Il) a.nd(fjg7 12) by
connecting each element af; to each element o, thenG(X, 1) = G(X, 1) x
G(Xy, I). Graph groups were studied e.g. in [15]; they are also knav/frea partially
commutative groupl.2, 38], right-angled Artin group$7, 9], andsemifree groupf2].

A transitive forest is an independence alphaldet/) such that there exists a forest
F of rooted trees (i.e., a disjoint union of rooted trees) witle set’’ and such that
for all a,b € X with a # b: (a,b) € I if and only if « andb are comparable &
(i.e., eithera is a proper descendant bfor b is a proper descendant aj. It can be
shown tha{ X, I) is a transitive forest if and only {f¥', I') does not contain an induced
subgraph, which is a cycle on 4 nodes (also cdlléflor a simple path on 4 nodes (also
calledP4) [37]. The next lemma follows easily by induction. We givelateh of the
proof.

Lemma 2. The classC of all groups, which are of the forfs (X, I') for a transitive
forest(X, I), is the smallest class such that:

@ 1ecC
(2) if G1,G4 € C, thenalsaGy * G € C
(3) ifGeCthenG xZeC

Proof. First we verify that graphs groups associated to transitivests satisfy (1)-(3).
Case (1) is the empty graph. It is immediate that transitoredts are closed under
disjoint union, which implies (2). I¥ is a forest of rooted trees, then one can obtain a
rooted tree by adding a new root whose children are the rdatedrees from#'. On
the group level this corresponds to (3).

For the converse, we proceed by induction on the number t¢iteer If the forest
(X, 1) consists of more than one rooted tree, tiigx, I) is the free product of the
graph groups associated to the various rooted tre€s,ifi), all of which have a smaller
number of vertices. If there is a single tree, thelih I) the root is connected to every
other vertex. Thu& (X, I) = G x Z whereG is the graph group corresponding to the
transitive forest obtained by removing the vertex corresirag to the root and making
its children the roots of the trees in the forest so obtained. O

Of course, a similar statement is true for trace monoids effthm M (X, I) with
(X, I) a transitive forest; one just has to replace in (3) the gibilyy the monoid\.

3 The rational subset membership problem

LetC be the smallest class of groups such that:

— the trivial groupl belongs taC
— if G € CandH < G is finitely generated, then aldé € C



— if G € C andG < H such thatG has finite index inf (i.e., H is a finite extension
of G), then alsaHd € C

—ifGeC,thenalsdG xZ € C

— if Ais a finite graph of groups [36] whose edge groups are finiterdrase vertex
groups belong t@, then the fundamental group &f belongs taC (in particular,
the clas< is closed under free products).

This last property is equivalent to saying tltais closed under taking amalgamated
products over finite groups and HNN-extensions with finitgoagated subgroups [36].
The main result in this section is:

Theorem 1. For every group’ € C, the rational subset membership problem is decid-
able.

It is well known that decidability of the rational subset niesrship problem is
preserved under taking subgroups and finite extensionsRifeover, the decidability
of the rational subset membership problem is preserveddphgef group constructions
with finite edge groups [25]. Hence, in order to prove Theoferit would suffice to
show that the decidability of the rational subset membergtoblem is preserved under
direct products byZ. But currently we can neither prove nor disprove this. Hence
we shall follow another strategy. We will introduce a prdpesf groups that implies
the decidability of the rational subset membership probland which has the desired
closure properties.

Let £ be a class of formal languages closed under inverse homdisarpA finitely
generated groufy is said to be arC-group if WP (G) belongs toL for some finite
generating sek'. This notion is independent of the choice of generating®&t22, 25].

A languageL, C X* belongs to the clasRID (rational intersection decidable)
if there is an algorithm that, given a finite automaton o¥erecognizing a rational
languageL, can determine whethdry N L # (). It was shown in [25] that the class
RID is closed under inverse homomorphism and that a géobps a decidable rational
subset membership problem if and only if it is an RID-groupisTfollows from the fact
that if L is a rational subset of a group, theng € L ifand only if 1 € g~ 'L and that
g~ 'L is again a rational subset.

Let K C ©* be a language over an alphatst Then K belongs to the class SLI
(semilinear intersection) if, for every finite alphab&t(disjoint from @) and every
rational languagé. C (6 U I")*, the set

Ur({w e L |mo(w) € K}) =¥r(LNng' (K)) 2)

is semilinear, and the tuples in a semilinear represemtafithis set can be effectively
computed from/” and a finite automaton fak. This latter effectiveness statement will
be always satisfied throughout the paper, and we shall nditipcheck it. In words,
the set (2) is obtained by first taking those words frorthat project intoX when -
letters are erased, and then erasingltHetters, followed by taking the Parikh image.
In a moment, we shall see that the class SLlI is closed undersesnomomorphism,
hence the class of SLI-groups is well defined. In fact, we shwwe generally that
the class SLI is closed under inverse images by finite stadisegjuential functions.



This will imply, moreover, that the class of SLI-groups i®std under taking finite
extensions [18, 22, 25].

Recall that a finite state automaton ovex (2* is called ssubsequential transducer
if the subset recognized by it is the graph of a partial fuorclf : X* — 2*, called a
finite state subsequential function

Lemma 3. Let K C ©* belong to SLI and lef : X* — ©* be a finite state subse-
quential function. Therf ~!(K) belongs to SLI. In particular, the class of SLI-groups
is well defined and is closed under taking finite extensions.

Proof. Let I" be an alphabet disjoint frot and letL be a rational subset ¢f" U X)*.
Let A be a subsequential transducer computing X* — 2*. Define a finite state
subsequential functiof' : (I" U X)* — (I" U ©)* by adding to each state &f a loop
with label (a, a) for eacha € I'. Call the resulting transducet’.

The following two observations are immediate from the faat the only transitions
of A" involving letters froml” are loops with labels of the forif, a):

(a) ¥ I coincides with?- on the domain of” (we read the composition of functions
from right to left, i.e., in@ F" we first applyF, followed by¥ )
(b) 7o F = frsx.

We now claim that the following equality holds:
F(LN7g' (f71(K))) = F(L)N7g' (K). 3)

First note that. N 7' (f~Y(K)) = LN F~(ng'(K)) by (b). So ifw belongs to
the left hand side of (3), thew = F(u) with u € LN F~(ng'(K)). Thusw €
F(L)nng'(K). Conversely, it € F(L)Nwg"(K), then there exists € L such that
F(w) = u. Butthenw € LN F~Y(r5"(K)) = LN 7y' (f~(K)) and sou belongs
to the left hand side of (3).

Now, sinceL N 73" (f~1(K)) = LN F~(r5"(K)) is contained in the domain of
F', we may conclude from (a) and (3) that

Ur(LNas (fYUK)) =¥ rF(LNas (fHK))) = ¥r(F(L) N1g' (K)). (4)

But F(L) is rational since the class of rational languages is closettuimages via
finite state subsequential functions [3]. Therefore, siAtdelongs to SLI, we may
deduce thatr(F(L) N 75" (K)) is semilinear. This completes the proof of the first
statement from the theorem in light on (4).

Since a homomorphism is a finite state subsequential fundti@ language class
SLlis closed under inverse homomorphism. Hence, the claSklegroups is well de-
fined. Finally, let us assume th@tis an SLI-group and tha¥ is a finite index subgroup
of H. Let X (resp.A) be a finite generating set f6f (resp.H). Then in [25, Lemma
3.3] itis shown that there exists a finite state subsequdutiation f : A* — X* such
that WP, (H) = f~1(WPx(G)). Hence,H is an SLI-group. O

Let us quickly dispense with the decidability of the ratibeabset membership
problem for SLI-groups.
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Lemma 4. The class of languages SLI is contained in the class of laggga®ID. In
particular, every SLI-group has a decidable rational sulyreembership problem.

Proof. Let K C ©* belong to SLI. LetA be a finite automaton over the alphalset
We have to decide whethér{ A) N K # (). SinceK belongs to SLI, the set

y({w € L(A) | mo(w) € K}) = ¥y(L(A) N K)

is effectively semilinear and so has a decidable membenstaplem (c.f. [25]). As
mentioned earliely (L(A) N K) consists of the unique functidgh— Nif L(4A) N K
is non-empty and is empty otherwise. Thus we can test engstifoe L(A) N K. O

Having already taken care of finite extensions by Lemma 3 tatn to finitely
generated subgroups. We show that the language class Sbséedaunder intersection
with rational subsets. This guarantees that the class ef8lups is closed under taking
finitely generated subgroups [22].

Lemma 5. Let K C ©* belongto SLI and lek C ©* be rational. TherRN K belongs
to SLI. In particular, every finitely generated subgroup nfgLI-group is an SLI-group.

Proof. Let L C (I'UO)* be rational. We haveénr;' (RNK) = LNrg' (R)Nmg' (K).
But rational languages are closed under inverse homonwmrphind intersection, so
(L Nrg'(R) N 7o' (K)) is semilinear ags belongs to SLI. This establishes the
lemma. O

Next, we show that the class of SLI-groups is closed undectproducts witt¥:
Lemma 6. If G is an SLI-group, theids x Z is also an SLI-group.

Proof. Let X' be a finite generating set fa¥. Choose a generatar ¢ X' of Z. Then
G x Z is generated by’ U {a}. Let I" be a finite alphabet{ N (X* U {a,a™'}) = 0)
and letZ be a rational subset ¢&2*! U {a,a~'} U I")*. We have

Ur <{U] €L | Wxilu{a,afl}(w) € WPEU{(L}(G X Z)}) =
fp( Urogaa—ry({w € L] wga (w) € WPs(G)}) N

{f N | f(a) = flah)}).

This set is semilinear, sincgf € N'V{®a'} | f(a) = f(a=!)} is semilinear and
semilinear sets are closed under intersection and projeftB]. O

By Lemma 3-6, Theorem 1 would be established, if we couldetbe closure of
C under graph of groups constructions with finite edge groUlsgortunately we are
only able to prove this closure under the restriction thatrgvertex group of the graph
of groups is residually finite (which is the case for group€)nin general we can just
prove closure under free product. This, in fact, constitate most difficult part of the
proof of Theorem 1.
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Lemma 7. If G; andG4 are SLI-groups, thelt’; x G is also an SLI-group.

Proof. Assume thaty; is a finite generating set fa&;. Thus, > = X; U X5 is a
generating set for the free produgt * G». Let I be a finite alphabet/{ N X+! = ()
andletd = U T Let L C ©* be rational and letl = (Q, ©, 6, qo, F) be a finite
automaton with, = L(A), whereQ is the set of states, C @ x © x @ is the transition
relation,qy € Q@ is the initial state, and” C ( is the set of final states. Fprq € @
andw € ©* we writep — 4 ¢ if there exists a path il from p to ¢, labelled by the
word w.
For every pair of state@, q) € @ x @ let us define the language

Llp,q C(ZT'UTu@x @) U(Z'uru@xQ) c(Ou@xQ)”
as follows:

Lip,gl = |J {wo(pr, q)wi(p2,q2) - wi—1(pr, qi)wi |
ie€{1,2}

E>1 A (proq1), - (Peoq) €EQ X QA
wo, . wy € (SFLUT) A e (wo - wi) € WP, (Gy) A

Wi —
PSapt A G —Sape A A Qo1 —a Dk A G —5a q)
Since the language

{wo(pr, 1)wi(p2, 42) - - - wr—1(Pk, i) Wi |
E>1 A (PL(ZI),---;(Pth)EQXQ A ’lUO,...,lUkE(E,L-ilUF)*/\

P P Wie —
Poapt At aps Ao A Gho1 —a Pk A G —5a q)

is a rational language over the alphabgt’ U I" U (Q x Q) fori € {1,2} andG;
is an SLI-group, it follows that the Parikh image o« q)(L[p, q]) € N'V(@*Q) s
semilinear. LetK [p, q] C (I" U (Q x @))* be some rational language such that

U(K[p.q]) = Yrogxq (Llp, g)). (5)
Next, we define a context-free gramn@@e= (N, I, S, P) as follows:

— the set of nonterminals & = {S} W (Q x Q).
— S'is the start nonterminal.
— P consists of the following productions:

S — (qo,qy) forall gy € F
(p,q) — Klp,q| forallp,q € Q
(q,q9) — ¢ forallg € Q

By Parikh’s theorem, the Parikh imag€L(G)) C N’ is semilinear. Thus, the follow-
ing claim proves the lemma:
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Claim 1. W(L(G)) = !Pp({w S L(A) | Wzil(w) S WPZ‘(Gl * GQ)})
Proof of Claim 1.We prove the following more general identity for §ll, ¢) € @ x @:

U(L(G, (p.0) =¥r({w € O™ | p =4 q A Tz (w) € WPx(G1 + G2)})

For the inclusion from left to right assume that q) =g u € I'*. We show by induc-
tion on the length of th&-derivation(p, ) =¢  that there exists a word € ©* such
thatp 4 ¢, mx+1(w) € WPx(Gy * Ga), and¥ (u) = p(w).

Case 1p = g andu = ¢: We can choose = ¢.

Case 2.(p,q) =¢ v =¢ u for someu’ € Klp,q|. By (5), there exists a word
v € Lp,q] such that?(u') = ¥pyoxq)(v). Sincev € L[p,q], there existt > 1,
(P1,q1)s- - (Psq) € Q x Qi € {1,2}, anduy, ..., v € (XF U I')* such that

vo V1 Ve—1 Vi
— P —AP1, Q1 —ADP2,---,qk—1 — APk, 9k —A ¢,
— v =v(p1,q1)v1(p2,q2) - - - Vk—1(Pk @) vk, @nd
— Tyt (vo -+ v) € WPy, (Gy).

Sinceu’ =g u € I'" and¥(v/) = Yrugx)(v), there must existy, ..., ux € I'*
such that

(pir@i) =cu; and W(u) =Up(vo) + -+ Wp(og) + ¥ (ur) + -+ + ¥ (uy)

forall 1 < i < k. By induction, we obtain words, ..., w; € ©* such that for all
1<i<k:

— Di ﬂm qi
— mx+1(w;) € WPx (G * Gg), and
- LZ/(uZ) = !Pp(wl)
Let us setw = vowy v - - - wivr € OF. We have:

—p AP A QAP Dl A QA Q18D 54 4,

— mx+1(w) € WPs (G + Gg), and

- W(u) = WF(U())‘F' . -+¢p(vk)+W(u1)+~ . +Q7(Uk) = LDF(’U())+' . ‘+&Dp(vk)+
Lpp(wl) + -+ WF(U};@) = WF(U))

This concludes the proof of the inclusion
U(L(G, (p,q) C¥r({we 0 | p L4 q A mxsi(w) € WPs(Gy x G)}).
For the other inclusion, assume that
p5aq and mxei(w) € WPs (G x Gy)

for a wordw € ©*. By induction over the length of the word we show that(w) €

@ (L(G, (p.q)))-
We will make a case distinction according to the three casésinma 1. Note that

we either havev € I'* or the wordw € ©* can be (not necessarily uniquely) written
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asw = wy - --w, With n > 1 such thatw; € (I' U XE)* U (I'u £51*) \ I'* and
w; € (FUEitl)* & Wig1 € (FUE;j)*.
Case lw € (I'U X7')" (the casew € (I'U X5 is analogous): Them sz (w) €

WPy, (G1). Together withp 4 ¢, we obtainw(q,q) € L[p,q|. Since(p,q) —
K][p,q] and(q,q) — e are productions ofs, there exists a word. € I'* such that

(p,q) 2cu and¥ (u) = ¥r(w), i.e.,.¥r(w) € (L(G, (p,q))).
Case 2w = wi1Wa with w1 75 5 75 wo andwzﬂ(wl),WEﬂ (UJ2) S WPE(Gl * Gg)
Then there exists a statec () such that

pbaT <A

By induction, we obtain

Ur(wy) € U(L(G, (p,r))) and

g’F(wQ) € W(L(Gv (T’ Q)))
Hence, we get

Wp(w) = Lpp(wl) + !I/F(UJQ)
€ W(L(G, (p,r))) + ¥(L(G, (r,q)))
S ¥(L(G, (p.9))),

where the last inclusion holds, sinég,r)(r,q) € Llp,q], and so eithe(p,q) —
(p,7)(r,q) or (p,q) — (r,q)(p,r) is a production of.

Case 3w = vgw;v1 - - - wiv Such thatk > 1,

— me+1(w;) € WPx(Gy x Gy) foralli € {1,...,k}, and
— for somei € {1,2}: vp,...,vp € (I'U XY\ I and myai(vg---vp) €
WPy, (G;).

There exist stateg,, q1, - . . , Pk, ¢ € @ such that
Vo w1 V1 Wi Vi
DP—ADP1 —AqQ1 —AP2 Pk —7Aqk —A(q-
By induction, we obtain
forall 1 < i < k. Moreover, from the definition of the languagép, ¢] we obtain
v =vo(p1,q1)v1(P2,q2) - - V&—1(Pk, @ )vr € Llp, ql.

Hence, there is a word' € K|p, g] such tha¥ (u') = ¥rygxo)(v) and(p, q) — o'’
is a production of5. With (6) we obtain

(p,q) =6 u' Scu
for a wordu € I'* such that
U(u) =Pr(vg) + -+ +Pr(vg) + Ur(wr) + -+ Pp(w) = ¥r(w),
i.e.,¥r(w) € U(L(G, (p,q))). This concludes the proof of Claim 1. O
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If we were to weaken the definition of the clag®y only requiring closure under
free products instead of closure under finite graphs of ggaith finite edge groups,
then Lemma 4—7 would already imply Theorem 1. In fact, thiakes result suffices in
order to deal with graph groups, and readers only interastgdaph groups can skip
the following considerations concerning graphs of groups.

To obtain the more general closure result for the aassncerning graph of group
constructions, we reduce to the case of free products. Rkath group> is residually
finite if, for eachg € G \ {1}, there is a finite index normal subgrowy of G with
g ¢ N.Now we use a standard trick for graphs of residually finiteugs with finite
edge groups.

Lemma 8. Let A be a finite graph of groups such that the vertex groups areluedly
finite SLI-groups and the edge groups are finite. Then thedionaehtal group of\ is an
SLI-group.

Proof. Let G be the fundamental group @&f. ThenG is residually finite [8]. Since
there are only finitely many edge groups and each edge grelijpste, there is a finite
index normal subgroupy < G intersecting trivially each edge group, and hence each
conjugate of an edge group. Thus the finitely generated subg¥ < G acts on the
Bass-Serre tree faw [36] with trivial edge stabilizers, forcingv to be a free product
of conjugates of subgroups of the vertex group&'afnd a free group [36]. Sinc¥ is
finitely generated, these free factors must also be finitehegated. Since every finitely
generated subgroup of an SLI-group is an SLI-group (Lemnaa8Y. is an SLI-group
(Lemma 6), we may deduce thatis a free product of SLI-groups and hence is an SLI-
group by Lemma 7. Sinc€ containsN as a finite index subgroup, Lemma 3 implies
thatG is an SLI-group, as required. O

Clearly, the trivial groupl is an SLI-group. Also all the defining properties ©f
preserve residual finiteness (the only non-trivial casedéhe graph of group con-
structions [8]). Hence, Lemma 4—6 and Lemma 8 immediatedidyTheorem 1.

Our main application of Theorem 1 concerns graph groups:

Theorem 2. The rational subset membership problem for a graph gré\{g’, I) is
decidable ifand only ifX, I) is a transitive forest. Moreover, (&, I) is not a transitive
forest, then there exists a fixed rational subkeif G(X', I') such that the membership
problem forL within G(X, I) is undecidable.

Proof. The decidability part follows immediately from Theorem Jerhma 2 implies
that every graph grou@ (X, I) with (X, I) a transitive forest belongs to the class
Now assume that™, I) is not a transitive forest. By [37] it suffices to consider the
case thatX, I) is either aC4 or aP4. For the case of @4 we can use Mihailova’s result
[30]. Now assume that™”, I) is aP4. Let X' = {a, b, ¢,d} such tha(a,b) € I, (b,c) €
1, (¢,d) € I.In[1], Aalbersberg and Hoogeboom have shown that it is cidddble,
whetherL N K = () for given rational trace languagds K C M(X, I). In fact, the
languageK is fixed, more preciselfX = ba(d(cb)*a)*dc*. The problem is that in
construction of [1] the languaggk is not fixed. This is due to the fact that Aalbersberg
and Hoogeboom make a reduction from the undecidable probMeether a given 2-
counter machin€ finally terminates, when initialized with empty counterieTpair
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of counter value$m, n) € N x N is encoded by the single numhb&r3™. It turns out
that K N L contains exactly those traces of the foubdo ¢/t dab’* ¢72d - - - ab/m-1cimd,
such thatj, = 1 andC has a computation from the initial state to the final state:in
steps, where for every < k < m, ji is the encoding of the counter values aftesteps
(note thatj, = 1 indeed encodes the initial counter valyes0)).

Now let us choose fo€' a fixed (universal) 2-counter machine such that it is un-
decidable whethe€ finally terminates when started with the initial counteruesd
(m,n). Let L C M(X,I) be thefixed rational trace language constructed by Aal-
bersberg and Hoogeboom frofii, and let us replace the fixed trace langudge—
ba(d(cb)*a)*dc* by the (non-fixed) languag&’,, , = b*" " a(d(cb)*a)*dc*. Then
it is undecidable, whethek,,, , " L # 0 for givenm,n € N. Hence, it is unde-
cidable, whetheb=2"3" € a(d(cb)Ta)*dc*L~" in the graph grou (X, I). Clearly,
a(d(cb)*ta)*de* L~ is a fixed rational subset of the graph gra&ipy, I). O

We conclude this section with a further application of Theorl tograph products
(which should not be confused with graphs of groups). A gragduct is given by a
triple (X, I, (G4 )vex), Where(X, I) is an independence alphabet afd is a group,
which is associated with the node= X'. The groupG(X, I, (G,),cx) defined by this
triple is the quotient

6(2717 (GU)UEZ‘) = *UEZGU/{"EZ/ =yr | WS Gu7y € Gva (’LL,’U) S I}7

i.e., we take the free produgt. G, of the groups=, (v € X)), but let elements from
adjacent groups commute. Note tli&at>, 7, (G, ).cx) is the graph groufi(X, I) in
the case everg, is isomorphic taZ. Graph products were first studied by Green [20].

Theorem 3. If (X, 1) is a transitive forest and every groui, (v € V) is finitely
generated and virtually Abelian (i.e., has an Abelian swloigrof finite index), then the
rational subset membership problem (X, I, (G, ).cx) is decidable.

Proof. Assume that the assumptions from the theorem are satisfiedshaw that
G(X,I,(G,)vex) belongs to the class. Since(X, I) is a transitive forest, the group
G(X,1,(Gy)vex) can be built up from trivial groups using the following twoerp-
tions: (i) free products and (i) direct products with fijtgenerated virtually Abelian
groups. Since the clag5is closed under free products, it suffices to prove tha if
belongs to the class and H is finitely generated virtually Abelian, thed x H also
belongs to the class. As a virtually Abelian groupH is a finite extension of a finite
rank free Abelian groufZ™. By the closure of the clagsunder direct products wit#i,

G x Z" belongs to the class. Now, G x H is a finite extensionts x Z", proving the
theorem, sinc€ is closed under finite extensions. O

4 The submonoid membership problem
Recall that the submonoid membership problem for a g@@sks for an algorithm to

determine, given a group elemant G and a finitely generated submonaid of G,
whetherg € M. Hence, there is a trivial reduction from the submonoid mersihip
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problem forG to the rational subset membership problemdbit turns out that there
is also a reduction in the opposite direction, if we allow aditional free factofZ in
the submonoid membership problem:

Theorem 4. For every finitely generated grou@, the rational subset membership
problem forG can be reduced to the submonoid membership problei@ foZ. More-
over, if there exists a fixed rational subdetC G such that the membership problem for
L within G is undecidable, then there exists a fixed submoididf G x Z such that
the membership problem fad within G * Z is undecidable.

Proof. Let X be a generating set fa¥ and leth : (X*+1)* — G be the canonical mor-
phism. Choose a generatorZ X' for Z. We also denote by the canonical morphism
from (2! U {a,a"!})* t0 G * Z.

Let A = (Q, X%, 6, qo, F) be a finite automaton and letc (X*1)*. By intro-
ducinge-transitions, we may assume that the set of final statesnsists of a single
stateq; # go. We will construct a finite subset C (2*! U {a,a"'})* and a word
u € (X* U {a,a1})* such thatu(t) € h(L(A)) if and only if h(u) € h(A*).

Without loss of generality assume ti@t= {1, ...,n}. Choose an arbitrary gener-
atorb € X representing a non-trivial element@fand define, for every € {1,...,n},
the wordg by

q = a%ba™1
and let
A={gep " |(¢,e;p) €6} and u=gqotq; " (7

Note that in (7), we have € X*! U {¢}, since we introducee-transitions. We claim
thath(t) € h(L(A)) if and only if h(u) € h(A*).
Let us define d-cycleto be word of the form

Qv1dy " @vady o Ge—1Vk—1y GRVRG

such thatt > 1, q1,...,qx € {1,...,n}, v1,...,v € (XF)*, andh(vy ---v;) =
1. Note that al-cycle equalsl in the free producG * Z. We say that a word of
the form Ejlvlﬁl_l 62U2§51 e ijvmﬁ:nl’ Whereqlvplv ce oy qmsPm € {la v ,’fl} and
Vi,...,Um € (Zil)*, is 1-cycle-freef it does not contain d-cycle as a factor.

Claim 1.Letm > 1 and
e s | ~ ~1
U = q1V1P1  q2V2Po - dmUmPpy,

whereqi, p1, ..., ¢m,pm € {1,...,n}, andvy, ..., v, € (ZFH*. Ifv =1inG x Z,
thenwv contains al-cycle.

Proof of Claim 1. We prove Claim 1 by induction oven. Assume that = 1in G x Z.
Ifm =1, thenfjlvlﬁl_l =1iNnG=x*2Z,ie.,aba " DvaP b e P =1in G *Z. If

vy # 1in G thena®ba~ T v,aP*b~ta~P1 is irreducible and we obtain a contradiction.
Now assume that; = 1in G. If ¢; = p1, thenv is a singlel-cycle and we are ready.
If ¢1 # p; then we havet? baPr b~ 1q™P* = 1in G * Z. Sincep; — ¢; # 0, the
left-hand side of this identity is irreducible and we obtagain a contradiction.
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Now assume thai > 2.
Case 1There isl <14 < m such thap; = ¢;11. Thenv = 1in G % Z implies
~ o~ ~ ~—1 ~ ~—1 ~ ~1 ~ ~1 _
Qui1py - Gic1Vi- 1D Gi(Vivis1)Dyyy Git2ViteDigs * GmVmby = 1
in G x Z. By induction, we can conclude that the left-hand side of itientity contains
al-cycle. But then also the wordmust contain d-cycle.

Case 2p; # q;+1 forall 1 < i < m. Ifthereisl < i < m such thaty, = 1in G
andg; = p; thenv contains thel-cycle g;v;p; *. Now assume thaf; # p; whenever

v; = 1in G. Remove from the word all factorsv; with v; = 1 in G and let us call the
resulting wordv’. We claim that’ is irreducible, when viewed as an alternating word
in the free product: * Z. For this consider a maximal subword«gfof the form

U PO 1 ~ _
P; Qi+1P;i149i+2 P19 =
aPib~ g Piglit1pg = Gi+1 gPit1 =1 g —Pit1 gdit2 g di+2 . .. qPi-1p~ 1 TPi-1 8 hg =Y =

aPib~lqdi+1—PipgPi+1—Gi+1 =1 qqi+2—Pit1poPit2—qi+2 . h= 10 —Pi-1pq—d; , (8)

wherej > i+ 1,v,41 =--- =v;_1 = linG andv; # 1 # v; in G. Sincepy, # qr+1
foralli < k < j — 1, each of the factorg?+1~P+ from (8) is non-trivial. The same is
also true for the factorgr’=—9 fori+1 < k < j — 1, sincepy, # q;. It follows that the
factor (8) ofv’ is irreducible in the free product x Z. Similar arguments apply to the
maximal prefix ofv” of the form

a1§;1q~2 .. 1'5;_11(']“] — g pgPr— N1 p~lg2—P1p. .. apjfl_ijlb_la‘Zj_ijlba_Qj7 (9)
and to the maximal suffix of the form
~ 1~ ~1 ~ ~1
Pi qi+1 " Pmp—19mPm =
ap'ib_1GQ'i+1_pi bapi+l_q1,+1 b_l R G/QM,_pm—lbapnl_(ITn b_la_pnz7 (10)

and even to the whole word in casev; = 1in G forall1 <: < m.

Factors of the form (8)—(10) are separated/irwith wordsv, € (X*1)*, where
vg # 1in G. This shows that’ is indeed a non-empty irreducible alternating word. But
v’ = 1in G * Z, which is a contradiction. This concludes the proof of Cldim

Now we can prove that(t) € h(L(A)) if and only if h(u) = h(cjota;l) € h(A*).
First assume that(t) € h(L(A)). Leta; ---a,, € L(A) such that(q;—1,a;,q;) € §
forl <i<m,qm = qy, andh(a; - - - a,,) = h(t). Then

h(Gotq; ') = h(Qoardy ' qrazds '+ - Gm—1amd,,") € h(A¥).
Now assume thatt(qotq; ') € h(A*). Thus,
Qotq; " = QLa1py ' G2asp; - GmamDr,

in G x Z, whereqy,p1,- -, qm,pm € {1,...,n}, a1,...,a, € X*' U {e}, and
(gisai,pi) € 6 for 1 < i < m. Without loss of generality we may assume that the
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word alalﬁflizagﬁz_ Lo dmamp,y,. is 1-cycle-free (otherwise we can remove &l
cycles from this word; note thatlacycle equald in the groupG * Z). Since

,qvft71561 %mﬁfl 62a2§51 e a’maﬂmﬁ;ll = 17

v

in G % Z, we know by Claim 1 that the word contains al-cycle. We claim that

this 1-cycle must be the whole word: first of all, the suﬁix&lalﬁfl o QG Dot

of v is 1-cycle-free. If a prefixg;t—1q; ' Grai1py ' - - - Gia;p; * for i < m is al-cycle,
thenqﬁﬂaiﬂﬁ;}l o Gmampyt = 1in G * Z. Hence, Claim 1 implies that the word

Git1 ai+117;r11 -+ Gmamp.,' contains d-cycle, contradicting the fact th@ta, 5, " - - - G ampo,
is 1-cycle-free. Thus, indeed, is al-cycle. Hencegy = ¢i, g5 = pm, pi = gi+1 for
1<i<m,andt ta; - -a, =1inG,ie,h(t)=h(a1--an) € h(L(A)).

This concludes the reduction of the rational subset merhiemoblem ofG to
the submonoid membership problem f@r« Z. The second statement of Theorem 4
follows from the fact that(A*) is a fixed submonoid off « Z if A is a fixed finite
automaton. O

Theorems 2 and 4 imply that the submonoid membership protdemdecidable
for every graph groufz(X U {a},I), wherea ¢ X and(X,I) is not a transitive
forest. In the rest of the paper, we will sharpen this rest. show that for a graph
group the submonoid membership problem is decidable if ahditthe rational subset
membership problem is decidable, i.e., if and only if theejpehdence alphabet is a
transitive forest. In fact, by our previous results, it stéfi to consider B4:

Theorem 5. Let X' = {a,b,c,d} andI = {(a,b), (b,c), (c,d)}, i.e, (X, I) is a P4.
Then there exists a fixed submonaifiof G(X, I') such that the membership problem
of M within G(X, I) is undecidable.

Proof. We follow the strategy of the proof of Theorem 4, but inste&drguing with
alternating sequences in a free product, we have to arghetnaites fromVi( X+, T).
Let R denote the trace rewriting system ovdif X+!, ) defined in (1). As usual let
h: (E*hH* — G(X, 1) denote the canonical morphism, which will be identified with
the canonical morphisrh : M(X*! 1) — G(X,I). Let us fix a finite automatorl
over the alphabeE*! such that the membership problem tdi.(A)) within G(X, I)

is undecidable; such an automaton exists by Theorem 2. Asghamn

A= ({27'"7”}72i1>57QO7{Qf})5

whereqq # gy (it will be useful later that every state is a number greatantl). For a
stateg € {2,...,n} we define the tracg € M(X*1, I) by

7 = (ad)c(ad)™? = (ad)?bc(d " ta™1)2.
Note that the dependence graphya$ almost a linear chain; onlyandc in the middle

may commute with each other. Moreover, every symbol fi8# is dependent ond,
that is it does not commute withd.
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Letp : (X+1)* — (Z*h)* be the injective morphism defined ky(x) = zz for
r € Xt Thus,w € L(A) if and only if o(w) € ¢(L(A)). Since(x,y) € I im-
plies thatp(x) andy(y) commute,p can be lifted to a morphism : M(L+! 1) —
M(X*L, I). The reader can easily verify that, for every traceM (X *!, I), the equal-
ity NFr(¢(t)) = ¢(NFg(t)) holds. In particulare(t) is irreducible if and only ift is
irreducible and(t) = h(w) if and only if h(p(t)) = h(e(u)).

Let us fix a traceé € M(X*!, I) and define

A= {q~<p(x)]7_1 | (¢,z,p) €0} C M(Zil,I) and u = qNng(t)qN;l € M(Zil,l).

We claim thath(t) € h(L(A)) if and only if h(u) € h(A*). For this, we can follow the
proof scheme of Theorem 4. The following claim replaces@laifrom the previous
proof.

Claim 2.Letm > 1 and

v =qp()py " ©eW2)Py " G (Vm) D

whereqy, p1, - - -, Gm, Pm € {2,...,n}andvy, ... v, € (X)) Ifv=1InG(X, ),
thenwv contains a-cycle (1-cycles are defined as in the proof of Theorem 4).

Proof of Claim 2.Most parts of the proof can be copied from the proof of Claim 1.
In fact, we only have to adapt those arguments from the prbGlaim 1, which were
specific for the free produd¥ * Z. For the base case = 1 we obtain the identity

(ad)?be(ad) ™" o(v1)(ad)?* b et ad) P = 1 (11)

in G(X, I). Assume without loss of generality that, viewed as a trace, is irreducible
with respect taRk. Then alsap(v;) is irreducible. Ify(v,) = €, then (11) becomes

(ad)Pbe(ad)P~ b~ e (ad) 7P = 1.

If p1 = q1,thenvis al-cycle. If p; # ¢1, then we obtain a contradiction, since the trace
(ad)? be(ad)Pr =1 b~ e~ (ad)~Pr is irreducible w.r.t.R. Now assume thap(v,) # e.
In the trace

(ad)Pbe(d a1 )P p(vy)(ad)P b e (d )P

only the lasta = of the factor(d—'a~!)%* may cancel against the firgtof p(v;) (in
casea € min(v;)) and the firsta of the factor(ad)?* may cancel against the last
a=! of p(v1) (in casea™! € max(v;)). To see this, note that f € min(v;) then
©(v1) = aap(t) for some trace. Then

(d'a™ )" (v1) = (d'a™ )" aap(t) —r (d"'a™ )" ap(t).

Since we assumed € min(v; ), the only other minimal element of the trage(t)
may beb or b~!, both of which do not commute witli—. It follows that the trace
NFg((d~ta= 1) B p(v;)) is of the form(d—ta=1)*d~tap(t) for k = ¢; — 1 > 1 (since
q1 > 2). Moreover, ifa—! is a maximal symbol of, thenp(t) = ¢(t')a=ta=* for
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some trace’. Hence, by making a possible cancellation with the firsh (ad)??, it
follows finally that

NFz(G1o(v1)pyh) = (ad)™be(d a1 rd  ad(ad) b e (d a1 )P # ¢

for some tracer, where/ = p; — 1 > 1. This contradicts again (11). This proves the
inductive base case = 1 in Claim 2.

For the inductive step for Claim 2, we can distinguish the esawo cases as in
the proof of Claim 1, where the first case can be treated gxastlin the proof of
Claim 1. For the second case, we assumephat ¢,.1 forall1 < k¥ <m — 1 and
qr # pr Whenevew, = 1in G(X, I). Letv’ be word that results from by deleting all
factorsy(v;), which are equal in G(X, I). In the following, we consides’ as a trace.
Consider a maximal factor of of the form

17i_1q~i+117i_+11q~i+2 i 5;11% =
(ad)P?b -1 71(ad) (ad)qi“bc(ad)fq“rl(ch)pi“bflcfl(ad)fp“rl(ad)qi“bc(ad)7‘11’+2
(ad)P b~ e ad) P (ad) Y be(ad) ™Y =
(ad)Pz -1 *1(ad qit1 plbc(ad)p“rliq’*lbilcil(ad)qurzipiJrlbC(ad)pi+2iqi+2
b re M ad) VP be(ad) TV, (12)

wherej > i+ 1andg(vit1) = -+ = @(vj—1) = 1, p(v;) # 1 # o(v;) In G(X, I).
The same arguments as in the proof of Claim 1 show that thge igairreducible with
respect taRk, and similarly for the analogues of (9) and (10) I factors of the form
(12) are separated by tracgév;), wherep(v;) # 1 in G(X, I'). Without loss of gen-
erality assume that each such trage;) is irreducible and hence non-empty. As in the
previous paragraph, for the base case= 1, one can show that in such a concate-
nation, only a single minimat and a single maximat~! of a tracep(v;) # ¢ may

be cancelled. It follows thaVF z(v) # e, which contradictsy = 1 in G(X, I). This
concludes the proof of Claim 2. The rest of the argument isptetaly analogous to the
proof of Theorem 4. O

Recall that a graph is not a transitive forest if and onlyéfifher contains an induced
C4 or P4 [37]. Together with Mihailova’s result for the generalizadrd problem of
F({a,b}) x F({c,d}), Theorem 2 and 5 imply:

Corollary 1. The submonoid membership problem for a graph greyp’, I) is de-
cidable if and only if X, I) is a transitive forest. Moreover, {f, I) is not a transitive
forest, then there exists a fixed submondidof G(X, I) such that the membership
problem forM within G(X, I) is undecidable.

SinceP4 is a chordal graph, the generalized word problem@¢P4) is decidable
[26]. Hence,G(P4) is an example of a group for which the generalized word prable
is decidable but the submonoid membership problem is uddblz.

5 Open problems

The definition of the clas€ leads to the question whether decidability of the rational
subset membership problem is preserved under direct piodith Z. An affirmative

21



answer would lead in combination with the results from [28,t® a more direct proof
of Theorem 1.

Concerning graph groups, the precise borderline for thldbgity of the general-
ized word problem remains open. By [26], the generalizedhpooblem is decidable if
the independence alphabetis chordal. Since every tramfitiest is chordal, Theorem 2
does not add any new decidable cases. On the other handjritigygendence alphabet
contains an induce@4, then the generalized word problem is undecidable [30].iBut
is open for instance, whether for a cycle of length 5 the apwading graph group has
a decidable generalized word problem.

Another open problem concerns the complexity of the ratisnaset membership
problem for graph groups, where the independence alphateetransitive forest. If
the independence alphabet is part of the input, then ousidecprocedure does not
yield an elementary algorithm, i.e., an algorithm where rilnening time is bounded
by an exponent tower of fixed height. This is due to the fact #z&h calculation of
the Parikh image of a context-free language leads to an exiahblow-up in the size
of the semilinear sets in the proof of Lemma 7. An NP lower lbfollows from the
NP-completeness of integer programming.

Theorem 4 leads to the question whether the decidabilith@fsubmonoid mem-
bership problem is preserved under free products (as ieisélse for the generalized
word problem and the rational subset membership probldthmisiwere true, then The-
orem 4 would imply that the rational subset membership gmbdf a groups can be
reduced to the submonoid membership probleid @fiote that the submonoid member-
ship problem ofZ is decidable). Hence, for every group, the rational subsshbership
problem and the submonoid membership problem would be saely equivalent.
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