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Abstract

This paper investigates the word problem for inverse monoids generated by a set
Γ subject to relations of the form e = f , where e and f are both idempotents in
the free inverse monoid generated by Γ. It is shown that for every fixed monoid of
this form the word problem can be solved both in linear time on a RAM as well as
in deterministic logarithmic space, which solves an open problem of Margolis and
Meakin. For the uniform word problem, where the presentation is part of the input,
EXPTIME-completeness is shown. For the Cayley-graphs of these monoids, it is
shown that the first-order theory with regular path predicates is decidable. Regular
path predicates allow to state that there is a path from a node x to a node y that
is labeled with a word from some regular language. As a corollary, the decidability
of the generalized word problem is deduced.

1 Introduction

The decidability and complexity of algebraic questions in various kinds of
structures is a classical topic at the borderline of computer science and math-
ematics. The most basic algorithmic question concerning algebraic structures
is the word problem, which asks whether two given expressions denote the
same element of the underlying structure. Markov [29] and Post [38] proved
independently that the word problem for finitely presented monoids is unde-
cidable in general. This result can be seen as one of the first undecidability
results dealing with algebraic structures. Later, Novikov [35] and Boone [3]
extended the result of Markov and Post to finitely presented groups.

In this paper, we are interested in a class of monoids that lies somewhere
between groups and general monoids: inverse monoids [37]. In the same way
as groups can be represented by sets of permutations, inverse monoids can be
represented by sets of partial injections [37]. Algorithmic questions for inverse
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monoids received increasing attention in the past and inverse monoid theory
found several applications in combinatorial group theory, see e.g. [1,8,9,12,27,30,41,43,44]
and the survey [28]. In [27], Margolis and Meakin presented a large class of
finitely presented inverse monoids with decidable word problems. An inverse
monoid from that class is of the form FIM(Γ)/P , where FIM(Γ) is the free
inverse monoid generated by the set Γ and P is a presentation consisting of
a finite number of identities between idempotents of FIM(Γ); we call such a
presentation idempotent. In fact, in [27] it is shown that even the uniform
word problem for idempotent presentations is decidable. In this problem, also
the presentation is part of the input. An alternative proof for the decidability
of the uniform word problem was given in [43].

The decidability proof of Margolis and Meakin uses Rabin’s seminal tree The-
orem [39], concerning the decidability of the monadic second-order theory of
the complete binary tree. From the view point of complexity, the use of Rabin’s
tree Theorem is somewhat unsatisfactory, because it leads to a nonelementary
algorithm for the word problem. Therefore, in [27] the question for a more
efficient approach was asked. A partial answer was obtained in [1], where it
was shown that for an idempotent presentation with only one identity the
word problem can be solved in polynomial time. In Section 6 we present a
full solution to the question of Margolis and Meakin: by using tree automata
techniques we show that for every fixed idempotent presentation P the word
problem for FIM(Γ)/P can be solved both in linear time on a RAM as well as in
deterministic logarithmic space. For the uniform word problem for idempotent
presentations we prove completeness for EXPTIME (deterministic exponen-
tial time). Similarly to the method of Margolis and Meakin, we use results
from logic for the EXPTIME upper bound. But instead of translating the uni-
form word problem into monadic second-order logic over the complete binary
tree, we exploit a translation into the modal µ-calculus, which is a popular
logic for the verification of reactive systems. Then, we can use a result from
[19,49] stating that the model-checking problem of the modal µ-calculus over
context-free graphs [33] is EXPTIME-complete.

In Section 7 we will investigate Cayley-graphs of inverse monoids of the form
FIM(Γ)/P . The Cayley-graph of a finitely generated monoid M w.r.t. a fi-
nite generating set Γ is a Γ-labeled directed graph with node set M and an
a-labeled edge from a node x to a node y if y = xa in M. Cayley-graphs of
groups are a fundamental tool in combinatorial group theory [26] and serve
as a link to other fields like topology, graph theory, and automata theory, see,
e.g., [32,33]. Here we consider Cayley-graphs of monoids from a logical point
of view, see [5,20,21] for previous results in this direction. In [5] it was shown
that the monadic second-order theory of the Cayley-graph of the free inverse
monoid generated by only one element is undecidable. In Section 7 we present
a still quite powerful fragment of monadic second-order logic, which remains
decidable for Cayley-graphs of inverse monoids of the form FIM(Γ)/P (for P
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an idempotent presentation). More precisely, we consider an expansion Greg

of the Cayley-graph G of a monoid M that contains for every regular lan-
guage L over the generators of M a binary predicate reachL. Two nodes u
and v of G are related by reachL if there exists a path from u to v in the
Cayley-graph G, which is labeled with a word from the language L. It is not
hard to translate first-order formulas over this expansion Greg into monadic
second-order formulas over the (plain) Cayley-graph G. Our main result of
Section 7 states that Greg has a decidable first-order theory, whenever the
underlying monoid is of the form FIM(Γ)/P for an idempotent presentation
P (Theorem 15). An immediate corollary of this result is that the general-
ized word problem of FIM(Γ)/P is decidable. The generalized word problem
asks whether for given elements w,w1, . . . , wn ∈ FIM(Γ)/P , w belongs to the
submonoid of FIM(Γ)/P generated by w1, . . . , wn. Our decidability result for
Cayley-graphs should be also compared with the undecidability result for the
existential theory of the free inverse monoid FIM({a, b}) [41], which consists
of all true statements over FIM({a, b}) of the form ∃x1 · · · ∃xm : ϕ, where ϕ is
a boolean combination of word equations (with constant).

A short version of this paper appeared in [25].

2 Preliminaries

Let Γ be a finite alphabet. The empty word over Γ is denoted by ε. Let s =
a1 · · · an ∈ Γ∗ be a word over Γ, where n ≥ 0 and a1, . . . , an ∈ Γ for 1 ≤ i ≤ n.
The length of s is |s| = n. Furthermore for a ∈ Γ we define |s|a = |{i | ai = a}|.
For 1 ≤ i ≤ n let s[i] = ai and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj. If
i > j we set s[i, j] = ε. We denote with Γ−1 = {a−1 | a ∈ Γ} a disjoint copy
of Γ. For a−1 ∈ Γ−1 we define (a−1)−1 = a; thus, −1 becomes an involution on
the alphabet Γ ∪ Γ−1. We extend this involution to words from (Γ ∪ Γ−1)∗ by
setting (a1 · · · an)−1 = a−1

n · · · a−1
1 , where ai ∈ Γ ∪ Γ−1. The set of all regular

languages over an alphabet Γ will be denoted by REG(Γ).

We assume that the reader has some basic background in complexity theory
[36]. We will make use of alternating Turing-machines, see [7] for more details.
Roughly speaking, an alternating Turing-machine T = (Q,Σ, δ, q0, qf ) (where
Q is the state set, Σ is the tape alphabet, δ is the transition relation, q0 is
the initial state, and qf is the unique accepting state) is a nondeterministic
Turing-machine, where the set of non-final states Q \ {qf} is partitioned into
two sets: Q∃ (existential states) and Q∀ (universal states). We assume that T
cannot make transitions out of the accepting state qf . A configuration C with
current state q is accepting, if

• q = qf , or
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• q ∈ Q∃ and there exists a successor configuration of C that is accepting, or
• q ∈ Q∀ and every successor configuration of C is accepting.

An input word w is accepted by T if the corresponding initial configuration is
accepting. It is known that EXPTIME (deterministic exponential time) equals
APSPACE (the class of all problems that can be accepted by an alternating
Turing-machine in polynomial space) [7].

3 Relational Structures and Logic

See [15] for more details on the subject of this section. A signature is a count-
able set S of relational symbols, where each relational symbol R ∈ S has an
associated arity nR. A (relational) structure over the signature S is a tuple
A = (A, (RA)R∈S), where A is a set (the universe of A) and RA is a relation
of arity nR over the set A, which interprets the relational symbol R. We will
assume that every signature contains the equality symbol = and that =A is
the identity relation on the set A. As usual, a constant c ∈ A can be encoded
by the unary relation {c}. Usually, we denote the relation RA also with R.
For B ⊆ A we define the restriction A↾B = (B, (RA ∩BnR)R∈S); it is again a
structure over the signature S.

Next, let us introduce monadic second-order logic (MSO-logic). Let V1 (resp.
V2) be a countably infinite set of first-order variables (resp. second-order vari-
ables) which range over elements (resp. subsets) of the universe A. First-order
variables (resp. second-order variables) are denoted x, y, z, x′, etc. (resp. X,
Y , Z, X ′, etc.). MSO-formulas over the signature S are constructed from the
atomic formulas R(x1, . . . , xnR

) and x ∈ X (where R ∈ S, x1, . . . , xnR
, x ∈ V1,

and X ∈ V2) using the boolean connectives ¬,∧, and ∨, and quantifications
over variables from V1 and V2. The notion of a free occurrence of a variable is
defined as usual. A formula without free occurrences of variables is called an
MSO-sentence. If ϕ(x1, . . . , xn, X1, . . . , Xm) is an MSO-formula such that at
most the first-order variables among x1, . . . , xn and the second-order variables
amongX1, . . . , Xm occur freely in ϕ, and a1, . . . , an ∈ A, A1, . . . , Am ⊆ A, then
A |= ϕ(a1, . . . , an, A1, . . . , Am) means that ϕ evaluates to true in A if the free
variable xi (resp.Xj) evaluates to ai (resp. Aj). The MSO-theory of A, denoted
by MSOTh(A), is the set of all MSO-sentences ϕ such that A |= ϕ. For an
MSO-formula ϕ(x1, . . . , xn, X1, . . . , Xm) and a variable Y ∈ V2\{X1, . . . , Xm}
we need the relativation ϕ↾Y (x1, . . . , xn, X1, . . . , Xm, Y ). It is inductively de-
fined by restricting every quantifier in ϕ to the set Y . Then for all B ⊆ A and
all a1, . . . , an ∈ B, A1, . . . , Am ⊆ B we have A↾B |= ϕ(a1, . . . , an, A1, . . . , Am)
if and only if A |= ϕ↾Y (a1, . . . , an, A1, . . . , Am, B).
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Remark 1 We will use the well-known fact that the reflexive and transitive
closure E∗ of a binary relation E can be defined in MSO: if reach(x, y) is the
formula

∀X : ((x ∈ X ∧ ∀u, v : (u ∈ X ∧ E(u, v) ⇒ v ∈ X)) ⇒ y ∈ X),

then for every directed graph G = (V,E) and all nodes s, t ∈ V we have

G |= reach(s, t) if and only if (s, t) ∈ E∗.

Another important fact is that finiteness of a subset of a finitely-branching
tree can be expressed in MSO, i.e., there is an MSO-formula fin(X) (over the
signature containing a binary relation symbol E) such that for every (finitely-
branching and undirected) tree T = (V,E) and all subsets U ⊆ V we have
T |= fin(U) if and only if U is finite, see also [39, Lemma 1.8]. First, let us
define two auxiliary formulas, where N(x) denotes the set {y ∈ V | (x, y) ∈
E}:

ω-path(x,X) =x ∈ X ∧ |N(x) ∩X| = 1 ∧

∀y ∈ X \ {x} : |N(y) ∩X| = 2 ∧

∀y ∈ X : reach↾X(x, y,X)

fin-path(x, y,X) = (X = {x} ∧ x = y) ∨ (x 6= y ∧ x, y ∈ X ∧

|N(x) ∩X| = |N(y) ∩X| = 1 ∧

∀z ∈ X \ {x, y} : |N(z) ∩X| = 2 ∧

∀z ∈ X : reach↾X(x, z,X))

Then we have T |= ω-path(u, U) if and only if U is an ω-path starting in node
u, whereas T |= fin-path(u, v, U) if and only if U is a finite path with end
points u and v. Now U ⊆ V is finite if and only if the following holds:

∃r ∃X : ∀x : (x ∈ X ⇔ ∃y ∈ U ∃Y : (fin-path(r, y, Y ) ∧ x ∈ Y )) ∧

¬∃Z : (ω-path(r, Z) ∧ Z ⊆ X)

We select first an arbitrary root r. Then the formula ∀x : (x ∈ X ⇔ ∃y ∈
U ∃Y : (fin-path(r, y, Y ) ∧ x ∈ Y )) says that X is the upward-closure of the
set U , when r is the root of the tree. Finally, we say that there does not exist
an infinite path Z that is contained in X. Since T is finitely-branching, by
König’s lemma this is equivalent to the fact that X (and hence U) is finite.

A first-order formula over the signature S is an MSO-formula that does not
contain any occurrences of second-order variables. In particular, first-order
formulas do not contain atomic subformulas of the form x ∈ X. The first-
order theory FOTh(A) of the structure A is the set of all first-order sentences
ϕ such that A |= ϕ.
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In Section 6 we will make use of the modal µ-calculus, which is a popular logic
for the verification of reactive systems, see [48] for more details. Formulas of
this logic are interpreted over edge-labeled directed graphs. Let Σ be a finite
set of edge labels. The syntax of the modal µ-calculus is given by the following
grammar:

ϕ ::= true | false | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

Here X ∈ V2 is a second-order variable ranging over sets of nodes and a ∈ Σ.
Variables from V2 are bounded by the µ- and ν-operator. We define the se-
mantics of the modal µ-calculus w.r.t. an edge-labeled graph G = (V, (Ea)a∈Σ)
(Ea ⊆ V ×V is the set of all a-labeled edges) and a valuation σ : V2 → 2V . To
each formula ϕ we assign the set ϕG(σ) ⊆ V of nodes where ϕ evaluates to true
under the valuation σ. For a valuation σ, a variable X ∈ V2, and a set U ⊆ V
define σ[U/X] as the valuation with σ[U/X](X) = U and σ[U/X](Y ) = σ(Y )
for X 6= Y . Now we can define ϕG(σ) inductively as follows:

• trueG(σ) = V , falseG(σ) = ∅
• XG(σ) = σ(X) for every X ∈ V2

• (ϕ ∨ ψ)G(σ) = ϕG(σ) ∪ ψG(σ)
• (ϕ ∧ ψ)G(σ) = ϕG(σ) ∩ ψG(σ)
• (〈a〉ϕ)G(σ) = {u ∈ V | ∃v ∈ V : (u, v) ∈ Ea ∧ v ∈ ϕG(σ)}
• ([a]ϕ)G(σ) = {u ∈ V | ∀v ∈ V : (u, v) ∈ Ea ⇒ v ∈ ϕG(σ)}
• (µX.ϕ)G(σ) =

⋂
{U ⊆ V | ϕG(σ[U/X]) ⊆ U}

• (νX.ϕ)G(σ) =
⋃
{U ⊆ V | U ⊆ ϕG(σ[U/X])}

The set (µX.ϕ)G(σ) is the smallest fixpoint of the monotonic mapping U 7→
ϕG(σ[U/X]), whereas (νX.ϕ)G(σ) is the largest fixpoint of this mapping. Note
that in order to determine ϕG(σ), only the values of the valuation σ for free
variables of ϕ are important. In particular, if ϕ is a sentence (i.e., a formula
where all variables are bound by fixpoint operators), then the valuation σ is
not relevant and we can write ϕG instead of ϕG(σ), where σ is an arbitrary
valuation. For a sentence ϕ and a node v ∈ V we write (G, v) |= ϕ if v ∈ ϕG. It
is known that for every sentence ϕ of the modal µ-calculus one can construct
an MSO-formula ψ(x) such that for every node v ∈ V : (G, v) |= ϕ if and only
if G |= ψ(v).

A context-free graph [33] is the transition graph of a pushdown automaton,
i.e., nodes are the configurations of a given pushdown automaton, and edges
are given by the transitions of the automaton. A more formal definition is not
necessary for the purpose of this paper. We will only need the following result:

Theorem 2 ([19,49]) The following problem is in EXPTIME:

6



INPUT: A pushdown automaton A defining a context-free graph G(A), a node
v of G(A), and a formula ϕ of the modal µ-calculus

QUESTION: (G(A), v) |= ϕ?

Moreover, there exists already a fixed formula ϕ for which this question becomes
EXPTIME-complete.

4 Word problems and Cayley-graphs

Let M = (M, ◦, 1) be a finitely generated monoid with identity 1 and let Σ
be a finite generating set for M, i.e., Σ ⊆ M and the canonical morphism
h : Σ∗ → M is surjective. The word problem for M w.r.t. Σ is the following
problem:

INPUT: Words u, v ∈ Σ∗

QUESTION: h(u) = h(v)?

The following fact is well-known:

Proposition 3 Let M be a finitely generated monoid and let Σ1 and Σ2 be
two finite generating sets for M. Then the word problem for M w.r.t. Σ1 is
logspace reducible to the word problem for M w.r.t. Σ2.

Thus, the computational complexity of the word problem does not depend on
the underlying set of generators. Since we are only interested in the complexity
(resp. decidability) status of word problems, we can just speak of the word
problem for a given monoid.

The Cayley-graph of M w.r.t. Σ is the following relational structure:

C(M,Σ) = (M, ({(u, v) ∈M ×M | u ◦ a = v})a∈Σ, 1)

It is a rooted (1 is the root) directed graph, where every edge has a label from
Σ and {(u, v) | u ◦ a = v} is the set of a-labeled edges. Since Σ generates M,
every u ∈M is reachable from the root 1.

Cayley-graphs of groups play an important role in combinatorial group theory
[26], see also the survey of Schupp [42]. Cayley-graphs of monoids received less
attention, see e.g. [6,18] for some recent work. In [24,45,46], Cayley-graphs of
automatic monoids are investigated.
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Fig. 1. The Cayley-graph C({a, b}) of the free group FG({a, b})

The free group FG(Γ) generated by the set Γ is the quotient monoid

FG(Γ) = (Γ ∪ Γ−1)∗/δ,

where δ is the smallest congruence on (Γ∪Γ−1)∗ that contains all pairs (bb−1, ε)
for b ∈ Γ ∪ Γ−1. Let

γ : (Γ ∪ Γ−1)∗ → FG(Γ)

denote the canonical morphism mapping a word u ∈ (Γ ∪ Γ−1)∗ to the group
element represented by u. It is well known that for every u ∈ (Γ∪Γ−1)∗ there
exists a unique word r(u) ∈ (Γ ∪ Γ−1)∗ (the reduced normal form of u) such
that γ(u) = γ(r(u)) and r(u) does not contain a factor of the form bb−1 for
b ∈ Γ∪Γ−1. The word r(u) can be calculated from u in linear time [2]. It holds
γ(u) = γ(v) if and only if r(u) = r(v).

The Cayley-graph of FG(Γ) w.r.t. the standard generating set Γ∪Γ−1 will be
denoted by C(Γ); it is a finitely-branching tree and a context-free graph [33].
Figure 1 shows a finite portion of C({a, b}). Here, and in the following, we only
draw one directed edge between two points. Thus, for every drawn x-labeled
edge we omit the x−1-labeled reversed edge.

The concrete shape of a Cayley-graph C(M,Σ) depends on the chosen set
of generators Σ. Nevertheless, and similarly to the word problem, the chosen
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generating set has no influence on the decidability (or complexity) of the first-
order (resp. monadic second-order) theory of the Cayley-graph:

Proposition 4 ([21]) Let Σ1 and Σ2 be finite generating sets for the monoid
M. Then the first-order theory of C(M,Σ1) is logspace reducible to the first-
order theory of C(M,Σ2) and the same holds for the MSO-theories.

Thus, similarly to the word problem, we will just speak of the Cayley-graph
of a monoid in statements concerning the complexity (resp. decidability) of
the first-order (monadic second-order) theory of Cayley-graphs.

It is easy to see that the decidability of the first-order theory of the Cayley-
graph implies the decidability of the word problem. On the other hand, there
exists a finitely presented monoid for which the word problem is decidable,
but the first-order theory of the Cayley-graph is undecidable, see [21]. When
restricting to groups, the situation is different: The Cayley-graph of a finitely
generated group has a decidable first-order theory if and only if the group
has a decidable word problem [20]. Moreover, the Cayley-graph of a finitely
generated group has a decidable monadic second-order theory if and only if
the group is virtually free (i.e., has a free subgroup of finite index) [20,33]. We
will only need the latter result for the Cayley-graph C(Γ) of the free group
FG(Γ):

Theorem 5 ([33]) For every finite set Γ, MSOTh(C(Γ)) is decidable.

Remark 6 It is known that already the MSO-theory of Z with the successor
function is decidable, but not elementary decidable [31], i.e., the running time
of every algorithm for deciding this theory cannot be bounded by an exponent
tower of fixed height. It follows that also the complexity of MSOTh(C(Γ)) is
not elementary for every nonempty finite alphabet Γ.

5 Inverse Monoids

A monoid M is called an inverse monoid if for every m ∈ M there is a
unique m−1 ∈ M such that m = mm−1m and m−1 = m−1mm−1. For detailed
reference on inverse monoids see [37]; here we only recall the basic notions.
The class of inverse monoids forms a variety of algebras (with respect to
the operations of multiplication, inversion, and the identity element). Thus, it
follows from universal algebra that free inverse monoids exist. The free inverse
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monoid generated by a set Γ is denoted by FIM(Γ). We have

FIM(Γ) ≃ (Γ ∪ Γ−1)∗/ρ,

where ρ is the smallest congruence on the free monoid (Γ∪Γ−1)∗ which contains
for all words v, w ∈ (Γ∪Γ−1)∗ the pairs (w,ww−1w) and (ww−1vv−1, vv−1ww−1)
(which are also called the Vagner equations). An element x of an inverse
monoid M is idempotent (i.e., x2 = x) if and only if x is of the form mm−1

for some m ∈ M. Hence, by the Vagner equations, idempotent elements in an
inverse monoid commute. Let

α : (Γ ∪ Γ−1)∗ → FIM(Γ)

denote the canonical morphism mapping a word u ∈ (Γ∪Γ−1)∗ to the element
of FIM(Γ) represented by u. Since the Vagner equations are true in the free
group FG(Γ), there exists a morphism

β : FIM(Γ) → FG(Γ)

such that γ = β ◦α, where γ : (Γ∪Γ−1)∗ → FG(Γ) is the canonical morphism
from the previous section.

The elements of the free inverse monoid FIM(Γ) can be also represented via
Munn trees : The Munn tree MT(u) of u ∈ (Γ∪Γ−1)∗ is a finite and connected
subset of the Cayley-graph C(Γ) of the free group FG(Γ); it is defined by

MT(u) = {γ(v) ∈ FG(Γ) | ∃w ∈ (Γ ∪ Γ−1)∗ : u = vw}.

In other words, MT(u) is the set of all nodes along the unique path in C(Γ)
that starts in 1 and that is labeled with the word u. We identify MT(u) with
the subtree C(Γ)↾MT(u) of C(Γ).

Example 7 The Munn tree of bb−1abb−1a looks as follows:

b
a a

b

Munn’s Theorem [34] states that for all u, v ∈ (Γ ∪ Γ−1)∗,

α(u) = α(v) ⇔ (r(u) = r(v) (i.e., γ(u) = γ(v)) ∧ MT(u) = MT(v).

Thus, the element α(u) ∈ FIM(Γ) can be uniquely represented by the pair
(MT(u), r(u)). Vice versa, for every reduced word s ∈ r((Γ∪Γ−1)∗) and every
finite and connected set U ⊆ FG(Γ) with 1, γ(s) ∈ U we can find a word u
(in fact infinitely many) such that U = MT(u) and r(u) = s. If we define on
the set of all pairs (U, s) ∈ 2FG(Γ)× r((Γ∪Γ−1)∗) (with U finite and connected
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and 1, γ(s) ∈ U) a multiplication by

(U, s)(V, t) = (U ∪ γ(s) ◦ V, r(st))

(where ◦ refers to the multiplication in the free group FG(Γ)), then the re-
sulting monoid is isomorphic to FIM(Γ).

Munn’s Theorem leads to a polynomial time algorithm for the word problem
for FIM(Γ). For instance, the reader can easily check that the words bb−1abb−1a
and aaa−1bb−1a−1bb−1aa represent the same element in FIM({a, b}) by using
Munn’s Theorem.

For a word u ∈ (Γ ∪ Γ−1)∗, the element α(u) ∈ FIM(Γ) is an idempotent
element, i.e., α(uu) = α(u), if and only if r(u) = ε, i.e., γ(u) = 1.

For a finite set P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ define

FIM(Γ)/P = (Γ ∪ Γ−1)∗/τ

to be the inverse monoid with the set Γ of generators and the set P of relations,
where τ is the smallest congruence on (Γ ∪ Γ−1)∗ generated by ρ ∪ P . Then
the canonical morphism

µP : (Γ ∪ Γ−1)∗ → FIM(Γ)/P

factors as µP = νP ◦ α with

νP : FIM(Γ) → FIM(Γ)/P.

We say that P ⊆ (Γ∪Γ−1)∗×(Γ∪Γ−1)∗ is an idempotent presentation if for all
(e, f) ∈ P , α(e) and α(f) are both idempotents of FIM(Γ), i.e., r(e) = r(f) =
ε by the remark above. In this paper, we are concerned with inverse monoids of
the form FIM(Γ)/P for a finite idempotent presentation P . In this case, since
every identity (e, f) ∈ P is true in FG(Γ) (we have γ(e) = γ(f) = 1), there
also exists a canonical morphism βP : FIM(Γ)/P → FG(Γ). The following
commutative diagram summarizes all morphisms introduced so far.

(Γ ∪ Γ−1)∗

FIM(Γ) FG(Γ)FIM(Γ)/P

α

β

γ
µP

νP βP

For the rest of this paper, the meaning of the morphisms α, β, βP , γ, µP , and
νP will be fixed.

To solve the word problem for FIM(Γ)/P , Margolis and Meakin [27] used a
closure operation for Munn trees, which is based on work of Stephen [47]. We
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shortly review the ideas here. As remarked in [27], every idempotent presenta-
tion P can be replaced by the idempotent presentation P ′ = {(e, ef), (f, ef) |
(e, f) ∈ P}, i.e., FIM(Γ)/P = FIM(Γ)/P ′. Since MT(e) ⊆ MT(ef) ⊇ MT(f)
if r(e) = r(f) = ε, we can restrict in the following to idempotent presentations
P such that MT(e) ⊆ MT(f) for all (e, f) ∈ P . Define a rewriting relation
⇒P on subsets of FG(Γ) as follows, where U, V ⊆ FG(Γ): U ⇒P V if and only
if there is (e, f) ∈ P and u ∈ U such that

• u ◦ v ∈ U for all v ∈ MT(e) (here, ◦ denotes the multiplication in the free
group FG(Γ)) and

• V = U ∪ {u ◦ w | w ∈ MT(f)}.

Finally, define the closure of U ⊆ FG(Γ) w.r.t. the presentation P as

clP (U) =
⋃
{V | U

∗
⇒P V }.

Example 8 Assume that Γ = {a, b}, P = {(aa−1, a2a−2), (bb−1, b2b−2)} and
u = aa−1bb−1. The Munn trees for the words in the presentation P and u look
as follows; the bigger circle represents the 1 of FG(Γ):

a a

a

= b b

b

= a b

Then the closure clP (MT(u)) is {an | n ≥ 0} ∪ {bn | n ≥ 0} ⊆ FG(Γ).

In the next section, instead of specifying a word w ∈ (Γ∪Γ−1)∗ (that represents
an idempotent element of FIM(Γ), i.e., r(w) = 1) explicitly, we will only draw
its Munn tree, where as in Example 8 the 1 of FG(Γ) is drawn as a bigger
circle. In fact, one can replace w by any word that labels a path from the circle
back to the circle and that visits all nodes in the tree; by Munn’s Theorem,
the resulting word represents the same element of FIM(Γ) (and hence also of
FIM(Γ)/P ) as the original word.

The following result of Margolis and Meakin is central for our further investi-
gations:

Theorem 9 ([27]) Let P be an idempotent presentation and let u, v ∈ (Γ ∪
Γ−1)∗. Then µP (u) = µP (v) if and only if r(u) = r(v) (i.e., γ(u) = γ(v)) and
clP (MT(u)) = clP (MT(v)).

The result of Munn for FIM(Γ) mentioned above is a special case of this result
for P = ∅, because cl∅(MT(u)) = MT(u).

Remark 10 Note that clP (MT(u)) = clP (MT(v)) if and only if MT(u) ⊆
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clP (MT(v)) and MT(v) ⊆ clP (MT(u)).

Margolis and Meakin used Theorem 9 in order to give a solution for the word
problem for the monoid FIM(Γ)/P . More precisely, they have shown that
from a finite idempotent presentation P one can effectively construct an MSO-
formula CLP (X,Y ) over the signature of the Cayley-graph C(Γ) such that for
all words u ∈ (Γ ∪ Γ−1)∗ and all subsets A ⊆ FG(Γ): C(Γ) |= CLP (MT(u), A)
if and only if A = clP (MT(u)). The decidability of the word problem for
FIM(Γ)/P is an immediate consequence of Theorem 5 and Theorem 9.

6 Complexity of the word problem

The direct use of Theorem 5 leads to a nonelementary algorithm for the word
problem for the monoid FIM(Γ)/P , see Remark 6. Using tree automata tech-
niques we will show:

Theorem 11 For every finite idempotent presentation P ⊆ (Γ∪Γ−1)∗× (Γ∪
Γ−1)∗ the word problem for FIM(Γ)/P can be solved in (i) linear time on a
RAM and (ii) in deterministic logspace. 1

Proof. Let us fix a finite and idempotent presentation P ⊆ (Γ∪Γ−1)∗× (Γ∪
Γ−1)∗ and let u, v ∈ (Γ ∪ Γ−1)∗. By Theorem 9 we have to check whether
r(u) = r(v) and clP (MT(u)) = clP (MT(v)). The first property r(u) = r(v)
(i.e., the word problem for the free group FG(Γ)) can be checked in linear
time on a RAM [2] as well as in deterministic logspace [22]. By Remark 10,
the property clP (MT(u)) = clP (MT(v)) is equivalent to

MT(u) ⊆ clP (MT(v)) ∧ MT(v) ⊆ clP (MT(u)).

It suffices to show that MT(v) ⊆ clP (MT(u)) can be checked both in linear
time on a RAM and in deterministic logspace. We will first present an al-
gorithm for this problem, which will be easily seen to be a polynomial time
algorithm. In a second step, we will show that this algorithm can be imple-
mented in linear time on a RAM as well as in deterministic logspace.

Recall that there is an MSO-formula CLP (X,Y ) over the signature of the
Cayley-graph C(Γ) such that for all subsetsA ⊆ FG(Γ): C(Γ) |= CLP (MT(u), A)

1 We do not state the existence of one algorithm that runs simultaneously in linear
time and logarithmic space.
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if and only if A = clP (MT(u)). Define the MSO-formula

in-clP (X,Y ) = ∃Z : CLP (X,Z) ∧ Y ⊆ Z.

Thus, we have to check whether C(Γ) |= in-clP (MT(u),MT(v)). Here, it is
important to note that since P is a fixed presentation, in-clP (X,Y ) is a fixed
MSO-formula over the signature of the Cayley-graph C(Γ).

Let TΓ be the (2 · |Γ|)-ary tree

TΓ = ((Γ ∪ Γ−1)∗, (suca)a∈Γ∪Γ−1),

where suca = {(w,wa) | w ∈ (Γ ∪ Γ−1)∗}, and let IRR(Γ) = {r(w) | w ∈
(Γ∪Γ−1)∗} be the set of all reduced normal forms. In a next step, we translate
the fixed MSO-formula in-clP (X,Y ) into a fixed MSO-formula ψP (X,Y ) over
the signature of TΓ such that for every A,B ⊆ IRR(Γ) we have TΓ |= ψP (A,B)
if and only if C(Γ) |= in-clP (γ(A), γ(B)). For this, one has to notice that C(Γ)
is isomorphic to the structure

(IRR(Γ), ({(u, ua) | u ∈ IRR(Γ) \ (Γ ∪ Γ−1)∗a−1} ∪

{(ua−1, u) | u ∈ IRR(Γ) \ (Γ ∪ Γ−1)∗a})a∈Γ∪Γ−1 , ε).

Since IRR(Γ) is a regular subset of (Γ ∪ Γ−1)∗ and hence MSO-definable in
TΓ, it follows that C(Γ) is MSO-definable in TΓ, see also [27].

We now calculate the sets

U = {r(p) | ∃s ∈ (Γ ∪ Γ−1)∗ : u = ps} ⊆ IRR(Γ)

V = {r(p) | ∃s ∈ (Γ ∪ Γ−1)∗ : v = ps} ⊆ IRR(Γ),

which uniquely represent MT(u) and MT(v). Thus, it remains to check whether
TΓ |= ψP (U, V ).

Next, we translate the fixed MSO-formula ψP (X,Y ) into a fixed (top-down) ω-
tree automaton AP , which runs on a labeled ω-tree ((Γ∪Γ−1)∗, (suca)a∈Γ∪Γ−1 , λ),
where λ : (Γ ∪ Γ−1)∗ → {0, 1} × {0, 1} is the labeling function. The property
of AP is that TΓ |= ψP (U, V ) if and only if AP accepts the ω-tree

TU,V = ((Γ ∪ Γ−1)∗, (suca)a∈Γ∪Γ−1 , λ),

where for all w ∈ (Γ ∪ Γ−1)∗ with λ(w) = (i, j) we have: i = 1 if and only
if w ∈ U and j = 1 if and only if w ∈ V . Again, since ψP (X,Y ) is a fixed
MSO-formula, AP is a fixed ω-tree automaton. The translation from ψP (X,Y )
to AP is the standard translation from MSO-formulas to automata, see [39,
Theorem 1.7]. It remains to check whether AP accepts the ω-tree TU,V .

14



The final step translates TU,V into a finite tree tfin
U,V . Note that in TU,V almost

all nodes are labeled with (0, 0) (U and V are finite sets of words). Let B
be the set of all words of the form wa, where w ∈ (Γ ∪ Γ−1)∗, a ∈ Γ ∪ Γ−1,
λ(wat) = (0, 0) for every t ∈ (Γ ∪ Γ−1)∗, but λ(w) 6= (0, 0). We construct the
tree tfin

U,V by taking TU,V but making every node w ∈ B to a leaf of tfin
U,V that is

labeled with the new symbol # (all proper prefixes of words from B are labeled
as in TU,V ). Note that tfin

U,V is a finite tree that can be constructed from U and V
in polynomial time. Before we continue, let us give an example. Let u = a−1b2

and v = a2a−3. Then U = {ε, a−1, a−1b, a−1b2} and V = {ε, a, a2, a−1} and
tfin
U,V is the following tree.

(1, 1)

(0, 1) (1, 1)
#

#

(0, 1)
# # # #

(1, 0)
# #

# (1, 0) # #

# # # #

# # #
#

a
a−1

b
b−1

a
b
a−1

b−1
a

b a−1
b−1

a
b a−1 b−1

a
b a−1 b−1

a
b a−1 b−1

Now, from the fixed ω-tree automaton AP it is easy to construct a fixed tree
automaton Afin

P (working on finite trees) such that AP accepts TU,V if and
only if Afin

P accepts tfin
U,V . Basically, Afin

P has the same states and transitions as
AP , except that Afin

P accepts in a #-labeled leaf in state q if and only if AP

accepts the full ω-tree with all nodes labeled (0, 0) when starting in state q.
Since AP is a fixed ω-tree automaton, this information can be hardwired into
Afin

P . Finally, whether Afin
P accepts tfin

U,V can be checked in polynomial time.

It remains to argue that the above procedure can be implemented both in
linear time on a RAM as well as in deterministic logspace. For the linear
time algorithm, note that a pointer representation of the tree tfin

U,V can be con-
structed in linear time from the input words u and v. The following algorithm
builds a pointer representation of MT(u):

k := 1; c := 1;
for all a ∈ Γ ∪ Γ−1: out(1, a) := nil;
for i := 1 to |u| do

if out(c, u[i]) 6= nil then
c := out(c, u[i])

else
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k := k + 1;
out(c, u[i]) := k;
out(k, u[i]−1) := c;
for all a ∈ (Γ ∪ Γ−1) \ {u[i]−1}: out(k, a) := nil;
c := k

endif
endfor

The idea behind this algorithm is the following: The nodes of MT(u) are rep-
resented by numbers from {1, . . . , ℓ}, where ℓ is the final value of the variable
k. During the run of the algorithm, k stores the maximal node generated so
far. The tree MT(u) is build by running once over the word u from left to
right. The current node in the partially generated Munn tree is stored in the
variable c. In order to navigate in the tree, we store in out(j, a) for every node
j the node that can be reached from j with an a-labeled edge; this node may
be nil. The linear running time of the algorithm is obvious.

After running the above algorithm, we set the current node c to the root 1 and
run the same algorithm (without changing the other global variables) with the
word v instead of u. This results in a pointer representation of MT(u)∪MT(v).
Finally, we add for every node 1 ≤ i ≤ k and every a ∈ Γ ⊆ Γ−1 such that
either out(i, a) = nil or out(i, a) < i (which means that the a-labeled edge
leaving i goes up in the tree) a new node j and set out(i, a) := j. The resulting
pointer structure represents tfin

U,V .

Finally note that the tree automaton Afin
P can be evaluated in linear time on

the pointer representation of the tree tfin
U,V . This finishes our presentation of a

linear time algorithm for the word problem for FIM(Γ)/P .

For the logspace algorithm we use the fact that the membership problem for
the fixed tree automaton Afin

P can be solved in deterministic logspace, when
the input tree is given by a pointer representation: By [23, Theorem 1], the
membership problem for a fixed tree automaton can be even solved in NC1 ⊆ L
if the input tree is represented by a well-bracketed expression string. On the
other hand, as noted in [4,17], transforming the pointer representation of a
tree into its expression string is possible in logspace.

Since deterministic logspace is closed under logspace reductions, it suffices
to show that the pointer representation of the tree tfin

U,V can be constructed
in deterministic logspace from the words u and v. This construction will be
presented by a chain of logspace reductions, recall that logspace reducibility
is transitive [36].

First, note that for a given word x ∈ (Γ∪Γ−1)∗ the reduced normal form r(x)
can be constructed in logspace: r(x) will be written from left to right onto the
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output tape by the following procedure:

i := 0
while i < |x| do

i := i+ 1
if ∀j ∈ {i+ 1, . . . , |x|} : x[i, j] 6= 1 in FG(Γ) then

write x[i] onto the output tape
else

let j := max{k | i < k ≤ |x|, x[i, k] = 1 in FG(Γ)}
i := j

endif
endwhile

This algorithm can be implemented in logspace, since we only have to store
the two positions i, j ∈ {1, . . . , |x|}. Moreover, whether x[i, j] 6= 1 in FG(Γ)
can be decided in logspace by [22].

Thus, we can calculate in logspace (an enumeration of) the set

W = {r(u[1, i]) | 0 ≤ i ≤ |u|} ∪ {r(v[1, i]) | 0 ≤ i ≤ |v|}.

Note that the set of nodes of the tree tfin
U,V is the set

N = W ∪ {wc | w ∈ W, c ∈ Γ ∪ Γ−1}.

Moreover, there is an c-labeled edge between x ∈ N and y ∈ N if and only if
y = xc. Finally, the label λ(x) of x ∈ N can be defined as follows: λ(x) = #
if x ∈ N \W , otherwise λ(x) = (i, j) ∈ {0, 1} × {0, 1} with i = 1 if and only
if x ∈ {r(u[1, i]) | 0 ≤ i ≤ |u|} and j = 1 if and only if x ∈ {r(v[1, i]) | 0 ≤ i ≤
|v|}. This description of tfin

U,V immediately gives rise to a logspace algorithm
for calculating the pointer representation of tfin

U,V .

In the uniform case, where the presentation P is part of the input, the com-
plexity of the word problem increases considerably:

Theorem 12 There exists a fixed alphabet Γ such that the following problem
is EXPTIME-complete:

INPUT: Words u, v ∈ (Γ ∪ Γ−1)∗ and a finite idempotent presentation P ⊆
(Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

QUESTION: µP (u) = µP (v)?

The EXPTIME upper bound even holds if the alphabet Γ belongs to the input.
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Proof. For the lower bound we use the fact that EXPTIME equals APSPACE.
Thus, let

T = (Q,Σ, δ, q0, qf )

be a fixed alternating Turing machine that accepts an EXPTIME-complete
language. Assume that T works in space p(n) for a polynomial p on an input
of length n. W.l.o.g. we may assume the following:

• T alternates in each state, i.e., it either moves from a state of Q∃ to a state
from Q∀ ∪ {qf} or from a state of Q∀ to a state from Q∃ ∪ {qf}.

• q0 ∈ Q∃

• For each pair (q, a) ∈ (Q\{qf})×Σ, the machine T has precisely two choices
according to the transition relation δ, which we call choice 1 and choice 2.

• If T terminates in the final state qf , then the symbol that is currently read
by the head is some distinguished symbol $ ∈ Σ.

Define Γ = Σ∪ (Q×Σ)∪{a1, a2, b1, b2,#}, where all unions are assumed to be
disjoint. A configuration of T is encoded as a word from #Σ∗(Q×Σ)Σ∗# ⊆ Γ∗.
Now let w ∈ Σ∗ be an input of length n and letm = p(n). Then a configuration
of T is a word from

⋃m−1
i=0 #Σi(Q × Σ)Σm−i−1# ⊆ Γm+2. Clearly, the symbol

at position i ∈ {2, . . . ,m + 1} at time t + 1 in a configuration only depends
on the symbols at the positions i − 1, i, and i + 1 at time t. Assume that
c, c1, c2, c3 ∈ Σ∪(Q×Σ)∪{#} are such that c1c2c3 ∈ {ε,#}Σ∗(Q×Σ)Σ∗{ε,#}.

We write c1c2c3
j
→ c for j ∈ {1, 2} if the following holds: If three consecutive

positions i − 1, i, and i + 1 of a configuration contain the symbol sequence
c1c2c3, then choice j of T results in the symbol c at position i. We write

c1c2c3
∃
→ (d1, d2) for c1, c2, c3, d1, d2 ∈ Σ∪ (Q×Σ)∪{#} if one of the following

two cases holds:

• c1c2c3 ∈ {ε,#}Σ∗(Q∃ × Σ)Σ∗{ε,#} and c1c2c3
j
→ dj for j ∈ {1, 2}

• c1c2c3 ∈ {ε,#}Σ∗{ε,#} and d1 = d2 = c2.

The notation c1c2c3
∀
→ (d1, d2) is defined analogously, except that in the first

case we require c1c2c3 ∈ {ε,#}Σ∗(Q∀ × Σ)Σ∗{ε,#}.

Let us now briefly describe the idea for the lower bound proof. We will encode a
configuration #c1c2 · · · cm#, where the current state is from Q∃ by a subgraph
of the Cayley-graph C(Γ) of the following form, where i = 1 or i = 2:

ai ai ai

# c1 c2 cm #. . .

If the current state is from Q∀, then we take the same subgraph, except that ai

is replaced by bi. The idempotent presentation P ⊆ (Γ∪Γ−1)∗ × (Γ∪Γ−1)∗ is
constructed in such a way from the machine T that building the closure from
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a Munn tree that represents the initial configuration (in the above sense)
corresponds to generating the whole computation tree of the Turing machine
T starting from the initial configuration. We will describe each pair (e, f) ∈ P
by the Munn trees MT(e) and MT(f), where MT(e) ⊆ MT(f).

For all x ∈ {a1, a2, b1, b2} put the following equation into P , which propagates
the end-marker # along intervals of length m + 1 (here, the xm-labeled edge
abbreviates a path consisting of m many x-labeled edges):

x

#

x

xm

#

#

=

(1)

The next two equation types generate the two successor configurations of the

current configuration. If c1c2c3
∃
→ (d1, d2), then for every 0 ≤ k ≤ m − 1 and

i ∈ {1, 2} we include the following equation in P :

c1

c2

c3

#

ai

ai

ak
i

c1

c2

c3

#

ai

ai

ak
i

bm−k
1

bm−k
2

d1 d2

=

(2)
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If c1c2c3
∀
→ (d1, d2), then for every 0 ≤ k ≤ m− 1 and i ∈ {1, 2} we take the

following equation:

c1

c2

c3

#

bi

bi

bki

c1

c2

c3

#

bi

bi

bki

am−k
1

am−k
2

d1 d2

=

(3)

The remaining equations propagate acceptance information back to the initial
Munn tree. Here the separation of the state set into existential and universal
states becomes crucial. Let cf = (qf , $); recall that $ is the symbol under the
head of T when T terminates in state qf . For all x ∈ {a1, a2, b1, b2} and all
i, j ∈ {1, 2} we put the following equations into P :

cf

x

x cf

cfx

x
=

cf

ai

bj

cf

cf

ai

bj

=

(4)

Here, the second equation expresses the fact that an existential configuration
is accepting if and only if at least one successor configuration is accepting.

Finally, for i ∈ {1, 2} we add the following equation to P , which reflects the
fact that a universal configuration is accepting if and only if both successor
configurations are accepting.

bi

a1 a2

cf cf

bi

a1 a2

cf

cf cf

=

(5)

This concludes the description of the presentation P . Now choose words u, v ∈
(Γ ∪ Γ−1)∗ as follows: Assume that the input word for our alternating Turing
machine w is of the form w = w1w2 · · ·wn with wi ∈ Σ. For n + 1 ≤ i ≤ m
define wi = 2, where 2 is the blank symbol of T . Then we take for u and
v words such that r(u) = r(v) = ε and such that their Munn trees look as
follows:
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a1

a1

.

.

.

a1

#

(q0, w1)

w2

wm

MT(u) MT(v)

a1

a1

.

.

.

a1

#

cf (q0, w1)

w2

wm

We want to show that µP (u) = µP (v) if and only if the machine T accepts
the word w. Since MT(u) ⊆ MT(v), we have a1cf ∈ clP (MT(u)) if and only
if MT(v) ⊆ clP (MT(u)) if and only if clP (MT(v)) = clP (MT(u)) (see Re-
mark 10). Since moreover r(u) = r(v) = ε, it suffices by Theorem 9 to show
the following equivalence:

T accepts the word w ⇔ a1cf ∈ clP (MT(u)).

To prove this, let us denote with P1 (resp. P2) the idempotent presentation
consisting of the rules in (1)–(3) (resp. (4) and (5)). The rewrite relation
⇒P1 (defined in Section 5) generates, starting from MT(u) (which encodes
the initial configuration corresponding to the input w), the full computation
tree ct(T ) of the machine T , encoded as a subtree of the tree C(Γ). Thus,
clP1(MT(u)) encodes ct(T ). Moreover, clP (MT(u)) = clP2(clP1(MT(u))). To
see this latter fact, note that applications of the rules from P2 do not produce
new occurrences for the left hand sides from P1. For this it is important that
the machine T terminates if it reaches state qf and hence no cf -labeled edge
occurs in a left hand side of P1.

Now assume that T accepts the word w. This means that there exists a subtree
S of ct(T ) such that

(a) every leaf of S is a configuration, where the current state is the final state
qf ,

(b) if a non-leaf v of ct(T ) is an existential configuration, then at least one
ct(T )-successor of v belongs to S,

(c) if a non-leaf v of ct(T ) is a universal configuration, then both ct(T )-
successors of v belong to S, and

(d) the initial configuration is the root of S.

To this subtree S there corresponds a subtree S ′ of clP1(MT(u)). Using the
rules from P2, one can add a cf -labeled edge to every non-leaf of S ′ except the
root 1.
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For the other direction assume that a1cf ∈ clP (MT(u)) = clP2(clP1(MT(u))).
This means that starting from the tree clP1(MT(u)) (which encodes the full
computation tree of the machine T ) one can, by using only the rules (4) and
(5), add a cf -labeled edge to the node a1 ∈ FG(Γ). By the form of the rules
(4) and (5), this means that there has to exist a subtree S of the computation
tree ct(T ) having properties (a)–(d) from the previous paragraph. But this
implies that T accepts the input word w. This concludes the proof for the
EXPTIME lower bound.

For the upper bound let P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be an idempotent pre-
sentation and let u, v ∈ (Γ∪Γ−1)∗. Since r(u) = r(v) can be checked in linear
time, it suffices by Theorem 9 to verify in EXPTIME whether clP (MT(v)) =
clP (MT(u)). By Remark 10, it is enough to show that we can check in EXP-
TIME, whether MT(v) ⊆ clP (MT(u)).

Let G be the edge-labeled graph that results from the Cayley-graph C(Γ) by
adding a new node v0 and adding a #-labeled edge from node 1 (i.e., the
origin) of C(Γ) to the new node v0 . Here, the edge label # is assumed to be
not in Γ∪Γ−1 (the label set of C(Γ)). We need this new edge in order to be able
to recognize the 1 in C(Γ). Since C(Γ) is a context-free graph, it follows that
also G is context-free. We decide MT(v) ⊆ clP (MT(u)) by constructing from
u, v, and P in polynomial time a formula ϕu,v,P of the modal µ-calculus such
that (G, 1) |= ϕu,v,P if and only if MT(v) ⊆ clP (MT(u)). Then the EXPTIME
upper bound follows from Theorem 2.

In the following, for a word w = a1a2 · · · am (ai ∈ Γ ∪ Γ−1) we use 〈w〉φ as an
abbreviation for 〈a1〉〈a2〉 · · · 〈am〉φ. Now assume that P = {(ei, fi) | 1 ≤ i ≤
n}, where MT(ei) ⊆ MT(fi). First, let ϕu,P be the following µ-sentence:

µX.




|u|∨

i=0

〈u[1, i]−1〉〈#〉true ∨
n∨

i=1

|fi|∨

j=0

〈fi[1, j]
−1〉(

|ei|∧

k=0

〈ei[1, k]〉X)





Then (G, x) |= ϕu,P if and only if the node x belongs to clP (MT(u)). In

the formula ϕu,P , the disjunction
∨|u|

i=0〈u[1, i]
−1〉〈#〉true defines all nodes from

MT(u) ⊆ clP (MT(u)). The disjunction

n∨

i=1

|fi|∨

j=0

〈fi[1, j]
−1〉(

|ei|∧

k=0

〈ei[1, k]〉X)

defines all nodes x such that x can be reached from a node y via some prefix of
some word fi and moreover, the whole path that starts in y and that is labeled
with the word ei already belongs to X, i.e., MT(ei) ⊆ X. For the correctness
of the sentence ϕu,P , it is important to note that C(Γ) is a deterministic graph,
i.e., for every a ∈ Γ ∪ Γ−1, every node x has exactly one a-labeled outgoing
edge. Thus, it is not relevant, whether the [a]- or 〈a〉-modality is used. Finally,
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we can take for ϕu,v,P the sentence
∧|v|

i=0〈v[1, i]〉ϕu,P .

The following result was conjectured in [49].

Corollary 13 There exists a fixed context-free graph, for which the model-
checking problem of the modal µ-calculus (restricted to formulas of nesting
depth 1) is EXPTIME-complete.

Proof. We can reuse the constructions from the previous proof. Note that the
generating set Γ from the lower bound proof is a fixed set; thus, the Cayley-
graph C(Γ) is a fixed context-free graph. Hence, also the graph G constructed
in the upper bound proof by adding a #-labeled edge that leaves the origin 1
is a fixed context-free graph. For the input word w for the Turing machine T
let u, v, and P be the data constructed in the lower bound proof. Then w is
accepted by T if and only if MT(v) ⊆ clP (MT(u)) if and only if (G, 1) |= ϕu,v,P .
This proves the corollary.

7 Cayley-graphs of Inverse Monoids

In [5], it was shown that the MSO-theory of the Cayley-graph of FIM({a}) is
undecidable. In this section we will contrast this undecidability result with a
decidability result for a still quite powerful fragment of the MSO-theory of the
Cayley-graph of FIM(Γ)/P (for P an idempotent presentation). For this, we
extend the approach from [27] of translating the word problem for the monoid
FIM(Γ)/P into a monadic second-order property of the Cayley-graph C(Γ) in
order to decide more general decision problems than just the word problem.
For this, we need some definitions.

Let M = (M, ◦, 1) be a monoid with a finite generating set Σ and let h : Σ∗ →
M be the canonical morphism. We define the following expansion C(M,Σ)reg

of the Cayley-graph C(M,Σ):

C(M,Σ)reg = (M, (reachL)L∈REG(Σ), 1), where

reachL = {(u, v) ∈M ×M | ∃w ∈ L : u ◦ h(w) = v} for L ⊆ Σ∗.

Thus, C(M,Σ) = (M, (reach{a})a∈Σ, 1). Note that C(M,Σ)reg is a relational
structure with infinitely many binary relations, one for each regular subset of
Σ∗. In a first-order formula over the structure C(M,Σ)reg, a predicate reachL is
represented by a finite automaton for the language L. Again, the decidability
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(resp. complexity) of the first-order theory of C(M,Σ)reg does not depend on
the generating set Σ:

Proposition 14 Let Σ1 and Σ2 be finite generating sets for the monoid M.
Then the first-order theory of C(M,Σ1)reg is reducible to the first-order theory
of C(M,Σ2)reg.

Proof. There exists a homomorphism f : Σ∗
1 → Σ∗

2 such that for every word
w ∈ Σ∗

1, f(w) represents the same monoid element of M as w. Then, for a
given sentence ϕ1 over the signature of C(M,Σ1)reg we just have to replace
every atomic predicate reachL(x, y) by reachf(L)(x, y). If ϕ2 is the resulting
sentence then C(M,Σ1)reg |= ϕ1 if and only if C(M,Σ2)reg |= ϕ2.

The main result of this section is:

Theorem 15 Let P ⊆ (Γ∪ Γ−1)∗ × (Γ∪ Γ−1)∗ be a finite idempotent presen-
tation. Then the first-order theory of C(FIM(Γ)/P,Γ ∪ Γ−1)reg is decidable.

Remark 16 It is easy to show that already the first-order theory of the struc-
ture C(FIM({a, b}), {a, b, a−1, b−1})reg is not elementary decidable: It is known
that the first-order theory of A = ({a, b}∗, ({(w,wc) | w ∈ {a, b}∗})c∈{a,b},�),
where � is the prefix relation on {a, b}∗, is not elementary decidable, see e.g.
[10]. It is straightforward to define A in C(FIM({a, b}), {a, b, a−1, b−1})reg us-
ing first-order logic.

Before we prove Theorem 15, let us first state some consequences. Again, let
M be a monoid with a finite generating set Σ and let h : Σ∗ → M be the
canonical morphism. Recall that a subset L ⊆ M is rational if there exists a
regular language K ⊆ Σ∗ such that L = h(K). Let RAT(M) denote the set
of all rational subsets of M. The following theorem is an immediate corollary
of Theorem 15; note that x belongs to a rational subset L = h(K) of M if
and only if C(M,Σ)reg |= reachK(1, x).

Theorem 17 Let P ⊆ (Γ∪ Γ−1)∗ × (Γ∪ Γ−1)∗ be a finite idempotent presen-
tation. The following problem is decidable:

INPUT: A boolean combination B of rational subsets from FIM(Γ)/P , where
each of these rational subsets is represented by a finite automaton
over the alphabet Γ ∪ Γ−1.

QUESTION: Is the subset of FIM(Γ)/P defined by B empty?
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Note that for every finitely generated monoid M such that RAT(M) is an
effective boolean algebra, the emptiness problem for boolean combinations of
rational subsets of M is decidable. In case of M = FIM(Γ)/P we cannot
use this argument in order to prove Theorem 17, since by the next theorem
RAT(FIM(Γ)/P ) is in general not a boolean algebra. This result has been
obtained in collaboration with Volker Diekert and Klaus-Jörn Lange.

Theorem 18 If |Γ| ≥ 2, then RAT(FIM(Γ)) is not closed under intersection
and hence not under complementation.

The proof is a corollary of the next two lemmas. Recall that α : (Γ∪Γ−1)∗ →
FIM(Γ) denotes the canonical morphism. Let T ⊆ FIM(Γ) be the set consist-
ing of all elements α(u) ∈ FIM(Γ) such that the Munn tree MT(u) has a node
of degree at least 3.

Lemma 19 The set T ⊆ FIM(Γ) is rational.

Proof. We give a regular expression for a language K ⊆ (Γ ∪ Γ−1)∗ with
α(K) = T by describing the existence of a node of degree at least 3. If α(u) ∈
T , then there exist a, b, c ∈ Γ ∪ Γ−1 such that the Munn tree MT(u) contains
the following subgraph:

a b
c

Thus, for
K =

⋃

a,b,c∈Γ∪Γ−1

a 6=b 6=c 6=a

(Γ ∪ Γ−1)∗aa−1bb−1cc−1(Γ ∪ Γ−1)∗

we have α(K) = T .

Let now L ⊆ FIM(Γ) be the rational language

L = α({ana−mb | m,n ≥ 1}).

We will show that the intersection L ∩ T is not rational, which implies Theo-
rem 18.

Lemma 20 Let T and L be as defined above. Then T ∩ L is not rational.

Proof. The Munn tree MT(ana−mb) (m,n ≥ 1) contains a node of degree 3
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if and only if n > m. Thus, we obtain

T ∩ L = {α(ana−mb) | n > m ≥ 1}.

Suppose T ∩L is rational. Then there exists a regular language R ⊆ (Γ∪Γ−1)∗

such that α(R) = {α(ana−mb) | n > m ≥ 1}. Let A be a finite automaton
with s many states, recognizing R and let n ≥ s. Then we have

α(an+1a−nb) ∈ T ∩ L = α(R).

This means that there exist u, v1, . . . , vn, w ∈ (Γ ∪ Γ−1)∗ such that

uv1 · · · vnw ∈R,

γ(u) = γ(an+1),

γ(vi) = γ(a−1) for 1 ≤ i ≤ n,

γ(w) = γ(b).

For 0 ≤ i ≤ n let qi be the state of A after reading uv1 · · · vi. Since n ≥ s,
there exist i < j such that qi = qj. As a consequence we have for all k ≥ 0:

uv1 · · · vi(vi+1 · · · vj)
kvj+1 · · · vnw ∈ R

But for k large enough (in fact k ≥ 2) we obtain for some ℓ ≥ 0:

γ(uv1 · · · vi(vi+1 · · · vj)
kvj+1 · · · vnw) = γ(a−ℓb)

This shows α(uv1 · · · vi(vi+1 · · · vj)
kvj+1 · · · vnw) /∈ T ∩ L, which contradicts

α(R) = T ∩ L.

Remark 21 The set T above is a concrete example of a rational set such that
FIM(Γ) \ T is not rational. To see this, just consider elements of the form
α(ana−nb) ∈ FIM(Γ) \ T for n large enough.

The generalized word problem for the monoid M is the following computa-
tional problem:

INPUT: Words u, u1, . . . , un ∈ Σ∗

QUESTION: Does h(u) belong to the submonoid of M that is generated by
h(u1), . . . , h(un)?

Remark 22 In the group case the decidability of the word problem follows
from the decidability of the generalized word problem. This simple fact gen-
eralizes to every monoid FIM(Γ)/P , where P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗
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is an idempotent presentation (whereas for arbitrary monoids, it may fail):
We claim that for u, v ∈ (Γ ∪ Γ−1)∗ we have µP (u) = µP (v) if and only if
µP (u) ∈ µP (v∗) and µP (v) ∈ µP (u∗). The “only if” direction is obvious. Now
assume that µP (u) = µP (vn) and µP (v) = µP (um) for some n,m ≥ 0. If
m = 0, then µP (v) = µP (u) = 1. Thus, assume that m > 0. By applying the
morphism βP : FIM(Γ)/P → FG(Γ) we get γ(u) = γ(v)n and γ(v) = γ(u)m,
i.e., γ(u) = γ(u)m·n. Since every free group is torsion-free, it follows m ·n = 1
(i.e., m = n = 1) or γ(u) = γ(v) = 1. In the first case, we are finished. Thus,
assume that γ(u) = γ(v) = 1. It follows that α(u) is an idempotent element
in FIM(Γ), i.e., α(u) = α(u)m (recall that m > 0). By applying the morphism
νP : FIM(Γ) → FIM(Γ)/P we get µP (u) = µP (u)m = µP (v).

Since finite subsets as well as finitely generated submonoids of a monoid are
both rational, we obtain the following corollary from Theorem 17.

Corollary 23 Let P ⊆ (Γ∪Γ−1)∗× (Γ∪Γ−1)∗ be a finite idempotent presen-
tation. Then the generalized word problem for FIM(Γ)/P is decidable.

7.1 Proof of Theorem 15

In this section, we will prove Theorem 15. First, we need a preliminary result
about arbitrary edge-labeled graphs:

Proposition 24 Let Σ be a finite alphabet and let L ∈ Σ∗ be a regular lan-
guage. There exists an MSO-formula ReachL(x, y,X) over the signature con-
sisting of binary relation symbols Ea, a ∈ Σ, such that for every directed
edge-labeled graph G = (V, (Ea)a∈Σ), all nodes s, t ∈ V , and every finite set of
nodes U ⊆ V we have: G |= ReachL(s, t, U) if and only if there exist a path
(p0, . . . , pm) (pi ∈ V ) and a1, . . . , am ∈ Σ with p0 = s, pm = t, (pi−1, pi) ∈ Eai

for i ∈ {1, . . . ,m}, a1 · · · am ∈ L, and U = {p1, . . . , pm}.

Thus, G |= ReachL(s, t, U) if and only if there is a path in G with initial vertex
s ∈ U and terminal vertex t ∈ U visiting precisely the vertices from U and
reading the labels of the path as a word from Σ∗ we obtain a word in L. In the
short version [25] of this paper, we sketched a proof of Proposition 24 using
MSO-transductions, see [11]. Here we present an alternative proof, which uses
the idea from the classical proof of Kleene’s Theorem (see e.g. [16]) stating
that recognizable languages are rational.

Proof of Proposition 24. Let L ∈ Σ∗ be a regular language given by a finite non-
deterministic automaton A = (Q,Σ, δ, I, F ). We assume that Q = {1, . . . , n}.
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We will define a formula
Reach[i, j](x, y,X)

such that for every directed edge-labeled graph G = (V, (Ea)a∈Σ), all nodes
s, t ∈ V , and every finite set of nodes U ⊆ V we have: G |= Reach[i, j](s, t, U)
if and only if there exist paths (p0, . . . , pm) (pi ∈ V ) and (q0, . . . , qm) (qi ∈ Q)
such that

• p0 = s, {p0, . . . , pm} = U , pm = t,
• for every ℓ ∈ {1, . . . ,m} there exists a ∈ Σ such that (pℓ−1, pℓ) ∈ Ea and

(qℓ−1, a, qℓ) ∈ δ,
• q0 = i, and qm = j.

Thus, we get the following formula for our lemma:

ReachL(x, y,X) =
∨

i∈I,f∈F

Reach[i, f ](x, y,X)

In a first part let us define by induction on k ≥ 0 a formula

reach[i, j, k](x, y,X),

where we relax the condition on X, but we add the constraint to restrict the
automaton A to the set of states {1, . . . , k}. More precisely, the semantics of
reach[i, j, k](x, y,X) is such that for every directed edge-labeled graph G =
(V, (Ea)a∈Σ), all nodes s, t ∈ V , and every finite set of nodes U ⊆ V we have:
G |= reach[i, j, k](s, t, U) if and only if there exist paths (p0, . . . , pm) (pi ∈ V )
and (q0, . . . , qm) (qi ∈ Q) such that

• p0 = s, {p0, . . . , pm} ⊆ U , pm = t,
• for every ℓ ∈ {1, . . . ,m} there exists a ∈ Σ such that (pℓ−1, pℓ) ∈ Ea and

(qℓ−1, a, qℓ) ∈ δ,
• q0 = i, {q1, . . . , qm−1} ⊆ {1, . . . k}, and qm = j.

For k = 0 we define:

reach[i, j, 0](x, y,X) =x, y ∈ X ∧

(x = y ∧ i = j) ∨

∨

a∈Σ
(i,a,j)∈δ

(x, y) ∈ Ea


 .

Now let k ≥ 1. The formula reach[k, k, k − 1](x, y,X) is known by induc-
tion. Let reach[k, k, k − 1]∗(x, y,X) be the reflexive and transitive closure of
reach[k, k, k − 1](x, y,X) (see Remark 1), where the set variable X is treated
as a fixed parameter. Then

reach[k, k, k](x, y,X) = (x, y ∈ X ∧ reach[k, k, k − 1]∗(x, y,X)).
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Now, analogously to the proof of Kleene’s Theorem we define reach[i, j, k](x, y,X)
for pairs (i, j) with (i, j) 6= (k, k) by:

reach[i, j, k](x, y,X) = reach[i, j, k − 1](x, y,X) ∨

∃x′ ∃y′






reach[i, k, k − 1](x, x′, X) ∧

reach[k, k, k](x′, y′, X) ∧

reach[k, j, k − 1](y′, y,X)






We let reach[i, j](x, y,X) = reach[i, j, n](x, y,X). Clearly, reach[i, j](x, y,X)∧
reach[j, k](y, z,X) implies reach[i, k](x, z,X).

Having reach[i, j](x, y,X) available, we can define Reach[i, j](x, y,X) as the
following formula:

∃X1 · · · ∃Xn






x ∈ Xi ∧
∧

k 6=ℓ

Xk ∩Xℓ = ∅ ∧ X = X1 ∪ · · · ∪Xn ∧

∧

k,ℓ

∀u ∈ Xk∀v ∈ Xℓ






reach[i, k](x, u,X) ∧

reach[k, j](u, y,X) ∧

(reach[k, ℓ](u, v,X) ∨

reach[ℓ, k](v, u,X))











(6)

In order to prove correctness, assume first that there is a path (p0, . . . , pm) in
G with p0 = x and pm = y visiting precisely the nodes from X and there is
a corresponding path (q0, . . . , qm) in the automaton with q0 = i, qm = j, and
(qℓ−1, a, qℓ) ∈ δ, (pℓ−1, pℓ) ∈ Ea for some a ∈ Σ (1 ≤ ℓ ≤ m). In order to show
(6) we set

Xk = {pℓ | 0 ≤ ℓ ≤ m, qℓ = k,∀r < ℓ : pr 6= pℓ}.

Thus, Xk is the set of all nodes pℓ such that the automaton A is in state k,
when pℓ is visited for the first time. This defines a partition X = X1∪· · ·∪Xn.
Note that some of the Xk may be empty. Obviously we have x ∈ Xi, but it is
possible that y ∈ Xℓ with ℓ 6= j, because we consider only the first appearance
of y on the path (p0, . . . , pm). Nevertheless, we have reach[k, j](u, y,X) for
all u and k with u ∈ Xk. Now let u ∈ Xk and v ∈ Xℓ be on the path
(p0, . . . , pm). Then we have reach[i, k](x, u,X) and we have reach[k, ℓ](u, v,X)
or reach[ℓ, k](v, u,X), depending whether the first appearance of u is before v
on the path or vice versa. Thus (6) holds.

For the other direction, assume that (6) holds. Consider sequences (x1, . . . , xm)
(xk ∈ X) and (q(1), . . . , q(m)) (q(k) ∈ Q) with maximal length m such that:

(1) x = x1,
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(2) xk 6= xℓ for all 1 ≤ k < ℓ ≤ m,
(3) reach[q(k − 1), q(k)](xk−1, xk, X) for all 2 ≤ k ≤ m,
(4) xk ∈ Xq(k) for all 1 ≤ k ≤ m.

Because Reach[i, j](x, y,X) is satisfied, we have x ∈ Xi and hence q(1) = i.
Now assume that there is some node v ∈ X with v /∈ {x1, . . . , xm}. Since we
have X = X1∪· · ·∪Xn, there is an ℓ such that v ∈ Xℓ. Since reach[i, ℓ](x, v,X)
holds there is a maximal k ≤ m such that reach[q(k), ℓ](xk, v,X). If k = m,
then we can set xm+1 = v and q(m + 1) = ℓ. Then the properties (1)–(4)
are again true (with m replaced by m + 1), which contradicts the maxi-
mality of m. If k + 1 ≤ m, then reach[q(k + 1), ℓ](xk+1, v,X) does not hold
(k is chosen maximal). Hence, reach[ℓ, q(k + 1)](v, xk+1, X), because we have
reach[k, ℓ](u, v,X)∨reach[ℓ, k](v, u,X) for all u ∈ Xk and v ∈ Xℓ. But then the
sequences (x1, . . . , xk, v, xk+1, . . . , xm) and (q(1), . . . , q(k), ℓ, q(k+1), . . . , q(m))
satisfy again the properties (1)–(4), which contradicts the maximality of m.
So, we have X = {x1, . . . , xm}. Finally, we have reach[q(m), j](xm, y,X), thus
there exists the desired path. 2

With the help of Proposition 24 we can finish the proof of Theorem 15. Let
P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be a finite idempotent presentation. We want to
show that the first-order theory of the structure A = C(FIM(Γ)/P,Γ∪Γ−1)reg

is decidable. For this, we use Theorem 9 and translate each first-order sentence
ϕ over A into an MSO-sentence ϕ̂ over the Cayley graph C(Γ) of the free
group FG(Γ) such that for a sentence ϕ over A we have: A |= ϕ if and
only if C(Γ) |= ϕ̂. Together with Theorem 5 this will complete the proof of
Theorem 15.

To every variable x (ranging over FIM(Γ)/P ) in ϕ we associate two variables
in ϕ̂:

• an MSO-variable X ′ representing clP (MT(u)), where u ∈ (Γ ∪ Γ−1)∗ is any
word with µP (u) = x, and

• a first-order variable x′, representing βP (x) ∈ FG(Γ) (recall from the com-
mutative diagram in Section 5 that βP : FIM(Γ)/P → FG(Γ) is the canon-
ical morphism).

Thus, by Theorem 9, x = y if and only if x′ = y′ and X ′ = Y ′. The relationship
between x′ and X ′ is expressed by the MSO-formula (over the signature of
C(Γ)) MT(x′, X ′) = ∃X : Θ(x′, X,X ′), where:

Θ(x′, X,X ′) = (1, x′ ∈ X ∧ X is connected and finite ∧ CLP (X,X ′))

Recall that by Remark 1, finiteness and connectedness of a subset of the
finitely-branching tree C(Γ) can be expressed in MSO. Here CLP (X,X ′) is the
MSO-formula constructed by Margolis and Meakin in [27], see the remark at
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the end of Section 5.

Now let ϕ be an FO-formula over the signature of A. We define ϕ̂ inductively
as follows:

• for ϕ = reachL(x, y) define ϕ̂ = ∃X∃Y ∃Z : Θ(x′, X,X ′) ∧ Θ(y′, Y, Y ′) ∧
Y \X ⊆ Z ⊆ Y ∧ ReachL(x′, y′, Z)

• for ϕ = ¬ψ define ϕ̂ = ¬ψ̂
• for ϕ = ψ1 ∧ ψ2 define ϕ̂ = ψ̂1 ∧ ψ̂2

• for ϕ = ∀x : ψ define ϕ̂ = ∀x′ ∀X ′ : MT(x′, X ′) ⇒ ψ̂

The intuition behind the first formula ∃X∃Y ∃Z : Θ(x′, X,X ′) ∧ Θ(y′, Y, Y ′) ∧
Y \X ⊆ Z ⊆ Y ∧ ReachL(x′, y′, Z) is the following: We express that starting
from the node x′ ∈ FG(Γ) we traverse a path p in C(Γ) labeled with a word
from the language L that ends in the node y′ ∈ FG(G). Moreover, Y is the
union of X and the nodes along the path p, and the closure of X (resp. Y ) is
X ′ (resp. Y ′). Thus, Y = MT(uv) for some word uv such that X = MT(u),
γ(u) = x′, γ(uv) = y′, and v ∈ L. Hence, the word u (resp. uv) represents
x ∈ FIM(Γ)/P (resp. y ∈ FIM(Γ)/P ) and there is a path from x to y in the
Cayley-graph of FIM(Γ)/P that is labeled with the word v ∈ L. Now it is
straightforward to verify that A |= ϕ if and only if C(Γ) |= ϕ̂. This concludes
the proof of Theorem 15.

8 Further Research

In the extended abstract [13], some of the results of this paper are generalized
to free partially commutative inverse monoids. These inverse monoids result
from free inverse monoids by taking the quotient with respect to a partial
commutation relation.

A promising research direction might be to investigate for which monoids M
the structure C(M,Γ)reg has a decidable first-order theory. As we have seen,
the decidability of FOTh(C(M,Γ)reg) implies the decidability of important
algebraic problems for M. Here, in particular, the group case is interesting.
It is easy to see that the decidability of the MSO-theory of C(M,Γ) implies
the decidability of the first-order theory of C(M,Γ)reg. The class of groups for
which the first-order (resp. MSO-) theory of the Cayley-graph is decidable is
precisely the class of groups with a decidable word problem (resp. the class
of virtually free groups). Hence, the class of groups G for which C(G,Γ)reg

is decidable lies somewhere between the virtually-free groups and the groups
with a decidable word problem. Moreover, these inclusions are strict: By a
reduction to Presburger’s arithmetic it can be easily shown that for G = Z×Z

the first-order theory of C(G,Γ)reg is decidable, but since C(G,Γ) is an infinite
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grid, MSOTh(C(G,Γ)) is undecidable. Furthermore, there exists a hyperbolic
group G [14], for which the generalized word problem is undecidable [40]. Thus,
the first-order theory of C(G,Γ)reg is undecidable. On the other hand, every
hyperbolic group has a decidable word problem [14].
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