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Abstract. It is shown that the membership problem in a finitely generated sub-
monoid of a graph group (also called a right-angled Artin group or a freepartially
commutative group) is decidable if and only if the independence graph (commu-
tation graph) is a transitive forest. In particular, we obtain the first example of
a finitely presented group with a decidable generalized word problem that does
not have a decidable membership problem for finitely generated submonoids. We
also show that the rational subset membership problem is decidable for agraph
group if and only if the independence graph is a transitive forest. This answers a
question of Kambites, Silva, and the second author [25].

1 Introduction

Algorithmic problems concerning groups are a classical topic in algebra and theoretical
computer science. Since the pioneering work of Dehn from 1910 [10], decision prob-
lems like the word problem or the generalized word problem (which is also known as
the subgroup membership problem since it asks whether one can decide if a given group
element belongs to a given finitely generated subgroup) havebeen intensively studied
for various classes of groups. A first natural generalization of these classical decision
problems is the submonoid membership problem: given a finitesetS of elements ofG
and an elementg ∈ G, can one decide whetherg belongs to the submonoid generated
by S. Notice thatg has finite order if and only ifg−1 is in the submonoid generated by
g and so decidability of the submonoid membership problem lets one determine algo-
rithmically the order of an element of the groupG. A recent paper on the submonoid
membership problem is Margolis, Meakin andŠuník [28].

A further generalization is the rational subset membershipproblem: for a given ra-
tional subsetL of a groupG and an elementg ∈ G it is asked whetherg ∈ L. The
class of rational subsets of a groupG is the smallest class that contains all finite subsets
of G, and which is closed under union, product, and the Kleene hull (or Kleene star; it
associates to a subsetL ⊆ G the submonoidL∗ generated byL). Rational subsets in
arbitrary groups and monoids are an important research topic in language theory, see,
e.g., [3]. The rational subset membership problem generalizes the submonoid member-
ship problem and the the generalized word problem for a group, because every finitely
generated submonoid (and hence subgroup) of a group is rational.
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It is easy to see that decidability of the rational subset membership problem trans-
fers to finitely generated subgroups. Grunschlag has shown that the property of having a
decidable rational subset membership problem is preservedunder finite extensions, i.e.,
if G has a decidable rational subset membership problem andG ≤ H, where the index
of G in H is finite, thenH also has a decidable rational subset membership problem
[21]. Kambites, Silva, and the second author [25] proved that the fundamental group
of a finite graph of groups [36] with finite edge groups has a decidable rational sub-
set membership problem provided all vertex groups have a decidable rational subset
membership problem. In particular, this implies that decidability of the rational subset
membership problem is preserved by free products, see also [31].

The main result of this paper is to characterize the decidability of the submonoid
membership problem and the rational subset membership problem for graph groups. In
particular we provide the first example, as far as we know, of agroup with a decidable
generalized word problem that does not have a decidable submonoid (and hence rational
subset) membership problem.

A graph group[15] G(Σ, I) is specified by a finite undirected graph(Σ, I), which
is also called anindependence alphabet(or commutation graph). The graph group
G(Σ, I) is formally defined as the quotient group of the free group generated byΣ
modulo the set of all relationsab = ba, where(a, b) ∈ I. Graph groups are a group ana-
logue to trace monoids (free partially commutative monoids), which play a prominent
role in concurrency theory [14]. Graph groups are also called free partially commutative
groups[12, 38],right-angled Artin groups[7, 9], andsemifree groups[2]. They are cur-
rently a hot topic of interest in group theory, in particularbecause of the richness of the
class of groups embeddable in graph groups. For instance, the Bestvina-Brady groups,
which were used to distinguish the finiteness propertiesFn and FPn [4] (and were also
essential for distinguishing the finiteness properties FDTand FHT for string rewriting
systems [33]), are subgroups of graph groups. Crisp and Wiest show that the fundamen-
tal group of any orientable surface (and of most non-orientable surfaces) embeds in a
graph group [9].

Algorithmic problems concerning graph groups have been intensively studied in
the past, see, e.g., [12, 13, 17, 25, 26, 38]. In [12, 38] it wasshown that the word prob-
lem for a graph group can be decided in linear time (on a randomaccess machine).
A recent result of Kapovich, Weidmann, and Myasnikov [26] shows that if(Σ, I) is a
chordal graph (i.e., if(Σ, I) does not have an induced cycle of length at least 4), then
the generalized word problem forG(Σ, I) is decidable. On the other hand, a classical
result of Mihailova [30] states that already the generalized word problem for the direct
product of two free groups of rank 2 is undecidable. Note thatthis group is the graph
groupG(Σ, I), where the graph(Σ, I) is a cycle on 4 nodes (also calledC4). In fact,
Mihailova proves a stronger result: she constructs afixedsubgroupH of G(C4) such
that it is undecidable, whether a given element ofG(C4) belongs toH. Recently, it was
shown by Kambites that a graph groupG(Σ, I) contains a direct product of two free
groups of rank 2 if and only if(Σ, I) contains an inducedC4 [24]. This leaves a gap
between the decidability result of [26] and the undecidability result of Mihailova [30].

In [25] it is shown that the rational subset membership problem is decidable for
a free product of direct products of a free group with a free Abelian group. Such a
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group is a graph groupG(Σ, I), where every connected component of(Σ, I) results
from connecting all nodes of a clique with all nodes from an edge-free graph. On the
other hand, the only undecidability result for the rationalsubset membership problem
for graph groups that was known so far is Mihailova’s result for independence alphabets
containing an inducedC4.

In this paper, we shall characterize those graph groups for which the rational subset
membership problem is decidable: we prove that these are exactly those graph groups
G(Σ, I), where(Σ, I) is a transitive forest (Theorem 2). The graph(Σ, I) is a transitive
forest if it is the disjoint union of comparability graphs ofrooted trees. An alternative
characterization of transitive forests was presented in [37]: (Σ, I) is a transitive forest if
and only if it neither contains an inducedC4 nor an induced path on 4 nodes (also called
P4). Graph groupsG(Σ, I), where(Σ, I) is a transitive forest, have also appeared in
[29]: they are exactly those graph groups which are subgroupseparable (the case ofP4

appears in [32]. Recall that a groupG is called subgroup separable if, for every finitely
generated subgroupH ≤ G and everyg ∈ G \ H there exists a normal subgroup
N ≤ G having finite index such thatH ≤ N and g 6∈ N . Subgroup separability
implies decidability of the generalized word problem.

One half of Theorem 2 can be easily obtained from a result of Aalbersberg and
Hoogeboom [1]: The problem of deciding whether the intersection of two rational sub-
sets of the trace monoid (free partially commutative monoid) M(Σ, I) is nonempty is
decidable if and only if(Σ, I) is a transitive forest. Now,L ∩ K 6= ∅ for two given
rational subsetsL,K ⊆ M(Σ, I) if and only if 1 ∈ LK−1 in the graph groupG(Σ, I).
Hence, if(Σ, I) is not a transitive forest, then the rational subset membership problem
for G(Σ, I) is undecidable. In fact, we construct a fixed rational subsetL ⊆ G(Σ, I)
such that it is undecidable, whetherg ∈ L for a given group elementg ∈ G(Σ, I).

The converse direction in Theorem 2 is an immediate corollary of our Theorem 1,
which is one of the main group theoretic results of this paper. It states that the ra-
tional subset membership problem is decidable for every group that can be built up
from the trivial group using the following four operations:(i) taking finitely generated
subgroups, (ii) finite extensions, (iii) direct products with Z, and (iv) finite graphs of
groups with finite edge groups. Note that the only operation that is not covered by the
results cited earlier is the direct product withZ. In fact, it seems to be an open ques-
tion whether decidability of the rational subset membership problem is preserved under
direct products withZ. Hence, we have to follow another strategy. We will introduce
a property of groups that implies the decidability of the rational subset membership
problem, and which has all the desired closure properties. Our proof of Theorem 1 uses
mainly techniques from formal language theory (e.g., semilinear sets, Parikh’s theorem)
and is inspired by the methods from [1, 6].

It should be noted that due to the above reduction from the intersection problem for
rational trace languages to the rational subset membershipproblem for the correspond-
ing graph group, we also obtain an alternative to the quite difficult proof from [1] for
the implication “(Σ, I) is a transitive forest⇒ intersection problem for rational subsets
of M(Σ, I) is decidable”.

In Section 4 we consider thesubmonoid membership problemfor groups. We prove
that the rational subset membership problem for a groupG can be reduced to the sub-
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monoid membership problem for the free productG∗Z (Theorem 4). The idea is to en-
code the state of a finite automaton into theZ-component of the free productG∗Z. Us-
ing similar techniques, we are also able to prove that the submonoid membership prob-
lem is undecidable for the graph groupG(Σ, I), where(Σ, I) is P4 (Theorem 5). The
result of [26] shows that this graph group does have a decidable generalized word prob-
lem, thereby giving our example of a group with a decidable generalized word problem
but an undecidable submonoid membership problem. Togetherwith Mihailova’s unde-
cidability result forC4 and our decidability result for transitive forests (Theorem 2)
it also follows that the submonoid membership problem for a graph groupG(Σ, I) is
decidable if and only if(Σ, I) is a transitive forest (Corollary 1).

2 Preliminaries

We assume that the reader has some basic knowledge in formal language theory (see,
e.g., [3, 23]) and group theory (see, e.g., [27, 35]).

2.1 Formal languages

Let Σ be a finite alphabet. We useΣ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy of
Σ. Let Σ±1 = Σ ∪ Σ−1. Define(a−1)−1 = a; this defines an involution−1 : Σ±1 →
Σ±1, which can be extended to(Σ±1)∗ by setting(a1 · · · an)−1 = a−1

n · · · a−1
1 . For a

word w ∈ Σ∗ anda ∈ Σ we denote by|w|a the number of occurrences ofa in w. For
a subsetΓ ⊆ Σ, we denote byπΓ (w) the projection of the wordw to the alphabetΓ ,
i.e., we erase inw all symbols fromΣ \ Γ .

Let N
Σ be the set of all mappings fromΣ to N. By fixing an arbitrary linear order

on the alphabetΣ, we may identify a mappingf ∈ N
Σ with a tuple fromN

|Σ|. For a
word w ∈ Σ∗, the Parikh imageΨ(w) is defined as the mappingΨ(w) : Σ → N such
that [Ψ(w)](a) = |w|a for all a ∈ Σ. For a languageL ⊆ Σ∗, the Parikh image is
Ψ(L) = {Ψ(w) | w ∈ L}. For a setK ⊆ N

Σ andΓ ⊆ Σ let πΓ (K) = {f↾Γ ∈ N
Γ |

f ∈ K}, wheref↾Γ denotes the restriction off to Γ . We also need a notation for the
composition of erasing letters and taking the Parikh image,so, forL ⊆ Σ∗ andΓ ⊆ Σ,
let ΨΓ (L) = πΓ (Ψ(L))(= Ψ(πΓ (L))); it may be viewed as a subset ofN

|Γ |. A special
case occurs whenΓ = ∅. Then eitherΨ∅(L) = ∅ (if L = ∅) or Ψ∅(L) is the singleton
set consisting of the unique mapping from∅ to N.

A subsetK ⊆ N
k is said to belinear if there arex, x1, . . . , xℓ ∈ N

k such that
K = {x + λ1x1 + · · · + λℓxℓ | λ1, . . . , λℓ ∈ N}, i.e. K is a translate of a finitely
generated submonoid ofN

k. A semilinearset is a finite union of linear sets.
Let G = (N,Γ, S, P ) be a context-free grammar, whereN is the set of nontermi-

nals,Γ is the terminal alphabet,S ∈ N is the start nonterminal, andP ⊆ N×(N∪Γ )∗

is the finite set of productions. Foru, v ∈ (N∪Γ )∗ we writeu ⇒G v if v can be derived
from u by applying a production fromP . ForA ∈ N , we defineL(G, A) = {w ∈ Γ ∗ |

A
∗
⇒G w} andL(G) = L(G, S). Parikh’s theorem states that the Parikh image of a

context-free language is semilinear [34].
We will allow a more general form of productions in context-free grammars, where

the right-hand side of a production is a regular language over the alphabetN ∪Γ . Such
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a productionA → L represents the (possibly infinite) set of productions{A → s |
s ∈ L}. Clearly, such an extended context-free grammar can be transformed into an
equivalent context-free grammar with only finitely many productions.

Let M be a monoid. The setRAT(M) of all rational subsetsof M is the smallest
subset of2M , which contains all finite subsets ofM , and which is closed under union,
product, and Kleene hull (the Kleene hullL∗ of a subsetL ⊆ M is the submonoid of
M generated byL). By Kleene’s theorem, a subsetL ⊆ Σ∗ is rational if and only ifL
can be recognized by a finite automaton. IfM is generated by the finite setΣ andh :
Σ∗ → M is the corresponding canonical monoid homomorphism, thenL ∈ RAT(M)
if and only if L = h(K) for someK ∈ RAT(Σ∗). In this case,L can be specified by
a finite automaton over the alphabetΣ. The rational subsets of the free commutative
monoidN

k are exactly the semilinear subsets ofN
k [16].

2.2 Groups

Let G be a finitely generated group and letΣ be a finite group generating set forG.
Hence,Σ±1 is a finite monoid generating set forG and there exists a canonical monoid
homomorphismh : (Σ±1)∗ → G. The language

WPΣ(G) = h−1(1)

is called theword problemof G with respect toΣ, i.e., WPΣ(G) consists of all words
over the alphabetΣ±1 which are equal to1 in the groupG. It is well known and easy
to see that ifΓ is another finite generating set forG, then WPΣ(G) is decidable if and
only if WPΓ (G) is decidable.

Thesubmonoid membership problemfor G is the following decision problem:

INPUT: A finite set of words∆ ⊆ (Σ±1)∗ and a wordw ∈ (Σ±1)∗.
QUESTION:h(w) ∈ h(∆∗)?

Note that the subseth(∆∗) ⊆ G is the submonoid ofG generated byh(∆) ⊆ G. If
we replace in the submonoid membership problem the finitely generated submonoid
h(∆∗) by the finitely generated subgrouph((∆∪∆−1)∗), then we obtain thesubgroup
membership problem, which is also known as thegeneralized word problemfor G. This
term is justified, since the word problem is a particular instance, namely with∆ = ∅.
A generalization of the submonoid membership problem forG is the rational subset
membership problem:

INPUT: A finite automatonA over the alphabetΣ±1 and a wordw ∈ (Σ±1)∗.
QUESTION:h(w) ∈ h(L(A))?

Note thath(w) ∈ h(L(A)) if and only if 1 ∈ h(w−1L(A)). Sincew−1L(A) is again a
rational language, the rational subset membership problemfor G is recursively equiva-
lent to the decision problem of asking whether1 ∈ h(L(A)) for a given finite automaton
A over the alphabetΣ±1.

In the rational subset (resp. submonoid) membership problem, the rational subset
(resp. submonoid) is part of the input. Non-uniform variants of these problems, where
the rational subset (resp. submonoid) is fixed, have been studied as well. More generally,
we can define for a subsetS ⊆ G themembership problem forS within G:
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g1

| {z }

1 in G1 ∗ G2

gj2

| {z }

1 in G1 ∗ G2

gj3

| {z }

1 in G1 ∗ G2

gj4

| {z }

1 in G1 ∗ G2

gm

Fig. 1.Case (3) in Lemma 1

INPUT: A wordw ∈ (Σ±1)∗.
QUESTION:h(w) ∈ S?

It should be noted that for all the computational problems introduced above the decid-
ability/complexity is independent of the chosen generating set forG.

Thefree groupF (Σ) generated byΣ can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.

As usual, thefree productof two groupsG1 andG2 is denoted byG1 ∗ G2. We will
always assume thatG1 ∩ G2 = ∅. An alternating word in G1 ∗ G2 is a sequence
g1g2 · · · gm with gi ∈ G1 ∪ G2 andgi ∈ G1 ⇔ gi+1 ∈ G2. Its length ism. The
alternating wordg1g2 · · · gm is irreducible if gi 6= 1 for every 1 ≤ i ≤ m. Every
element ofG1 ∗G2 can be written uniquely as an alternating irreducible word.We will
need the following simple fact about free products:

Lemma 1. Let g1g2 · · · gm be an alternating word inG1 ∗ G2. If g1g2 · · · gm = 1 in
G1 ∗ G2, then one of the following three cases holds:

(1) m ≤ 1
(2) there exists1 ≤ i < m such thatg1g2 · · · gi = gi+1 · · · gm = 1 in G1 ∗ G2

(3) there existi ∈ {1, 2}, k ≥ 2, and 1 = j1 < j2 < · · · < jk = m such that
gj1 , gj2 , . . . , gjk

∈ Gi, gj1gj2 · · · gjk
= 1 in Gi, andgjℓ+1gjℓ+2 · · · gjℓ+1−1 = 1 in

G1 ∗ G2 for all 1 ≤ ℓ < k.

Proof. Case (3) from the Lemma is visualized in Figure 1 fork = 5. Shaded areas
represent alternating sequences, which are equal to1 in G1∗G2. The non-shaded blocks
are either all fromG1 or fromG2, and their product equals1 in G1 or G2, respectively.

We prove the lemma by induction overm, the casem ≤ 1 being trivial. So assume
thatm ≥ 2. Sinceg1g2 · · · gm = 1 in G1∗G2, there must exist1 ≤ j ≤ m with gj = 1.
If j = 1 or j = m, then we obtain case (2) from the lemma. Hence, we may assume
thatm ≥ 3 and that2 ≤ j ≤ m − 1. It follows

g1 · · · gj−2(gj−1gj+1)gj+2 · · · gm = 1

in G1 ∗ G2. Since the alternating wordg1 · · · gj−2(gj−1gj+1)gj+2 · · · gm has length
m − 2, we can apply the induction hypothesis to it. Ifm − 2 = 1, i.e.,m = 3, then
we obtain case (3) from the lemma (withk = 2, j1 = 2, andj2 = 3). If a non-empty
and proper prefix ofg1 · · · gj−2(gj−1gj+1)gj+2 · · · gm equals1 in the groupG1 ∗ G2,
then the same is true forg1g2 · · · gm. Finally, if case (3) from the lemma applies to
the alternating wordg1 · · · gj−2(gj−1gj+1)gj+2 · · · gm, then again the same is true for
g1g2 · · · gm. ⊓⊔
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Notice that (3) in Lemma 1 can only occur whenm is odd.
We will also consider fundamental groups of finite graphs of groups, which is a

group theoretic construction generalizing free products,free products with amalgama-
tion and HNN-extensions, see e.g. [36]. We omit the quite technical definition. In order
to deal with the rational subset membership problem for graph groups, free products
suffice.

2.3 Trace monoids and graph groups

In the following we introduce some notions from trace theory, see [11, 14] for more
details. Anindependence alphabetis just a finite undirected graph(Σ, I) without loops.
Hence,I ⊆ Σ×Σ is an irreflexive and symmetric relation. Thetrace monoidM(Σ, I)
is defined as the quotient

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

Elements ofM(Σ, I) are calledtraces.
Traces can be represented conveniently bydependence graphs, which are node-

labelled directed acyclic graphs. Letu = a1 · · · an be a word, whereai ∈ Σ. The vertex
set of the dependence graph ofu is {1, . . . , n} and vertexi is labelled withai ∈ Σ.
There is an edge from vertexi to j if and only if i < j and(ai, aj) 6∈ I. Then, two words
define the same trace inM(Σ, I) if and only if their dependence graphs are isomorphic.
The set of minimal (resp. maximal) elements of a tracet ∈ M(Σ, I) is min(t) = {a ∈
Σ | ∃u ∈ M(Σ, I) : t = au} (resp.max(t) = {a ∈ Σ | ∃u ∈ M(Σ, I) : t = ua}). A
trace rewriting systemR overM(Σ, I) is just a finite subset ofM(Σ, I)×M(Σ, I) [11].
We can define theone-step rewrite relation→R ⊆ M(Σ, I) × M(Σ, I) by: x →R y if
and only if there areu, v ∈ M(Σ, I) and(ℓ, r) ∈ R such thatx = uℓv andy = urv.
The notion of aconfluentandterminatingtrace rewriting system is defined as for other
types of rewriting systems [5]. A tracet is irreduciblewith respect toR if there does
not exist a traceu with t →R u. If R is terminating and confluent, then for every trace
t, there exists a uniquenormal formNFR(t) such thatt

∗
→R NFR(t) andNFR(t) is

irreducible with respect toR.
Thegraph groupG(Σ, I) is defined as the quotient

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

If (Σ, I) is the empty graph, i.e.,Σ = ∅, then we setM(Σ, I) = G(Σ, I) = 1 (the
trivial group). Note that(a, b) ∈ I impliesa−1b = ba−1 in G(Σ, I). Thus, the graph
groupG(Σ, I) can be also defined as the quotient

G(Σ, I) = M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}.

Here, we implicitly extendI ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting(aα, bβ) ∈ I if
and only if(a, b) ∈ I for a, b ∈ Σ andα, β ∈ {1,−1}. Note thatM(Σ, I) is a rational
subset ofG(Σ, I).

Define a trace rewriting systemR overM(Σ±1, I) as follows:

R = {(aa−1, ε) | a ∈ Σ±1}. (1)
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One can show thatR is terminating and confluent and that for allu, v ∈ M(Σ±1, I):
u = v in G(Σ, I) if and only if NFR(u) = NFR(v) [12]. This leads to a linear time
solution for the word problem ofG(Σ, I) [12, 38].

If the graph(Σ, I) is the disjoint union of two graphs(Σ1, I1) and(Σ2, I2), then
G(Σ, I) = G(Σ1, I1) ∗ G(Σ2, I2). If (Σ, I) is obtained from(Σ1, I1) and(Σ2, I2) by
connecting each element ofΣ1 to each element ofΣ2, thenG(Σ, I) = G(Σ1, I1) ×
G(Σ2, I2). Graph groups were studied e.g. in [15]; they are also known as free partially
commutative groups[12, 38],right-angled Artin groups[7, 9], andsemifree groups[2].

A transitive forest is an independence alphabet(Σ, I) such that there exists a forest
F of rooted trees (i.e., a disjoint union of rooted trees) withnode setΣ and such that
for all a, b ∈ Σ with a 6= b: (a, b) ∈ I if and only if a andb are comparable inF
(i.e., eithera is a proper descendant ofb or b is a proper descendant ofa). It can be
shown that(Σ, I) is a transitive forest if and only if(Σ, I) does not contain an induced
subgraph, which is a cycle on 4 nodes (also calledC4) or a simple path on 4 nodes (also
calledP4) [37]. The next lemma follows easily by induction. We give a sketch of the
proof.

Lemma 2. The classC of all groups, which are of the formG(Σ, I) for a transitive
forest(Σ, I), is the smallest class such that:

(1) 1 ∈ C
(2) if G1, G2 ∈ C, then alsoG1 ∗ G2 ∈ C
(3) if G ∈ C thenG × Z ∈ C

Proof. First we verify that graphs groups associated to transitiveforests satisfy (1)-(3).
Case (1) is the empty graph. It is immediate that transitive forests are closed under
disjoint union, which implies (2). IfF is a forest of rooted trees, then one can obtain a
rooted tree by adding a new root whose children are the roots of the trees fromF . On
the group level this corresponds to (3).

For the converse, we proceed by induction on the number of vertices. If the forest
(Σ, I) consists of more than one rooted tree, thenG(Σ, I) is the free product of the
graph groups associated to the various rooted trees in(Σ, I), all of which have a smaller
number of vertices. If there is a single tree, then in(Σ, I) the root is connected to every
other vertex. ThusG(Σ, I) = G × Z whereG is the graph group corresponding to the
transitive forest obtained by removing the vertex corresponding to the root and making
its children the roots of the trees in the forest so obtained. ⊓⊔

Of course, a similar statement is true for trace monoids of the formM(Σ, I) with
(Σ, I) a transitive forest; one just has to replace in (3) the groupZ by the monoidN.

3 The rational subset membership problem

Let C be the smallest class of groups such that:

– the trivial group1 belongs toC
– if G ∈ C andH ≤ G is finitely generated, then alsoH ∈ C
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– if G ∈ C andG ≤ H such thatG has finite index inH (i.e.,H is a finite extension
of G), then alsoH ∈ C

– if G ∈ C, then alsoG × Z ∈ C
– if A is a finite graph of groups [36] whose edge groups are finite andwhose vertex

groups belong toC, then the fundamental group ofA belongs toC (in particular,
the classC is closed under free products).

This last property is equivalent to saying thatC is closed under taking amalgamated
products over finite groups and HNN-extensions with finite associated subgroups [36].
The main result in this section is:

Theorem 1. For every groupG ∈ C, the rational subset membership problem is decid-
able.

It is well known that decidability of the rational subset membership problem is
preserved under taking subgroups and finite extensions [21]. Moreover, the decidability
of the rational subset membership problem is preserved by graph of group constructions
with finite edge groups [25]. Hence, in order to prove Theorem1, it would suffice to
show that the decidability of the rational subset membership problem is preserved under
direct products byZ. But currently we can neither prove nor disprove this. Hence,
we shall follow another strategy. We will introduce a property of groups that implies
the decidability of the rational subset membership problem, and which has the desired
closure properties.

LetL be a class of formal languages closed under inverse homomorphism. A finitely
generated groupG is said to be anL-group if WPΣ(G) belongs toL for some finite
generating setΣ. This notion is independent of the choice of generating set [18, 22, 25].

A languageL0 ⊆ Σ∗ belongs to the classRID (rational intersection decidable)
if there is an algorithm that, given a finite automaton overΣ recognizing a rational
languageL, can determine whetherL0 ∩ L 6= ∅. It was shown in [25] that the class
RID is closed under inverse homomorphism and that a groupG has a decidable rational
subset membership problem if and only if it is an RID-group. This follows from the fact
that if L is a rational subset of a groupG, theng ∈ L if and only if 1 ∈ g−1L and that
g−1L is again a rational subset.

Let K ⊆ Θ∗ be a language over an alphabetΘ. ThenK belongs to the class SLI
(semilinear intersection) if, for every finite alphabetΓ (disjoint from Θ) and every
rational languageL ⊆ (Θ ∪ Γ )∗, the set

ΨΓ ({w ∈ L | πΘ(w) ∈ K}) = ΨΓ (L ∩ π−1
Θ (K)) (2)

is semilinear, and the tuples in a semilinear representation of this set can be effectively
computed fromΓ and a finite automaton forL. This latter effectiveness statement will
be always satisfied throughout the paper, and we shall not explicitly check it. In words,
the set (2) is obtained by first taking those words fromL that project intoK whenΓ -
letters are erased, and then erasing theΓ -letters, followed by taking the Parikh image.

In a moment, we shall see that the class SLI is closed under inverse homomorphism,
hence the class of SLI-groups is well defined. In fact, we showmore generally that
the class SLI is closed under inverse images by finite state subsequential functions.
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This will imply, moreover, that the class of SLI-groups is closed under taking finite
extensions [18, 22, 25].

Recall that a finite state automaton overΣ×Ω∗ is called asubsequential transducer,
if the subset recognized by it is the graph of a partial function f : Σ∗ → Ω∗, called a
finite state subsequential function.

Lemma 3. Let K ⊆ Θ∗ belong to SLI and letf : Σ∗ → Θ∗ be a finite state subse-
quential function. Thenf−1(K) belongs to SLI. In particular, the class of SLI-groups
is well defined and is closed under taking finite extensions.

Proof. Let Γ be an alphabet disjoint fromΣ and letL be a rational subset of(Γ ∪Σ)∗.
Let A be a subsequential transducer computingf : Σ∗ → Ω∗. Define a finite state
subsequential functionF : (Γ ∪ Σ)∗ → (Γ ∪ Θ)∗ by adding to each state ofA a loop
with label(a, a) for eacha ∈ Γ . Call the resulting transducerA′.

The following two observations are immediate from the fact that the only transitions
of A′ involving letters fromΓ are loops with labels of the form(a, a):

(a) ΨΓ F coincides withΨΓ on the domain ofF (we read the composition of functions
from right to left, i.e., inΨΓ F we first applyF , followed byΨΓ )

(b) πΘF = fπΣ .

We now claim that the following equality holds:

F (L ∩ π−1
Σ (f−1(K))) = F (L) ∩ π−1

Θ (K). (3)

First note thatL ∩ π−1
Σ (f−1(K)) = L ∩ F−1(π−1

Θ (K)) by (b). So if w belongs to
the left hand side of (3), thenw = F (u) with u ∈ L ∩ F−1(π−1

Θ (K)). Thusw ∈
F (L)∩π−1

Θ (K). Conversely, ifu ∈ F (L)∩π−1
Θ (K), then there existsw ∈ L such that

F (w) = u. But thenw ∈ L ∩ F−1(π−1
Θ (K)) = L ∩ π−1

Σ (f−1(K)) and sou belongs
to the left hand side of (3).

Now, sinceL ∩ π−1
Σ (f−1(K)) = L ∩ F−1(π−1

Θ (K)) is contained in the domain of
F , we may conclude from (a) and (3) that

ΨΓ (L ∩ π−1
Σ (f−1(K))) = ΨΓ F (L ∩ π−1

Σ (f−1(K))) = ΨΓ (F (L) ∩ π−1
Θ (K)). (4)

But F (L) is rational since the class of rational languages is closed under images via
finite state subsequential functions [3]. Therefore, sinceK belongs to SLI, we may
deduce thatΨΓ (F (L) ∩ π−1

Θ (K)) is semilinear. This completes the proof of the first
statement from the theorem in light on (4).

Since a homomorphism is a finite state subsequential function, the language class
SLI is closed under inverse homomorphism. Hence, the class of SLI-groups is well de-
fined. Finally, let us assume thatG is an SLI-group and thatG is a finite index subgroup
of H. Let Σ (resp.∆) be a finite generating set forG (resp.H). Then in [25, Lemma
3.3] it is shown that there exists a finite state subsequential functionf : ∆∗ → Σ∗ such
that WP∆(H) = f−1(WPΣ(G)). Hence,H is an SLI-group. ⊓⊔

Let us quickly dispense with the decidability of the rational subset membership
problem for SLI-groups.
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Lemma 4. The class of languages SLI is contained in the class of languages RID. In
particular, every SLI-group has a decidable rational subset membership problem.

Proof. Let K ⊆ Θ∗ belong to SLI. LetA be a finite automaton over the alphabetΘ.
We have to decide whetherL(A) ∩ K 6= ∅. SinceK belongs to SLI, the set

Ψ∅({w ∈ L(A) | πΘ(w) ∈ K}) = Ψ∅(L(A) ∩ K)

is effectively semilinear and so has a decidable membershipproblem (c.f. [25]). As
mentioned earlier,Ψ∅(L(A) ∩ K) consists of the unique function∅ → N if L(A) ∩ K
is non-empty and is empty otherwise. Thus we can test emptiness forL(A) ∩ K. ⊓⊔

Having already taken care of finite extensions by Lemma 3, let’s turn to finitely
generated subgroups. We show that the language class SLI is closed under intersection
with rational subsets. This guarantees that the class of SLI-groups is closed under taking
finitely generated subgroups [22].

Lemma 5. LetK ⊆ Θ∗ belong to SLI and letR ⊆ Θ∗ be rational. ThenR∩K belongs
to SLI. In particular, every finitely generated subgroup of an SLI-group is an SLI-group.

Proof. LetL ⊆ (Γ∪Θ)∗ be rational. We haveL∩π−1
Θ (R∩K) = L∩π−1

Θ (R)∩π−1
Θ (K).

But rational languages are closed under inverse homomorphism and intersection, so
ΨΓ (L ∩ π−1

Θ (R) ∩ π−1
Θ (K)) is semilinear asK belongs to SLI. This establishes the

lemma. ⊓⊔

Next, we show that the class of SLI-groups is closed under direct products withZ:

Lemma 6. If G is an SLI-group, thenG × Z is also an SLI-group.

Proof. Let Σ be a finite generating set forG. Choose a generatora 6∈ Σ of Z. Then
G×Z is generated byΣ ∪{a}. LetΓ be a finite alphabet (Γ ∩ (Σ±1 ∪{a, a−1}) = ∅)
and letL be a rational subset of(Σ±1 ∪ {a, a−1} ∪ Γ )∗. We have

ΨΓ

(
{w ∈ L | πΣ±1∪{a,a−1}(w) ∈ WPΣ∪{a}(G × Z)}

)
=

πΓ

(
ΨΓ∪{a,a−1}({w ∈ L | πΣ±1(w) ∈ WPΣ(G)}) ∩

{f ∈ N
Γ∪{a,a−1} | f(a) = f(a−1)}

)
.

This set is semilinear, since{f ∈ N
Γ∪{a,a−1} | f(a) = f(a−1)} is semilinear and

semilinear sets are closed under intersection and projection [19]. ⊓⊔

By Lemma 3–6, Theorem 1 would be established, if we could prove the closure of
C under graph of groups constructions with finite edge groups.Unfortunately we are
only able to prove this closure under the restriction that every vertex group of the graph
of groups is residually finite (which is the case for groups inC). In general we can just
prove closure under free product. This, in fact, constitutes the most difficult part of the
proof of Theorem 1.
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Lemma 7. If G1 andG2 are SLI-groups, thenG1 ∗ G2 is also an SLI-group.

Proof. Assume thatΣi is a finite generating set forGi. Thus,Σ = Σ1 ∪ Σ2 is a
generating set for the free productG1 ∗ G2. Let Γ be a finite alphabet (Γ ∩ Σ±1 = ∅)
and letΘ = Σ±1 ∪ Γ . Let L ⊆ Θ∗ be rational and letA = (Q,Θ, δ, q0, F ) be a finite
automaton withL = L(A), whereQ is the set of states,δ ⊆ Q×Θ×Q is the transition
relation,q0 ∈ Q is the initial state, andF ⊆ Q is the set of final states. Forp, q ∈ Q
andw ∈ Θ∗ we writep

w
−→A q if there exists a path inA from p to q, labelled by the

wordw.
For every pair of states(p, q) ∈ Q × Q let us define the language

L[p, q] ⊆ (Σ±1
1 ∪ Γ ∪ (Q × Q))∗ ∪ (Σ±1

2 ∪ Γ ∪ (Q × Q))∗ ⊆ (Θ ∪ (Q × Q))∗

as follows:

L[p, q] =
⋃

i∈{1,2}

{w0(p1, q1)w1(p2, q2) · · ·wk−1(pk, qk)wk |

k ≥ 1 ∧ (p1, q1), . . . , (pk, qk) ∈ Q × Q ∧

w0, . . . , wk ∈ (Σ±1
i ∪ Γ )∗ ∧ πΣ

±1

i
(w0 · · ·wk) ∈ WPΣi

(Gi) ∧

p
w0−−→A p1 ∧ q1

w1−−→A p2 ∧ · · · ∧ qk−1
wk−1

−−−→A pk ∧ qk
wk−−→A q}

Since the language

{w0(p1, q1)w1(p2, q2) · · ·wk−1(pk, qk)wk |

k ≥ 1 ∧ (p1, q1), . . . , (pk, qk) ∈ Q × Q ∧ w0, . . . , wk ∈ (Σ±1
i ∪ Γ )∗ ∧

p
w0−−→A p1 ∧ q1

w1−−→A p2 ∧ · · · ∧ qk−1
wk−1

−−−→A pk ∧ qk
wk−−→A q}

is a rational language over the alphabetΣ±1
i ∪ Γ ∪ (Q × Q) for i ∈ {1, 2} andGi

is an SLI-group, it follows that the Parikh imageΨΓ∪(Q×Q)(L[p, q]) ⊆ N
Γ∪(Q×Q) is

semilinear. LetK[p, q] ⊆ (Γ ∪ (Q × Q))∗ be some rational language such that

Ψ(K[p, q]) = ΨΓ∪(Q×Q)(L[p, q]). (5)

Next, we define a context-free grammarG = (N,Γ, S, P ) as follows:

– the set of nonterminals isN = {S} ⊎ (Q × Q).
– S is the start nonterminal.
– P consists of the following productions:

S → (q0, qf ) for all qf ∈ F

(p, q) → K[p, q] for all p, q ∈ Q

(q, q) → ε for all q ∈ Q

By Parikh’s theorem, the Parikh imageΨ(L(G)) ⊆ N
Γ is semilinear. Thus, the follow-

ing claim proves the lemma:
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Claim 1. Ψ(L(G)) = ΨΓ ({w ∈ L(A) | πΣ±1(w) ∈ WPΣ(G1 ∗ G2)})

Proof of Claim 1.We prove the following more general identity for all(p, q) ∈ Q×Q:

Ψ(L(G, (p, q))) = ΨΓ ({w ∈ Θ∗ | p
w
−→A q ∧ πΣ±1(w) ∈ WPΣ(G1 ∗ G2)})

For the inclusion from left to right assume that(p, q)
∗
⇒G u ∈ Γ ∗. We show by induc-

tion on the length of theG-derivation(p, q)
∗
⇒G u that there exists a wordw ∈ Θ∗ such

thatp
w
−→A q, πΣ±1(w) ∈ WPΣ(G1 ∗ G2), andΨ(u) = ΨΓ (w).

Case 1.p = q andu = ε: We can choosew = ε.

Case 2.(p, q) ⇒G u′ ∗
⇒G u for someu′ ∈ K[p, q]. By (5), there exists a word

v ∈ L[p, q] such thatΨ(u′) = ΨΓ∪(Q×Q)(v). Sincev ∈ L[p, q], there existk ≥ 1,
(p1, q1), . . . , (pk, qk) ∈ Q × Q, i ∈ {1, 2}, andv0, . . . , vk ∈ (Σ±1

i ∪ Γ )∗ such that

– p
v0−→A p1, q1

v1−→A p2, . . . , qk−1
vk−1

−−−→A pk, qk
vk−→A q,

– v = v0(p1, q1)v1(p2, q2) · · · vk−1(pk, qk)vk, and
– πΣ

±1

i
(v0 · · · vk) ∈ WPΣi

(Gi).

Sinceu′ ∗
⇒G u ∈ Γ ∗ andΨ(u′) = ΨΓ∪(Q×Q)(v), there must existu1, . . . , uk ∈ Γ ∗

such that

(pi, qi)
∗
⇒G ui and Ψ(u) = ΨΓ (v0) + · · · + ΨΓ (vk) + Ψ(u1) + · · · + Ψ(uk)

for all 1 ≤ i ≤ k. By induction, we obtain wordsw1, . . . , wk ∈ Θ∗ such that for all
1 ≤ i ≤ k:

– pi
wi−→A qi

– πΣ±1(wi) ∈ WPΣ(G1 ∗ G2), and
– Ψ(ui) = ΨΓ (wi).

Let us setw = v0w1v1 · · ·wkvk ∈ Θ∗. We have:

– p
v0−→A p1

w1−−→A q1
v1−→A p2 · · · pk

wk−−→A qk
vk−→A q, i.e.,p

w
−→A q,

– πΣ±1(w) ∈ WPΣ(G1 ∗ G2), and
– Ψ(u) = ΨΓ (v0)+ · · ·+ΨΓ (vk)+Ψ(u1)+ · · ·+Ψ(uk) = ΨΓ (v0)+ · · ·+ΨΓ (vk)+

ΨΓ (w1) + · · · + ΨΓ (wk) = ΨΓ (w).

This concludes the proof of the inclusion

Ψ(L(G, (p, q))) ⊆ ΨΓ ({w ∈ Θ∗ | p
w
−→A q ∧ πΣ±1(w) ∈ WPΣ(G1 ∗ G2)}).

For the other inclusion, assume that

p
w
−→A q and πΣ±1(w) ∈ WPΣ(G1 ∗ G2)

for a wordw ∈ Θ∗. By induction over the length of the wordw we show thatΨΓ (w) ∈
Ψ(L(G, (p, q))).

We will make a case distinction according to the three cases in Lemma 1. Note that
we either havew ∈ Γ ∗ or the wordw ∈ Θ∗ can be (not necessarily uniquely) written
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asw = w1 · · ·wn with n ≥ 1 such thatwi ∈ ((Γ ∪ Σ±1
1 )∗ ∪ (Γ ∪ Σ±1

2 )∗) \ Γ ∗ and
wi ∈ (Γ ∪ Σ±1

1 )∗ ⇔ wi+1 ∈ (Γ ∪ Σ±1
2 )∗.

Case 1.w ∈ (Γ ∪ Σ±1
1 )∗ (the casew ∈ (Γ ∪ Σ±1

2 )∗ is analogous): ThenπΣ
±1

1

(w) ∈

WPΣ1
(G1). Together withp

w
−→A q, we obtainw(q, q) ∈ L[p, q]. Since(p, q) →

K[p, q] and (q, q) → ε are productions ofG, there exists a wordu ∈ Γ ∗ such that
(p, q)

∗
⇒G u andΨ(u) = ΨΓ (w), i.e.,ΨΓ (w) ∈ Ψ(L(G, (p, q))).

Case 2.w = w1w2 with w1 6= ε 6= w2 andπΣ±1(w1), πΣ±1(w2) ∈ WPΣ(G1 ∗ G2).
Then there exists a stater ∈ Q such that

p
w1−−→A r

w2−−→A q.

By induction, we obtain

ΨΓ (w1) ∈ Ψ(L(G, (p, r))) and

ΨΓ (w2) ∈ Ψ(L(G, (r, q))).

Hence, we get

ΨΓ (w) = ΨΓ (w1) + ΨΓ (w2)

∈ Ψ(L(G, (p, r))) + Ψ(L(G, (r, q)))

⊆ Ψ(L(G, (p, q))),

where the last inclusion holds, since(p, r)(r, q) ∈ L[p, q], and so either(p, q) →
(p, r)(r, q) or (p, q) → (r, q)(p, r) is a production ofG.

Case 3.w = v0w1v1 · · ·wkvk such thatk ≥ 1,

– πΣ±1(wi) ∈ WPΣ(G1 ∗ G2) for all i ∈ {1, . . . , k}, and
– for somei ∈ {1, 2}: v0, . . . , vk ∈ (Γ ∪ Σ±1

i )∗ \ Γ ∗ and πΣ
±1

i
(v0 · · · vk) ∈

WPΣi
(Gi).

There exist statesp1, q1, . . . , pk, qk ∈ Q such that

p
v0−→A p1

w1−−→A q1
v1−→A p2 · · · pk

wk−−→A qk
vk−→A q.

By induction, we obtain
ΨΓ (wi) ∈ Ψ(L(G, (pi, qi))) (6)

for all 1 ≤ i ≤ k. Moreover, from the definition of the languageL[p, q] we obtain

v = v0(p1, q1)v1(p2, q2) · · · vk−1(pk, qk)vk ∈ L[p, q].

Hence, there is a wordu′ ∈ K[p, q] such thatΨ(u′) = ΨΓ∪(Q×Q)(v) and(p, q) → u′

is a production ofG. With (6) we obtain

(p, q) ⇒G u′ ∗
⇒G u

for a wordu ∈ Γ ∗ such that

Ψ(u) = ΨΓ (v0) + · · · + ΨΓ (vk) + ΨΓ (w1) + · · · + ΨΓ (wk) = ΨΓ (w),

i.e.,ΨΓ (w) ∈ Ψ(L(G, (p, q))). This concludes the proof of Claim 1. ⊓⊔
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If we were to weaken the definition of the classC by only requiring closure under
free products instead of closure under finite graphs of groups with finite edge groups,
then Lemma 4–7 would already imply Theorem 1. In fact, this weaker result suffices in
order to deal with graph groups, and readers only interestedin graph groups can skip
the following considerations concerning graphs of groups.

To obtain the more general closure result for the classC concerning graph of group
constructions, we reduce to the case of free products. Recall that a groupG is residually
finite if, for eachg ∈ G \ {1}, there is a finite index normal subgroupN of G with
g /∈ N . Now we use a standard trick for graphs of residually finite groups with finite
edge groups.

Lemma 8. Let A be a finite graph of groups such that the vertex groups are residually
finite SLI-groups and the edge groups are finite. Then the fundamental group ofA is an
SLI-group.

Proof. Let G be the fundamental group ofA. ThenG is residually finite [8]. Since
there are only finitely many edge groups and each edge groups is finite, there is a finite
index normal subgroupN ≤ G intersecting trivially each edge group, and hence each
conjugate of an edge group. Thus the finitely generated subgroupN ≤ G acts on the
Bass-Serre tree forG [36] with trivial edge stabilizers, forcingN to be a free product
of conjugates of subgroups of the vertex groups ofG and a free group [36]. SinceN is
finitely generated, these free factors must also be finitely generated. Since every finitely
generated subgroup of an SLI-group is an SLI-group (Lemma 5)andZ is an SLI-group
(Lemma 6), we may deduce thatN is a free product of SLI-groups and hence is an SLI-
group by Lemma 7. SinceG containsN as a finite index subgroup, Lemma 3 implies
thatG is an SLI-group, as required. ⊓⊔

Clearly, the trivial group1 is an SLI-group. Also all the defining properties ofC
preserve residual finiteness (the only non-trivial case being the graph of group con-
structions [8]). Hence, Lemma 4–6 and Lemma 8 immediately yield Theorem 1.

Our main application of Theorem 1 concerns graph groups:

Theorem 2. The rational subset membership problem for a graph groupG(Σ, I) is
decidable if and only if(Σ, I) is a transitive forest. Moreover, if(Σ, I) is not a transitive
forest, then there exists a fixed rational subsetL of G(Σ, I) such that the membership
problem forL within G(Σ, I) is undecidable.

Proof. The decidability part follows immediately from Theorem 1: Lemma 2 implies
that every graph groupG(Σ, I) with (Σ, I) a transitive forest belongs to the classC.

Now assume that(Σ, I) is not a transitive forest. By [37] it suffices to consider the
case that(Σ, I) is either aC4 or aP4. For the case of aC4 we can use Mihailova’s result
[30]. Now assume that(Σ, I) is aP4. Let Σ = {a, b, c, d} such that(a, b) ∈ I, (b, c) ∈
I, (c, d) ∈ I. In [1], Aalbersberg and Hoogeboom have shown that it is undecidable,
whetherL ∩ K = ∅ for given rational trace languagesL,K ⊆ M(Σ, I). In fact, the
languageK is fixed, more preciselyK = ba(d(cb)+a)∗dc∗. The problem is that in
construction of [1] the languageL is not fixed. This is due to the fact that Aalbersberg
and Hoogeboom make a reduction from the undecidable problemwhether a given 2-
counter machineC finally terminates, when initialized with empty counters. The pair
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of counter values(m,n) ∈ N × N is encoded by the single number2m3n. It turns out
thatK ∩ L contains exactly those traces of the formabj0cj1dabj1cj2d · · · abjm−1cjmd,
such thatj0 = 1 andC has a computation from the initial state to the final state inm
steps, where for every0 ≤ k ≤ m, jk is the encoding of the counter values afterk steps
(note thatj0 = 1 indeed encodes the initial counter values(0, 0)).

Now let us choose forC a fixed (universal) 2-counter machine such that it is un-
decidable whetherC finally terminates when started with the initial counter values
(m,n). Let L ⊆ M(Σ, I) be thefixed rational trace language constructed by Aal-
bersberg and Hoogeboom fromC, and let us replace the fixed trace languageK =
ba(d(cb)+a)∗dc∗ by the (non-fixed) languageKm,n = b2m3n

a(d(cb)+a)∗dc∗. Then
it is undecidable, whetherKm,n ∩ L 6= ∅ for given m,n ∈ N. Hence, it is unde-
cidable, whetherb−2m3n

∈ a(d(cb)+a)∗dc∗L−1 in the graph groupG(Σ, I). Clearly,
a(d(cb)+a)∗dc∗L−1 is a fixed rational subset of the graph groupG(Σ, I). ⊓⊔

We conclude this section with a further application of Theorem 1 tograph products
(which should not be confused with graphs of groups). A graphproduct is given by a
triple (Σ, I, (Gv)v∈Σ), where(Σ, I) is an independence alphabet andGv is a group,
which is associated with the nodev ∈ Σ. The groupG(Σ, I, (Gv)v∈Σ) defined by this
triple is the quotient

G(Σ, I, (Gv)v∈Σ) = ∗v∈ΣGv/{xy = yx | x ∈ Gu, y ∈ Gv, (u, v) ∈ I},

i.e., we take the free product∗v∈ΣGv of the groupsGv (v ∈ Σ), but let elements from
adjacent groups commute. Note thatG(Σ, I, (Gv)v∈Σ) is the graph groupG(Σ, I) in
the case everyGv is isomorphic toZ. Graph products were first studied by Green [20].

Theorem 3. If (Σ, I) is a transitive forest and every groupGv (v ∈ V ) is finitely
generated and virtually Abelian (i.e., has an Abelian subgroup of finite index), then the
rational subset membership problem forG(Σ, I, (Gv)v∈Σ) is decidable.

Proof. Assume that the assumptions from the theorem are satisfied. We show that
G(Σ, I, (Gv)v∈Σ) belongs to the classC. Since(Σ, I) is a transitive forest, the group
G(Σ, I, (Gv)v∈Σ) can be built up from trivial groups using the following two opera-
tions: (i) free products and (ii) direct products with finitely generated virtually Abelian
groups. Since the classC is closed under free products, it suffices to prove that ifG
belongs to the classC andH is finitely generated virtually Abelian, thenG × H also
belongs to the classC. As a virtually Abelian group,H is a finite extension of a finite
rank free Abelian groupZn. By the closure of the classC under direct products withZ,
G × Z

n belongs to the classC. Now, G × H is a finite extensionG × Z
n, proving the

theorem, sinceC is closed under finite extensions. ⊓⊔

4 The submonoid membership problem

Recall that the submonoid membership problem for a groupG asks for an algorithm to
determine, given a group elementg ∈ G and a finitely generated submonoidM of G,
whetherg ∈ M . Hence, there is a trivial reduction from the submonoid membership
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problem forG to the rational subset membership problem forG. It turns out that there
is also a reduction in the opposite direction, if we allow an additional free factorZ in
the submonoid membership problem:

Theorem 4. For every finitely generated groupG, the rational subset membership
problem forG can be reduced to the submonoid membership problem forG ∗Z. More-
over, if there exists a fixed rational subsetL ⊆ G such that the membership problem for
L within G is undecidable, then there exists a fixed submonoidM of G ∗ Z such that
the membership problem forM within G ∗ Z is undecidable.

Proof. Let Σ be a generating set forG and leth : (Σ±1)∗ → G be the canonical mor-
phism. Choose a generatora 6∈ Σ for Z. We also denote byh the canonical morphism
from (Σ±1 ∪ {a, a−1})∗ to G ∗ Z.

Let A = (Q,Σ±1, δ, q0, F ) be a finite automaton and lett ∈ (Σ±1)∗. By intro-
ducingε-transitions, we may assume that the set of final statesF consists of a single
stateqf 6= q0. We will construct a finite subset∆ ⊆ (Σ±1 ∪ {a, a−1})∗ and a word
u ∈ (Σ±1 ∪ {a, a−1})∗ such thath(t) ∈ h(L(A)) if and only if h(u) ∈ h(∆∗).

Without loss of generality assume thatQ = {1, . . . , n}. Choose an arbitrary gener-
atorb ∈ Σ representing a non-trivial element ofG and define, for everyq ∈ {1, . . . , n},
the wordq̃ by

q̃ = aqba−q

and let
∆ = {q̃ c p̃−1 | (q, c, p) ∈ δ} and u = q̃0 t q̃−1

f . (7)

Note that in (7), we havec ∈ Σ±1 ∪ {ε}, since we introducedε-transitions. We claim
thath(t) ∈ h(L(A)) if and only if h(u) ∈ h(∆∗).

Let us define a1-cycleto be word of the form

q̃1v1q̃
−1
2 q̃2v2q̃

−1
3 · · · q̃k−1vk−1q̃

−1
k q̃kvkq̃−1

1

such thatk ≥ 1, q1, . . . , qk ∈ {1, . . . , n}, v1, . . . , vk ∈ (Σ±1)∗, andh(v1 · · · vk) =
1. Note that a1-cycle equals1 in the free productG ∗ Z. We say that a word of
the form q̃1v1p̃

−1
1 q̃2v2p̃

−1
2 · · · q̃mvmp̃−1

m , whereq1, p1, . . . , qm, pm ∈ {1, . . . , n} and
v1, . . . , vm ∈ (Σ±1)∗, is 1-cycle-freeif it does not contain a1-cycle as a factor.

Claim 1.Let m ≥ 1 and

v = q̃1v1p̃
−1
1 q̃2v2p̃

−1
2 · · · q̃mvmp̃−1

m ,

whereq1, p1, . . . , qm, pm ∈ {1, . . . , n}, andv1, . . . , vm ∈ (Σ±1)∗. If v = 1 in G ∗ Z,
thenv contains a1-cycle.

Proof of Claim 1.We prove Claim 1 by induction overm. Assume thatv = 1 in G ∗Z.
If m = 1, thenq̃1v1p̃

−1
1 = 1 in G ∗ Z, i.e.,aq1ba−q1v1a

p1b−1a−p1 = 1 in G ∗ Z. If
v1 6= 1 in G thenaq1ba−q1v1a

p1b−1a−p1 is irreducible and we obtain a contradiction.
Now assume thatv1 = 1 in G. If q1 = p1, thenv is a single1-cycle and we are ready.
If q1 6= p1 then we haveaq1bap1−q1b−1a−p1 = 1 in G ∗ Z. Sincep1 − q1 6= 0, the
left-hand side of this identity is irreducible and we obtainagain a contradiction.
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Now assume thatm ≥ 2.

Case 1.There is1 ≤ i < m such thatpi = qi+1. Thenv = 1 in G ∗ Z implies

q̃1v1p̃
−1
1 · · · q̃i−1vi−1p̃

−1
i−1 q̃i(vivi+1)p̃

−1
i+1 q̃i+2vi+2p̃

−1
i+2 · · · q̃mvmp̃−1

m = 1

in G ∗Z. By induction, we can conclude that the left-hand side of this identity contains
a1-cycle. But then also the wordv must contain a1-cycle.

Case 2.pi 6= qi+1 for all 1 ≤ i < m. If there is1 ≤ i ≤ m such thatvi = 1 in G
andqi = pi thenv contains the1-cycle q̃ivip̃

−1
i . Now assume thatqi 6= pi whenever

vi = 1 in G. Remove from the wordv all factorsvi with vi = 1 in G and let us call the
resulting wordv′. We claim thatv′ is irreducible, when viewed as an alternating word
in the free productG ∗ Z. For this consider a maximal subword ofv′ of the form

p̃−1
i q̃i+1p̃

−1
i+1q̃i+2 · · · p̃

−1
j−1q̃j =

apib−1a−piaqi+1ba−qi+1api+1b−1a−pi+1aqi+2ba−qi+2 · · · apj−1b−1a−pj−1aqj ba−qj =

apib−1aqi+1−pibapi+1−qi+1b−1aqi+2−pi+1bapi+2−qi+2 · · · b−1aqj−pj−1ba−qj , (8)

wherej ≥ i + 1, vi+1 = · · · = vj−1 = 1 in G andvi 6= 1 6= vj in G. Sincepk 6= qk+1

for all i ≤ k ≤ j − 1, each of the factorsaqk+1−pk from (8) is non-trivial. The same is
also true for the factorsapk−qk for i+1 ≤ k ≤ j − 1, sincepk 6= qk. It follows that the
factor (8) ofv′ is irreducible in the free productG ∗ Z. Similar arguments apply to the
maximal prefix ofv′ of the form

q̃1p̃
−1
1 q̃2 · · · p̃

−1
j−1q̃j = aq1bap1−q1b−1aq2−p1b · · · apj−1−qj−1b−1aqj−pj−1ba−qj , (9)

and to the maximal suffix of the form

p̃−1
i q̃i+1 · · · p̃

−1
m−1q̃mp̃−1

m =

apib−1aqi+1−pibapi+1−qi+1b−1 · · · aqm−pm−1bapm−qmb−1a−pm , (10)

and even to the whole wordv′ in casevi = 1 in G for all 1 ≤ i ≤ m.
Factors of the form (8)–(10) are separated inv′ with wordsvℓ ∈ (Σ±1)∗, where

vℓ 6= 1 in G. This shows thatv′ is indeed a non-empty irreducible alternating word. But
v′ = 1 in G ∗ Z, which is a contradiction. This concludes the proof of Claim1.

Now we can prove thath(t) ∈ h(L(A)) if and only if h(u) = h(q̃0tq̃
−1
f ) ∈ h(∆∗).

First assume thath(t) ∈ h(L(A)). Let a1 · · · am ∈ L(A) such that(qi−1, ai, qi) ∈ δ
for 1 ≤ i ≤ m, qm = qf , andh(a1 · · · am) = h(t). Then

h(q̃0tq̃
−1
f ) = h(q̃0a1q̃

−1
1 q̃1a2q̃

−1
2 · · · q̃m−1amq̃−1

m ) ∈ h(∆∗).

Now assume thath(q̃0tq̃
−1
f ) ∈ h(∆∗). Thus,

q̃0tq̃
−1
f = q̃1a1p̃

−1
1 q̃2a2p̃

−1
2 · · · q̃mamp̃−1

m

in G ∗ Z, whereq1, p1, . . . , qm, pm ∈ {1, . . . , n}, a1, . . . , am ∈ Σ±1 ∪ {ε}, and
(qi, ai, pi) ∈ δ for 1 ≤ i ≤ m. Without loss of generality we may assume that the
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word q̃1a1p̃
−1
1 q̃2a2p̃

−1
2 · · · q̃mamp̃−1

m is 1-cycle-free (otherwise we can remove all1-
cycles from this word; note that a1-cycle equals1 in the groupG ∗ Z). Since

q̃f t−1q̃−1
0 q̃1a1p̃

−1
1 q̃2a2p̃

−1
2 · · · q̃mamp̃−1

m︸ ︷︷ ︸
v

= 1,

in G ∗ Z, we know by Claim 1 that the wordv contains a1-cycle. We claim that
this 1-cycle must be the whole wordv: first of all, the suffixq̃1a1p̃

−1
1 · · · q̃mamp̃−1

m

of v is 1-cycle-free. If a prefix̃qf t−1q̃−1
0 q̃1a1p̃

−1
1 · · · q̃iaip̃

−1
i for i < m is a1-cycle,

then q̃i+1ai+1p̃
−1
i+1 · · · q̃mamp̃−1

m = 1 in G ∗ Z. Hence, Claim 1 implies that the word
q̃i+1ai+1p̃

−1
i+1 · · · q̃mamp̃−1

m contains a1-cycle, contradicting the fact thatq̃1a1p̃
−1
1 · · · q̃mamp̃−1

m

is 1-cycle-free. Thus, indeed,v is a1-cycle. Hence,q0 = q1, qf = pm, pi = qi+1 for
1 ≤ i < m, andt−1a1 · · · am = 1 in G, i.e.,h(t) = h(a1 · · · am) ∈ h(L(A)).

This concludes the reduction of the rational subset membership problem ofG to
the submonoid membership problem forG ∗ Z. The second statement of Theorem 4
follows from the fact thath(∆∗) is a fixed submonoid ofG ∗ Z if A is a fixed finite
automaton. ⊓⊔

Theorems 2 and 4 imply that the submonoid membership problemis undecidable
for every graph groupG(Σ ∪ {a}, I), wherea 6∈ Σ and (Σ, I) is not a transitive
forest. In the rest of the paper, we will sharpen this result.We show that for a graph
group the submonoid membership problem is decidable if and only if the rational subset
membership problem is decidable, i.e., if and only if the independence alphabet is a
transitive forest. In fact, by our previous results, it suffices to consider aP4:

Theorem 5. Let Σ = {a, b, c, d} and I = {(a, b), (b, c), (c, d)}, i.e, (Σ, I) is a P4.
Then there exists a fixed submonoidM of G(Σ, I) such that the membership problem
of M within G(Σ, I) is undecidable.

Proof. We follow the strategy of the proof of Theorem 4, but instead of arguing with
alternating sequences in a free product, we have to argue with traces fromM(Σ±1, I).
Let R denote the trace rewriting system overM(Σ±1, I) defined in (1). As usual let
h : (Σ±1)∗ → G(Σ, I) denote the canonical morphism, which will be identified with
the canonical morphismh : M(Σ±1, I) → G(Σ, I). Let us fix a finite automatonA
over the alphabetΣ±1 such that the membership problem forh(L(A)) within G(Σ, I)
is undecidable; such an automaton exists by Theorem 2. Assume that

A = ({2, . . . , n}, Σ±1, δ, q0, {qf}),

whereq0 6= qf (it will be useful later that every state is a number greater than 1). For a
stateq ∈ {2, . . . , n} we define the tracẽq ∈ M(Σ±1, I) by

q̃ = (ad)qbc(ad)−q = (ad)qbc(d−1a−1)q.

Note that the dependence graph ofq̃ is almost a linear chain; onlyb andc in the middle
may commute with each other. Moreover, every symbol fromΣ±1 is dependent onad,
that is it does not commute withad.
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Let ϕ : (Σ±1)∗ → (Σ±1)∗ be the injective morphism defined byϕ(x) = xx for
x ∈ Σ±1. Thus,w ∈ L(A) if and only if ϕ(w) ∈ ϕ(L(A)). Since(x, y) ∈ I im-
plies thatϕ(x) andϕ(y) commute,ϕ can be lifted to a morphismϕ : M(Σ±1, I) →
M(Σ±1, I). The reader can easily verify that, for every tracet ∈ M(Σ±1, I), the equal-
ity NFR(ϕ(t)) = ϕ(NFR(t)) holds. In particular,ϕ(t) is irreducible if and only ift is
irreducible andh(t) = h(u) if and only if h(ϕ(t)) = h(ϕ(u)).

Let us fix a tracet ∈ M(Σ±1, I) and define

∆ = {q̃ϕ(x)p̃−1 | (q, x, p) ∈ δ} ⊆ M(Σ±1, I) and u = q̃0ϕ(t)q̃−1
f ∈ M(Σ±1, I).

We claim thath(t) ∈ h(L(A)) if and only if h(u) ∈ h(∆∗). For this, we can follow the
proof scheme of Theorem 4. The following claim replaces Claim 1 from the previous
proof.

Claim 2.Let m ≥ 1 and

v = q̃1ϕ(v1)p̃
−1
1 q̃2ϕ(v2)p̃

−1
2 · · · q̃mϕ(vm)p̃−1

m ,

whereq1, p1, . . . , qm, pm ∈ {2, . . . , n} andv1, . . . , vm ∈ (Σ±1)∗. If v = 1 in G(Σ, I),
thenv contains a1-cycle (1-cycles are defined as in the proof of Theorem 4).

Proof of Claim 2.Most parts of the proof can be copied from the proof of Claim 1.
In fact, we only have to adapt those arguments from the proof of Claim 1, which were
specific for the free productG ∗ Z. For the base casem = 1 we obtain the identity

(ad)q1bc(ad)−q1ϕ(v1)(ad)p1b−1c−1(ad)−p1 = 1 (11)

in G(Σ, I). Assume without loss of generality thatv1, viewed as a trace, is irreducible
with respect toR. Then alsoϕ(v1) is irreducible. Ifϕ(v1) = ε, then (11) becomes

(ad)q1bc(ad)p1−q1b−1c−1(ad)−p1 = 1.

If p1 = q1, thenv is a1-cycle. Ifp1 6= q1, then we obtain a contradiction, since the trace
(ad)q1bc(ad)p1−q1b−1c−1(ad)−p1 is irreducible w.r.t.R. Now assume thatϕ(v1) 6= ε.
In the trace

(ad)q1bc(d−1a−1)q1ϕ(v1)(ad)p1b−1c−1(d−1a−1)p1

only the lasta−1 of the factor(d−1a−1)q1 may cancel against the firsta of ϕ(v1) (in
casea ∈ min(v1)) and the firsta of the factor(ad)p1 may cancel against the last
a−1 of ϕ(v1) (in casea−1 ∈ max(v1)). To see this, note that ifa ∈ min(v1) then
ϕ(v1) = aaϕ(t) for some tracet. Then

(d−1a−1)q1ϕ(v1) = (d−1a−1)q1aaϕ(t) →R (d−1a−1)q1−1d−1aϕ(t).

Since we assumeda ∈ min(v1), the only other minimal element of the traceaϕ(t)
may beb or b−1, both of which do not commute withd−1. It follows that the trace
NFR((d−1a−1)q1ϕ(v1)) is of the form(d−1a−1)kd−1aϕ(t) for k = q1 − 1 ≥ 1 (since
q1 ≥ 2). Moreover, ifa−1 is a maximal symbol oft, thenϕ(t) = ϕ(t′)a−1a−1 for
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some tracet′. Hence, by making a possible cancellation with the firsta in (ad)p1 , it
follows finally that

NFR(q̃1ϕ(v1)p̃
−1
1 ) = (ad)q1bc(d−1a−1)kd−1xd(ad)ℓb−1c−1(d−1a−1)p1 6= ε

for some tracex, whereℓ = p1 − 1 ≥ 1. This contradicts again (11). This proves the
inductive base casem = 1 in Claim 2.

For the inductive step for Claim 2, we can distinguish the same two cases as in
the proof of Claim 1, where the first case can be treated exactly as in the proof of
Claim 1. For the second case, we assume thatpk 6= qk+1 for all 1 ≤ k ≤ m − 1 and
qk 6= pk whenevervk = 1 in G(Σ, I). Let v′ be word that results fromv by deleting all
factorsϕ(vi), which are equal1 in G(Σ, I). In the following, we considerv′ as a trace.
Consider a maximal factor ofv′ of the form

p̃−1
i q̃i+1p̃

−1
i+1q̃i+2 · · · p̃

−1
j−1q̃j =

(ad)pib−1c−1(ad)−pi(ad)qi+1bc(ad)−qi+1(ad)pi+1b−1c−1(ad)−pi+1(ad)qi+2bc(ad)−qi+2

· · · (ad)pj−1b−1c−1(ad)−pj−1(ad)qj bc(ad)−qj =

(ad)pib−1c−1(ad)qi+1−pibc(ad)pi+1−qi+1b−1c−1(ad)qi+2−pi+1bc(ad)pi+2−qi+2

· · · b−1c−1(ad)qj−pj−1bc(ad)−qj , (12)

wherej ≥ i + 1 andϕ(vi+1) = · · · = ϕ(vj−1) = 1, ϕ(vi) 6= 1 6= ϕ(vj) in G(Σ, I).
The same arguments as in the proof of Claim 1 show that this trace is irreducible with
respect toR, and similarly for the analogues of (9) and (10). Inv′, factors of the form
(12) are separated by tracesϕ(vi), whereϕ(vi) 6= 1 in G(Σ, I). Without loss of gen-
erality assume that each such traceϕ(vi) is irreducible and hence non-empty. As in the
previous paragraph, for the base casem = 1, one can show that in such a concate-
nation, only a single minimala and a single maximala−1 of a traceϕ(vi) 6= ε may
be cancelled. It follows thatNFR(v) 6= ε, which contradictsv = 1 in G(Σ, I). This
concludes the proof of Claim 2. The rest of the argument is completely analogous to the
proof of Theorem 4. ⊓⊔

Recall that a graph is not a transitive forest if and only if iteither contains an induced
C4 or P4 [37]. Together with Mihailova’s result for the generalizedword problem of
F ({a, b}) × F ({c, d}), Theorem 2 and 5 imply:

Corollary 1. The submonoid membership problem for a graph groupG(Σ, I) is de-
cidable if and only if(Σ, I) is a transitive forest. Moreover, if(Σ, I) is not a transitive
forest, then there exists a fixed submonoidM of G(Σ, I) such that the membership
problem forM within G(Σ, I) is undecidable.

SinceP4 is a chordal graph, the generalized word problem forG(P4) is decidable
[26]. Hence,G(P4) is an example of a group for which the generalized word problem
is decidable but the submonoid membership problem is undecidable.

5 Open problems

The definition of the classC leads to the question whether decidability of the rational
subset membership problem is preserved under direct products with Z. An affirmative
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answer would lead in combination with the results from [25, 31] to a more direct proof
of Theorem 1.

Concerning graph groups, the precise borderline for the decidability of the general-
ized word problem remains open. By [26], the generalized word problem is decidable if
the independence alphabet is chordal. Since every transitive forest is chordal, Theorem 2
does not add any new decidable cases. On the other hand, if theindependence alphabet
contains an inducedC4, then the generalized word problem is undecidable [30]. Butit
is open for instance, whether for a cycle of length 5 the corresponding graph group has
a decidable generalized word problem.

Another open problem concerns the complexity of the rational subset membership
problem for graph groups, where the independence alphabet is a transitive forest. If
the independence alphabet is part of the input, then our decision procedure does not
yield an elementary algorithm, i.e., an algorithm where therunning time is bounded
by an exponent tower of fixed height. This is due to the fact that each calculation of
the Parikh image of a context-free language leads to an exponential blow-up in the size
of the semilinear sets in the proof of Lemma 7. An NP lower bound follows from the
NP-completeness of integer programming.

Theorem 4 leads to the question whether the decidability of the submonoid mem-
bership problem is preserved under free products (as it is the case for the generalized
word problem and the rational subset membership problem). If this were true, then The-
orem 4 would imply that the rational subset membership problem of a groupG can be
reduced to the submonoid membership problem ofG (note that the submonoid member-
ship problem ofZ is decidable). Hence, for every group, the rational subset membership
problem and the submonoid membership problem would be recursively equivalent.
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