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Abstract. We study the complexity of satisfiability for the expressive extension
ICPDL of PDL (Propositional Dynamic Logic), which admits intersection an
converse as program operations. Our main result is containmBR, which
improves the previously known non-elementary upper bound and inj#g-
completeness due to an existing lower bound for PDL with intersection. fHioé p
proceeds by showing that every satisfiable ICPDL formula has a noddede-
width at most two and then giving a reduction to the emptiness problem for al-
ternating two-way automata on infinite trees. In this way, we also reprove in a
elegant way Danecki’s difficult result that satisfiability for PDL with intextsan

is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fisched Ladner in 1979 as
a modal logic for reasoning about the input/output behavidyrograms [6]. In PDL,
there are two syntactic entities: formulas, built from Bzl and modal operators and
interpreted as sets of nodes of a Kripke structure; and progyrbuilt from the operators
test, union, composition, and Kleene star (reflexive ttamsclosure) and interpreted as
binary relations in a Kripke structure. Since its inventiorany different extensions of
PDL have been proposed, mainly by allowing additional ojpesaon programs. Three
of the most prominent extensions are PDL with the converssatpr (CPDL), PDL
with the intersection operator (IPDL), and PDL with the n@gaoperator on programs
(NPDL), see the monograph [9] and references therein. Wbiteef these extensions
such as CPDL are well-suited for reasoning about prograrost of them aim at the
numerous other applications that PDL has found since ienition. Notable examples
of such applications include agent-based systems [13]Jaegath constraints [2], and
XML-querying [1, 16]. In Al, PDL received attention due teitlose relationship to
description logics [7] and epistemic logic [17].

The most important decision problem for PDL is satisfiayilis there a Kripke
structure which satisfies a given formula at some node? Aiclalgesult of Fischer and
Ladner states that satisfiability for PDLEXP-complete [6, 15]. Th&XP upper bound
extends without difficulty to CPDL and can even be estabtisoe several extensions
of CPDL [18]. In contrast, the precise complexity of satisfiity for IPDL was a long
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standing open problem. In [4], Danecki provedBX® upper bound. Alas, Danecki's
proof is rather difficult and many details are omitted in thélshed version. One of the
reasons for the difficulty of IPDL is that, unlike PDL, it lackhe tree model property,
i.e., a satisfiable IPDL formula does not necessarily haveearhodel. Danecki proved
that every satisfiable IPDL formula has a special model wbahbe encoded by a tree.
This observation paves the way to using automata theosstimiques in decision pro-
cedures for IPDL. Only recently, a matching>@2P lower bound for IPDL was shown
by Lange and the third author [10]. Regarding NPDL, it is [&mgwn that satisfiability
is undecidable [9]. As recently shown in [9], the fragmentNKHDL, where program
negation is restricted to atomic programs, is decidableEa¢ietcomplete.

In this paper, we consider extensions of PDL with (at least 6f) converse, in-
tersection, and negation. Our main result concerns the ket of satisfiability in
ICPDL, the extension of PDL with both converse and inteisactDecidability was
shown by the third author in [11] using a reduction to monaaicond order logic over
the infinite binary tree. However, this only yields a nonedenary algorithm which does
not match the BXP lower bound that ICPDL inherits from IPDL. We prove that sat-
isfiability in ICPDL can be decided inEXP, and thus settle the complexity of ICPDL
as EXP-complete. There are some additional virtues of our re&irst, we provide
a shorter and (hopefully) more comprehensible proof of tBXR2 upper bound for
IPDL. Second, the information logic DAL (data analysis ©gi5] is a fragment of
ICPDL (but not of IPDL) and thus inherits th&XP upper bound. And third, our result
has applications in description logic and epistemic logiég [11] for more details.

Our main result is proved in three clearly separated partpalt one, we establish
a certain model property for ICPDL based on the notion of wigkth. Tree width mea-
sures how close a graph is to a tree, and is one of the mosttampaoncepts in modern
graph theory with many applications in computer sciencemastioned earlier, IPDL
(and hence also ICPDL) does not have the tree model prop#etyprove that ICPDL
enjoys an "almost tree model property”: every satisfiablBDC formula has a model
of tree width at most two. This part of our proof is comparabl®anecki’'s observation
that every satisfiable IPDL formula has a special model wbahbe encoded by a tree.

In part two of our proof, we use the established model prgpeertgive a poly-
time reduction of satisfiability in ICPDL to what we caltregular tree satisfiability
in ICPDL. The latter problem is defined in terms of two-wayeaitating parity tree
automata (TWAPTAS). A TWAPTA is an alternating automatoattfuns on infinite
node-labeled trees and has the possibility to move upwardisiavnwards in the tree.
Acceptance is defined via a parity condition. Infinite noadleeled trees can be viewed
in a natural way as Kripke structures and thus we can intepf&PDL formulas in
such trees. Nowy-regular tree satisfiability in ICPDL is the following prah: given
an ICPDL formulap and a TWAPTAT, is there a tree accepted Bywhich is a model
for ¢©? Our reduction of satisfiability in ICPDL to this problem iaded on a suitable
encoding of width two tree decompositions of Kripke struesu The TWAPTA con-
structed in the reduction accepts precisely such encodings

Finally, in part three we reduce-regular tree satisfiability in ICPDL to the empti-
ness problem for TWAPTAS. The latter problem was shown tBXe-complete in [19].
Since our reduction ab-regular tree satisfiability in ICPDL to TWAPTA-emptiness i



volves an exponential blow-up in automata size, we obtai@EtP upper bound for
w-regular tree satisfiability in ICPDL and also for standaatissiability in ICPDL. The
reduction employs a technique from [8], where the first arbse author proved that
the model-checking problem for IPDL over transition grapliggushdown automata
is 2EXP-complete. In fact, this model-checking problem can belgasduced tow-
regular tree satisfiability in ICPDL. This illustrates thatregular tree satisfiability in
ICPDL is of interest beyond its application in the currenp@a

To obtain a more complete picture, we also investigate th®wopmf extending
ICPDL with program negation. It turns out that in the preseo€ intersection, pro-
gram negation is problematic from a computational perspedn particular, we prove
that already IPDL extended with negation restricted to &grograms is undecidable.
This should be contrasted with the decidability result f@ Rextended with atomic
negation mentioned above [12]. Missing proofs can be foarttle appendix.

2 ICPDL

Let P be a set ohtomic propositiongand A a set ofatomic programsFormulasy and
programsr of the logic ICPDL are defined by the following grammar, whemanges
overP anda overA:

pu=p | el (M)
mu=a| mUm | mNmg | mome | @ | T | ¢?

We introduce the usual abbreviatiops A @2 = (©17)p2, 1 V 2 = =(—p1 A —p2),
and[r]p = —(m)—¢. The fragment IPDL of ICPDL is obtained by dropping the
clause from the above grammar.

Thesemantic®f ICPDL is defined in terms of Kripke structures K&ipke structure
isatupleK = (X,{—. | a € A}, p), where ()X is a set ofstates (i) —, C X x X
is atransition relationfor eacha € A, and (iii) p : X — 2F assigns to each state a set
of atomic propositions. Given a Kripke structuke= (X, {—, | a € A}, p), we define
by mutual induction for each ICPDL programa binary relatiofn]x € X x X and
for each ICPDL formulap a subsefy]x C X as follows ¢ denotes the composition
operator for binary relationg? o S = {(a,b) | 3¢ : (a,¢) € R, (c,b) € S):

[Plx ={z|p€p(x)}forpeP

[l = X\ [l

Kmelx ={z |3y : (z,y) € [l Ny € [¢]x}

[a]xk = —4 fora e A

[p?]x ={(z,2) | = € [¢lKk}

[ 1k =[]k
[7lx ={(y.2) | (z,y) € [7]x}

[ op ]k = [m1]x Op [72] x forop e {U,N, o}

Forz € X we write(K,z) E ¢if z € [¢]k. If (K,z) = ¢ for somex € X, thenK
is amodelof . The formulay satisfiableif there exists some model faor.



Since the converse operator can be pushed down to atomicapnegwe assume
for the rest of this paper that converse is only applied ton&t@rograms. Let us set
A = {a| a € A}. The size|p| of an ICPDL formulay and the sizér| of an ICPDL
programr is defined as followslp| = |a| = 1 forallp € Panda € AU A, |~¢| =
lp?] = lel + 1, Km)el| = || + [, |1 0p 2| = |m| + [m2| 4 1 for op € {U, N, o},
and|7*| = |r| + 1.

The main result of this paper is the following.

’

Theorem 1. Satisfiability in ICPDL i2EXP-complete.

As discussed in the introduction, it suffices to giveEXP algorithm for satisfiability in
ICPDL because of the knowrEXP lower bound for IPDL [10]. The rest of the paper
is organized as follows. In Section 3, we show that everggatile ICPDL formula has
a model of tree width at most two. In Section 4, satisfiabitityCPDL formulas in a
model of tree width at most two is reduceduteregular tree satisfiability in ICPDL. In
Section 6, the latter problem is shown to be BEXP. Finally, Section 7 contains the
undecidability proof for IPDL extended with negation of iic programs.

3 Models of Tree-Width Two Suffice

We start with defining the tree-width of Kripke structuresr Eechnical reasons, we
consider only countable structures in this context. As d@itome clear later, this can
be done w.l.o.g. LelX = (X,{—, | a € A}, p) be a countable Kripke structure. A
tree decompositionf K is a tuple(T, (X,).cv), whereT = (V, E) is a countable
undirected treeX, is a subset o (also called dag) for all v € V, and the following
conditions are satisfied:

_U'UEVXU:X__ ) .
— For every transitionr —, y of K there exist®y € V with z,y € X,,.
— Foreveryr € X, thesef{v € V | z € X, } is a connected subset of the ttBe

The width of this tree decomposition is the supremunj|éf,| — 1 | v € V}. Thetree
width of a Kripke structurés is the minimalk such that’ has a tree decomposition of
width k. The purpose of this section is to prove the following theare

Theorem 2. Every satisfiable ICPDL formula has a countable model of wédth at
most two.

As a preliminary to proving Theorem 2, we mutually define tbé af subprograms
subp(«) and the set ofubformulasubf(«a), wherex is either an ICPDL formula or an
ICPDL program:

subp(a) = {a}, subp(a) = {a,a}, subf(a) = supf(a) = () fora € A;

subp(m) = {m} Usubp(m1) U subp(ms) andsubf(m) = subf(m) U subf(my) if
m=m opmy forope {U,N,o};

subp(7*) = {7*} U subp(w) andsubf(7*) = subf(r);

subp(p?) = {7} Usubp(y) andsubf(¢?) = subf(y)

subp(p) = 0 andsubf(p) = {p} forp € P;
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Fig. 1. Inductive definition of( T, (t,)vev ).

— subp(—p) = subp(¢) andsubf(—y) = {—p} Usubf(y);
— subp({m)p) = subp(m) Usubp(y) andsubf({m)¢) = {(m)p}Usubf(r)Usubf(p).

To prove Theorem 2, fix a satisfiable ICPDL formylg, a modelK = (X, {—, | a €
A}, p) of o, and a statey € [¢o]x. Moreover, fix choice function®, U, C, andS
such that

—if ¢ = (m)yp € subf(po) andz € [¢]k, thenW(z,¢) = y € X such that
y € [V]k and(z,y) € [r]x;

—if m = xUo € subp(po) and(x,y) € [r]k, thenU(z,7,y) = 7 € {x, 0} such
that(z,y) € [7] k.

— if 1 = x oo € subp(pp) and(z,y) € [7]k, thenC(z,7,y) = z € X such that
(.T,Z) € [[X]]K and(z’y) € [[U]]K’

— if m = x* € subp(yp) and(z,y) € [r]x with z # y, thenS(z,7,y) = z € X
such that there exists a sequenge. . ., =, € X with

1. xg = x andz,, = y;

2. (i, ip1) € [x]k foralli < n;
3. xg,...,x, IS ashortest sequence with Properties 1 and 2;
4. x1 = z.



Now we inductively define a node-labeled tréE, (¢,),cv) With T = (V, E) and

tv € X UX2U X3 forall v € V. During the construction, each node in the tree
is assigned a type, which may either be “singleton’rdior = € subp(yg). Figure 1
illustrates the different cases, which are as follows:

1. Start the construction with a root nod®f type singleton and set = x;
2. ifv € V is of type singleton and, = =, then for everyp = ()1 € subf(yg) such
thatz € [¢] x, add a successar of typer and set,, = (z, W(x, ¢));
3. if v € Vis of typea or @, wherea € A andt, = (z,y), then add a successerof
type singleton and seéf, = y;
4. ifv e Visoftyper = x Uo andt, = (z,y), then
— add a successar of type singleton and sef, = y;
— add a successat’ of typeU (z, 7, y) and set,, = (z,y);
5. ifv € Vis of typer = x N o andt, = (z,y), then
— add a successar of type singleton and set, = y;
— add successors v’ of type x ando, respectively, and sef, = t,, = (x,y);
6. ifv € Visof typer = x o o andt, = (x,y), then
— add a successar of type singleton and set, = y;
— add a successar’ of typer and set,, = (x, C(z, 7, y),v);
7. ifv € Vis of typer = x o o andt,, = (z, 2, y), then add successonsu’ of type
x ando and set,, = (z, z) andt,, = (z,y);
8. ifv € Visof typer = x* andt, = (z,y) with z # y, then
— add a successar of type singleton and set, = y;
— add a successar’ of typer and set,, = (z, S(z, 7, ¥y),y);
9. ifv € Vis of typer = x* andt, = (z, z,y), then add successousu’ of type x
andr, respectively, and sef, = (x, z) andt,, = (z,y).

We assume that successors are added at most once to each tiededuction step and
that the construction proceeds in a breadth first mannee tat nodes of type? are
always leafs, and so are nodesf type x* with ¢, = (z, z) for somez € X. Another
important property, which illustrates the connection tedwk and the constructed
tree, is the following:

Yo e V :if vis of typer andt, = (z,y), then(z,y) € [7]x. M

A placeis a pair(v, x) such thatz is a member of,. We denote the set of all places
with P and let~ be the smallest equivalence relation Brwhich contains all pairs
of the form ((u, x), (v, z)), where(u,v) € E is an edge of the tre&€. We use[v, z|
to denote the equivalence class(ofx) € P w.r.t. the relation~. Define a Kripke
structureK’ = (X', {—', | a € A}, p’) as follows:
— X' ={[v, 2] | (v,z) € P};
— [v,z] =% [v, 3] if and only if at least one of the following holds:
o thereisu € V of typea s.t.t, = (x,v), (u,z) ~ (v,z), and(u,y) ~ (v',y);
e thereisu € V of typea s.t.t, = (y, ), (u,x) ~ (v,x), and(u, y) ~ (v',y).
~ ¢ ([v,2]) = plx).

SinceK' is clearly countable, to finish the proof it suffices to show fibllowing:



1. settingX, = {[v, ] | « occurs int, } forall v € V, we obtain a tree decomposition
(T, (Xy)vev) of K’ of width two;
2. K’ satisfiespy.

Using the definitions of{’ and~, it is readily checked thd{T’, (X,),cv ) is a tree de-
composition ofK’. Tree width two is then immediate by construction®t (¢,),cv )-
Finally, we can prove the following, whose Point 3 yieldstthd is a model ofp,.

Lemmal. Forall v,u € V,z,y € X, 7 € subp(pg), andy € subf(yg),

1. if¢, = (z,y) andw is of typer, then([v, z], [v,y]) € [7]x";
2. if (v, ), (u,y) € Pand([v,z], [u,y]) € [7] k', then(z,y) € [7] k;
3. if (v,z) € P, then(K,z) | g ifand only if (K, [v, z]) | ¢.

4 Reduction tow-Regular Tree Satisfiability

We exploit the model property established in the previostie to reduce satisfiability
in ICPDL tow-regular tree satisfiability in ICPDL. Since the latter idided in terms
of alternating automata on infinite trees, we start withddtrcing these automata and
the trees on which they work.

Let I" andY be finite sets. Al'-labeled (directed) -tree is a partial functiod” :
T* — I such thaidom(7') (the set of nodes) is prefix-closed.dém(7T) = 7*, then
T is calledcompletelf 7" is understood or not important, we simply talk Bflabeled
trees. We deliberately work with two kinds of trees here:itewled trees as a basis for
tree decompositions in Section 3, and directed trees int®d here as the objects on
which alternating tree automata work.

Let P be a finite set of atomic propositions aAda finite set of atomic programs,
not necessarily identical to the s@sandA fixed in Section 2. A completg®-labeled
A-treeT can be viewed as a Kripke structuier = (A*, {—,| a € A}, T) over the set
of atomic proposition® and atomic program4, where—, = {(u,ua) | u € A*} for
all a € A. In the following, we identifyl’ and the associated Kripke structute-.

We now define alternating automata on complEtlabeledY -trees. For a finite set
X we denote byB3T(X) the set of allpositive boolean formulawith elements ofX
used as variables. The constattsie andfalse are admitted. A subséf C X can
be seen as a valuation in the obvious wagaitisfiesa formulad € BT (X) if and only
if by assigningtrue to all elements irt” the formulad is evaluated tarue. Define the
set of -movesasmov(Y) = Y W T W {e}, where? = {@ | a € T'}. Foru € T* and
a € 7, defineua = v if u = va for somev € T* andua = undefined ifu ¢ T*a.

A two-way alternating parity tree automat@mWAPTA for short) overl'-labeledY -
trees is a tuplg = (5, 4, so, Acc), where (i).S is a finite non-empty set of states, (ii)
§:Sx I — BtT(Sxmov(T)) is thetransition function (iii) sq € S is theinitial state,
and (iv) Acc : S — {0,...,m} is thepriority function (wherem € N) which assigns
to each state an integer betweandm. Define|Acc| = max{Acc(s) | s € S}. Let
T a completel"-labeledY-tree,u € T™* a node, ands € S a state. An(s,u)p-run
of 7 is a (not necessarily completey x 7™*)-labeled(?-tree Tr for some set finite
{2 such that the following two conditions are satisfied: () = (s, u), and (ii) if



a € dom(Tg) with Tr(a) = (¢,v) andd(g, T'(v)) = 6, then there exists a subset
Y C S x mov(7) that satisfies the formulé and for all(s’,e) € Y: ve is defined
and there exists an € 2 with aw € dom(Tg) andTr(aw) = (s',ve). We say that
an (s, u)p-run is successfulif for every infinite pathaas -+ € dom(Tg)* of Tx
(1 = &, ajy1 = a;w for somew € §2) the numbemin{Acc(q) | ¢ € S,Tr(;) €
{q} x T* for infinitely many:} is even. Define

[7,s)r = {u € T*| there exists a successfyl, u)r-run of 7}
L(T) = {T | € € [[T, SOHT}

The subscripf is omitted if clear from the context. An-regular tree languagd. is a
set of completd-labeled? -trees such thak(7) = L for some TWAPTAT .

Our TWAPTA model differs slightly from other definitions ihée literature: First,
we run TWAPTA only on complete trees; this will be convenienSection 5 and 6.
Second, usually a TWAPTA has an operatipfor moving to the parent node of the
current node. In our model, is replaced by the operatiomsc 7 for all a € T. The
operatiorzz can only be executed if the current node isiasuccessor of its parent node.
Itis easy to see that these two models are equivalent.

In Section 6, we will make use of the following result of Vardi

Theorem 3 ([19]). For a given TWAPTAT = (Q, , spAcc) it can be checked in time
exponential iNQ| - |Acc| whetherL(7) = 0.

We are now in the position to formally defineregular tree satisfiability in ICPDL
given a TWAPTAT over2P-labeledA-trees and an ICPDL formula over the set of
atomic proposition® and set of atomic progran#s (in the following we simply say
overP andA), decide whether there islae L(7) such thal(T, ¢) = .

To reduce satisfiability in ICPDL te-regular tree satisfiability in ICPDL, we trans-
late an ICPDL formulap overP andA into a TWAPTA 7 and an ICPDL formulas
over

A ={a,b,0,1,2} and P = {t}Uprop(y)U ({0,1,2} x prog(¢) x {0,1,2}),

whereprop(¢) = subf(¢) N P and prog(y) = suba(e) N A. Intuitively, each2P-
labeledA-tree T accepted byZ encodes a tree decomposition of a Kripke structure
K overP andA of tree width at most two (in a sense yet to be made precisd)/an
is a model ofg if and only if K is a model ofp. To achieve an elegant encoding of
tree decompositions, we work witpood tree decompositions. A tree decomposition
(T, (Xy)vev)With T = (V, E) is called good if

— V ={a,b}*, i.e., T is a complete binary tree, and
- X, CX,.0rX,. CX,forallveVandce {a,b}.

It is easily seen how to convert a tree decomposition of aké€rigtructure/’ of width
k into a good tree decomposition &f of width & by introducing additional nodes.

Lemma 2. Every countable Kripke structure of tree widtthas a good tree decompo-
sition of widthk.



In the following we assume that= 2, since this is the only interesting case in this pa-
per. To encode a Kripke structure together with a good treempositionT’, (X, ) cv)

of width at most two as a-labeledA-tree, we think of every tree nodec {a,b}*

as being divided into three slots which can be empty or fill@t & state of the Kripke
structure. When moving to a child, by the second conditioroofthtree decompositions
we either add nodes to empty slots or remove nodes from blatsiot both. The three
slots of the node are described by new leats), v1, v2. This explains our choice of
A above. When sloti is occupied by a state of the Kripke structure, thémeceives
the special label € P. Finally, information about the edges of the Kripke struetare
stored in tree nodes frofu, b}*. We now formally define these encodings: a complete
2P-labeledA-treeT is calledvalid if the following holds for allv € A*:

if v € {a,b}* andi € {0, 1,2}, then eithefl'(vi) = P or {t} C T'(vi) C {¢t} UP;
setX, ={i|teT(vi)};

if v e {a,b}*, thenT(v) C X, x A x X,;

if v € {a,b}* andc € {a, b}, thenX, C X,. or X,,. C X,;

if v ¢ {a,b}* U{a,b}*{0,1,2}, thenT (v) = 0.

Let T be a valid2P-labeledA-tree. We now make precise the Kripke structéfér’)
overP and A whose good tree decomposition is described’bylhe structure (T')
should not be confused with viewedas a Kripke structure ovér andA (as discussed
at the beginning of this section): the original formuylawhose satisfiability is to be
decided is interpreted i (7") whereas the reduction formulais interpreted inl’
viewed as a Kripke structure. Define a septdcesP = {u € A* | t € T'(u)} and let
~ be the smallest equivalence relationBmvhich contains all pairévi, vci) € P x P,
wherev € {a,b}*, ¢ € {a,b}, and0 < ¢ < 2. Foru € P, we use[u] to denote the
equivalence class af w.r.t. ~. Now setK (T') = (X, {—4| a € A}, p), where:

X =A{[u] | uve P}
—a = {([vi], [vj]) | v € {a,b}", (4,a,j) € T(v)}
o) = | Tw) NP
vE[y]

The following two lemmas are easily proved.

Lemma 3. If T is a valid 2P-labeledA-tree, then the Kripke structur& (T') has tree
width at most two. Conversely,Af is of tree width at most two, then there exists a valid
2P-labeledA-tree T such thatK is isomorphic tok (7).

Lemma 4. The set of all vali®P-labeledA-trees is anv-regular tree language.

Now we show how to convert formulas and programsr over prop(¢) andprog(y)
into formulasy and programs overP andA such that for every valid®-labeledA-tree
T we have:

[[;T\]]T - PxP

-~

Vue P:uc [Y]r & [u] € [Y]km
Vu,v € P: (u,v) € [T]lr & ([ul,[v]) € [7]xm)



First we define the auxiliary program

2
wl =|Jt?oio(aUbUaub)oiot?
=0

and letr.. = (71)*. Note that[r.]r equals~. Now, for alla € prog(yp) andp €
prop(p) we define

a= |J meocio(iaj)?ojor. and p= (r.)p.
i,j€{0,1,2}

To extend this translation to complex ICPDL formulas andgpams, we can simply
replace all atomic programs and formulasp with @ and p, respectively. From the
construction ofp and Lemmas 2 and 3 we obtain the following.

Proposition 1. The formulap has a model of tree width at most two if and only if there
is a valid2P-labeledA-tree T' such that(T,¢) = ((0U 1 U 2) o 7).

From Theorem 2, Lemma 4, and Proposition 1, we obtain:

Theorem 4. There is a polynomial time reduction from satisfiability @RDL to w-
regular tree satisfiability in ICPDL.

5 Programs as NFAs over TWAPTAS

Our ultimate goal is to show thatregular tree satisfiability in ICPDL can be solved in
doubly exponential time. This will be achieved by reducingegular tree satisfiability
in ICPDL to theEXP-complete emptiness problem for TWAPTASs. For this we trans-
late ICPDL formulas into TWAPTASs. ICPDL programs will be mslated into another
special kind of automata, which navigate in a complétieee by reading symbols from
T UT. Additionally, these automata can make conditiongtansitions (so called test
transitions), which can only be executed if the current trede is accepted by some
TWAPTA. A formal definition follows:

For the rest of this section fix some finite s€&s” = 2P, 7", and a completd -
labeledY-treeT'. In the sequel, we do not require a TWAPTAto contain an initial
state as a component. For two such TWAPTAs= (5;,d;, Acc;) (i € {1,2}) let
T1 W Ty = (S1WSs, 01 Wds, Ace; W Acce) be theirdisjoint union Herew denotes the
disjoint union, and e.g.Accy & Accz)(s) = Acc;(s) for the unique with s € S;.

A finite automatom4 over a TWAPTAT = (5,6, Acc) is a tuple(Q, — 4), where
Q is a finite set obtates and— 4 is a set of transitions of the following kind:

- q%4q,wherea € TUT, or
T, " -
— ¢ =24 ¢ (these transitions are call¢gst transition$

whereq, ¢’ € Q,s € S. Let AT(A!) be the automaton that results frofnby deleting

all & 4-transitions & 4-transitions), where € T (a@ € 7). Define the relatiors 4, C
(T* x Q) x (T* x Q) as the smallest relation such that:
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— (u,p) =4 (ua,q)ifp Haq(ae)
— (ua,p) =4 (u,q)if pHaq@e?)
— (u,p) =4 (u,q) if u € [T, s] andp =% 4 .

For a pair(p, q) € Q x Q define[4, p, ¢]r = {(u,v) € T* xT* | (u,p) =% (v,q)}.
For each ICPDL formulg we will construct a TWAPTATZ such that for some state
of 7 we have[7, s]r = [¢]r. For each ICPDL program, on the other hand, we will
construct a finite automataA over some TWAPTAT, such that for some statpsand
q of A we have[A, p,g]r = [x]r. In the following, the index” will be omitted.

The construction off and A above, will be done inductively over the structure
of ¢ and, respectively. The difficult case is, whenis of the formm; N 7. By
induction, we have already constructed finite automtand A, over TWAPTAST,
and7s, respectively, such thdtd;, p1, ¢1] = [m1] and[As, p2, g2] = [r=2]. In order to
recogniz Ay, p1, 1] N[Az, p2, ¢2] we would like to make a product construction with
A; and As. But this fails, because a runifiof A; and a run inl” of A,, both starting
in the tree node: and ending in the tree nodg may completely diverge. In order to
avoid this divergence, we next have to normalize finite aatarover TWAPTAS, so that
loops within a run ifdl” can be shortened by test-transitions. The following coesitin
simplifies the presentation in [8].

Let 7 = (S,6,Acc) be a TWAPTA and letd = (Q, —4) be a finite automaton
over7 . Define the relatiohoop , C 7* x @ x @ as the smallest set such that:

(i) forall w € T* andq € Q we have(u, g, q) € loopy,
(i) if (ua,p’,q") € loopa, p 24 p' andq’ %4 q, then(u, p, q) € loop 4,

i) if (u,p’,q’) € loop 4, p 4 p', andq’ 4 g, then(ua, p, q) € loop 4,
(iv) if (u,p,r) € loop 4 and(u,r, q) € loop 4, then(u, p, ¢) € loop 4, and

(v) if uw e [7,s] andp £>A g fors € S, then(u,p,q) € loop 4.
The definition ofloop 4, allows to prove the following statement by induction ouer

Lemma 5. We haveu, p, q) € loop 4 if and only if there exist > 1,uq,...,u, € T*,
andqs, ..., q, € @ such that

- U =uU, =,
- q1 =p,q, = ¢, and
— (u1,q1) =a (u2,q2) =4 - =24 (Un, qn)-

Since the conditions (i)—(v) above can be easily translamteda TWAPTA, we obtain:
Lemma 6. There is a TWAPTA = (S', 8", Acc’) with S’ = S & (Q x Q) such that

Q) [, s] = [T.s] forall s € S,
(i) U, (p,q)] ={uecT"|(u,p, q) €loopy}forall (p,q) € Q x Q, and
(i) [Acc| = |Acc].

Now define a new automatoB = (@, —p) over the TWAPTAY, that results

from A by adding for every paifp, ¢) € @ x @ the test transitiop MB q. For

u,v € T letinf(u,v) be the longest common prefix afandv, it corresponds in the
treeT to the lowest common ancestorofndv.

11



Lemma7. Letu,v € T* and letp,q € Q. Then the following three statements are
equivalent:

() (u,v) € [4,p,q]
(i) (u,v) € [B,p,q]
(iii) there existsr € Q with (u,inf(u,v)) € [B',p,r] and (inf(u, v),v) € [B,r, q].

6 w-regular tree model satisfiability in ICPDL is in 2EXP

In this section, we prove thab-regular tree satisfiability is iREXP. Let 75 be a
TWAPTA over 2P-labeled? -trees and letp be an ICPDL formula. We will translate
Ty andy into a TWAPTAT over2P-labeledY -trees such thak(7) # () if and only if
there exists some tré@ € L(7y) with (T, ¢) = ¢. First, we will construct a TWAPTA
7 (v) such that for some stateof 7 () the following equality will hold for all com-
plete 2P-labeled Y -treesT: [o]r = [7,s]r. The number of states df () grows
exponentially in the size ap. The size of the priority function will be linear in the
size of . Our final TWAPTAT will be the intersection oy and7 (¢) (where7 (p)
gets the initial state). Since the time for checking emptinessiofjrows exponentially
with the product of the number of statesDfand the size of the priority function af
(Theorem 3), it follows that that-regular tree satisfiability indeed belongs2i6XP.
Together with Theorem 4, this finally proves our main reshikdrem 1.

For an ICPDL formula) we will inductively construct a TWAPTAT (v)) together
with a states of 7 (1) such thaff¢)] = [7 (¢), s]. For an ICPDL program, we will
inductively construct a TWAPTAT (7) and a finite automator (w) over 7 (7) such
that[r] = [A(r), p, q] for some states andq of A(~).

If v = p, wherep € P, we put7 (¢) = ({s},0,s — 1), where for ally’ C P we
haved(s,Y) = trueif p € Y andd(s,Y) = false otherwise.

If ¢» = =0, then7 (v) is obtained fron’ (¢) by applying the standard complemen-
tation procedure, see e.g. [14], where all positive booleanulas in the right-hand side
of the transition function are dualized and the acceptaooeliion is complemented
by increasing the priority of every state by one.

Whenv is of the form(r)0 for a programr and a formula), we have inductively
already constructed = A(w) with state se€) over a TWAPTAT (7) = (51, 41, Accy)
such thafr] = [A, po, o] for some statesy, g0 € Q. Too, we have inductively already
constructed (0) = (S2, d2, Acce) such thafd] = [7 (), s2] for some state, € Ss.
We define the TWAPTAT () = (5,0, Acc) with S = Q W 51 W S,. For states irb;
or in S, the transitions off () are as for7 () or 7 (#), respectively. For statese Q
and forY C P we define

8(q, X) = \/{(r,
\/{(na
Vi
((q

|r€Q,a€Tq—>Ar} vV

lreQacTqgSar} Vv

a)
)

$,€) A rE|rEQ,s€Slq—>Ar}\/
) A

(s2,€))

q0
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The priority functionAcc is defined byAcc(s) = 1if s € @ andAcc(s) = (Acc; W
Accy)(s) for s € S1W.52. We setAcc(s) = 1 forall s € @ since we want to assure that
the automatom () is simulated for finitely many steps only, &s= (r)6 is a diamond
formula. We obtairfy'] = [7 (¥), po]-

Let us now describe the inductive constructionAifr) and7 () for an ICPDL
programr.

Caser = a for somea € T UT. The automaton!(r) has two stateg andq with the
only transitionp % . Hence[r] = [A(r), p, q].

Caser = ? We can assume that there exists a TWAPITA)) and a state of 7 (v)

such thafly)] = [T (¢), r]. The TWAPTAT (x) is T (¢). The automatomi () has two

stateg andq with the only transitiorp T, q.Hence, we havgr] = [A(rw), p, q] =

{(uw,u) [u e [T (), r]}

Caser = m Ume, ™ = m1 0 g, OF m = x* In these cases we construtfr) by using
the standard automata constructions for union, concatenand Kleene-star. In case
m=m Umg Orm =7 o7y We setT (r) = T (m )W T (mz), Whereas forr = x* we
set7 (r) = T (x)-

It remains to construct (m N7e) and7 (m; Nre). For this, we use the construction
of Section 5. Assume that the finite automdtar;) = (Q;, — a(r,)) over the TWAPTA
T (m;) = (S;,9;, Acc;) are already constructed € {1,2}). Thus,[A(m;), pi, ¢i] =
[r;] for some statep;, ¢; € Q;. We first construct the finite automatdi(r;) over the
TWAPTA U(m;) = (5!, 0!, Acc;) as described in Section 5. Note thaf| = |S;| +
|Q;|*. We takeT (w1 N 7m2) = U(m1) WU(m2). The finite automatont (ry N m3) is the
product automaton aB(71) = (Q1, — p(x,)) aNdB(12) = (Q2, — p(x,)), Where test
transitions can be done asynchronously:

— The state set ofl(m N72) IS Q1 X Q2.

— Fora € Y UT we have(ry,r2) 5 () (11, 7%) ifand only if ry S50, 7
andrz iB(m) 7"2.

— For a states € S} W .S, we have the test transition

T (m1N72),
(7’177/.2) %A(ﬂ'lnﬂ'z) (7"/1,7";)

if and only if either ¢ € S1 andre = 7} andry MB(M) ri)or (s € S5 and
o U(72),s /
r1 =71y andry ———pg(x,) 5).

Lemma 8. We havd A(m N72), (p1,p2), (¢1,92)] = [71 N7=2]. Moreover, ifT (w;) =
(Si,éi,Acci), A(’/TZ) = (Qi,ﬂA(m)), T(’/Tl n ’/TQ) = (S, 5, ACC), andA<7T1 N ’/TQ) =
(Q, = A(rinmy))s then we havéQ| = [Q1] - |Qal, [S| = [S1] + [S2| + Q1] + Q2/?,
and|Acc| = max{|Accy|, |Accal}.

A careful analysis of the constructions outlined abovevedl us to prove inductively:
Lemma 9. For every ICPDL formula) and every ICPDL progrant we have:
— f T() = (8,6, Acc) then|S| < 21¥* and|Acc| < [4)].
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— If A(m) = (Q, —a(m) and 7 (1) = (S, 8, Acc) then|Q| < 21, |S| < 217 and
|Acc| < |n].

This concludes the proof of our main Theorem 1.

7 Negation of Atomic Programs

We consider extensions of IPDL and ICPDL with negation ofgoams. It is well

known that adding full program negation renders PDL undsaiel [9], whereas PDL
with program negation restricted to atomic programs remdiecidable andeEXP -

complete [12]. In this section, we show that IPDL and hense #PDL become un-
decidable already when extended with atomic program nagedince intersection of
programs can be defined in terms of program union and (fully@m negation, this
also yields an alternative proof of the undecidability ofiREith full program negation.

Our proof proceeds by reduction from the undecidable tifingblem of the first
quadrant of the plane [3]. Aling systemZ = (T, H, V) consists of a finite set dfle
typesT” and horizontal and vertical matching relatiadslV” C T' x T'. A solutionto 7
is a mapping : N x N — T such that, for al(z, y) € N x N, we have

— if 7(x,y) = tandr(x + 1,y) = ¢/, then(t,t') € H, and
—if 7(z,y) = tandr(xz,y + 1) = ¢/, then(¢,t') € V.
The tiling problem is to decide, given a tiling systédmwhetherZ has a solution.

We use IPDI™) to denote the extension of IPDL with negation of atomic pangs,
which we write as-a (a € A). The semantics of the new constructor is defined in the
obvious way, i.e.[-a] x = (X x X)\[a] k. To reduce the tiling problem to satisfiability
in IPDL(™), we give a translation of tiling system’s = (T, H, V) into formulasyr of
IPDL(™ such thatZ has a solution if and only ip is satisfiable. In the formular,
we use two atomic programs anda, for representing the gritf x N and we use the
elements ofl" as atomic propositions for representing tile types. Moezsely,p7 is
a conjunction consisting of the following conjuncts:

(a) every element of a model gfr represents an element Bf x N and is labelled
with a unique tile type:

(@ua) ) (\Ven A =ar)

teT t,t' €T, t#t
(b) every element has an.-successor and at),-Successor:
[(az Uay)*]({az)true A (a,)true)
(c) the programs, anda, are confluent:

[(az Uay)™] [(az; ay) N (ay; mas)]false

14



(d) the horizontal and vertical matching conditions ar@eesed:

[(aany)*](/\t = ([as] \/ t" A lay] \/ t')).

teT (t,t")eH (t,t") eV

Lemma 10. 7 has a solution if and only ip7 is satisfiable.

We have thus established the following result.
Theorem 5. Satisfiability in IPDL ™) is undecidable.
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A Proof of Lemma 1

Lemma 1.Forallv,u € V,z,y € X, m € subp(yp), andy € subf(yg),

1. ift, = (x,y) andv is of typem, then([v, z], [v,y]) € [7]k’;
2. if (v,x), (u,y) € Pand([v, z], [u,y]) € [7] k', then(z,y) € [7] k;
3. if (v,z) € P, then(K,z) = ¢ ifand only if (K’ [v,z]) = .

Proof. We prove the three points in the lemma simultaneously bydtidn on the
structure ofr and . For Point 1, we make a case distinction according to the form
of m:

— 7 € A. Easy by definition of”.

— 7 =a for somea € A. Easy by definition of’ and the semantics.

— 1 = ¢?. By (f) from Section 3, we havér,y) € [¢?]x and thuse = y and
(K, z) = ¢. By Point 3 of IH, we get K, [v, z]) = ¢. By the semantics and since
x =y, we obtain([v, z], [v, y]) € [¢?]x as required.

— 7 = m N m. By construction off’, v has successorg; and u, of type m;
and m, respectively, such that,, = t,, = (z,y). By Point 1 of IH, we get
([ws, 2], [, y]) € [mi]x- fori € {1,2}. By the semantics and sin¢e;,z) ~
(v, z) and(u;, y) ~ (v,y) fori € {1,2}, we obtain([v, z], [v,y]) € [7] k.

— 7w = 71 Umy. Similar to the previous case.

— m = m o my. By construction ofl’, v has a successar of type = and such that
tw = (z,z,y) andw has successors, andus of typesmt; andms, respectively,
such thatt,,, = (z,z) andt,, = (z,y) wherez = C(z,,y). By Point 1 of
IH, we get([ug, z], [u1,2]) € [m]x and([usg, 2], [ue,y]) € [me] k. It remains
to apply the semantics and the fact thatz) ~ (u1,2), (v,y) ~ (u2,y), and
(ug,2) ~ (w,z) ~ (ug, 2).

-7 = x* If x = y, then([v,z], [v,y]) € [r]x. Now assume that # y. By
construction off’, v has a successar of type 7 such thatt,, = (z, z,y), and
the nodew has successors; andus of typesy and «, respectively, such that
ty, = (x,z) andt,, = (z,y). Here,z = S(z, 7, y), which means that there exist
n > 0 and a sequenca, . .., x, € X with

1. xp = z andx,, = y;

2. (x5, wi41) € [x]x foralli < n;

3. xg,...,x, IS ashortest sequence with Properties 1 and 2;

4. x1 = z.
By induction onn, we can conclude thgfus, z|, [us,y]) € [7]x’. Moreover, by
Point 1 of IH, we get([u1, z], [u1,2]) € [x]x-. It remains to apply the semantics
and the fact thafv, ) ~ (u1, ), (v,y) ~ (u2,y), and(uy, z) ~ (w, z) ~ (ug, 2).

For Point 2, we also make a case distinction according todire 6f «:

—m=a€A If (Ju,z], [u,y]) € [a] k', then at least one of the following holds:
1. there isw € V of typea such that,, = (z,y), (w,z) € [v,z], and(w,y) €

[u, y];
2. there isw € V of typea such that,, = (y,z), (w,z) € [v,z], and(w,y) €

[u, y].
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In Case 1,{) yields(z,y) € [a] k. Case 2 is analogous.

— 7w = a. Symmetric to the previous case.

— 71 =@ If ([v,2], [u,y]) € [¢?]x, thenwe havév, z] = [u,y] and(K’, [v,z]) =
. By Point 3 of IH,(K, ) = ¢. By the semantics and singe z] = [u, y] implies
x =y, weget(z,y) € [¢?]k.

— The remaining cases are easy using Point 2 of IH and the semant

For Point 3, we make a case distinction according to the fdrg o

— If ¢ € P, then we are done by definition &f';

— The caser = —) is easy using the semantics and induction hypothesis.

— Let ¢ = (m)4. First for the “if” direction. Let(K’, [v,z]) = ¢. Then there is a
(u,y) € P such that([v, z], [u,y]) € [7]x and (K, [u,y]) E . By Point 2 of
IH, we get(z,y) € [r]x. By Point 3 of IH, we ge{ K, y) = ¢ and are done by
the semantics.

Now for the “only if” direction. Let(K, z) = ¢. By construction off’, there is a
pathwv,...,v, in T such thaty = vy, v,, is of type singleton, and belongs to
t,, for all i < n. Also by construction of” and since( K, z) = (n)v, v, has a
successor of typew such that,, = (z,y) for somey € X such thaty € [¢] k.

By Point 1 of IH, u being of typer yields ([u, ], [u,y]) € [7]x’. Moreover,
(v, ) ~ (u,z) for all i < n and thus([v, z], [u,y]) € [r]x:. By Point 3 of IH,
y € [¥]k yields[u, y] € [¢] k- and we are done. O

B Proofs for Section 2

Lemma 2. Every countable Kripke structure of tree widtthas a good tree decompo-
sition of width .

Proof. Let (T, (X,),cv) be a tree decomposition fdt of width . In a first step, for
every edgdu, v) of T such that neitheX,, C X, nor X,, C X,, we add a new node
w to the treeT together with the edge@:, w) and (w, v). Of course, the edgéu, v)

is deleted. The bag,, is X,, N X,. Now we makeTl’ to a rooted tree by choosing an
arbitrary root. If a node: of 7" has¢ > 2 many children (possibly = Xy), then we can
replace this situation by a chain of lengtlin the usual way (all tree nodes along this
chain receive the same bag@s Finally, we can transforri’ into a complete binary
tree, by just copying bags. |

C Proofs for Section 5

Lemma 5.We have(u, p, ¢) € loop 4 if and only if there exists > 1, uq,...,u, € T*,
andqy,...,q, € Q such that

- ul :u’ﬂ:ul
- q1=p,qn =q,and
- (ulaql) =A (U27Q2) =A T =A (uru(Zn)
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Proof. Only-if: Assume(u,p,q) € loop 4. An induction over the shortest proof tree
for the fact(u,p,q) € loop, shows that there exist > 1,uy,...,u, € 7, and
qi,- - qn € @suchthat, = u, = u, q1 =p, ¢ = gand(ui,q1) =4 (u2,q2) =4
o =4 (Uns Q).

If: Now assume that for some > 1,uq,...,u, € * and somey,...,q, € Q we
haveul =Up = U 41 = P,qn = ¢, and(ulaql) =A (u25qQ) =A T =A (un7Qn)
We prove by induction over, that (u,p,q) € loop, holds. Ifn = 1, thenp = ¢
and by rule (i) from the definition dbop 4, we have(u, p,q) € loop 4. If n = 2, then

there exists a test transitign £>A q such thatu € [T, s], hence by rule (v) from
the definition ofloop , we have(u, p, q) € loop 4. Now assume that > 3 holds. We
distinguish the following cases:

Case 1There existd < ¢ < n such that; = u. Then, by induction hypothesis, we
get(u,p, ¢:), (u, g, q) € loop 4. By rule (iv) we get(u, p, q) € loopy,.

Case 2.There does not exist < i < n such thatu; = u. Then we distinguish the
following cases:

Case 2AThere exists: € 7 such thap % 4 g2, ¢n_1 — ¢, andus = ua = u,_;. By
induction we getua, g2, ¢,—1) € loop 4. Thus, by rule (ii) we getu, p, ¢) € loop 4.

Case 2BThere existsi € 7 such that: = va, p %4 g2, Gn_1 — ¢, andus = v =
un,—1 for somev € T*. By induction we gefv, ¢2, ¢,—1) € loop 4. Thus, by rule (iii)
we get(u, p,q) € loopy. O

Lemma 6. There exists a TWAPTA! = (S', ¢, Acc’) with state set’ = SW (Q x Q)
such that

(i) foreverys € S we have[id, s] = [T, s],
(ii) for every (p,q) € Q x Q we have[l/, (p,q)] = {u € T | (u,p,q) € loop,},
and
(iii) |Acc| = |Acc|.

Proof. For states irf the transitions off are the same as far. Forqg € Q andy € I"
we introduce the transitio#i ((¢, ¢),v) = true. If p # gand~y € I', then we introduce
the transition (we write/{v; | i € I'} instead of\/,_; v;)

{(l

§'((p.a),7) = VU@ d)a) | p.d €QacTpSap.d Saa} Vv
{0, d).a) |p.d €QacTpSap.d SaqtV
{p.r),e) A{(ra),e) [T € Q} V

(

{(s,e) | s € S,p =54 q}.

LTI <<

We define the priority functiorhcc’ as follows:

Acc(s) ifs'eS

ACC(S):{1 if ' €Q xQ
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Trivially (iii) holds. We putAcc’(p, q) = 1 for all p, ¢ € Q sincel/ should spend only a
finite number of steps for verifying whethet, p, ¢) € loop 4. From the definition 0b’
it is clear that (i) holds. From the definition afop 4, the construction o’ and Acc’,
and by Lemma 5 it follows thdt/, (p, ¢)] = {uv € T* | (u,p,q) € loop 4}, hence (i)
holds. O

Lemma 7.Letu,v € T* and letp,q € Q. Then the following three statements are
equivalent:

() (u,v) €A p,q]
(i) (u,v) € [B,p,q]
(iii) there existsr € Q with (u,inf(u,v)) € [B',p,r] and(inf(u,v),v) € [B!,r, q].

Proof. Trivially (i) implies (ii). For (ii) implies (i), note tha for every test-transition
p MB ¢’ of B and everyw € [U, (p',q")] we have(w,p’,q") € loop,, hence
(w,p") =% (w,q). Finally, it remains to prove (i) implies (iii). Assum@,v) €
[A,p, ¢]. Then there exist nodesy,...,w, € T* and stategy,...,q, € @ such
that

(u,p) = (wo,q0) =4 (W1,q1) - =4 (Wn,qn) = (v,q). 1)

Letyy,...,yx € T* be the unique nodes such that {g)= u, yx = v, (b) for some
1 < j < k we havey; = inf(u,v), (c) foralll < i < j we havey; = y;t+1a; for
somea; € 7, and (d) for allj < i < k we havey, = y;_1a; for somea; € 7.
Define the mapping : {1,...,k} — {1,...,n} such that for alll < i < k we have
#(1) = max{j | y; = w;}. There exist stateg,,...q,, € Q such that the run from
equation (1) can be factorized as follows:

(u,p) = (y1,91) =B W1,261)) =51 (Y2,82) =5 (Y2, 4s(2))
= (yj—lyqajfl)) =Bt (inf(u,v),q;-) =5 (inf(u’v),%(g‘)) =Bl
=5 W1, 40(k-1) =B Wk @) =B Yk Gek)) = (v,9)
By the construction of3, every loop(y:, ¢;) =5 (¥i,qs(:)) can be replaced by a test

transition inB (and hence iB" and B'). Hence, we havéu, inf(u,v)) € [B',p, ¢j]
and(inf(u,v),v) € [BY, ¢}, q]. H

D Proofs for Section 6

Lemma 8.We have]A(m Nm2), (p1,p2), (91, g2)] = [m1 N72]. Moreover, if7 (w;) =
(Si,éi,Acci), A(ﬂ'i) = (Qi,HA(ﬂi)), T(Tf‘l N 71'2) = (S, d, ACC), andA(m n 7'('2) =
(Q, = A(mima)), then we haveQ| = [Q1] - |Q2], [S] = [S1] + |Sz2| + |Q1]* + [Q2/?,
and|Acc| = max{|Accy |, |Accal}.

Proof. The estimations on the size @f, S, and Acc are clear by the construction of
T(?Tl N 71'2) andA(m n 7T2).
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For the identity[ A(7y N72), (p1,p2), (¢1,92)] = [71 Nm2] note that sincéu, v) €
[r1Nm2] ifand only if (u, v) € [m1] and(u, v) € [mr2], we know by induction that it suf-
fices to prove(u, v) € [A(m;), pi, ¢;] foralli € {1,2} if and only if (u,v) € [A(m1 N
72), (p1,p2), (g1, ¢2)]. So let(u,v) € [A(m;),pi,q:] foralli € {1,2}. Then Lemma
7 implies the existence of a state € Q; such that(u, inf(u,v)) € [B(m)T,pi, 7]
and (inf (u, v),v) € [B(m;)*, ri,q] for all i € {1,2}. This implies(u,inf(u,v)) €
[[A(Wl N 7T2)T7 (p17p2)7 (Tlv TQ)]] and (inf(u7 U)v U) € [[A(Wl N 7T2)lv (7“17 7“2), (Q1a q2)]]'
Thus, we havéu, v) € [A(m1 N72), (p1, p2), (¢1,¢2)]. On the other hand, any run wit-
nessingu,v) € [A(m1 Nm2), (p1,p2), (g1, ¢2)] is a witness foku, v) € [B(m;), pi, ¢i]
foralli € {1,2}. By Lemma 7 we obtailfu, v) € [A(m;), pi, ¢;] foralli € {1,2}. O

Lemma 9. For every ICPDL formula) and every ICPDL program we have:

— If T(¢) = (S, 6, Acc) then|S| < 211" and|Acc| < |1)).
— If A(m) = (Q,— a(x)) andT (7) = (S, 6, Acc) then|Q| < 2I71, [S] < ol7* and
|Ace| < |n|.

Proof. We prove the lemma via mutual induction over the structureé ahdr.

Baself ¢ = p € P, then7 (v) hasl < 2!¥! states and the size of the priority function
of T(v)is1 = |y].

Assumer = a € T UT. By construction, the automatof(m) = (Q, — () does
not have any transitions over some TWAPTA. Moreover, we hée= 2 = 2!/

Inductive stepln casey) = -6 and7 () = (S’,4’, Acc’), then by the standard com-
plementation of (¢) yielding 7 (¢') we haveS = S’. Moreover, by induction we have
|[Acc’| < 10|, hencglAcc| = |Acc’| +1 < |0] + 1 = |2)].

Now assume) = (m)f. Let A(7) = (Q,—a(x)), T(7) = (51,61, Acc1), and
7T (0) = (S2, 92, Acce). Then by construction we have:

15| = 1QI+ 151 + [S2]
ML glnl 4 olwl? 4 ol
< glmlinl*+16]
< olnlP2ixl0l+l0)
— glrl+len2
olyl?

The casesr = x* andw = 7 are easy to analyze. Next, assume= m; U 5 Or
m = m omg and letQ); be the state set of(;) and7 (m;) = (S;, §;, Acc;) (i € {1,2}).
By the standard construction we get:

Q)

Q1] + Q2]
induction

< olml 4 olm|
< 9lmltime|

_ ol
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The estimation ofS| and|Acc| is straightforward again.

Now assume that = 7; N m,. Let Q; be the state set ofl(7;) and 7 (m;) =
(S;,0:, Ace;) (i € {1,2}). By Lemma 8 we havé®)| = |Q1| - |Q2| and|S| = | S| +
|S2] + Q1% + |Q2|?. Hence, we get:

|Q| = ‘Q1\|Q2|
induction
olml  olms|
glmil+[me|
—
S| = |S1] + S| + Q1 [* + |Q2[?

induction

< olml* | glmal® 4 92m| 4 92|
< o(|mi|+|m=2])?

1

By induction we getAcc;| < |m;| fori € {1,2}. Thus,Acc = max{|Accy|, |Acca|} <
|Accq| + |Acca| < || + |m2| = |7 O

E Proof of Lemma 10

Lemma 10.7 has a solution if and only ip is satisfiable.

Proof. Since the %" direction is simple, we only prove the<” direction. Thus, let
o7 be satisfiable an&” = (X, {—.,, —a, }, p) @ model ofpr. We have to construct
a solutionr to 7. To prepare for this, we first define a mappmgN x N — X, which
is done in two steps. In the first step, we picke [p7]x and setr (i, j) = z. Next, we
definen(7,0) for all i > 0 as follows: Assume that(i — 1,0) is already defined. By
(b) from Section 7, we can choosec X such that{w(i — 1,0),2) € [a,]x and set
7(i,0) = x. Finally, we definer(s, j) for all j > 0: Assume thatr(i, j — 1) is already
defined. By (b) from Section 7, we can chogse X such tha(n (i, j—1),y) € [a,]x
and setr (i, j) = y. By construction, we haver(i,j — 1),7(4, 7)) € [ay]x for every
i > 0andj > 0. Moreover, the confluence property (c) from Section 7 ingifet also
(w(i—1,7),7(3,7)) € [as]x for everyi > 0 andj > 0.

The resulting mapping gives rise to a mapping : N x N — T in the obvious
way: by (a), we can define(i, j) as the unique € T with 7 (i, j) € [t]x. Finally, by
(d), T is a solution td7 . O
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