
Model-Checking Hierarchical Structures

Markus Lohrey

FMI, University of Stuttgart, Germany
lohrey@fmi.uni-stuttgart.de

Abstract

Hierarchical graph definitions allow a modular description of structures using mod-
ules for the specification of repeated substructures. Beside this modularity, hierarchi-
cal graph definitions allow to specify structures of exponential size using polynomial
size descriptions. In many cases, this succinctness increases the computational com-
plexity of decision problems when input structures are defined hierarchically. In this
paper, the model-checking problem for first-order logic (FO), monadic second-order
logic (MSO), and second-order logic (SO) on hierarchically defined input structures
is investigated. It is shown that in general these model-checking problems are expo-
nentially harder than their non-hierarchical counterparts, where the input structures
are given explicitly. As a consequence, several new complete problems for the levels
of the polynomial time hierarchy and the exponential time hierarchy are obtained.
Based on classical results of Gaifman and Courcelle, two restrictions on the struc-
ture of hierarchical graph definitions that lead to more efficient model-checking
algorithms are presented.

Key words: model-checking, hierarchical structures, logic in computer science,
complexity

1 Introduction

Hierarchical graph definitions specify a structure via modules, where every
module is a graph that may refer to modules on a smaller hierarchical level.
In this way, large structures can be represented in a modular and succinct way.
Hierarchical graph definitions were introduced in [30] in the context of VLSI
design. Formally, hierarchical graph definitions can be seen as hyperedge re-
placement graph grammars [12,23] that generate precisely one graph. In com-
puter science, hierarchical graph definition can be used as a suitable abstract
formalism whenever systems with repeated (or shared) substructures appear.
A typical example are large software systems with shared modules/objects.

Preprint submitted to Elsevier 28 April 2010

In this paper we consider the model-checking problem for hierarchically de-
fined input structures. Model-checking is a computational problem of central
importance in many fields of computer science, like for instance verification or
database theory. It is asked whether a given logical formula from some pre-
specified logic is true in a given finite structure (e.g. a graph). Usually, the
structure is given explicitly, for instance by listing all tuples in each of the
relations of the structure. In this paper, the input structure will be given in a
compressed form via a hierarchical graph definition. The logics we consider are
first-order logic (FO), monadic second-order logic (MSO), and second-order
logic (SO). FO allows only quantification over elements of the universe, MSO
allows quantification over subsets (unary predicates) of the universe, and SO
allows quantification over relations of arbitrary arity over the universe.

Each of the logics FO, MSO, and SO has many fascinating connections to
other parts of computer science, e.g., automata theory, complexity theory,
database theory, verification, etc. The interested reader is referred to the
text books [11,26,31,45] and the handbook article [47] for more details. It
is therefore not surprising that the model-checking problem for these logics
on explicitly given input structures is a very well-studied problem with many
deep results. Let us just give a few references: [13,16,17,21,22,33,35,48,49]. But
whereas several papers study the complexity of specific algorithmic problems
on hierarchically defined input graphs, like for instance reachability, planarity,
circuit-value, and 3-colorability [28–30,36–38], there is no systematic investi-
gation of model-checking problems for hierarchically defined structures so far
(one should notice that all the algorithmic problems mentioned above can be
formulated in SO). The only exception is the work from [1,2,39], where the
complexity of temporal logics (LTL, CTL, CTL∗) over hierarchically defined
strings [39] and hierarchical state machines [1,2] is investigated. Hierarchical
state machines can be seen as a restricted form of hierarchical graph definitions
that are tailored towards the modular specification of large reactive systems.

We think that the investigation of model-checking problems for “general pur-
pose logics” like FO and MSO over hierarchically defined structures leads to
a better understanding of hierarchical structures in a broad sense. Our in-
vestigation of model-checking problems for hierarchically defined structures
will follow a methodology introduced by Vardi [48]. For a given logic L and a
class of structures C, Vardi introduced three different ways of measuring the
complexity of the model-checking problem for L and C: (i) One may consider
a fixed sentence ϕ from the logic L and consider the complexity of verifying
for a given structure U ∈ C whether U |= ϕ; thus, only the structure belongs
to the input (data complexity or structure complexity). (ii) One may fix a
structure U from the class C and consider the complexity of verifying for a
given sentence ϕ from L, whether U |= ϕ; thus, only the formula belongs to
the input (expression complexity). (iii) Finally, both the structure and the
formula may belong to the input (combined complexity). In the context of

2

hierarchically defined structures, expression complexity will not lead to new
results. Having a fixed hierarchically defined structure makes no difference to
having a fixed explicitly given structure. Thus, we will only consider data and
combined complexity for hierarchically defined structures.

After introducing the necessary concepts in Section 3–6, we study model-
checking problems for FO over hierarchically defined structures in Section 7.
Section 7.1 deals with data complexity whereas in Section 7.2, combined com-
plexity is briefly considered. Section 8 carries out the same program for MSO
and SO. In all cases, we measure the complexity of the model-checking problem
in dependence on the structure of the quantifier prefix of the input formula.
In some cases we observe an exponential jump in computational complex-
ity when moving from explicitly to hierarchically defined input structures.
In other cases there is no complexity jump at all. We also consider struc-
tural restrictions of hierarchical graph definitions that lead to more efficient
model-checking algorithms. Our results are collected in Table 1 and Table 2
at the end of Section 6 together with the known results for model-checking
explicitly given input structures (see Section 4 and 5.1 for the relevant def-
initions). As can be seen from these tables, there is a tight correspondence
between the bounded quantifier-alternation fragments of FO/MSO and the
polynomial/exponential time hierarchy. Due to the common game theoretical
foundation of these concepts, this is not really surprising.

A short version of this paper appeared in [32]. In a subsequent conference
paper [20], the research program from [32] was extended to parity games and
various fixpoint logics.

2 Related work

Specific algorithmic problems (e.g. reachability, planarity, circuit-value, 3-
colorability) on hierarchically defined structures are studied in [28–30,36–38].
A concept related to hierarchical graph definitions are hierarchical state ma-
chines [2,1], which are a widely used concept for the modular and compact
system specification in model-checking. Hierarchical state machines can be
seen as a restricted form of hierarchical graph definitions. The work of Alur et
al [1,2] studies the complexity of model-checking temporal logics (LTL, CTL,
CTL∗) over hierarchical state machines. Other formalisms for the succinct
description of structures, which were studied under a complexity theoretical
perspective, are boolean circuits [6,19,41,52], boolean formulas [22,50], and
binary decision diagrams [15,51]. For these formalisms, general upgrading the-
orems can be shown, which roughly state that if a problem is complete for a
complexity class C, then the compressed variant of this problem is complete
for the exponentially harder version of C. For hierarchical graph definitions

3

such an upgrading theorem fails [29].

3 General notations

The reflexive and transitive closure of a binary relation → is
∗
→. Let ≡ be

an equivalence relation on a set A. Then, for a ∈ A, [a]≡ = {b ∈ A | a ≡ b}
denotes the equivalence class containing a. With [A]≡ we denote the set of
all equivalence classes. With π≡ : A → [A]≡ we denote the function with
π≡(a) = [a]≡ for all a ∈ A. For sets A,A1, and A2 with A1 ∩ A2 = ∅ and
A = A1 ∪ A2 we sometimes write A = A1 ⊎ A2 in order to emphasize the
fact that A is the disjoint union of A1 and A2. For a function f : A → B let
dom(f) = A and ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}. For C ⊆ A we define
the restriction f↾C : C → B by f↾C(c) = f(c) for all c ∈ C. For functions
f : A → B and g : B → C we define the composition g ◦ f : A → C by
(g ◦ f)(a) = g(f(a)) for all a ∈ A. For functions f : A → C and g : B → D
with A∩B = ∅ we define the function f∪g : A⊎B → C∪D by (f∪g)(a) = f(a)
for a ∈ A and (f ∪ g)(b) = g(b) for b ∈ B.

A signature R is a finite set consisting of relational symbols ri (i ∈ I) and
constant symbols cj (j ∈ J). Each relational symbol ri has an associated arity
αi. A (finite) structure over the signature R is a tuple U = (U, (Ri)i∈I , (uj)j∈J),
where U is a finite set (the universe of U), Ri ⊆ Uαi is the relation associated
with the relational symbol ri, and uj ∈ U is the constant associated with
the constant symbol cj. If the structure U is clear from the context, we will
identify Ri (respectively uj) with the relational symbol ri (respectively the
constant symbol cj). Sometimes, when we want to refer to the universe U ,
we will refer to U itself. For instance, we will write u ∈ U instead of u ∈ U ,
or f : {1, . . . , n} → U if f is a function from {1, . . . , n} to U . The size |U|
of U is |U | +

∑
i∈I αi · |R|. As usual, a constant u may be replaced by the

unary relation {u}. Thus, in the following, we will only consider signatures
without constant symbols, except when we explicitly introduce constants. Let
R = {ri | i ∈ I} be such a signature and let U = (U, (Ri)i∈I) be a structure
over R. For an equivalence relation ≡ on U we define the quotient U/≡ =
([U]≡, (Ri/≡)i∈I), where Ri/≡ = {(π≡(v1), . . . , π≡(vαi

)) | (v1, . . . , vαi
) ∈ Ri}.

For two structures U1 = (U1, (Ri,1)i∈I) and U1 = (U2, (Ri,2)i∈I) over the same
signature R and with disjoint universes U1 and U2, respectively, we define the
disjoint union U1 ⊕ U2 = (U1 ⊎ U1, (Ri,1 ⊎ Ri,2)i∈I). For n ≥ 0, an n-pointed
structure is a pair (U , τ), where U is a structure and τ : {1, . . . , n} → U is
injective. The elements in ran(τ) (respectively U \ ran(τ)) are called contact
nodes (respectively internal nodes). The node τ(i) is called the i-th contact
node.

An ordered dag (directed acyclic graph) is a triple G = (VG, γG, rootG) where

4

(i) VG is a finite set of nodes, (ii) γG : VG → V ∗
G is the child-function, where

V ∗
G is the set of finite strings over VG, (iii) the relation EG := {(u, v) | u, v ∈

VG, v occurs in γG(u)} is acyclic, and (iv) rootG has indegree 0 in the graph
(VG, EG). The size of G is |G| = |VG|. The notion of a root-path p ∈ N

∗ in G
together with its target-node τG(p) ∈ VG are inductively defined as follows:
(i) ε is a root-path in G and τG(ε) = rootG and (ii) if p is a root-path in G,
v = τG(p), and n = |γG(v)|, then pi is a root-path for all 1 ≤ i ≤ n and τG(pi)
is the i-th node in the list γG(v).

4 Complexity theory

We assume that the reader has some background in complexity theory [40]. In
particular, we assume that the reader is familiar with the classes L (determinis-
tic logarithmic space), NL (nondeterministic logarithmic space), and P (deter-
ministic polynomial time). It is well known that each of these classes is closed
under (deterministic) logspace reductions. A function f : {0, 1}∗ → {0, 1}∗ is
computable in nondeterministic logspace [3] if there exists a nondeterministic
Turing machine M for which the working space is bounded by O(log(n)) and
such that for every input x ∈ {0, 1}∗: on every computation path, either M
rejects on that path or writes f(x) on the output tape and then terminates.
As usual, the space on the output tape does not belong to the working space.
Note that since the running time of M must be bounded polynomially, there
must exist a constant c such that |f(x)| ≤ |x|c for all x ∈ {0, 1}∗. We say
that a language A is NL-reducible to a language B, if there exists a function
f such that (i) f is computable in nondeterministic logspace and (ii) for all
x ∈ {0, 1}∗, x ∈ A if and only if f(x) ∈ B. It is not hard to see that if A is
NL-reducible to B ∈ NL, then also A ∈ NL. One can use the same proof that
shows that L is closed under (deterministic) logspace reductions: For an input
x, one simulates an NL-machine for B on the input f(x), but without actually
producing f(x). Each time, the machine for B needs the i-th bit of f(x), then
one starts a simulation of the machine that calculates f in nondeterministic
logspace until the i-th bit of f(x) is produced; if the machine for f rejects,
then the overall simulation rejects. In fact, all complexity classes occurring in
this article are closed under L/NL-reductions.

Several times we will use alternating Turing-machines, see [7] for more details.
Roughly speaking, an alternating Turing-machine M is a nondeterministic
Turing-machine, where the set of states Q is partitioned into three sets: Q∃

(existential states), Q∀ (universal states), and F (accepting states). A config-
uration C with current state q is accepting, if

• q ∈ F , or
• q ∈ Q∃ and there exists a successor configuration of C that is accepting, or

5

• q ∈ Q∀ and every successor configuration of C is accepting.

An input word w is accepted by M if the corresponding initial configuration
is accepting. An alternation on a computation path of M is a transition from
a universal state to an existential state or vice versa.

The semantics of alternating Turing-machines can be defined via reachability
games as well. For a given alternating Turing-machine M , we can view the
configuration graph of M as an (infinite) game arena, where an existential
player (Eve) plays against a universal player (Adam). In configurations, where
the current state belongs to Q∃ (respectively Q∀) Eve (respectively Adam) has
to choose the successor configuration. Moreover, Eve wins, if the current state
belongs to F . Then, an input w is accepted by M if and only if Eve has a
winning strategy, when starting in the inital configuration corresponding to
w.

By [24,46], the class of all problems, that can be solved on an alternating
Turing-machine in logarithmic space, where furthermore the number of alter-
nations is bounded by some fixed constant, is still equal to NL.

The levels of the polynomial time hierarchy are defined as follows: Let k ≥ 1.
Then Σp

k (respectively Πp
k) is the set of all problems that can be recognized

on an alternating Turing-machine within k − 1 alternations and polynomial
time, where furthermore the initial state is assumed to be in Q∃ (respectively
Q∀). The polynomial time hierarchy is PH =

⋃
k≥1 Σp

k. If we replace in these
definitions the polynomial time bound by an exponential time bound (i.e.,

2nO(1)
), then we obtain the levels Σe

k (respectively Πe
k) of the (weak) EXP

time hierarchy EH =
⋃

k≥1 Σe
k. If we replace the polynomial time bound by a

logarithmic time bound O(log(n)), then we obtain the levels Σlog
k (respectively

Πlog
k) of the logtime hierarchy LH =

⋃
k≥1 Σlog

k , which is contained in L. Here
one assumes that the basic Turing-machine model is enhanced with a random
access mechanism in form of a query tape that contains a binary coded position
of the input tape. If the machine enters a distinguished query state, then the
machine has random access to the input position that is addressed by the query
tape. The logtime hierarchy is a uniform version of the circuit complexity class
AC

0.

5 Hierarchical formalisms

In this section, we will consider two hierarchical formalisms for the succinct
specification of large relational structures: hierarchical graph definitions and
straight-line programs.

6

5.1 Hierarchical graph definitions

A hierarchical graph definition is a tuple D = (R, N, S, P) such that:

(1) R is a signature.
(2) N is a finite set of nonterminals (or reference names). Every A ∈ N has

a rank rank(A) ∈ N.
(3) S ∈ N is the initial nonterminal, where rank(S) = 0.
(4) P is a set of productions. For every A ∈ N , P contains exactly one pro-

duction A → (U , τ, E), where (U , τ) is a rank(A)-pointed structure over
the signature R and E ⊆ {(B, σ) | B ∈ N, σ : {1, . . . , rank(B)} →
U is injective} (the set of references).

(5) Define the relation ED on N as follows: (A,B) ∈ ED if and only if for the
unique production of the form A → (U , τ, E), E contains a reference of
the form (B, σ). Then we require that ED is acyclic.

By (5), the transitive closure ≻D of the relation ED is a partial order, we
call it the hierarchical order. In (4), a pair (B, σ) with B ∈ N and σ :
{1, . . . , rank(B)} → U injective is also called a B-labeled reference. The size
|D| of D is defined by

∑
(A→(U ,τ,E))∈P |U| + |E|.

In the lower bound proofs in the rest of the paper, we will only use relational
structures where all relations have arity one or two. We will view and visualize
such a structure as a directed graph, where nodes are labeled with unary
relational symbols and edges are labeled with binary relational symbols. Note
that our definition allows several node labels for a single node. In pictures, a
reference (A, σ) will be drawn as a big circle with inner label A. This circle
is connected via dashed lines with the nodes σ(i) for 1 ≤ i ≤ rank(A), where
the connection to σ(i) is labeled with i. These dashed lines are also called
tentacles. If G = (U , τ) is an n-pointed relational structure, then we label the
contact node τ(i) with i. In order to distinguish this label i better from node
labels that correspond to unary relational symbols, we will use a smaller font
for the label i.

Example 1 Let D = (R, N, S, P) be the hierarchical graph definition, where
the signature R contains two binary relational symbols α and β, and N =
{S,A1, A2, A3} with rank(S) = 0, rank(A1) = 1, and rank(A2) = rank(A3) =
2. The set P of productions is shown in Figure 1.

Let us now define the structure eval(D), which results from unfolding a hi-
erarchical graph definition D = (R, N, S, P). For every A ∈ N we define a
rank(A)-pointed structure eval(A) over the signature R. The idea is to take
the structure U from the unique production (A → (U , τ, E)) ∈ P and to re-
place every reference (B, σ) ∈ E by the rank(B)-pointed structure eval(B) =
(U ′, τ ′). Finally, we identify the node σ(i) with the contact node τ ′(i) for every

7

S
A1

A1

A2 A2

A2

A3 A3

A3

1

1

2 2

β β

1 1

2 1

2 2

β
β

1 1

2 1

β
α β

α

Fig. 1. The productions of the hierarchical graph definition from Example 1

1 ≤ i ≤ rank(B). Formally, assume that A → (U , τ, E) is the unique produc-
tion for A in P . Let E = {(Ai, σi) | 1 ≤ i ≤ n}. Of course we may have
Ai = Aj for i 6= j. Assume that eval(Ai) = (Ui, τi) is already defined. Then

eval(A) = ((U ⊕ U1 ⊕ · · · ⊕ Un)/≡, π≡ ◦ τ),

where ≡ is the smallest equivalence relation on the universe of U⊕U1⊕· · ·⊕Un,
which contains {(σi(j), τi(j)) | 1 ≤ i ≤ n, 1 ≤ j ≤ rank(Ai)}. Finally, we
define eval(D) = eval(S); since rank(S) = 0 it can be viewed as an ordinary
(0-pointed) structure. It is not hard to see that |eval(D)| ∈ 2O(|D|). Thus,
D can be seen as a compressed representation of the structure eval(D). As
a consequence, computational problems may become more difficult, if input
structures are represented by a hierarchical graph definition.

Example 1 (continued). The graph eval(D) for the hierarchical graph defi-
nition D from Example 1 is shown in Figure 2. Edge labels are omitted; edges
going down in the tree have to be labeled with β, and the other edges going
from the leafs to the root have to be labeled with α. Figure 6 shows the 2-
pointed structure eval(A2). Two intermediate structures that occur during the
unfolding of D are shown in Figure 3.

Definition 2 We say that the hierarchical graph definition D = (R, N, S, P)
is c-bounded if rank(A) ≤ c for every A ∈ N and moreover for every pro-
duction (A → (U , τ, E)) ∈ P we have |E| ≤ c. We say that D is apex, if
for every production (A → (U , τ, E)) ∈ P and every reference (B, σ) ∈ E we
have ran(σ) ∩ ran(τ) = ∅. Thus, contact nodes of a right-hand side cannot be
accessed by references.

Apex hierarchical graph definitions are called 1-level restricted in [36]. The
hierarchical graph definition D from Example 1 is 2-bounded (but not 1-
bounded) and not apex.

Definition 3 A hierarchical graph definition D = (R, N, S, P) is in Chomsky

8

Fig. 2. The graph eval(D) for the hierarchical graph definition from Example 1

A2 A2

A3 A3 A3 A3

β β

2 2

1

1

β β

β β β β

2 2 2 2

1

1

1 1

Fig. 3. Two intermediate structures that arise when unfolding D from Example 1

normal form if for every production (A → (U , τ, E)) ∈ P , either

• E = ∅, or
• all relations of U are empty (i.e., U is a naked set), |E| = 2, and U =⋃

(B,σ)∈E ran(σ).

A typical production of the second type is shown in Figure 4, where rank(A) =
4.

Remark 4 For a given hierarchical graph definition D = (R, N, S, P) one
can construct a hierarchical graph definition D′ in Chomsky normal form such
that eval(D) = eval(D′). Moreover, this construction can be carried out by
a logspace bounded machine and is similar to the corresponding construction
for context-free string grammars: By introducing fresh nonterminals for node-

9

A A1 A2

2

4

1

3

2

1

34

8

6

7

5

4

5

3

1

2

Fig. 4. A typical production for a hierarchical graph definition in Chomsky normal
form

S

A1

A2

A3

1

1 2

1 2

Fig. 5. The dag dag(G) for the hierarchical graph definition D from Example 1

tuples in right-hand sides that belong to a relation of R, one can enforce that
for every production (A → (U , τ, E)) ∈ P , either E = ∅ or all relations
of U are empty and |E| ≥ 1. In the latter case, if U contains nodes which
are not accessed by a tentacle, then we access these nodes by a fresh dummy
nonterminal. This ensures that U =

⋃
(B,σ)∈E ran(σ). It remains to enforce

|E| = 2. Productions with |E| = 1 can be eliminated by unfolding the right-
hand side until the number of nonterminals is either zero or at least two.
Finally, productions with |E| > 2 have to be split into several productions in
the same way as for context-free string grammars.

Definition 5 With a hierarchical graph definition D = (R, N, S, P) we asso-
ciate an ordered dag dag(D) = (N, γ, S), where the child-function γ is defined
as follows: Let A → (U , τ, E) be the unique production with left-hand side
A ∈ N and let (A1, σ1), . . . , (Amσn) be an enumeration of the references in
E (this enumeration is somehow given by the input encoding of D). Then
γ(A) = A1 · · ·An.

For instance, dag(D) for the hierarchical graph definition D from Example 1
is shown in Figure 5, where an edge from nonterminal B to C with label i
means that C is the i-th symbol in γdag(G)(B).

Remark 6 We list some simple algorithmic properties of hierarchical graph
definitions that are useful for the further considerations.

(1) A node of eval(D) can be uniquely represented by a pair (p, v) such that

10

(i) p is a root-path in dag(D) with target node A = τdag(D)(p) and (ii)
A → (U , τ, E) is the unique production with left-hand side A, where v ∈
U \ran(τ) is an internal node. 1 This representation is of size O(|D|) and
given a pair (p, v) we can check in time O(|D|) (or alternatively in space
O(log(|D|)), whether (p, v) represents indeed a node of eval(D).

(2) Given nodes ui = (pi, vi) for 1 ≤ i ≤ n and a relational symbol r ∈
R of arity n, we can verify in time O(|D|) (or alternatively in space
O(log(|D|))), whether (u1, . . . , un) ∈ r in the structure eval(D).

Also the following simple statement will be useful later:

Lemma 7 For a given hierarchical graph definition D = (R, N, S, P) and
a node u = (p, v) of eval(D), we can construct in deterministic logarithmic
space (and hence in polynomial time) a new hierarchical graph definition D′

such that eval(D) and eval(D′) are identical, except that in eval(D′) the node
u has the additional label α, where α 6∈ R is a new unary relational symbol.

PROOF. Assume that p = i1i2 · · · in (ik ∈ N for 1 ≤ k ≤ n) and let
Ak = τdag(D)(i1i2 · · · ik) ∈ N be the target node of the path i1i2 · · · ik for
k ∈ {0, . . . , n}. Thus, A0 = S (the start nonterminal). For every nonterminal
Ai introduce a copy A′

i. Let Ak → (Uk, τk, Ek) be the unique production for Ak

in D. If 0 ≤ k < n, then we introduce for A′
k the production A′

k → (Uk, τk, E
′
k),

where E ′
k results from Ek by replacing the ik+1-th reference (Ak+1, σ) (in the

order on the references, given by the input encoding of D) of Ek by (A′
k+1, σ).

Finally, we add the rule A′
n → (U ′

n, τn, En), where U ′
n results from Un by

adding the new label α to the internal node v ∈ Un \ ran(τn). The resulting
hierarchical graph definition D′ has the property from the lemma. Clearly, the
construction can be done using logarithmic working space. 2

5.2 Straight-line programs

Hierarchical graph definitions are our favorite formalism for the succinct speci-
fication of large structures. For some upper bound proofs however, straight-line
programs are more convenient than hierarchical graph definitions. A (graph)
straight-line program is a sequence of operations on n-pointed structures.
These operations allow the disjoint union, the rearrangement, and the glu-
ing of its contact nodes, see also [9,10]. For the formal definition, let us fix a
signature R.

1 The nodes in ran(τ), i.e., the contact nodes of U , are excluded here, because they
were already generated by some larger (with respect to the hierarchical order ≻D)
nonterminal.

11

Let Gi = (Ui, τi) be an ni-pointed structure (i ∈ {1, 2}) over the signature R,
where Ui is the universe of Ui and U1 ∩ U2 = ∅. We define the disjoint union
G1 ⊕G2 as the (n1 +n2)-pointed structure (U1 ⊕U2, τ), where τ : {1, . . . , n1 +
n2} → U1 ⊎U2 with τ(i) = τ1(i) for all 1 ≤ i ≤ n1 and τ(i +n1) = τ2(i) for all
1 ≤ i ≤ n2. For an n-pointed structure G = (U , τ) and an injective mapping
f : {1, . . . ,m} → {1, . . . , n} (m ≤ n), we define renamef (G) = (U , τ ◦ f).
Finally, if n ≥ 2, then glue(G) = (U/≡, (π≡ ◦ τ) ↾ {1, . . . , n − 1}), where ≡ is
the smallest equivalence relation on U which contains the pair (τ(n), τ(n−1)).
Thus, the glue-operation simply merges the last two contact nodes. Note that
the combination of renamef and glue allows to merge arbitrary contact nodes.

A straight-line program (SLP) S = (Xi := ti)1≤i≤ℓ (over the signature R) is
a sequence of definitions, where the right hand side ti of the assignment is
either an n-pointed finite structure (over the signature R) for some n or an
expression of the form Xj ⊕Xk, renamef (Xj), or glue(Xj) with j, k < i, where
1 ≤ i ≤ ℓ and f : {1, . . . ,m} → {1, . . . , n} is injective. Here, X1, . . . , Xℓ

are formal variables. For every variable Xi its rank rank(Xi) is inductively
defined as follows: (i) if ti is an n-pointed structure, then rank(Xi) = n, (ii) if
ti = Xj ⊕Xk, then rank(Xi) = rank(Xj)+ rank(Xk), (iii) if ti = renamef (Xj)
and f : {1, . . . ,m} → {1, . . . , n}, then rank(Xi) = m, and (iv) if ti = glue(Xj),
then rank(Xi) = rank(Xj)−1. The rank(Xi)-pointed finite structure eval(Xi)
is inductively defined by: (i) if ti is an n-pointed structure G, then eval(Xi) =
G, (ii) if ti = Xj ⊕ Xk, then eval(Xi) = eval(Xj) ⊕ eval(Xk), and (iii) if
ti = op(Xj) for op ∈ {renamef , glue}, then eval(Xi) = op(eval(Xj)). We define
eval(S) = eval(Xℓ). The SLP S is called c-bounded (c ∈ N) if rank(Xi) ≤ c for
all 1 ≤ i ≤ ℓ. Finally, the size |S| is defined as ℓ plus the size of all explicit
n-pointed structures that appear in a right-hand side ti. It easy to see that
|eval(S)| ∈ 2O(|S|).

Example 8 In Figure 6, the 2-pointed structure eval(A2), where A2 is a non-
terminal from the hierarchical graph definition D from Example 1, is shown.
The following SLP generates this graph:

A3 := G,where G is the right-hand side of A3 from Figure 1

B0 :=
2
•

β
←−

1
•

β
−→

3
•

B1 := B0 ⊕ A3

B2 := B1 ⊕ A3 (this is a 7-pointed graph)

B3 := renamef1(B2),with f1 : 3 7→ 6, 6 7→ 3, 2 7→ 4, 4 7→ 2, i 7→ i for i ∈ {1, 5, 7}

B4 := glue(B3) (this is a 6-pointed graph)

B5 := renamef2(B4),with f2 : i 7→ i for 1 ≤ i ≤ 5, i.e., dom(f2) = {1, . . . , 5}

B6 := glue(B5) (this is a 4-pointed graph)

B7 := renamef3(B6),with f3 : i 7→ i for 1 ≤ i ≤ 3, i.e., dom(f3) = {1, 2, 3}

12

1

2

β β

β β β β

α
α α

α

Fig. 6. The graph eval(A2) for the hierarchical graph definition from Example 1

B8 := glue(B7) (this is a 2-pointed graph)

A2 := renamef4(B8),with f4 : 1 7→ 2, 2 7→ 1

Note that the operation renamef2 just makes the 6-th contact node internal in
eval(B4).

Remark 9 It is not hard to see that from a given hierarchical graph defini-
tion D one can construct in polynomial time a straight-line program S with
eval(S) = eval(D), see also [9]. Moreover, if D is c-bounded, then S is c(c+1)-
bounded.

6 Logic

In this paper, we consider the logics FO (first-order logic), MSO (monadic
second-order logic), and SO (second-order logic). A detailed introduction into
mathematical logic can be found in [11]. Let us fix a signature R of relational
symbols. Atomic FO formulas over the signature R are of the form x = y
and r(x1, . . . , xn), where r ∈ R has arity n and x, y, x1, . . . , xn are first-order
variables ranging over elements of the universe. In case r is binary, we also write
x1

r
→ x2 instead of r(x1, x2). From these atomic subformulas we construct

arbitrary FO formulas over the signature R using boolean connectives and
(first-order) quantifications over elements of the universe. A Σk-FO formula
(respectively Πk-FO formula) is a first-order formula of the form B1B2 · · ·Bk :
ϕ, where: (i) ϕ is a quantifier-free FO formula, (ii) for i odd, Bi is a block
of existential (respectively universal) quantifiers, whereas (iii) for i even, Bi

is a block of universal (respectively existential) quantifiers. An FOk-formula
(k ≥ 2) is a first-order formula that uses at most k different (bounded or free)
variables.

SO extends FO by allowing the quantification over relations of arbitrary arity.

13

For this, there exists for every m ≥ 1 a set of second-order variables of arity
m that range over m-ary relations over the universe. In addition to the atomic
formulas of FO, SO allows atomic formulas of the form (x1, . . . , xm) ∈ X,
where X is an m-ary second-order variable and x1, . . . , xm are first-order vari-
ables. Second-order variables (respectively first-order variables) will be always
denoted by upper case (respectively lower case) letters. MSO is the fragment
of SO (and the extension of FO) that only allows to use second-order vari-
ables of arity 1, i.e., quantification over subsets of the universe is allowed. A
Σk-SO formula (respectively Πk-SO formula) is an SO formula of the form
B1B2 · · ·Bk : ϕ, where: (i) ϕ is an SO formula that contains only first-order
quantifiers, (ii) for i odd, Bi is a block of existential (respectively universal)
SO quantifiers, whereas (iii) for i even, Bi is a block of universal (respectively
existential) SO quantifiers. An SO sentence is an SO formula without free vari-
ables. For an SO formula ϕ(X1, . . . , Xm, x1, . . . , xn), a relational structure U
with universe U , relations Ri ⊆ Uαi (where αi is the arity of the second-order
variable Xi), and u1, . . . , un ∈ U we write U |= ϕ(R1, . . . , Rm, u1, . . . , un) if
the sentence ϕ is true in the structure U when the variable Xi (respectively
xj) is instantiated by Ri (respectively uj).

The quantifier rank qr(ϕ) of an MSO formula (we won’t need this notion
for general SO formulas) is inductively defined as follows: qr(ϕ) = 0 if ϕ is
atomic, qr(¬ϕ) = qr(ϕ), qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max{qr(ϕ), qr(ψ)}, and
qr(∀αϕ) = qr(∃αϕ) = qr(ϕ) + 1, where α is an FO or an MSO variable.
It is well-known that for every k ≥ 1, there are only finitely many pairwise
nonequivalent formulas of quantifier rank at most k over the signature R.
This value only depends on k and the signature R, see [27] for an explicit
estimation. The k-FO theory (respectively k-MSO theory) of a structure U ,
briefly k-FOTh(U) (respectively k-MSOTh(U)), consists of all FO sentences
(respectively MSO sentences) of quantifier rank at most k over the signature
of U that are true in U ; by the previous remark it is a finite set up to logical
equivalence.

In Section 7.1 we will briefly consider modal logic, see e.g. [43] for more details.
Modal logic is interpreted over directed graphs, where both edges and nodes
are labeled. Let G = (V, (Eα)α∈Σ, (Pγ)γ∈Γ) be such a graph, where V is the set
of nodes, Eα ⊆ V × V is the set of all α-labeled edges, and Pγ ⊆ V is the set
of all γ-labeled nodes. Atomic formulas of modal logic are γ, where γ ∈ Γ is
a node label, tt (for true), and ff (for false). If ϕ and ψ are already formulas
of modal logic, then also ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, [α]ϕ, and 〈α〉ϕ are formulas of
modal logic, where α ∈ Σ is an edge label. The satisfaction relation G, v |= ϕ
(the modal logic formula ϕ is satisfied in the node v ∈ V of G) is inductively

14

defined as follows (α ∈ Σ, γ ∈ Γ):

G, v |= tt

G, v 6|= ff

G, v |= γ ⇔ v ∈ Pγ

G, v |= ¬ϕ ⇔ G, v 6|= ϕ

G, v |= ϕ ∧ ψ ⇔ G, v |= ϕ and G, v |= ψ

G, v |= ϕ ∨ ψ ⇔ G, v |= ϕ or G, v |= ψ

G, v |= [α]ϕ ⇔ G, u |= ϕ for every u ∈ V with (v, u) ∈ Eα

G, v |= 〈α〉ϕ ⇔ G, u |= ϕ for some u ∈ V with (v, u) ∈ Eα

It is well-known and easy to see that for every formula ϕ of modal logic we
can construct an FO2 formula ϕ′(x) with one free variable such that for every
node v ∈ V : G, v |= ϕ if and only if G |= ϕ′(v), see e.g. [31, Prop. 14.8].

Let us briefly recall the known results concerning the complexity of the model-
checking problem for the fragments of FO and MSO introduced above, when
input structures are represented explicitly, e.g., by listing all tuples in all
relations of the structure. For Σk-FO (respectively Πk-FO) the data complex-
ity is Σlog

k -complete (respectively Πlog
k -complete) 2 [5,25], whereas the com-

bined complexity goes up to Σp
k-completeness (respectively Πp

k-completeness)
[13,44]. For Σk-MSO (respectively Πk-MSO), both the data and combined com-
plexity is Σp

k-complete (respectively Πp
k-complete) [13,35,44]. For full second-

order logic, the data complexity of Σk-SO is still Σp
k-complete [13,44], whereas

the combined complexity becomes Σe
k-complete [22]. For modal logic, the com-

bined complexity is P-complete, in fact, for every fixed ℓ ≥ 2, the combined
complexity of FOℓ is P-complete as well [49].

Table 1 and 2 collects the known results for model-checking FO and MSO on
explicitly given input structures together with our results for various classes
of hierarchically defined input structures. We distinguish on structures which
are given by apex, c-bounded (for some fixed c), and unrestricted hierarchical
graph definitions.

7 FO over hierarchically defined structures

In this section we study the model-checking problem for FO on hierarchi-
cally defined input structures. Section 7.1 deals with data complexity. First,
we prove that the data complexity of Σ1-FO for hierarchically defined input

2 This means that for every fixed Σk-FO sentence, the data complexity is Σ
log
k and

that there exists a fixed Σk-FO sentence, for which the data complexity is Σ
log
k -hard.

15

Σk-FO
explicit

[5,13,25,44]
apex c-bounded unrestricted

data Σ
log
k -compl. NL-compl.

NL-hard
in P

NL-compl. (k = 1)
Σ

p
k−1-compl. (k > 1)

combined Σ
p
k-compl.

Table 1
FO over hierarchically defined structures

Σk-MSO
explicit

[13,35,44]
c-bounded unrestricted

data Σ
p
k-compl.

combined
Σ

e
k-compl.

Table 2
MSO over hierarchically defined structures

structures is NL (Theorem 11). Using this result, we show that for Σk-FO
(respectively Πk-FO) with k > 1 the data complexity becomes Σp

k−1 (respec-
tively Πp

k−1) (Theorem 15 and 16). Next, we study structural restrictions on
hierarchical graph definitions that lead to more efficient model-checking algo-
rithms. We prove that under the apex restriction the data complexity of FO
goes down to NL (Theorem 19). Finally, we restrict the input to c-bounded
hierarchical graph definitions for some fixed integer c. We show that under
this restriction, the data complexity of FO reduces to P (Theorem 31), but we
cannot provide a matching lower bound.

In Section 7.2 we briefly consider combined complexity. We argue that the
combined complexity for Σk-FO (respectively Πk-FO) does not change when
moving from explicitly to hierarchically defined input structures (namely Σp

k

respectively Πp
k) (Theorem 32).

7.1 Data complexity

A trivial lower bound for model-checking a fixed FO sentence on hierarchically
defined input structures is given by the following statement:

Proposition 10 It is hard for NL to verify for a given hierarchical graph
definition D whether eval(D) is the empty structure. Thus, given D, it is hard
for NL to verify whether eval(D) |= ∃x : x = x. Moreover, for the hierarchical
graph definition D we can assume that the rank of every nonterminal is 0 and
that every right-hand side of a production contains at most two references.

16

PROOF. We prove the proposition by a reduction from the NL-complete
graph accessibility problem for directed acyclic graphs [42]. Thus, let G =
(V,E) be a directed acyclic graph and let u, v ∈ V , where w.l.o.g. v has out-
degree 0 and every node a ∈ V has at most 2 direct successor nodes. For every
node a ∈ V we introduce a nonterminal Aa of rank 0; the start nonterminal
is Au. For a ∈ V \ {v} we introduce the production Aa → (∅, ∅, {(Ab, ∅) |
(a, b) ∈ E}). For Av we introduce the production Av → ({1}, ∅, ∅) (1 is just
an arbitrary element). Then, (u, v) ∈ V if and only if the resulting hierarchical
graph definition generates a non-empty structure. 2

For Σ1-FO we can also prove a matching NL upper bound:

Theorem 11 For every fixed Σ1-FO or Π1-FO formula ϕ(y1, . . . , ym), the
following problem is in NL (and hence in P):

INPUT: A hierarchical graph definition D and nodes u1, . . . , um from eval(D)
(encoded as described in Remark 6).

QUESTION: eval(D) |= ϕ(u1, . . . , um)?

PROOF. Due to the closure of NL under complement (see e.g. [40]), it suffices
to prove the theorem for a Σ1-FO formula. Let D = (R, N, S, P). In a first
step, take new unary relational symbols α1, . . . , αm and use Lemma 7 in order
to construct in logarithmic space a new hierarchical graph definition D′ such
that eval(D′) is identical to eval(D) except that in eval(D′) the node ui has
the additional node label αi. Then eval(D) |= ϕ(u1, . . . , um) if and only if
eval(D′) |= ∃x1 · · · ∃xm : ϕ(x1, . . . , xm) ∧

∧m
i=1 αi(xi). Note that the latter

sentence is a fixed Σ1-FO sentence. Thus, it suffices to consider a fixed Σ1-
FO sentence of the form ∃x1 · · · ∃xn : ϕ(x1, . . . , xn), where moreover ϕ is a
conjunction of possibly negated atomic formulas (disjunctions can be shifted
in front of the existential quantifiers). We may also assume that the input
hierarchical graph definition D is in Chomsky normal form, see Definition 3
and Remark 4.

A subformula ψ of ϕ is a conjunction of a subset of the conjuncts that occur
in ϕ. With Var(ψ) we denote the set of those variables from {x1, . . . , xn} that
occur in ψ. Clearly, there is only a constant number of subformulas. Let A ∈ N
be a nonterminal of rank m and let evalD(A) = (V , τ). Take new constant
symbols pin(1), . . . , pin(m), where pin(i) refers to the i-th contact node τ(i)
of (V , τ). Thus, (V , τ) can be considered as a structure over the signature
R ∪ {pin(1), . . . , pin(m)}. We denote with F(A) the set of all formulas that
result by replacing in an arbitrary subformula ψ of ϕ some of the variables from
Var(ψ) by constants from {pin(1), . . . , pin(m)}. For θ ∈ F(A) we denote with

17

θ+ (respectively θ−) the set of all positive atoms (respectively negated atoms)
that occur in θ. An assertion is a pair (A, θ), where θ ∈ F(A). Note that an
assertion (A, θ) can be stored in logarithmic space: For A, we just need to
store a pointer to the input. Moreover, in each subformula ψ of ϕ the number
of occurrences of variables is bounded by a constant. Hence, when replacing in
ψ some of the variables by constants from {pin(1), . . . , pin(m)} (which can be
written down in logarithmic space), we obtain a string of logarithmic length.

We write valid(A, θ) for the assertion (A, θ) if there exists a witness mapping
β : Var(θ) → V\ran(τ) such that θ becomes true in (V , τ) when every variable
x ∈ Var(θ) is replaced by β(x).

Example 12 Let

ψ ≡ r1(x1, x2, x4) ∧ ¬r2(x2, x3) ∧ r3(x4, x3, x5) ∧ ¬r1(x2, x3, x4).

If rank(A) = 3, then for instance the following formula θ belongs to F(A):

r1(x1, pin(3), pin(1)) ∧ ¬r2(pin(3), x3) ∧

r3(pin(1), x3, x5) ∧ ¬r1(pin(3), x3, pin(1)). (1)

We have

θ+ = {r1(x1, pin(3), pin(1)), r3(pin(1), x3, x5)},

θ− = {¬r2(pin(3), x3),¬r1(pin(3), x3, pin(1))}, and

Var(θ) = {x1, x3, x5}.

Assume that V = ({1, . . . , 10}, r1, r2, r3, r4) where r1 = {(1, 8, 3), (6, 3, 1)},
r2 = ∅, and r3 = {(3, 5, 9), (4, 7, 10)}, and that τ(1) = 3, τ(2) = 4, τ(3) = 8,
and τ(4) = 10. Then valid(A, θ) holds: We have to choose for β the witness
with β(x1) = 1, β(x3) = 5, and β(x5) = 9.

Claim 13 We can verify in NL whether for a given assertion (A, θ) with
Var(θ) = ∅ we have valid(A, θ).

Proof of Claim 13. The formula θ is a conjunction of a constant number of
(negated) atoms of the form (¬)r(pin(i1), . . . , pin(ik)). It suffices to verify a
single atom

a = r(pin(i1), . . . , pin(ik))

in evalD(A). Let A → (U , τ, E) be the unique production for A. If E = ∅,
then it is trivial to check valid(A, a) in NL. Otherwise, assume that E =
{(A1, σ1), (A2, σ2)}, where ran(σ1) ∪ ran(σ2) = U and all relations in U are
empty (recall that D is in Chomsky normal form). In this case we nondeter-
ministically choose an i ∈ {1, 2} such that {τ(i1), . . . , τ(ik)} ⊆ ran(σi). If such
an i does not exist then we can reject immediately. Otherwise we proceed with
the assertion (Ai, b), where the atom b results from the atom a by replacing

18

the constant pin(iℓ) by pin(j) if τ(iℓ) = σi(j); since σi is injective (see (3) in
the definition of hierarchical graph definitions), j is determined uniquely. The
atom b can be calculated in logspace from the atom a. This proves Claim 13.

Now we present a nondeterministic logspace algorithm for verifying general
assertions (with variables). The algorithm stores a list α1α2 · · ·αk of assertions
where Var(θi)∩Var(θj) = ∅ if αi = (Ai, θi), αj = (Aj, θj), i 6= j, and moreover

k ≤ |Var(ϕ)| + 2. (2)

Since |Var(ϕ)| is a constant and every assertion αi can be stored in logarithmic
space, the algorithm works in logarithmic space as well. In a single step, the
algorithm either rejects or transforms a list of assertions α1α2 · · ·αk into a list
of assertions α′

1α
′
2 · · ·α

′
ℓ such that the following invariant is preserved:

k∧

i=1

valid(αi) ⇔
ℓ∧

i=1

valid(α′
i) (3)

Initially, the list only contains the assertion (S, ϕ). The algorithm accepts, if
the list of assertions is empty. Together with (3) this proves the correctness of
the algorithm. It remains to describe a single step of the algorithm such that
(3) and the space requirement (2) is fulfilled.

Case 1. There exists an i such that αi = (A, θ) and Var(θ) = ∅. Then by
Claim 13, we can verify in NL whether valid(A, θ) is true. If valid(A, θ) is
rejected, then also the overall algorithm rejects, otherwise it continues with
the shorter list α1 · · ·αi−1αi+1 · · ·αk. The correctness property (3) is clearly
true.

Case 2. There does not exist an i such that αi = (A, θ) and Var(θ) = ∅. Then
the algorithm removes an arbitrary assertion, say α1 = (A, θ), from the list
and continues as follows:

Case 2.1. A → (U , τ, ∅) is the unique production for A. Then it is again trivial
to check in NL whether valid(A,α1) and we can proceed as in Case 1.

Case 2.2. A → (U , τ, {(A1, σ1), (A2, σ2)}) is the unique production, where U =
ran(σ1) ∪ ran(σ2) and all relations of U are empty. We now guess

(a) a partition Var(θ) = Y ⊎ X1 ⊎ X2 (each of the three sets X1, X2, and Y
may be empty),

(b) a mapping γ : Y → U \ ran(τ), and
(c) a partition θ+ = ψ+

1 ⊎ ψ+
2 such that for every i ∈ {1, 2}, every atom

19

a ∈ ψ+
i , every constant pin(j), and every variable x ∈ Var(θ) we have:

pin(j) occurs in a ⇒ τ(j) ∈ ran(σi)

x occurs in a ⇒ (x ∈ Xi ∨ (x ∈ Y ∧ γ(x) ∈ ran(σi)))
(4)

These data can be stored in logarithmic space. Intuitively, Y is the set of all
variables from Var(θ) that will be assigned (via a witness mapping β) to a
node in U \ ran(τ) = (ran(σ1) ∪ ran(σ2)) \ ran(τ) (which is the set of nodes
that are directly generated by A), whereas Xi is the set of all variables that
will be assigned to a node that is generated by the nonterminal Ai. The set ψ+

i

contains only positive atoms a from θ such that the relational tuple that will
finally make the atom a true belongs to the substructure evalD(Ai) of evalD(A)
(the partition θ+ = ψ+

1 ⊎ ψ+
2 is not unique, since we may have ran(σ1) ∩

ran(σ2) 6= ∅). If the above data do not exist, then we reject immediately.
Otherwise we construct for i ∈ {1, 2} the conjunction θi ∈ F(Ai) as follows:

• First define ψi as the conjunction of all atoms in

ψ+
i ∪ {(¬a) ∈ θ− | a satisfies (4) for all constants pin(j)

and all variables x ∈ Var(θ)}

(note that a negated atom ¬a may belong to ψ1 ∩ ψ2).
• Next, we replace in ψi every constant pin(j) by pin(ℓ), where τ(j) = σi(ℓ),

and we replace every variable x ∈ Y by pin(ℓ), where γ(x) = σi(ℓ). Let θi

be the resulting conjunction. Note that Var(θi) = Xi.

We continue with the list (A1, θ1)(A2, θ2)α2 · · ·αk. Note that Var(θi) ⊆ Xi.
Preservation of the invariant (3) follows from the following claim:

Claim 14 valid(A, θ) if and only if there exist Y,X1, X2, γ, ψ+
1 , and ψ+

2 such
that (a)–(c) hold and valid(A1, θ1) and valid(A2, θ2) for the resulting conjunc-
tions θ1 and θ2.

Proof of Claim 14. Recall that A → (U , τ, {(A1, σ1), (A2, σ2)}) is the unique
production for A, where U = ran(σ1)∪ran(σ2) and all relations of U are empty.
Let eval(A) = (V , τ) and eval(Ai) = (Vi, σi) for i ∈ {1, 2}. Thus, U ,V1,V2 ⊆ V .

Let us first assume that valid(A, θ) holds. Let β : Var(θ) → V be a witness for
this (according to the paragraph before Example 12). Let

Y = {x ∈ Var(θ) | β(x) ∈ U \ ran(τ)}

Xi = {x ∈ Var(θ) \ Y | β(x) ∈ Vi}

βi = β↾Xi,

γ = β↾Y

20

where i ∈ {1, 2}. Moreover choose a partition θ+ = θ+
1 ⊎ θ+

2 such that every
a ∈ θ+

i becomes true in Vi under the assignment β. To see that such a partition
exists, note that all relations of U are empty. Thus, every atom in θ+ has to
become true in V1 or in V2 under the assignment β (a can be true in both V1

and V2 if ran(σ1) ∩ ran(σ2) 6= ∅). It is now easy to check that (a)–(c) as well
as valid(A1, θ1) and valid(A2, θ2) hold.

For the other direction, assume that Y,X1, X2, γ, ψ+
1 , and ψ+

2 are such that
(a)–(c) as well as valid(A1, θ1) and valid(A2, θ2) hold. Let βi be a witness for
valid(Ai, θi). Note that Xi = Var(θi) = dom(βi). Hence, dom(γ), dom(β1), and
dom(β2) are pairwise disjoint and we can define β = β1 ∪ β2 ∪ γ. It follows
that β is a witness for valid(A, θ). For this, one should notice that a negated
atom ¬a ∈ θ− is true under the assignment β if there does not exist i ∈ {1, 2}
such that a satisfies (4) for all constants pin(j) and all variables x ∈ Var(θ).
The reason is again that all relations of U are empty.

Example 12 (continued). Recall that our current assertion is (A, θ), where
θ contains the following (negated) atoms:

r1(x1, pin(3), pin(1)), ¬r2(pin(3), x3), r3(pin(1), x3, x5), ¬r1(pin(3), x3, pin(1))

Assume that the rule for the nonterminal A is:

A A1 A2

a1

a2

pin(1)
a3

a4

a5

pin(4)

pin(3)

pin(2)

a6

2

1

34

8

6

7

5

4

5

3

1

2

Then we may guess for instance Y = {x5}, X1 = {x1}, and X2 = {x3},
γ(x5) = a1, ψ+

1 = {r1(x1, pin(3), pin(1))}, and ψ+
2 = {r3(pin(1), x3, x5)}.

We finally get: θ1 = r1(x1, pin(5), pin(3)) and θ2 = r3(pin(3), x3, pin(4)).
The two negated atoms ¬r2(pin(3), x3) and ¬r1(pin(3), x3, pin(1)) are auto-
matically satisfied by the above guess, because x3 is generated by A2 (since
x3 ∈ X2) and hence cannot be in any relation of eval(A) with pin(3). If the
additional negated atom ¬r2(pin(1), x5) would belong to θ, then it would belong
to ψ1 ∩ ψ2 and we would have θ1 = r1(x1, pin(5), pin(3)) ∧ ¬r2(pin(3), pin(2))
and θ2 = r3(pin(3), x3, pin(4)) ∧ ¬r2(pin(3), pin(4)).

For the space requirements of our algorithm, note that the number of assertions
in the stored list is bounded by |Var(ϕ)|+2, because (i) there are at most two
assertions (A, θ) with Var(θ) = ∅ in the list, and (ii) if (A1, θ1) and (A2, θ2)
belong to the list, then Var(θ1) ∩ Var(θ2) = ∅. This proves the theorem. 2

21

Using Theorem 11, we can easily prove an upper bound of Σp
k for the data

complexity of a fixed Σk+1-FO sentence on hierarchically defined input struc-
tures:

Theorem 15 For every fixed Σk+1-FO (respectively Πk+1-FO) sentence ψ,
the question, whether eval(D) |= ψ for a given hierarchical graph definition D
is in Σp

k (respectively Πp
k).

PROOF. Assume that ψ ≡ ∃x1 · · · ∀xk∃xk+1 θ(x1, . . . , xk, xk+1) is a fixed
Σk+1-FO formula, where k is assumed to be even (other cases can be dealt
analogously) and xi is a tuple of FO variables. Our alternating polynomial
time algorithm guesses for every 1 ≤ i ≤ k a tuple ui (of the same length
as xi) of nodes from eval(D), using the representation for nodes from Re-
mark 6 in Section 5.1. Since the size of this representation for a node is
of polynomial size, this guessing needs polynomial time. Moreover, if i is
odd (respectively even) we guess the tuple ui in an existential (respectively
universal) state of our alternating machine. It remains to verify, whether
eval(D) |= ∃xk+1θ(u1, . . . , uk, xk+1), which is possible in polynomial time by
Theorem 11. 2

Next, we prove a matching lower bound:

Theorem 16 For every k ≥ 1, there exists a fixed Σk+1-FO (respectively
Πk+1-FO) sentence ψ such that the question, whether eval(D) |= ψ for a given
hierarchical graph definition D, is hard for Σp

k (respectively Πp
k). Finally, the

sentence ψ is equivalent to an FO2-sentence.

PROOF. Note that for every k ≥ 1 it suffices to prove the statement either
for the class Σp

k or Πp
k, because these two classes are complementary to each

other, and the negation of a Σk+1-FO sentence is equivalent to a Πk+1-FO
sentence and vice versa. For k even, we prove the statement for Σp

k, for k odd,
we prove the statement for Πp

k. For k odd, the following problem QSATk is
Πp

k-complete [44,53]:

INPUT: A quantified boolean formula Θ of the form

∀x1 · · · ∀xℓ1−1∃xℓ1 · · · ∃xℓ2−1 · · · ∀xℓk−1
· · · ∀xn : ϕ(x1, . . . , xn),

where 1 < ℓ1 < ℓ2 < · · · < ℓk−1 ≤ n and ϕ is a boolean formula in 3-DNF over
the variables x1, . . . , xn.

QUESTION: Is Θ true?

22

For k even, the corresponding problem that starts with a block of existential
quantifiers and where ϕ is in 3-CNF is Σp

k-complete. In the following, we will
only consider the case that k is odd, the case k even can be dealt analogously.
Thus, let us take an instance Θ of QSATk of the above form. Assume that
ϕ ≡ C1∨C2∨· · ·∨Cm where every Ci is a conjunction of exactly three literals.

We define a hierarchical graph definition D = (R, N, S, P) as follows: Let
N = {S} ∪ {Ai | 0 ≤ i ≤ n}, where rank(S) = 0 and rank(Ai) = i + 1. The
signature R contains the binary symbols g, c, t, f, n1, n2, n3, p1, p2, p3 and the
unary symbol root. Exactly one node is labeled with root ; it is generated in
the first step starting from the start nonterminal S:

S

A0

root

1

The root-labeled node will become the root of a binary tree which is generated
with the following productions, where 1 ≤ i ≤ n:

Ai−1

Ai Ai

1

i − 1

i

1

i − 1

ii + 1

1

i − 1

i i + 1

f t

...

Note that for a non-leaf of the generated binary tree, the edge from the left
(respectively right) child is labeled with f for false (respectively t for true).
Thus, a path in the tree defines a truth assignment for the boolean variables
xi (1 ≤ i ≤ n). Via the j-labeled tentacles (1 ≤ j ≤ i + 1), every Ai-labeled
reference e gets access to all nodes of the binary tree that were produced by
ancestor-references of e. These nodes form a path starting at the root.

Finally, for An we introduce the production An → (U , τ, E) such that:

• The universe of U consists of the n+1 contact nodes τ(1), . . . , τ(n+1) (which
correspond to the n + 1 nodes along a path from the root to a leaf in the
generated tree) and additional nodes c1, . . . , cm, where node ci corresponds
to the conjunction Ci.

• There is a g-labeled (g for guess) edge from contact node τ(1) (which ac-
cesses the root) to contact node τ(ℓ1), there is a g-labeled edge from τ(ℓi−1)
to τ(ℓi) for 1 < i < k, and there is a g-labeled edge from τ(ℓk−1) to τ(n+1).

23

¬x1 ∧ ¬x3 ∧ x4 x1 ∧ x2 ∧ x3 x3 ∧ x4 ∧ x5 ¬x4 ∧ ¬x5 ∧ ¬x6

7

6

5

4

3

2

1

c c c c

n1

n2

p3

p1

p2

p3

p1

p2p3

n1

n2

n3

g

g

g

Fig. 7.

These g-labeled edges allow to go from the root to a leaf of the tree in only k
steps; thus, they provide shortcuts in the tree and will enable us to produce
a truth assignment for the boolean variables x1, . . . , xn with only k edge
traversals (recall that k is a constant).

• There is a c-labeled (c for conjunction) edge from τ(n + 1) (which accesses
a leaf in the tree) to each of the internal nodes c1, . . . , cm, i.e., to each of
the m conjunctions.

• There is a pk-labeled edge (respectively nk-labeled edge), where k ∈ {1, 2, 3},
from node ci to τ(j + 1) (1 ≤ j ≤ n) if and only if xj (respectively ¬xj) is
the k-th literal in the conjunction Ci.

This concludes the description of the hierarchical graph definition D. Let us
consider an example for the last rule.

Example 17 Assume that

θ ≡ ∀x1∀x2∃x3∃x4∀x5∀x6






(¬x1 ∧ ¬x3 ∧ x4) ∨ (x1 ∧ x2 ∧ x3)∨

(x3 ∧ x4 ∧ x5) ∨ (¬x4 ∧ ¬x5 ∧ ¬x6)





.

24

¬x1 ∧ ¬x3 ∧ x4 x1 ∧ x2 ∧ x3 x3 ∧ x4 ∧ x5 ¬x4 ∧ ¬x5 ∧ ¬x6

root

f

t

t

f

f

f

c c c c

n1

n2

p3

p1

p2

p3

p1

p2
p3

n1

n2

n3

g

g

g

Fig. 8.

Thus, k = 3, n = 6, m = 4. The right-hand side for A6 is shown in Figure 7.
We have labeled the nodes c1, . . . , cm with the corresponding conjunction, but
note that these conjunctions do not appear as node labels in the actual right-
hand side. For the above formula, Figure 8 shows the path in eval(D) that
corresponds to the truth assignment x1 = f, x2 = x3 = t, x4 = x5 = x6 = f .

By construction of D, a leaf z of the binary tree, which corresponds to a
boolean assignment for the variables x1, . . . , xn, satisfies the disjunction C1 ∨
C2 ∨ · · · ∨ Cm of the m conjunctions if and only if

∃y, y1, y2, y3, y
′
1, y

′
2, y

′
3 : z

c
→ y ∧

3∧

i=1

(y
pi→ yi

t
→ y′

i ∨ y
ni→ yi

f
→ y′

i). (5)

Using the edge z
c
→ y we guess a conjunction that will evaluate to true under

the assignment represented by the leaf z. Then y
pi→ yi

t
→ y′

i ∨ y
ni→ yi

f
→ y′

i

checks whether the i-th literal of the guessed conjunction evaluates to true.
For instance, for the path in Figure 8, the formula in (5) is indeed true; we
have to choose the conjunction ¬x4 ∧ ¬x5 ∧ ¬x6 for the FO variable y. From

25

this observation, it follows that for the fixed FO sentence

ψ ≡ ∀z0 ∀z1 : root(z0) ∧ z0
g
→ z1 ⇒ ∃z2 : z1

g
→ z2 ∧ · · · ∀zk : zk−1

g
→ zk ⇒

∃y, y1, y2, y3, y
′
1, y

′
2, y

′
3 : zk

c
→ y ∧

3∧

i=1

(y
pi→ yi

t
→ y′

i ∨ y
ni→ yi

f
→ y′

i)

we have eval(D) |= ψ if and only if Θ is a true instance of QSATk. If we bring
ψ into prenex normal form, we obtain a fixed Πk+1-FO sentence. Finally, note
that eval(D) |= ψ if and only if eval(D), root |= ψ′, where ψ′ is the following
sentence of modal logic:

[g]〈g〉 · · · [g]
︸ ︷︷ ︸

k many

〈c〉
3∧

i=1

(〈pi〉〈t〉tt ∨ 〈ni〉〈f〉tt)

By the remark from the end of Section 6, this modal sentence is equivalent to
an FO2-sentence. This proves the theorem. 2

In the rest of this section we study structural restrictions for hierarchical graph
definitions that lead to more efficient model-checking algorithms for FO.

Recall from Definition 2 that a hierarchical graph definition D = (R, N, S, P)
is apex, if for every production (A → (U , τ, E)) ∈ P and every reference
(B, σ) ∈ E we have ran(σ) ∩ ran(τ) = ∅. Thus, contact nodes of a right-
hand side cannot be accessed by references. We will prove that under the
apex restriction the data complexity for FO over hierarchically defined input
structures becomes NL. The proof of this result is based on Gaifman’s locality
theorem [18,11]. First we have to introduce a few notations.

For a given relational structure U = (U,R1, . . . , Rk), where Ri is a relation of
arbitrary arity αi over U , we define the Gaifman-graph GU of the structure U
as the following undirected graph:

GU = (U, {(u, v) ∈ U × U |
∨

1≤i≤k

∃(u1, . . . , uαi
) ∈ Ri ∃j, k : uj = u 6= v = uk}).

Thus, two nodes are adjacent in the Gaifman-graph if the nodes are related by
some of the relations of the structure U . For u, v ∈ U we denote with dU(u, v)
the distance between u and v in the Gaifman-graph GU . Note that for a fixed
r ≥ 0, dU(x, y) ≤ r can be expressed by a fixed FO formula over the signature
of U . We just write d(x, y) ≤ r for this FO formula. For r ≥ 0 and u ∈ U ,
the r-sphere SU(r, u) is the set of all v ∈ U such that dU(u, v) ≤ r. With
NU(r, u) = (SU(r, u), (Ri ∩ SU(r, u)αi)1≤i≤k) we denote the restriction of the
structure U to the r-sphere SU(r, u).

26

Now let ϕ be an FO formula over the signature of U and let x be a variable.
Then the FO formula ϕ(r,x) results from ϕ by relativizing all quantifiers to
SU(r, x). It can be defined inductively, for instance (ϕ1∧ϕ2)

(r,x) ≡ ϕ
(r,x)
1 ∧ϕ

(r,x)
2 ,

(∃y ψ)(r,x) ≡ ∃y{d(x, y) ≤ r ∧ ψ(r,x)} (where y has to be renamed into a fresh
variable if y = x), and Ri(x1, . . . , xn)(r,x) ≡ Ri(x1, . . . , xn) for atomic formulas.
It is allowed that the formula ϕ contains the variable x free. Moreover, the
formula ϕ(r,x) certainly contains x free if ϕ contains at least one quantifier (x
occurs freely in ∃y : {d(x, y) ≤ r ∧ ψ(r,x)} if y 6= x). If ϕ contains at most
x free, then we write (NU(r, u), u) |= ϕ(x)(r,x) if the formula ϕ(x)(r,x) is true
in the sphere NU(r, u) when the variable x is instantiated by u. Gaifman’s
Theorem states the following [18].

Theorem 18 Every FO sentence is logically equivalent to a boolean combina-
tion of sentences of the form

∃x1 · · · ∃xm





∧

1≤i<j≤m

d(xi, xj) > 2r ∧
∧

1≤i≤m

ψ(xi)
(r,xi)






where ψ(x) is an FO formula that contains at most x free and ψ(xi) results
from ψ(x) by replacing every free occurrence of x by xi.

Theorem 19 For every fixed FO sentence ϕ, the question, whether eval(D) |=
ϕ for a given apex hierarchical graph definition D, is in NL.

PROOF. By Gaifmans’s Theorem it suffices to consider a fixed local sentence
of the form

∃x1 · · · ∃xm





∧

1≤i<j≤m

d(xi, xj) > 2r ∧
∧

1≤i≤m

ψ(xi)
(r,xi)




 . (6)

Thus, for a given hierarchical graph definition D = (R, N, S, P) we have to
check, whether there are at least m disjoint r-spheres in eval(D) that satisfy
ψ(x)(r,x). Let d = 2r be the diameter of r-spheres. We say that a sphere
Seval(D)(r, u) is a ψ-sphere, if (Neval(D)(r, u), u) |= ψ(x)(r,x).

Let A ∈ N and let A → (U , τ, E) be the production for A. Let evalD(A) =
(V , τ). We identify U with the substructure of V induced by those nodes of V
that belong to U ; therefore τ denotes both the pin-mapping in U and V . Then
we say that evalD(A) contains a top-level occurrence of a ψ-sphere, if there
exists v ∈ V such that

(i) SV(v, r) ∩ U 6= ∅,
(ii) SV(v, r) ∩ ran(τ) = ∅, and
(iii) (NV(v, r), v) |= ψ(x)(r,x).

27

This means that if we consider a substructure of eval(D) that is generated
from the nonterminal A, then this substructure completely contains a ψ-sphere
(by (ii) and (iii)). Moreover, this sphere is not completely generated by a
smaller (w.r.t. the hierarchical order ≻D) nonterminal (by (i)). Note that the
contact nodes of evalD(A) are generated by nonterminals that are larger than
A w.r.t. the hierarchical order ≻D; thus, we exclude them from a potential
top-level occurrence of a ψ-sphere in (ii).

Claim 20 We can verify in L, whether evalD(A) contains a top-level occur-
rence of a ψ-sphere.

Proof of Claim 20. Due to the apex restriction, if evalD(A) contains a top-level
occurrence of a ψ-sphere, then every node of that occurrence is generated
by a nonterminal B that is at most d steps below A in dag(D). Thus, in
order to search for a top-level occurrence of a ψ-sphere in evalD(A) we only
have to unfold the nonterminal A up to depth d. Since d is a fixed constant,
this partial unfolding results in a structure of polynomial size. Every node
of this structure can be represented in logarithmic space. In order to give a
more formal exposition, we define a hierarchical graph definition D(d,A) that
unfolds A up to depth d:

• The signature of D(d,A) is R ⊎ {α, β}, where α and β are fresh unary
symbols.

• The set of nonterminals contains for every B ∈ N and every 0 ≤ i ≤ d + 1
a copy Bi of the same rank as B.

• The start nonterminal is Ad+1.
• The set of productions contains the following productions:
· For every 1 ≤ i ≤ d + 1 and every (B → (U , τ, E)) ∈ P we take the

production Bi → (U ′, τ, Ei−1), where Ei−1 = {(Ci−1, σ) | (C, σ) ∈ E} and
U ′ = U if (B 6= A or i 6= d + 1). For B = A and i = d + 1 we take for U ′

the structure U , where additionally, every internal node v ∈ U \ ran(τ) is
labeled with the new unary symbol α and every contact node v ∈ ran(τ)
is labeled with the new unary symbol β.

· For every (B → (U , τ, E)) ∈ P we take the production B0 → (U ′, τ, ∅),
where U ′ results from U by labeling every node σ(i) ∈ U such that (C, σ) ∈
E and 1 ≤ i ≤ rank(C) for some C (i.e., this node is accessed by some
reference in E) with the unary symbol β.

Clearly, D(d,A) can be constructed in logspace. Due to the apex restriction,
evalD(A) contains a top-level occurrence of a ψ-sphere if and only if

eval(D(d,A)) |= ∃x






ψ(r,x) ∧ (i′)

∃y : (α(y) ∧ d(x, y) ≤ r) ∧ (ii′)

∀y : (β(y) → d(x, y) > r) (iii′)






. (7)

28

Note that this is a fixed FO sentence. The subformula (j’) (j ∈ {i, ii, iii}) en-
sures property (j) from above. The representation of a node from the structure
eval(D(d,A)) (see Remark 6) can be stored in logarithmic space: it is a pair
(p, v), where v is an internal node in a right-hand side and p is a root-path
in dag(D(d,A)), and this root-path has length at most d (a constant). Every
number in the path p needs logarithmic space (it denotes a reference in a
right-hand side). Since by Remark 6 we can also check in L, whether a tuple of
nodes in eval(D(d,A)) belongs to a given relation from the signature R, any
logspace-algorithm for verifying a fixed FO sentence over an explicitly given
input structure can be also applied to check whether (7) holds. This proves
Claim 20.

Let Ntop be the set of those A ∈ N such that evalD(A) contains a top-level
occurrence of a ψ-sphere. Thus, by Claim 20, we can check in L whether a
given nonterminal belongs to Ntop. Let P(D) be the set of all root-paths in
dag(D) that end at some nonterminal from Ntop and that are not a proper
prefix of some other root-path that is also ending in some nonterminal from
Ntop.

Claim 21 eval(D) contains at least |P(D)| many disjoint ψ-spheres.

Proof of Claim 21. Each of the root-paths in P(D) ends at some nonterminal
from Ntop and hence it gives rise to an occurrence of a ψ-sphere in eval(D).
Since none of the root-paths in P(D) is a prefix of another root-path in P(D),
all these ψ-spheres are pairwise disjoint. Thus, there are at least |P(D)| many
disjoint ψ-spheres. This proves Claim 21.

For a number n ∈ N define n⌉m by

n⌉m =





n if n ≤ m

m otherwise

Recall that m is a fixed constant in our consideration (it appears in the fixed
sentence (6)).

Claim 22 The question, whether |P(D)|⌉m = k for a given k ∈ {0, . . . ,m}
belongs to NL, .

Proof of Claim 22. For a given number k ∈ {0, . . . ,m} we first guess a number
0 ≤ j ≤ k and we guess j many nonterminals A1, . . . , Aj ∈ Ntop; recall that
by Claim 20 we can check membership in Ntop in logspace. Next we guess for
every 1 ≤ i ≤ j a number ki ∈ {1, . . . , k} such that k = k1 + k2 + · · · kj. Note
that these data can be stored in logarithmic space, because k is bounded by
the fixed constant m. We now verify the following:

29

(1) For every 1 ≤ i ≤ j, in dag(D) there are at least ki many different
root-paths ending in Ai.

(2) For every 1 ≤ i ≤ j, and for all B ∈ Ntop \ {Ai}, there is no path from
Ai to B in dag(D).

First note that these conditions ensure that |P(D)|⌉m ≥ k. To verify condition
(1) in NL, we use ki (which is bounded by the constant m) many pointers for
tracing nondeterministically ki many different paths in dag(D). Condition
(2) is a coNL condition; thus, the whole algorithm is an alternating logspace
algorithm with at most one alternation; hence, it can be transformed into an
NL-algorithm [24,46]. Thus, we can check in NL, whether |P(D)|⌉m ≥ k. Using
the complement closure of NL we can also check in NL, whether |P(D)|⌉m <
k + 1 (which is only necessary if k < m). This proves Claim 22.

Our overall NL-algorithm for checking formula (6) first checks in NL whether
|P(D)|⌉m = m, i.e., whether |P(D)| ≥ m. If this is true, then by Claim 21
eval(D) contains at least m disjoint ψ-spheres and we can accept. Thus, let
us assume in the following that

|P(D)| < m. (8)

Property (8) will enable us to construct (in nondeterministic logspace) a new
hierarchical graph definition D(d) such that (i) eval(D(d)) has only polyno-
mial size and (ii) eval(D) contains at least m disjoint ψ-spheres if and only if
eval(D(d)) contains at least m disjoint ψ′-spheres, where ψ′ is a slight mod-
ification of ψ, see Claim 26 below. The latter property can be checked in
logspace using a logspace algorithm for model-checking a fixed FO sentence
in an explicitly given input structure.

For the definition of D(d), we need the following concept: For A ∈ N \ Ntop

and B ∈ Ntop denote with p(A,B) the number of all paths p in dag(D) such
that (i) p is a path from A to B and (ii) except the last node B, p does not
visit any other nodes from Ntop.

Claim 23 p(A,B) < m for every A ∈ N \ Ntop and B ∈ Ntop.

Proof of Claim 23. Assume that p(A,B) ≥ m. Thus, there are at least m
different paths from A to B ∈ Ntop. Choose a nonterminal C ∈ Ntop such that
C can be reached from B but there does not exist a nonterminal in Ntop\{C},
which can be reached from C. We may have B = C. Then there exist at least
m many paths from the start nonterminal S to C. 3 Thus, |P(D)| ≥ m, which
contradicts (8).

3 For this we have to assume that B can be reached from S. In fact, we can eliminate
at the beginning all nonterminals which are not reachable from S. Nondeterministic
logspace suffices for this preprocessing.

30

Claim 24 The question, whether p(A,B) = k for given k ∈ {0, . . . ,m − 1},
A ∈ N \ Ntop, and B ∈ Ntop belongs to NL.

Proof of Claim 24. The proof is similar to the proof of Claim 22. We use k
(which is bounded by the constant m) many pointers for tracing nondetermin-
istically k many different paths in dag(D) from A to B. For each visited node
it has to be checked, whether it belongs to N \ Ntop ∪ {B}. By Claim 20 this
is possible in logspace. In this way, we can check in NL, whether p(A,B) ≥ k.
The rest of the argument is the same as in the proof of Claim 22.

Now, we can define the hierarchical graph definition D(d). The idea is to
unfold nonterminals from N \Ntop only up to depth d. As in the definition of
D(d,A) (see the proof of Claim 20), we introduce copies A0, . . . , Ad+1 for every
A ∈ N \Ntop for this purpose. When arriving at A0 we do not stop unfolding
completely (as in D(d,A)) but make a jump in the unfolding process and
directly produce p(A,B) many copies of every nonterminal B ∈ Ntop (in fact,
we have to introduce a copy B′ of B with a slightly modified right-hand side
and produce p(A,B) many copies of B′).

• The signature of D(d) is R⊎ {β}, where β is a fresh unary symbol.
• The set of nonterminals of D(d) contains:
· all A ∈ Ntop,
· for all A ∈ Ntop a copy A′ of rank 0, and
· for all A ∈ N \ Ntop and all 0 ≤ i ≤ d + 1 a copy Ai (of the same rank as

A).
• The start nonterminal of D(d) is S in case S ∈ Ntop, otherwise it is S0.
• The set of productions of D(d) contains the following productions:
(a) For every (A → (U , τ, E)) ∈ P with A ∈ Ntop we take the productions

A → (U , τ, Ed+1) and A′ → (U ′, ∅, Ed+1). Here Ed+1 results from E by
replacing every reference (B, σ) with B ∈ N \ Ntop by (Bd+1, σ), and U ′

is the structure U , where moreover every old contact node τ(i) has the
additional label β.

(b) For every (A → (U , τ, E)) ∈ P with A ∈ N \Ntop and every 1 ≤ i ≤ d+1
we take the production Ai → (U , τ, Ei−1), where Ei−1 is defined as above
(with i − 1 instead of d + 1).

(c) For every A ∈ N \ Ntop we take the production A0 → (U , τ, E), where
U only consists of the rank(A) many contact nodes τ(1), . . . τ(rank(A)),
which are all labeled with the new unary symbol β. The set of references
E contains for every B ∈ Ntop, p(A,B) (< m) many references (B′, ∅). 4

4 Note that E is in fact a multiset. One might easily change the definition of
hierarchical graph definitions by allowing the set of references to be a multiset.
Alternatively, one can introduce additional nonterminals in order to make a set of
references out of a multiset of references.

31

S A B C D E F G

S A2 B1 C0 E ′

E

F G2
e1

e2

e3 e4

Fig. 9. The dags dag(D) and dag(D(d)) (the latter restricted to those nodes reach-
able from S) for d = 1 and Ntop = {S, E, F}

By (b), we unfold nonterminals from N \Ntop in the same way as in D but only
up to depth d; by the apex restriction this is sufficient in order to generate
the part of the structure that belongs to any ψ-sphere that is generated by
a nonterminal from Ntop on a higher hierarchical level. By (c), from a non-
terminal A0 (with A ∈ N \ Ntop) we make a shortcut and directly produce
p(A,B) many copies of B′ ∈ N ′

top for every B ∈ Ntop. Note that there is a
one-to-one correspondence between paths from A to B in dag(D) and copies
of B that can be derived from A during the unfolding process. We put p(A,B)
many copies of B′ into the right-hand side of A0, because p(A,B) is exactly
the number of copies of B that can be derived from A when restricting the
unfolding process to nonterminals from N \ Ntop ∪ {B}.

Example 25 In this example we only consider the dags associated to hierar-
chical graph definitions. Assume that the top dag in Figure 9 is dag(D) from
some hierarchical graph definition D. Assume that Ntop = {S,E, F}; these
nonterminals are enclosed by circles in Figure 9. Moreover, in Figure 9 we
omit the edge labels from N; these labels are not relevant in this context. We
have |P(D)| = 11. The lower part of Figure 9 shows dag(D(d)) restricted
to those nodes that are reachable from the start nonterminal S. The labels
e1, . . . , e4 just denote some of the edges; they will be useful in a later example.

The following claim follows directly from the definition of D(d).

Claim 26 Let ψ′ = ψ∧∀y : ¬β(y). Then eval(D) contains at least m disjoint
ψ-spheres if and only if eval(D(d)) contains at least m disjoint ψ′-spheres.

Claim 27 The function that maps a hierarchical graph definition D to D(d)
can be calculated in nondeterministic logspace.

32

Proof of Claim 27. In fact, the construction of D(d) from D can be done in
deterministic logspace, except for the calculation of the values p(A,B). Here,
we simply guess the value p(A,B) and verify the correctness of the guess in
NL using Claim 24.

By Claim 26 and 27 as well as the closure of NL under NL-reductions, it suffices
to verify in NL, whether eval(D(d)) (represented by D(d) on the input tape)
contains at least m disjoint ψ′-spheres. This will be shown in the rest of the
proof. For this, we will first show that the size of the structure eval(D(d)) is
polynomially bounded.

Let N̂top = Ntop ∪ N ′
top. Similarly to P(D), define P(D(d)) as the set of all

root-paths in dag(D(d)) that end at a nonterminal from N̂top and that are
not a proper prefix of some other root-path also ending in a nonterminal from
N̂top.

Claim 28 |P(D(d))| < m

Proof of Claim 28. By (8) it suffices to show that |P(D)| = |P(D(d))|. This
follows directly from the construction of D(d): Every root path in dag(D)
ending in a nonterminal A ∈ Ntop corresponds in a natural way to a root path
in dag(D(d)) ending either in A or A′ and vice versa. See Example 25 for an
illustration of this fact.

We know show that the structure eval(D(d)) has only polynomial size. For this,
we will show how to compress paths from P(D(d)). Take a path p ∈ P(D(d)),
given by a sequence of consecutive edges in dag(D(d)), which ends in A ∈ N̂top.
If e is an edge of p such that in dag(D(d)) there is a unique path from the
source node of e to A, then we can safely omit the edge e (and all successive
edges on p) from the description of the path p. By repeating this argument,
it follows, that p can be specified by a sequence (e1, . . . , ek, A) of edges of
dag(D(d)), where

• A ∈ N̂top is the target node of p,
• e1, . . . , ek are edges from the path p,
• there is exactly one path from the target of ei to the source of ei+1 for

1 ≤ i < k, but there are at least two paths from the source of ei to the
source of ei+1, and

• there is exactly one path from the target of ek to the node A, but there are
at least two paths from the source of ek to A.

By the last two points, there are at least k + 1 paths from the root S to
A ∈ N̂top; thus,

k + 1 ≤ |P(D(d))| < m

33

(in fact, 2k ≤ |P(D(d))| < m).

Example 25 (continued). Consider the lower dag dag(D(d)) in Figure 9.
The path (e1, e2, e3, e4) belongs to P (D(d)). It will be encoded by the sequence
(e1, e3, F).

Claim 29 Every node of the structure eval(D(d)) can be represented in space
O(log(|D(d)|)) (in particular the size of eval(D(d)) is bounded polynomially
in the size of D(d)).

Proof of Claim 29. According to Remark 6, a node of eval(D(d)) is repre-
sented by a pair (p, v), where p is a root-path in dag(D(d)) (ending in a
nonterminal A) and v is an internal node in the right-hand side of A. Thus,
it suffices to show that an arbitrary root-path in dag(D(d)) can be stored in
logspace. Note that in dag(D(d)), every nonterminal of D(d) has distance at
most d + 1 from a nonterminal of N̂top. Since d + 1 is a fixed constant, it
suffices to store an arbitrary root-path in dag(D(d)) ending at a nonterminal
from N̂top in logspace. Now, every root-path ending in a nonterminal from N̂top

is a prefix of some path from P(D(d)). By the remark preceding Claim 29,
such a path can be represented by a sequence (e1, . . . , ek, A) of k < m edges of
dag(D(d)) and one nonterminal A ∈ N̂top. Since m is a fixed constant, loga-
rithmic space suffices. To sum up, a node of eval(D(d)) can be represented by
a tuple ((e1, . . . , ek), q, v), where (e1, . . . , ek) are edges of dag(D(d)), k < m, q
is a sequence of edges that specifies a path of length at most d+1 in dag(D(d))
that starts in a node from N̂top and ends in some nonterminal A, and v is an
internal node from the right-hand side of A.

Claim 30 Let (u1, . . . , uℓ) be a tuple of nodes of eval(D(d)) represented as
in the proof of Claim 29. Then, given D(d) and (u1, . . . , uℓ) as input, it can
be checked in NL, whether (u1, . . . , uℓ) belongs in eval(D(d)) to some given
relation R ∈ R.

Proof of Claim 30. Let ((e1, . . . , ek), q, v) be the logspace representation of ui

from the proof of Claim 29. Thus, ((e1, . . . , ek), q) represents a root-path p in
dag(D(d)). Then, (p, v) is the ordinary (polynomial size) representation of ui

according to Remark 6. Note that the function that maps ((e1, . . . , ek), q) to
p can be calculated in nondeterministic logspace by simply guessing the path
p in dag(D(d)) and thereby checking whether each of the edges ei is visited
and that the path q is a suffix of the path p. Now, by the second statement of
Remark 6, given the ordinary (polynomial size) representation of u1, . . . , uℓ, it
can be checked in logspace, whether (u1, . . . , uℓ) ∈ R. Claim 30 follows from
the closure of NL under NL-reductions.

Now we can finish the proof of Theorem 19. Recall that it suffices to check in
NL, whether the structure eval(D(d)) (represented by D(d)) contains at least

34

m disjoint ψ′-spheres. Thus, we have to verify a fixed first-order sentence ϕ in
eval(D(d)). We will do this using an alternating logspace machine, where the
number of alternations is bounded by the number of quantifier alternations
of ϕ (a fixed constant). For each existential (universal) quantifier of ϕ we
guess existentially (universally) a node u of eval(D(d)) using the logspace
representation from Claim 29. After guessing such a representation, we have
to verify that the guessed data indeed represent a node of eval(D(d)). This is
easily possible in NL, since it can be checked in NL, whether there is a unique
path between two nodes of a dag. Finally, we have to verify atomic statements
on the logspace representations of the guessed nodes, which is possible in NL

by Claim 30. This finishes the proof of the theorem. 2

Recall from Definition 2 that a hierarchical graph definition D = (R, N, S, P)
is c-bounded (c ∈ N), if rank(A) ≤ c for every A ∈ N and every right-hand
side of a production from P contains at most c references.

Theorem 31 For every fixed FO sentence ϕ and every fixed c ∈ N, the ques-
tion, whether eval(D) |= ϕ for a given c-bounded hierarchical graph definition
D is in P.

PROOF. The basic idea for the proof of the theorem is based on Courcelle’s
technique for evaluating fixed MSO formulas in linear time over graph classes
of bounded tree width [9]. Let ϕ be a fixed FO sentence of quantifier rank
k. Let R be the fixed signature, over which ϕ is defined. W.l.o.g. we may
assume that our input hierarchical graph definition is also defined over the
signature R. Thus, let D = (R, N, S, P) be a c-bounded hierarchical graph
definition. By Remark 9, we can construct from D an equivalent straight-
line program S = (Xi := ti)1≤i≤ℓ over the fixed signature R such that for
every formal variable Xi, rank(Xi) ≤ d(c), where d(c) is a constant that
only depends on c. Thus, for every 1 ≤ i ≤ ℓ, the structure eval(Xi) can
be viewed as a relational structure over some subsignature Θi of the fixed
signature Θ = R∪{pin(1), . . . , pin(d(c))}. Here, as in the proof of Theorem 11,
pin(i) is a constant symbol that denotes the i-th contact node of eval(Xi).
Since this signature Θ is fixed (i.e., does not vary with the input) and since
moreover also the quantifier rank k is fixed in the theorem, the number of
pairwise nonequivalent FO sentences of quantifier rank at most k over the
signature Θ is bounded by some constant g(k). Thus, also the number of
possible k-FO theories (in the sense of Section 6) over the signature Θ is
bounded by some constant.

By [10] (see also [14,34]), there exist functions F⊕, Fglue, and Ff (where f :
{1, . . . ,m} → {1, . . . , n} is injective, n,m ≤ d(c)) over the set of all k-FO
theories over the signature Θ such that

35

• k-FOTh(G1 ⊕ G2) = F⊕(k-FOTh(G1), k-FOTh(G2)),
• k-FOTh(glue(G)) = Fglue(k-FOTh(G)), and
• k-FOTh(renamef (G)) = Ff (k-FOTh(G)).

Again, these functions do not depend from the input; they can be assumed to
be given hard-wired.

Now we replace the straight-line program S by a straight-line program for
calculating k-FOTh(eval(S)) as follows:

(1) If Xi := ti is a definition from S such that ti is an n-pointed (n ≤
d(c)) structure G, then we calculate k-FOTh(G), which is possible in
polynomial time (in fact in AC

0 [5,25]) and replace the definition Xi := ti
by Xi := k-FOTh(G).

(2) A definition of the form Xi := Xp ⊕ Xq is replaced by Xi := F⊕(Xp, Xq)
and similarly for definitions of the form Xi := glue(Xj) and Xi :=
renamef (Xj).

Note that this is a straight-line program over a fixed set, namely the set
of all k-FO theories. Hence, we can evaluate this straight-line program in
polynomial time and thereby calculate k-FOTh(eval(S)). We finally check,
whether ϕ ∈ k-FOTh(eval(S)). 2

One may generalize Theorem 31 by considering straight-line programs that
in addition to the operators ⊕, glue, and renamef contain further operators
that are compatible with the calculation of the k-FO theory, see [34] for such
operations.

Theorem 15, 16, 19, and 31 give us a clear picture on the conditions that make
the model-checking problem for FO on hierarchically defined input structures
difficult: references have to access contact nodes and references have to access
an unbounded number of nodes.

7.2 Combined complexity

In the previous section, we have seen that for Σk-FO, data complexity in-
creases considerably when moving from explicitly given input structures to
hierarchically defined input structures (from Σlog

k to Σp
k−1). For the combined

complexity of Σk-FO, such a complexity jump does not occur (recall that the
combined complexity of Σk-FO for explicitly given input structures is Σp

k):

Theorem 32 The following problem is complete for Σp
k (respectively Πp

k):

36

INPUT: A hierarchical graph definition D and a Σk-FO (respectively Πk-FO)
sentence ϕ

QUESTION: eval(D) |= ϕ ?

PROOF. The lower bound follows from the corresponding result for explic-
itly given input structures. For the upper bound we can follow the arguments
for the proof of Theorem 15. 2

For explicitly given input structures, the combined complexity reduces from
PSPACE to P when moving from FO to FOm for some fixed m [49]. A slight
modification of the proof of Theorem 16 shows that for hierarchically defined
structures, PSPACE-hardness already holds for the data complexity of FO2

(without any restriction on the quantifier prefix). We just have to start with
an instance of QBF (quantified boolean satisfiability) and carry out the con-
struction in the proof of Theorem 16.

8 MSO and SO over hierarchically defined structures

In this section we study the model-checking problem for MSO and SO over
hierarchically defined input structures. We prove that the data complexity
of Σk-SO (respectively Πk-SO) for hierarchically defined input structures is
Σe

k (respectively Πe
k) (Theorem 34). In fact, the lower bound already holds

for Σk-MSO. For c-bounded hierarchical graph definitions we can show that
the data complexity of Σk-MSO (respectively Πk-MSO) goes down to Σp

k (re-
spectively Πp

k) (Theorem 40). Finally, in Section 8.2 we show that also the
combined complexity for Σk-SO (respectively Πk-SO) and hierarchically de-
fined input structures is Σe

k (respectively Πe
k) (Theorem 41). In fact, the lower

bound already holds for Σk-MSO and 2-bounded hierarchical graph definitions
(Theorem 42).

We should remark that the apex restriction from Section 7.1 does not lead to
more efficient model-checking algorithms in the context of MSO. For an arbi-
trary hierarchical graph definition D we can enforce the apex restriction by
inserting additional edges (labeled with some new binary symbol α) whenever
a tentacle of a reference accesses a contact node. If D′ denotes this new hi-
erarchical graph definition, then eval(D) results from eval(D′) by contracting
all α-labeled edges. But this contraction is MSO-definable.

37

8.1 Data complexity

In order to obtain a sharp lower bound on the data complexity of Σk-MSO
over hierarchically defined structures, we will use the following computational
problem QOΣk-SAT (respectively QOΠk-SAT) for k ≥ 1 (where QO stands
for “quantified oracle”). For m ≥ 1 let Fm be the set of all m-ary boolean
functions. If k is even, then an input for QOΣk-SAT is a formula Θ of the
form

∃f1 ∈ Fm∀f2 ∈ Fm · · · ∃fk−1 ∈ Fm∀fk ∈ Fm

∃x1, . . . , xk ∈ {0, 1}m ∃y ∈ {0, 1}ℓ : ϕ((xi)1≤i≤k, y, (fi(xj))1≤i,j≤k),

where ϕ is a boolean formula in mk + ℓ + k2 boolean variables. For k odd, an
input Θ for QOΣk-SAT has the form

∃f1 ∈ Fm∀f2 ∈ Fm · · · ∃fk ∈ Fm

∀x1, . . . , xk ∈ {0, 1}m ∀y ∈ {0, 1}ℓ : ϕ((xi)1≤i≤k, y, (fi(xj))1≤i,j≤k).

In both cases, we ask whether Θ is a true formula. The problem QOΠk-SAT is
defined analogously, we only start with a universal quantifier over Fm. Thus,
in these problems we allow to quantify over boolean functions of arbitrary
arity, which are objects of exponential size. It is therefore clear that QOΣk-
SAT (respectively QOΠk-SAT) belongs to the level Σe

k (respectively Πe
k) of

the EXP time hierarchy. The following proposition is shown for k = 1 in [4].

Proposition 33 For all k ≥ 1, the problem QOΣk-SAT (respectively QOΠk-
SAT) is complete for Σe

k (respectively Πe
k).

PROOF. We demonstrate the general idea for the class Σe
3, the same ideas

also work for the other levels of the EXP time hierarchy. Let M be a fixed
alternating Turing-machine such that:

(a) M accepts a Σe
3-complete language L(M),

(b) the initial state is an existential state,
(c) M makes on every computation path exactly 2 alternations, and
(d) for an input of length n, M makes exactly 2p(n) (for a polynomial p(n))

transitions between two alternations as well as after (respectively before)
the last (respectively first) alternation.

Thus, the total running time is 3 ·2p(n) on every computation path. Properties
(c) and (d) can be easily enforced without losing property (a). Let w be an
input for M of length n and let q = p(n).

38

There exists a polynomial time predicate φ over {0, 1}∗ such that w ∈ L(M)
if and only if

∃x1 ∈ {0, 1}2q

∀x2 ∈ {0, 1}2q

∃x3 ∈ {0, 1}2q

: φ(w x1 x2 x3).

Since φ is a polynomial time predicate, we can apply the construction from
the proof of the Cook-Levin Theorem and obtain a 3-CNF formula ψw of size
exponential in n = |w| such that w ∈ L(M) if and only if

∃x1 ∈ {0, 1}2q

∀x2 ∈ {0, 1}2q

∃x3 ∈ {0, 1}2q

∃y ∈ {0, 1}2cq

: ψw(x1 x2 x3 y),

where c is some constant. By padding the sequences x1, x2, and x3y to some
length 2m, where m ∈ O(q) and 2m ≥ 2q +2cq, we can bring the above formula
into the form

∃x1 ∈ {0, 1}2m

∀x2 ∈ {0, 1}2m

∃x3 ∈ {0, 1}2m

: ψw(x1 x2 x3). (9)

We encode each of the 3 · 2m many variables in the sequence x1x2x3 by a pair
(i, b) ∈ {0, 1}2 ×{0, 1}m. The pair (i, b) encodes the b-th variable of xi. Here b
and i are interpreted as binary numbers. Let us denote this variable by x(i, b).
Then every clause of ψw has the form

(t1 ⊕ x(i1, b1)) ∨ (t2 ⊕ x(i2, b2)) ∨ (t3 ⊕ x(i3, b3)), (10)

where tj ∈ {0, 1}, ij ∈ {0, 1}2, bj ∈ {0, 1}m, and ⊕ denotes the boolean
exclusive or (note that 0 ⊕ x = x and 1 ⊕ x = ¬x). Now the crucial point is
that the clauses that are constructed in the proof of the Cook-Levin Theorem
follow a very regular pattern. More precisely, from the input w it can be
checked in polynomial time, whether a clause of the form (10) belongs to
ψw. Thus, there exists a boolean predicate pw, which can be computed in
polynomial time from w such that (10) belongs to the 3-CNF formula ψw if
and only if pw(b1, b2, b3, i1, i2, i3, t1, t2, t3) is true, see also [4, proof of Prop. 4.2].

Let Fm be the set of all m-ary boolean functions. Then, (9) is equivalent to

∃f1 ∈ Fm∀f2 ∈ Fm∃f3 ∈ Fm

∀b1, b2, b3 ∈ {0, 1}m ∀i1, i2, i3 ∈ {0, 1}2 ∀t1, t2, t3 ∈ {0, 1} :

t1 ⊕ fi1(b1) ∨ t2 ⊕ fi2(b2) ∨ t3 ⊕ fi3(b3) ∨

¬pw(b1, b2, b3, i1, i2, i3, t1, t2, t3).

Finally, we replace in this formula every fi(b) by

(i = 01 ∧ f1(b)) ∨ (i = 10 ∧ f2(b)) ∨ (i = 11 ∧ f3(b)).

The resulting formula is of the desired form. 2

39

Theorem 34 For every fixed Σk-SO sentence (respectively Πk-SO sentence)
ϕ, the question, whether eval(D) |= ϕ for a given hierarchical graph definition
D, is in Σe

k (respectively Πe
k).

Moreover, for every level Σe
k (respectively Πe

k) of the EXP time hierarchy EH,
there exists a fixed Σk-MSO sentence (respectively Πk-MSO sentence) ϕ such
that the question, whether eval(D) |= ϕ for a given hierarchical graph definition
D, is hard for Σe

k (respectively Πe
k).

PROOF. For the first statement, assume that

ϕ ≡ ∃X1∀X2 · · ·QXk ψ(X1, . . . , Xk)

is a fixed Σk-SO sentence, where X i is a tuple of SO variables, ψ is an FO
formula, Q = ∃ if k is odd, and Q = ∀ if k is even. Our alternating exponential
time algorithm guesses for every 1 ≤ i ≤ k a tuple U i of relations over the
universe U of eval(D). For every quantified SO variable of arity m we have to
guess (existentially if i is odd, universally if i is even) an m-ary relation over U .
Since |U | is bounded by 2O(|D|), the number of m-tuples in an m-ary relation
is bounded by 2O(m·|D|), which is exponential in the input size. Thus, an m-ary
relation over U can be guessed in exponential time. At the end, we have to ver-
ify, whether eval(D) |= ψ(U1, . . . , Uk), where ψ only contains FO quantifiers.
This is possible in deterministic exponential time: Assume that ψ is in prenex
normal form and contains ℓ distinct FO variables. Then there are only 2O(ℓ·|D|)

many assignments from the set of FO variables to U . We unfold the structure
eval(D) and check for each of the 2O(ℓ·|D|) possible assignments, whether the
quantifier-free kernel of ψ evaluates to true under that assignment. This takes
time 2O(ℓ·|D|) · 2O(|D|), i.e., exponential time. From the resulting data we can
easily determine in exponential time, whether eval(D) |= ψ(U1, . . . , Uk). Thus,
we obtain an exponential time algorithm with precisely k − 1 alternations.

The second statement from the theorem will be shown by a reduction from
QOΣk-SAT (respectively QOΠk-SAT). We will present the construction only
for QOΣ2-SAT, the general case can be dealt analogously. Thus, let Θ be a
formula of the form

∃f1 ∈ Fm∀f2 ∈ Fm∃x1, x2 ∈ {0, 1}m ∃y ∈ {0, 1}ℓ :

ϕ(x1, x2, y, (fi(xj))1≤i,j≤2). (11)

We will construct a hierarchical graph definition D and a fixed Σ2-MSO sen-
tence ψ such that Θ is a positive QOΣ2-SAT-instance if and only if eval(D) |=
ψ. In a first step we will construct a fixed Σ3-MSO sentence with this property,
then this sentence will be further reduced to an equivalent Σ2-MSO sentence.

40

S

A0
1 A0

2

Gϕ

var

var

...

var var. . .

f 1
1

f 2
1

f 1
2

f 2
2

1

2m 1

2m

Fig. 10. The initial rule for the hierarchical graph definiton D

We will use the unary relational symbols tt, ff, AND, OR, NOT, root, var,
f 1

1 , f 1
2 , f 2

1 , and f 2
2 and the binary symbols 1 and 2 (and an additional sym-

bol for unlabeled edges). The nonterminals are S, A0
1, A

0
2, . . . , A

m
1 , Am

2 , where
rank(S) = 0 and rank(Aj

i) = 2m + j. The initial rule of D is shown in Fig-
ure 10. In the right-hand side, there are 2m+ℓ many var-labeled nodes, which
represent the variables in the sequences x1, x2, and y. The var-labeled node
that is accessed via the i-th (respectively (m+i)-th) tentacle of the A0

j -labeled
reference (1 ≤ i ≤ m, j ∈ {1, 2}) represents the i-th variable of the sequence
x1 (respectively x2). The ℓ remaining var-labeled nodes on the left side of the
rectangular box represent the variables in y. The unique f j

i -labeled node rep-
resents the input fi(xj) of the formula ϕ. The box labeled with Gϕ represents
the boolean formula ϕ, encoded in the usual way as a directed acyclic graph
(dag) with edge relation →. The nodes of this dag correspond to the subex-
pressions of ϕ, and every node is labeled with the topmost boolean operator
(AND, OR, or NOT) of the corresponding subexpression of ϕ. The root of the
dag is in addition also labeled with root. In the following let Λ denote those
nodes labeled with a symbol from {AND, OR, NOT, root, var, f 1

1 , f 1
2 , f 2

1 , f 2
2}.

Assume that X ⊆ Λ. Then, the fixed formula valid(X), which is defined as

valid(X) ≡ ∀x, y, z ∈ Λ






(y → x ← z ∧ y 6= z ∧ AND(x)) ⇒

(x ∈ X ⇔ y ∈ X ∧ z ∈ X) ∧

(y → x ← z ∧ y 6= z ∧ OR(x)) ⇒

(x ∈ X ⇔ y ∈ X ∨ z ∈ X) ∧

(y → x ∧ NOT(x)) ⇒

(x ∈ X ⇔ y 6∈ X)






∧

∃x : root(x) ∧ x ∈ X

expresses that X ⊆ Λ defines a consistent truth assignment to the subformulas
of ϕ such that moreover ϕ evaluates to true (i.e., the root node belongs to X).

41

The nonterminals A0
1 and A0

2 generate a graph structure that enables us to
quantify over two m-ary boolean functions. For this, we introduce the following
rules, where i ∈ {1, 2} and 0 ≤ j < m:

Aj
i Aj+1

i Aj+1
i

1 2m. . .

. . .
2m + j 2m + 1tt ff

1

2m 1

2m

2m + j + 1 2m + j + 1
2m + j

2m + j
2m + 1

2m + 1

The tentacles with labels 1, . . . , 2m of each Aj
i -labeled reference access the

2m many var-labeled nodes that represent the variables in the sequences x1

and x2; thus, the access to these nodes is just passed from Aj
i to Aj+1

i . The
other tentacles (with labels 2m + 1, . . . , 2m + j) access nodes that are either
labeled with tt or ff. These labels represent the truth values true and false,
respectively. Note that in the production above, two new nodes are generated,
one is labeled with tt and the other one is labeled with ff.

Finally, for i ∈ {1, 2} we introduce the following rule; recall that 1 and 2 are
binary relational symbols:

Am
i

1 m m + 1 2m.

. . .
2m + 1 3m

fi

1 12 2

In general, for every 1 ≤ j ≤ k = 2 and every 1 ≤ i ≤ m, the (2m + i)-th
contact node is connected with the ((j − 1)m + i)-th contact node (which
represents the i-th variable of xj) via a j-labeled edge. For i ∈ {1, 2} these
productions generate 2m many fi-labeled nodes (because 2m many Am

i -labeled
references are generated from A0

i), one for each possible argument tuple to the
function fi. Thus, a quantification over fi ∈ Fm corresponds to a quantification
over a subset Fi of the fi-labeled nodes.

Example 35 Figure 11 shows for m = k = 2 the graph that is generated
from the nonterminals A0

1 and A0
2. We did not draw multiple edges with the

same label between two nodes. The three labels a, b, and c are introduced in

42

f1 f1

a

f1 f1

ff
ff tt tt ff tt

var
b

var c var var

1
2

1
2 1 2 1

2 1

2

1

2

f2 f2 f2 f2

ff
ff tt tt ff tt

1
2

1
2 1 2 1

2 1

2

1

2

Fig. 11. The graph generated from A0
1 and A0

2 for m = k = 2

order to denote these three nodes; they do not represent actual node labels. The
first two var-labeled nodes b and c represent the pair of variables x1 and the
second two var-labeled nodes represent x2. The function f1 ∈ F2 with f1(0, 0) =
f1(1, 0) = f1(1, 1) = 0 and f1(0, 1) = 1 is represented by the subset F1 of
the f1-labeled nodes that contains only the f1-labeled node a. An assignment
to all the 2m + ℓ = 4 + ℓ variables in the sequences x1, x2, and y will be
encoded by a subset X of the var-labeled nodes that were generated with the
start nonterminal S. For instance, if b 6∈ X but c ∈ X, then this means that 0
is assigned to the first variable of x1 and 1 is assigned to the second (= last)
variable of x1. Then the fact that f1(x1) = f1(0, 1) = 1 for this f1 and x1 can
be expressed by the fact that

∀y∀z : a → y
1
→ z ⇒ (tt(y) ⇔ z ∈ X).

In general, if Fi is a subset of the fi-labeled nodes that represents the function
fi ∈ Fm and X is a subset of the var-labeled nodes that represents an assign-
ment to the boolean variables in x1, x2, and y, then the fact that fi(xj) = 1
can be expressed by the following fixed formula ψi,j(Fi, X):

ψi,j(Fi, X) ≡ ∃x ∈ Fi ∀y ∀z : x → y
j
→ z ⇒ (y ∈ tt ⇔ z ∈ X)

Now let ψ be the following Σ3-MSO sentence (recall that Λ is the set of
those nodes that are labeled with a unary relational symbol from the set

43

{AND, OR, NOT, root, var, f 1
1 , f 1

2 , f 2
1 , f 2

2}):

ψ ≡ ∃F1 ⊆ f1 ∀F2 ⊆ f2 ∃X ⊆ Λ






∧

1≤i,j≤2

ψi,j(Fi, X) ⇔ ∃y ∈ X : f j
i (y)

∧ valid(X)






Then eval(D) |= ψ if and only if Θ in (11) is a positive QOΣ2-SAT-instance.

Note that the above sentence ψ is a Σ3-MSO sentence instead of a Σ2-MSO
sentence. On the other hand, the innermost existential MSO quantifier ∃X ⊆
Λ ranges over a set of nodes of polynomial size in eval(D) (Λ has polynomial
size). We will use this fact in order to replace ∃X ⊆ Λ by an additional first-
order quantifier. For this we have to introduce some additional graph structure
of exponential size. Note that all nodes from Λ are generated directly from
the start nonterminal S. Assume that δ = |Λ|. We now add to the right-hand
side of S a new nonterminal B of rank δ, whose tentacles access precisely the
nodes from Λ. From B we generate a graph structure that is shown for δ = 2
in the following picture, where Λ = {u1, u2} (u1 and u2 are not node labels)
and λ is a new unary relational symbol.

λ λ λ λ

u1

u2

In general, we generate a binary tree of height δ, where every leaf is labeled
with λ. From every leaf there is an edge back to every node on the unique
path from that leaf to the root (including the leaf itself), except to the root.
Moreover, from every node on the i-th level of the tree (1 ≤ i ≤ δ), which
is a right child of its parent node, there exists an edge to the node ui ∈
Λ. This graph structure can be easily generated with a small hierarchical
graph definition, the construction is similar to the one used in the proof of
Theorem 16. Using this additional graph structure we can

• replace the MSO quantification ∃X ⊆ Λ : · · · in the formula ψ by ∃x :
λ(x) ∧ · · · , where x is a new FO variable, and

• replace every atomic formula y ∈ X in the formula ψ by ∃z : x → z → y.

44

The resulting formula is a Σ2-MSO sentence that is true in eval(D) if and only
if eval(D) |= ψ. 2

We will next show that for c-bounded hierarchical graph definitions the data
complexity of Σk-MSO (respectively Πk-MSO) goes down to the level Σp

k (re-
spectively Πp

k) of the polynomial time hierarchy. Thus, the same complexity as
for explicitly given input structures is obtained. For this, we have to introduce
a few definitions.

A quantifier prefix π is a sequence π = Q1α1Q2α2 · · ·Qnαn, where Qi ∈ {∃,∀}
and αi is an FO or MSO variable. A π-formula is a formula of the form π : ψ,
where ψ does not contain any (FO or MSO) quantifiers. We define generalized
π-formulas inductively as follows: If π = ε, then a generalized π-formula is
just a formula without quantifiers. If π = Qα π′ for a quantifier prefix π′, then
a generalized π-formula is a positive boolean combination of formulas of the
form Qα ψ, where ψ is a generalized π′-formula. If π is of the form π1 · · · πkπ

′,
where π′ only contains FO quantifiers and πi is a block of existential (if i is
odd) or universal (if i is even) MSO quantifiers, then a generalized π-formula
is logically equivalent to a Σk-MSO formula. Moreover, if the quantifier prefix
π has length k, then a generalized π-formula has quantifier rank k. Thus, up to
logical equivalence, there are only finitely many generalized π-sentences over
some fixed signature. The generalized π-theory of a structure U (over some
signature R), briefly gen-π-Th(U), consists of all generalized π-sentences over
the signature R that are true in U .

Example 36 A typical generalized (∃X∀y∃Z)-sentence may have the form

∃X(∀y (∃Z : ϕ1(X, y, Z) ∧ ∃Z : ϕ2(X, y, Z)) ∨

∀y (∃Z : ϕ3(X, y, Z))) ∧

∃X ∀y ∃Z : ϕ4(X, y, Z),

where ϕ1, . . . , ϕ4 do not contain quantifiers.

The following proposition is a refinement of the well-known Feferman-Vaught
decomposition theorem [14] for MSO, see [10,34]. In fact, an analysis of the
inductive proof of [10, Lemma 4.5] yields the statement of the proposition. For
two structures U1 and U2 over signatures R1 and R2 (we may have R1 ∩R2 6=
∅), respectively, we consider the disjoint union U1 ⊕U2 as a structure over the
signature R1 ∪R2 in the natural way. We only have to require that the set of
constant symbols from R1 and R2, respectively, are disjoint.

Proposition 37 Let R1 and R2 be relational signatures and let

θ(X1, . . . , Xℓ, y1, . . . , ym, z1, . . . , zn)

45

be a generalized π-formula over the signature R1 ∪ R2. Then there exist a
finite index set I and generalized π-formulas θi,1 (over the signature R1) and
θi,2 (over the signature R2), i ∈ I, such that for all structures U1 and U2

over the signatures R1 and R2, respectively, and all V1, . . . , Vℓ ⊆ U1 ⊕ U2,
b1, . . . , bm ∈ U1, and c1, . . . , cn ∈ U2 we have:

(U1 ⊕ U2) |= θ(V1, . . . , Vℓ, b1, . . . , bm, c1, . . . , cn) ⇔
∨

i∈I

[U1 |= θi,1(V1 ∩ U1, . . . , Vℓ ∩ U1, b1, . . . , bm)∧

U2 |= θi,2(V1 ∩ U2, . . . , Vℓ ∩ U2, c1, . . . , cn)]

Corollary 38 Let R1 and R2 be relational signatures and let θ be a general-
ized π-sentence over the signature R1 ∪R2. Then there exist a finite index set
I and generalized π-sentences θi,1 (over the signature R1) and θi,2 (over the
signature R2), i ∈ I, such that for all structures U1 and U2 over the signatures
R1 and R2, respectively, we have:

(U1 ⊕ U2) |= θ ⇔
∨

i∈I

U1 |= θi,1 ∧ U2 |= θi,2 (12)

The statements of the next lemma correspond to [10, Lemma 4.6, Lemma 4.7].

Lemma 39 Let R be a relational signature and let θ be a generalized π-
sentence over the signature R. Then there exist generalized π-sentences θ′

and θ′′ over the signature R such that for all structures U over the signature
R we have:

glue(U) |= θ ⇔ U |= θ′ (13)

renamef (U) |= θ ⇔ U |= θ′′ (14)

Theorem 40 For every fixed Σk-MSO sentence (respectively Πk-MSO sen-
tence) ϕ and every fixed c ∈ N, the question, whether eval(D) |= ϕ for a given
c-bounded hierarchical graph definition D is in Σp

k (respectively Πp
k).

PROOF. It suffices to prove the statement for Σk-MSO sentences. As in the
proof of Theorem 31, the basic idea is again based on Courcelle’s technique
for evaluating fixed MSO formulas in linear time over graphs of bounded tree
width [9]. Let ϕ be a fixed Σk-MSO sentence of quantifier rank k and let
R be the signature over which ϕ is defined. Let D = (R, N, S, P) be a c-
bounded hierarchical graph definition over this fixed signature R. As in the
proof of Theorem 31 we first transform D into an equivalent straight-line
program S = (Xi = ti)1≤i≤ℓ, where rank(Xi) ≤ d(c) for every formal variable
Xi. Again, eval(Xi) is a relational structure over some subsignature Θi of the
fixed signature Θ = R ∪ {pin(1), . . . , pin(d(c))}, and the number of pairwise

46

nonequivalent MSO sentences of quantifier rank at most k over the signature
Θ is bounded by some constant g(k).

Recall that in the proof of Theorem 31 we first have calculated in polynomial
time the theories k-FOTh(Gi) for every definition Xi := Gi, where Gi is an
explicitly given structure. In the present situation, the direct calculation of k-
MSOTh(Gi) would lead to a PΣ

p

k -algorithm, i.e., a polynomial time algorithm
with access to an oracle for Σp

k. It is believed that Σp
k is a proper subset of

PΣ
p

k . The notion of generalized π-theories was introduced in order to get a
Σp

k-algorithm.

Assume that our input formula ϕ is a π-sentence for some quantifier prefix
π. Thus, since ϕ is a Σk-MSO sentence, π is of the form π1 · · ·πkπ

′, where π′

only contains FO quantifiers and πi is a block of existential (if i is odd) or
universal (if i is even) MSO quantifiers. From Corollary 38 and Lemma 39 we
obtain the following statement:

There exist monotonic (w.r.t. set inclusion) functions F⊕, Fglue, and Ff (where
f : {1, . . . ,m} → {1, . . . , n} is injective, n,m ≤ d(c)) over the finite set of all
generalized π-theories (over the signature Θ) such that

• gen-π-Th(G1 ⊕ G2) = F⊕(gen-π-Th(G1), gen-π-Th(G2)),
• gen-π-Th(glue(G)) = Fglue(gen-π-Th(G)), and
• gen-π-Th(renamef (G)) = Ff (gen-π-Th(G)).

Monotonicity of F⊕ follows from the fact that the right part of the equivalence
(12) does not contain negations (i.e., only |= but not 6|= occurs). Analogously,
monotonicity of Fglue and Ff follows from (13) and (14), respectively.

Now we verify eval(S) |= ϕ in Σp
k as follows:

(1) Guess in an existential state for every formal variable Xi of the straight-
line program S = (Xi = ti)1≤i≤ℓ a set Ti of generalized π-sentences over
the signature Θi such that
(a) ϕ ∈ Tℓ,
(b) if ti = Xp ⊕ Xq, then Ti ⊆ F⊕(Tp, Tq),
(c) if ti = glue(Xj), then Ti ⊆ Fglue(Tj), and
(d) if ti = renamef (Xj), then Ti ⊆ Ff (Tj).

(2) For every i such that ti is an explicitly given structure Gi, we verify in Σp
k

whether Gi |=
∧

χ∈Ti
χ.

We have to show that (i) this is indeed a Σp
k-algorithm and (ii) it is correct.

For (i), first notice that step (2) is indeed in Σp
k: There are at most ℓ many i

such that ti is an explicitly given structure Gi; let I be the set of all these i. For
every i ∈ I we have to check whether Gi |=

∧
χ∈Ti

χ. Note that also
∧

χ∈Ti
χ

is a generalized π-sentence and hence equivalent to a Σk-MSO sentence φi.

47

Now, we verify for all i ∈ I the property Gi |= φi in parallel. We first guess
existentially for each variable in one of the leading existential quantifier blocks
of the φi a value from Gi, then we proceed with the following blocks of universal
quantifiers and so on. Finally, the initial existential guessing in step (1) can
be merged with the initial existential guessing in step (2). Thus, the overall
algorithm is a Σp

k-algorithm.

It remains to verify the correctness of the algorithm. If eval(S) |= ϕ, then we
obtain a successful run of the algorithm by guessing

Ti = gen-π-Th(eval(Xi))

for every formal variable Xi in step (1). On the other hand, if the algorithm
accepts the straight-line program S, then there exists for every formal variable
Xi a set Ti of generalized π-sentences such that the inclusions in (1b)–(1d)
hold, and moreover Gi |=

∧
χ∈Ti

χ for every i such that ti = Gi is an explicitly
given structure. We prove inductively, that Ti ⊆ gen-π-Th(eval(Xi)) for all
1 ≤ i ≤ ℓ. If ti is an explicit structure, this is clear. If ti = Xp⊕Xq for p, q < i,
then, by induction, Tp ⊆ gen-π-Th(eval(Xp)) and Tq ⊆ gen-π-Th(eval(Xq)).
Since F⊕ is monotonic, we obtain with (1b)

Ti ⊆ F⊕(Tp, Tq) ⊆ F⊕(gen-π-Th(eval(Xp)), gen-π-Th(eval(Xq)))

= gen-π-Th(eval(Xi)).

For the operators glue and renamef we can argue analogously. Thus, we get
ϕ ∈ Tℓ ⊆ gen-π-Th(eval(Xℓ)) = gen-π-Th(eval(S)), i.e., eval(S) |= ϕ. 2

8.2 Combined complexity

By the next theorem, the Σe
k (respectively Πe

k) upper bound for Σk-SO (re-
spectively Πk-SO) generalizes from data to combined complexity.

Theorem 41 For every k ≥ 1, the following problem is complete for Σe
k

(respectively Πe
k):

INPUT: A hierarchical graph definition D and a Σk-SO (respectively Πk-SO)
sentence ϕ

QUESTION: eval(D) |= ϕ ?

PROOF. The lower bound follows from Theorem 34. For the upper bound,
note that in the upper bound proof of Theorem 34, it is not relevant that

48

the Σk-SO sentence is fixed; it is only important that the number of quan-
tifier blocks k is fixed. Thus, we can reuse the arguments from the proof of
Theorem 34. 2

Due to the following theorem, hardness for Σe
k (respectively Πe

k) even holds
for 2-bounded hierarchical graph definitions and MSO:

Theorem 42 For every k ≥ 1 and every c ≥ 2, the following problem is
complete for Σe

k (respectively Πe
k):

INPUT: A c-bounded hierarchical graph definition D and a Σk-MSO sentence
(respectively Πk-MSO sentence) ϕ

QUESTION: eval(D) |= ϕ ?

PROOF. We use a construction from [8,33]. For k odd, we prove the theorem
for Σe

k, for k even, we prove the theorem for Πe
k. We only consider the case that

k is odd. Let M be a fixed alternating Turing-machine with a Σe
k-complete

membership problem. Let Γ = {a1, . . . , am} be the tape alphabet with am = 2,
let Q = Q∃ ⊎ Q∀ ⊎ F be the state set, and let q0 ∈ Q∃ be the initial state.
Let p(n) be a polynomial such that when M is started on an input word of
length n, the running time is bounded by 2p(n). W.l.o.g. we may assume that
on every computation path, M makes precisely k − 1 alternations, We may
also assume that a final state from F can be only reached from a state in Q∃,
i.e., there does not exist a transition from a state in Q∀ to a state in F .

We will consider structures of the form ([0, N], S) where N ∈ N, [0, N] =
{0, . . . , N}, and S is the successor function on the interval [0, N]. The structure
([0, 2n−1], S) can be generated by the following 2-bounded hierarchical graph
definition of size O(n) (A0 is the start nonterminal):

Ai Ai+1 Ai+1

An

for 0 ≤ i ≤ n − 1
1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 S

For an input word w for M we will construct a formula ψw such that

([0, 2p(|w|) − 1], S) |= ψw ⇔ w is accepted by M.

In a first step, we will consider the richer structure ([0, 2p(|w|) − 1], +), where
+ denotes the addition of natural numbers on the interval [0, 2p(|w|) − 1]. In a

49

second step, we will show how to eliminate + using the successor function S.

Let [0, N] be an initial segment of the natural numbers, where N ≥ |Q| −
1. We may identify the state set Q with the numbers {0, . . . , |Q| − 1}. An
instantaneous description of M of length N will be encoded by a tuple A =
(A1, . . . , Am+2) with Ai ⊆ [0, N], where Ai (1 ≤ i ≤ m = |Γ|) is the set of all
those k ∈ [0, N] such that tape cell k contains the tape symbol ai, Am+1 = {k}
with k the current position of the tape head, and Am+2 = {q} with q the
current state. For subsets P1, P2 ⊆ Q and two tuples A,B ∈ (2[0,N])m+2 we
write A ⇒N

P1,P2
B if and only if

• A and B describe instantaneous descriptions of M ,
• B can be obtained from A within at most N moves of M , where no tape

position greater than N is reached and only transitions out of states from
P1 are allowed, and

• Bm+2 = {q} with q ∈ P2, i.e., we end in a state from P2.

Using the construction from [33], it is possible to construct a fixed Σ1-MSO
formula ψP1,P2(X,Y) such that for every N ≥ |Q| − 1:

([0, N], +) |= ψP1,P2(A,B) ⇔ A ⇒N
P1,P2

B.

Now construct formulas ηi (1 ≤ i < k) as follows:

η1(X) ≡ ∃Y : ψQ∃,F (X,Y)

ηi+1(X) ≡ ∀Y : ψQ∀,Q∃
(X,Y) ⇒ ηi(Y) if i is odd

ηi+1(X) ≡ ∃Y : ψQ∃,Q∀
(X,Y) ∧ ηi(Y) if i is even

Then an input word w = b0b1 · · · bn−1 with bi ∈ Γ \ {2} is accepted by the
machine M if and only if the sentence

∃X1 · · · ∃Xm+2






m−1∧

i=1

Xi = {k | bk = ai} ∧ Xm = [n, 2p(n) − 1] ∧

Xm+1 = {0} ∧ Xm+2 = {q0} ∧ ηk(X)






is true in ([0, 2p(n) − 1], +) (recall that am = 2, thus, Xm = [n, 2p(n) − 1]
expresses that the tape positions n, . . . , 2p(n) − 1 contain the blank symbol).
It is easy to write down an equivalent sentence of size O(n) in the language
of addition. Moreover, if we shift MSO quantifiers to the front, the resulting
sentence becomes a Σk-MSO sentence.

It remains to eliminate + using the successor function S on the interval
[0, 2p(n) − 1]. For this, we will show that addition on numbers in the range
[0, 2p(n) − 1] can be expressed using an FO formula of size O(p(n)2) over the
successor function S. First of all, using a standard trick we can construct for-
mulas di(x, y) (0 ≤ i < p(n)) of size O(i) such that ([0, 2p(n) − 1], S) |= di(a, b)

50

if and only if b − a = 2i:

d0(x, y) ≡ y = S(x)

di+1(x, y) ≡ ∃z ∀u∀v : ((u = x ∧ v = z) ∨ (u = z ∧ v = y)) ⇒ di(u, v)

Next, for bits xi ∈ {0, 1} (0 ≤ i < p(n)) let n(x0, . . . , xp(n)−1) =
∑p(n)−1

i=0 xi · 2
i.

Using the carry look ahead algorithm for addition of natural numbers, one can
easily write down a formula plus((xi)0≤i<p(n), (yi)0≤i<p(n), (zi)0≤i<p(n)) in 3p(n)
variables such that

([0, 2p(n) − 1], S) |= plus((xi)0≤i<p(n), (yi)0≤i<p(n), (zi)0≤i<p(n))

if and only if xi, yi, zi ∈ {0, 1} and n(x0, . . . , xp(n)−1) + n(y0, . . . , yp(n)−1) =
n(z0, . . . , zp(n)−1). The size of this formula is O(p(n)2). Let bin((xi)0≤i<p(n), x)
be the formula

∃(ui)0≤i≤p(n)






u0 = 0 ∧ up(n) = x ∧

p(n)−1∧

i=0

((xi = 0 ⇒ ui = ui+1) ∧ (xi = 1 ⇒ di(ui, ui+1)))





.

Thus, bin((xi)0≤i<p(n), x) expresses that x0 · · ·xp(n)−1 is the binary expansion
of the number x. Then x + y = z for x, y, z ∈ [0, 2p(n) − 1] if and only if

∃(xi)0≤i<p(n)∃(yi)0≤i<p(n)∃(zi)0≤i<p(n) :

plus((xi)0≤i<p(n), (yi)0≤i<p(n), (zi)0≤i<p(n)) ∧

bin((xi)0≤i<p(n), x) ∧ bin((yi)0≤i<p(n), y) ∧ bin((zi)0≤i<p(n), z),

which is a formula of size O(p(n)2). 2

9 Conclusion and open problems

In Table 1 and 2 our complexity results for hierarchically defined structures
together with the known results for explicitly given input structures are col-
lected. The only open problem that remains from these tables is the precise
complexity of the model-checking problem for FO and c-bounded hierarchical
graph definitions. There is a gap between NL and P for this problem.

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and
M. Yannakakis. Analysis of Recursive State Machines. ACM Transactions
on Programming Languages and Systems (TOPLAS), 27(4):786–818, 2005.

51

[2] R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
ACM Transactions on Programming Languages and Systems (TOPLAS),
23(3):273–303, 2001.

[3] C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoretical
Computer Science, 107(1):3–30, 1993.

[4] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[5] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41:274–306, 1990.

[6] B. Borchert and A. Lozano. Succinct circuit representations and leaf language
classes are basically the same concept. Information Processing Letters,
59(4):211–215, 1996.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the Association for Computing Machinery, 28(1):114–133, 1981.

[8] K. J. Compton and C. W. Henson. A uniform method for proving lower bounds
on the computational complexity of logical theories. Annals of Pure and Applied
Logic, 48:1–79, 1990.

[9] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages
193–242. Elsevier Science Publishers, 1990.

[10] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85:12–75, 1990.

[11] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1991.

[12] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages 125–
213. Springer, 1997.

[13] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R. M. Karp, editor, Complexity and Computation, volume 7 of SIAM-AMS
Proceedings, pages 43–73, 1974.

[14] S. Feferman and R. L. Vaught. The first order properties of products of algebraic
systems. Fundamenta Mathematicae, 47:57–103, 1959.

[15] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. The complexity
of problems on graphs represented as OBDDs. Chicago Journal of Theoretical
Computer Science, 1999.

[16] M. Frick and M. Grohe. Deciding first-order properties of locally tree-
decomposable structures. Journal of the Association for Computing Machinery,
48(6):1184–1206, 2001.

[17] M. Frick and M. Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic, 130(1–3):3–31, 2004.

52

[18] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic
Colloquium ’81, pages 105–135. North Holland, 1982.

[19] H. Galperin and A. Wigderson. Succinct representations of graphs. Information
and Control, 56(3):183–198, 1983.

[20] S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. In
R. Ramanujam and Sandeep Sen, editors, Proceedings of the 25th International
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2005), Hyderabad (Indien), number 3821 in Lecture Notes
in Computer Science, pages 483–494. Springer, 2005.

[21] G. Gottlob, P. G. Kolaitis, and T. Schwentick. Existential second-order logic
over graphs: Charting the tractability frontier. Journal of the Association for
Computing Machinery, 51(2):312–362, 2004.

[22] G. Gottlob, N. Leone, and H. Veith. Succinctness as a source of complexity in
logical formalisms. Annals of Pure and Applied Logic, 97(1–3):231–260, 1999.

[23] A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in
Lecture Notes in Computer Science. Springer, 1992.

[24] N. Immerman. Nondeterministic space is closed under complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.

[25] N. Immerman. Expressibility and parallel complexity. SIAM Journal on
Computing, 18(3):625–638, 1989.

[26] N. Immerman. Descriptive Complexity. Springer, 1999.

[27] R. E. Ladner. Application of model theoretic games to discrete linear orders
and finite automata. Information and Computation, 33(4):281–303, 1977.

[28] T. Lengauer. Hierarchical planarity testing algorithms. Journal of the
Association for Computing Machinery, 36(3):474–509, 1989.

[29] T. Lengauer and K. W. Wagner. The correlation between the complexities of
the nonhierarchical and hierarchical versions of graph problems. Journal of
Computer and System Sciences, 44:63–93, 1992.

[30] T. Lengauer and E. Wanke. Efficient solution of connectivity problems on
hierarchically defined graphs. SIAM Journal on Computing, 17(6):1063–1080,
1988.

[31] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[32] M. Lohrey. Model-checking hierarchical structures. In Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago
(USA). IEEE Computer Society Press, 2005. 168–177.

[33] J. F. Lynch. Complexity classes and theories of finite models. Mathematical
Systems Theory, 15:127–144, 1982.

53

[34] J. A. Makowsky. Algorithmic aspects of the Feferman-Vaught theorem. Annals
of Pure and Applied Logic, 126(1–3):159–213, 2004.

[35] J. A. Makowsky and Y. B. Pnueli. Arity and alternation in second-order logic.
Annals of Pure and Applied Logic, 78(1–3):189–202, 1996.

[36] M. V. Marathe, H. B. Hunt III, and S. S. Ravi. The complexity of approximation
PSPACE-complete problems for hierarchical specifications. Nordic Journal of
Computing, 1(3):275–316, 1994.

[37] M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan.
Approximation algorithms for PSPACE-hard hierarchically and periodically
specified problems. SIAM Journal on Computing, 27(5):1237–1261, 1998.

[38] M. V. Marathe, V. Radhakrishnan, H. B. Hunt III, and S. S. Ravi. Hierarchically
specified unit disk graphs. Theoretical Computer Science, 174(1–2):23–65, 1997.

[39] N. Markey and P. Schnoebelen. Model checking a path. In Proceedings of
the 14th International Conference on Concurrency Theory (CONCUR 2003),
Marseille (France), number 2761 in Lecture Notes in Computer Science, pages
248–262, 2003.

[40] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[41] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations of
graphs. Information and Control, 71(3):181–185, 1986.

[42] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[43] C. Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

[44] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1–22, 1976.

[45] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, Basel, Berlin, 1994.

[46] R. Szelepcsényi. The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26(3):279–284, 1988.

[47] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume III, pages 389–455. Springer,
1997.

[48] M. Y. Vardi. The Complexity of Relational Query Languages (Extended
Abstract). In Proceedings of the Fourteenth Annual ACM Symposium on Theory
of Computing (STOC 1982), pages 137–146. ACM Press, 1982.

[49] M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of
the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 1995), pages 266–276. ACM Press, 1995.

54

[50] H. Veith. Languages represented by Boolean formulas. Information Processing
Letters, 63(5):251–256, 1997.

[51] H. Veith. How to encode a logical structure by an OBDD. In Proceedings of the
13th Annual IEEE Conference on Computational Complexity, pages 122–131.
IEEE Computer Society, 1998.

[52] H. Veith. Succinct representation, leaf languages, and projection reductions.
Information and Computation, 142(2):207–236, 1998.

[53] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3(1):23–33, 1976.

55

