
Efficient Memory Representation of
XML Document Trees

Giorgio Busattoa, Markus Lohreyb, Sebastian Manethc,1

a Department f̈ur Informatik, Universiẗat Oldenburg, Germany
giorgio.busatto@informatik.uni-oldenburg.de

b FMI, Universiẗat Stuttgart, Germany
lohrey@informatik.uni-stuttgart.de

c National ICT Australia Ltd.1 and University of New South Wales, Sydney, Australia
sebastian.maneth@nicta.com.au

Abstract

Implementations that load XML documents and give access to them via, e.g., the DOM,
suffer from huge memory demands: the space needed to load an XML document is usu-
ally many times larger than the size of the document. A considerable amount of memory is
needed to store the tree structure of the XML document. In this paper, a technique is pre-
sented that allows to represent the tree structure of an XML document in anefficient way.
The representation exploits the high regularity in XML documents by compressing their
tree structure; the latter means to detect and remove repetitions of tree patterns. Formally,
context-free tree grammars that generate only a single tree are used for tree compression.
The functionality of basic tree operations, like traversal along edges, is preserved under this
compressed representation. This allows to directly execute queries (and inparticular, bulk
operations) without prior decompression. The complexity of certain computational prob-
lems like validation against XML types or testing equality is investigated for compressed
input trees.

Key words: Tree grammar, compression, in-memory XML representation

1 Introduction

There are many scenarios in which trees are processed by computer programs. Of-
ten it is useful to keep a representation of the tree in main memory in order to retain

1 National ICT Australia is funded through the Australian Government’sBacking Aus-
tralia’s Ability initiative, in part through the Australian Research Council.

Preprint submitted to Elsevier Science 17 April 2007

fast access. If the trees to be stored are very large, then it is important to use a
memory efficient representation. A recent, most prominent example of large trees
are XML documents which are sequential representations of ordered (unranked)
trees, and an example application which requires to materialize (part of) the docu-
ment in main memory is the evaluation of XML queries. The latter is typically done
using one of the existing XML data models, e.g., the DOM. Benchmarks show that
a DOM representation in main memory is 4–5 times larger than the original XML
file. This can be understood as follows: a node of the form<a/> needs 4 bytes
in XML; but as a tree node it needs at least 16 bytes: a name pointer, plus three
node pointers to the parent, the first child, and the next sibling (see, e.g., Chapter 8
of [24]). There are some improvements leading to more compact representations,
e.g., Galax [10] uses only 3–4 times more main memory than thesize of the file.
Another, more memory efficient data model for XML is that of a binary tree. As
shown in [25], the known XML query languages can be readily evaluated on the
binary tree model.

In this paper, we concentrate on the problem of representingbinary trees in a space
efficient way, so that the functionality of the basic tree operations (such as the
traversal along edges) is preserved. Instead of compression, this is often called
data optimization[19]. There are two fundamentally different approaches to small
tree representation: pointer-based and succinct pointer-less [19]. The latter means
to pack the tree into a small bit-array in such a way that basicnavigations through
the tree can be realized in constant time; recently there hasbeen new progress
in succinct tree representations [11,16,17]. With respectto memory requirements,
succinct representation are more competitive than pointer-based representations;
with respect to traversal speed, however, pointer structures are much more compet-
itive than succinct representations. Here we deal with pointer-based tree represen-
tations. As common, we use as size measure the number of pointers needed. The
actual cost of a pointer is implementation dependent and is not considered here. Our
technique is a generalization of the well-known sharing of common subtrees. The
latter means to determine during a bottom-up phase, using a hash table, whether
the current subtree has occurred already, and if so to represent it by a pointer to its
previous occurrence. In this way the minimal unique DAG (directed acyclic graph)
of the tree is obtained in linear time. For common XML documents, the size (mea-
sured in number of pointers) of the minimal DAG is about 1/10 of the size of the
original tree [4]. Our representation is based on sharing ofcommon subgraphs of a
tree. The resulting sizes are 1/2–1/4 of the size of the minimal DAG (even if mul-
tiplicity counters are used in the DAG to represent consecutive edges to the same
subtree). To our knowledge, this is the most efficient pointer-based tree represen-
tation currently available. At the same time, the complexity of querying, e.g. using
XQuery, stays the same as for DAGs [22]. We therefore believethat our represen-
tation is better suited for in-memory storage of XML documents, than DAG-based
representations. Note that our representation can also be incrementally updated; as
experiments show [13], even after thousands of updates, theadditional overhead on
the structure stays below 40% with respect to the size of compressing from scratch.

2

In a succinct pointer-less representation, any tree ofn nodes has the same memory
requirement, no matter if the tree is highly regular (i.e. contains many occurrences
of identical subtrees) or non-regular. Thus, for very largeregular trees, which are
typical in applications, the size of our compressed representation will be smaller
than that of any succinct pointer-less representation. It should be noted that suc-
cinct pointer-less and pointer-based representations arenot competing approaches,
but can be combined: our compression algorithm generates certain tree grammars
which themselves consist of many small trees. These trees can of course be stored
succinctly instead of using pointers [13]. The result is guaranteed to be smaller than
those obtained by any of the two approaches in separation.

Of course, an XML document contains more components than just tree nodes: a
node may have attributes, and a leaf may have character data.Both types of values
we keep in string buffers. When traversing the XML tree, we keep information on
how many nodes before (in document order) the current node (i) have attributes
and (ii) how many have character data. Thus, it suffices to store two additional
bits per node indicating whether the node has attributes or character data. These
numbers determine for a node the correct indices into the attribute and data value
buffers, respectively. With this in mind, it is straightforward to implement a DOM
proxy for our representation. Note that attribute and character values can be stored
more space efficiently using standard techniques [1]. The XML file compression
tool XMill [21] separates data values into containers and compresses them individ-
ually using standard methods. The result is stored togetherwith the tree structure.
For typical XML files, about 50% of the total file size is made upby data val-
ues, whereas the remaining 50% is made up by the tree structure. It is likely that
compressing the tree structure by the technique presented here will further improve
XMill’s compression ratio.

We now describe our representation in more detail. Consider the treec(c(a, a),
c(a, a)), or, in XML <c><c><a/><a/></c><c><a/><a/></c></c>. It con-
sists of seven nodes and six edges. The minimal DAG for this tree has three nodes
u, v, w and four edges (‘first-child’ and ‘second-child’ edges fromu to v and from
v to w). The minimal DAG can also be seen as the minimalregular tree grammar
that generates the tree [23]: the shared nodes correspond tononterminals of the
grammar. For example, the above DAG is generated by the regular tree grammar
with productionsS → c(V, V), V → c(W,W), andW → a. A generalization of
sharing of subtrees is the sharing of arbitrary patterns, i.e., connected subgraphs
of a tree. In a graph model it leads to the well-known notion ofsharing graphs
which are graphs with special “begin-sharing” and “end-sharing” edges, called fan-
ins and fan-outs [20]. Since fan-in/out pairs can be nested,this structure makes a
doubly-exponential compression ration possible. In contrast, a DAG is at most ex-
ponentially smaller than the tree it represents. A sharing graph can be seen as a
context-free (cf) tree grammar[23]. In a cf tree grammar nonterminals can appear
inside of an intermediate tree (as opposed to at the leaves inthe regular case); for-
mal parametersy1, y2, . . . are used in productions in order to indicate where to

3

glue the subtrees of the nonterminal which is being replaced. Finding the smallest
sharing graph for a given tree is equivalent to finding the smallest cf tree grammar
that generates the tree. Unfortunately, the latter problemis NP-hard: already find-
ing the smallest cf (string) grammar for a given string is NP-complete [5]. The first
main contribution of this paper is a linear time algorithm that finds a cf tree gram-
mar for a given tree. On common XML documents the algorithm performs well,
obtaining grammars that are1.5–2 times smaller than the minimal DAGs. As an
example, consider the treet = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a)))))
from Fig. 1 which has 18 edges. The minimal DAG, written as a tree grammar,

c

d

c

d

c

a

c

c

c

c

a

a a

a a

a a

a a

21

Fig. 1. Treet = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a))))).

S → c

........................�
.......................s

...

...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

...

....

....

....

....

....

....

....

....

....

....

....

.

....

....

....

....

....

....

....

....

....

....

....

.

d c d C

CCCC
1

2

pat

S → B(B(C))

B(y1) → c(C, d(C, y1))

C→ c(A,A) C → c(A,A)

A→ a A → a

Fig. 2. Regular and cf tree grammars generating{t} from Fig 1.

can be seen on the left of Fig. 2. It is the initial input to our algorithm BPLEX
which tries to transform the grammar into a smaller cf tree grammar. It does so
by going bottom-up through the right-hand sides of productions, looking for mul-
tiple (non-overlapping) occurrences of patterns, i.e., connected subgraphs. In our
example, the tree pattern pat (consisting of two nodes labeledc andd and their left
children labeledC) appears twice in the right-hand side of the first production. A
patternp in a tree can conveniently be represented by a treetp with formal param-
etersy1, . . . , yr at leaves: simply add top for each edge, leading from a node ofp
to a node outside ofp, a new leaf and label thejth such leaf (in preorder) by the
parameteryj. Thus,tpat = c(C, d(C, y1)) in our example. This tree becomes the
right-hand side of a new nonterminalB and the right-hand side of the production
for the start nonterminalS becomesB(B(C)). The resulting cf tree grammar is

4

shown on the right of Fig. 2. Clearly, this grammar generates exactly one tree. Such
a cf tree grammar is calledstraight-line(for short, SL). The straight-line notion is
well-known from string grammars (see, e.g., [29,30]).

The BPLEX algorithm is presented in Section 3. In Section 4 we discuss the appli-
cation of BPLEX to XML documents. Experimental results are presented in Sec-
tion 5. In Section 6 we study two problems for SL cf tree grammars that are im-
portant for XML documents: (1) to validate against an XML type and (2) to test
equality of the trees generated by two SL cf tree grammars. Since BPLEX gener-
ates SL context-free tree grammars of a more restricted form(additionally: linear
in the parameters) we also consider problems (1) and (2) for this restricted case.
Concerning (1), it is shown that for an XML typeT , represented by a (determinis-
tic) bottom-up tree automatonB with m states, we can test whether or not the tree
represented byG has typeT in timeO(mk×|B|×size(G)). Here,k is the maximal
number of parameters of the nonterminals ofG, size(G) is the sum of the sizes of
all right-hand sides of the grammarG, and|B| is the size of the transition function
of the automatonB. Note that a Core XPath queryQ can be transformed into an
equivalent deterministic bottom-up tree automaton withO(2|Q|) many states. This
leads to an algorithm for Core XPath evaluation on XML documents represented
by SL context-free tree grammars, whose running time is (i) exponential ink · |Q|
(wherek is the maximal number of parameters) and (ii) polynomial in the size of
the grammar. This result nicely fits to a result from [4], where it was shown that
a Core XPath queryQ can be evaluated on an XML document represented by a
DAG D in timeO(2|Q|×|D|), where|D| is the number of nodes ofD. Concerning
problem (2), it is proved that the equivalence of two SL cf tree grammars can be
tested in (i) polynomial space with respect to the sum of sizes of the two grammars
and (ii) in polynomial time with respect to the sum of sizes ifthe grammars are
assumed to be linear (i.e., no parameter appears more than once in the right-hand
side of any production).

2 Preliminaries

The empty string over some alphabet will be denoted byε. A finite setΣ together
with a mappingrank : Σ→ N is called aranked alphabet. The set of allΣ-labeled,
ordered, rooted, and rankedtreesis denoted byTΣ. Here, “ordered” and “ranked”
means that the children of anf -labeled node (f ∈ Σ) has exactlyrank(f) many
children, which are linearly ordered. Such a treet will be also represented as a
term: If the root oft is labeled withf andti is the subtree oft, which is rooted at
thei-th child of the root oft (1 ≤ i ≤ n = rank(f)), thent can be represented by
the termf(t1, . . . , tn). For a setA, TΣ(A) is the set of all trees overΣ ∪ A, where
all elements ofA have rank0. We fix a set ofparametersY = {y1, y2, . . . } and,
for k ≥ 0, Yk = {y1, . . . , yk}. For a ranked treet, V (t) denotes its set of nodes
andE(t) its set of edges. Each node inV (t) can be represented by a sequenceu of

5

integers describing the path from the root oft to the desired node (Dewey notation).
Formally, for a sequenceu ∈ N

∗ and a treet we define the nodeu[t] ∈ V (t)
inductively as follows: Letε[t] be the root oft. Now assume thatu = i.v with
i ∈ N andv ∈ N

∗. If t is not of the formt = f(t1, . . . , tn) with f ∈ Σ andn ≥ i,
then tu is undefined. Otherwise, we setu[t] = v[ti]. In the rest of the paper, we
will often identify the nodeu[t] with the sequenceu. The label of the nodeu[t] is
denoted byt[u] and the subtree oft rooted atu is denoted byt/u. For example,
for the treet from Fig. 1,1.1[t] is the left-most leaf oft and we havet[1.1] = a.
For symbolsa1, . . . , an of rank zero and treest1, . . . , tn, [a1 ← t1, . . . , an ← tn]
denotes the substitution of replacing each leaf labeledai by the treeti, 1 ≤ i ≤ n.

Tree Grammars

Context-free (cf) tree grammars are a natural generalization of cf grammars to trees
(see, e.g., Section 15 in [18]). A cf tree grammarG consists of ranked alphabets
N andΣ of nonterminal and terminal symbols, respectively, of a start nonterminal
S (of rank zero), and of a finite set of productions of the formA(y1, . . . , yk) → t,
whereA is a nonterminal inN of rank k ≥ 0 and t is a tree over nonterminal
symbols, terminal symbols, and parameters inYk which may appear at leaves, i.e.,
t ∈ TN∪Σ(Yk). For treess, s′ ∈ TN∪Σ we write s ⇒G s′ if s′ is obtained froms
by replacing a subtreeA(s1, . . . , sk) by the treet[y1 ← s1, . . . , yk ← sk] where
A(y1, . . . , yk) → t is a production ofG. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal occurrence, whenapplying a production
to it. The language generated byG is

L(G) = {s ∈ TΣ | S ⇒
∗
G s}.

Observe that a parameter can cause copying (if it appears more than once in a right-
hand side) or deletion (if it does not appear in a right-hand side). For example, the
cf tree grammar with productionsS → A(a), A(y1) → A(c(y1, y1)), A(y1) → y1

generates the language of all full binary trees over the binary symbol c and the
constant symbola. The grammars which are generated by our BPLEX algorithm
(“SLT grammars”, see below) will have neither copying nor deletion, i.e., every
parameter will appear exactly once in a right-hand side.

A cf tree grammar isregular if all nonterminals have rank0. It is straight-line(for
short, SL) if each nonterminalA has exactly one production (with right-hand side
denotedrhs(A)) and the nonterminals can be ordered asA1, . . . , An in such a way
that A1 is the start nonterminal andrhs(Ai) has no occurrences ofAj for j ≤ i
(such an order is called “SL order”). Thus, an SL cf tree grammarG can be defined
by a tuple(N, Σ, rhs) where the set of nonterminalsN is ordered (letA1, . . . , An

be the order onN) and rhs is a mapping fromN to TN∪Σ(Y) such that for all
1 ≤ i ≤ n: rhs(Ai) ∈ T{Ai+1,...,An}∪Σ(Yk), wherek is the rank ofAi. A cf tree
grammar islinear if, for every productionA(y1, . . . , yk) → t, each parameteryi

6

occurs at most once int, and it isnondeletingif eachyi occurs at least once in
t. In the sequel we useSLT grammarto stand for “SL linear nondeleting cf tree
grammar”.

3 The BPLEX Algorithm

The purpose of grammar-based tree compression is to find a small grammar that
generates a given tree. The size of such a grammar can be considerably smaller
than the size of the tree, depending on the grammar formalismchosen. For exam-
ple, finding the smallest regular tree grammar that generates a given treet can be
done in linear time, and the resulting grammar is equivalentto the minimal DAG of
the tree. The minimal regular tree grammarGt is also straight-line (any grammar
that generates exactly one element can be turned into an SL grammar). The initial
input to our compression algorithm BPLEX is the grammarGt: BPLEX takes an
arbitrary SL regular tree grammar as input and outputs a (smaller) SLT grammar.
As mentioned in the Introduction, moving from regular to cf tree grammars corre-
sponds to generalizing the sharing of common subtrees to thesharing of arbitrary
tree patterns (connected subgraphs of a tree).

The basic idea of the algorithm is to find tree patterns that appear more than once in
the input grammar (in a non-overlapping way), and to replacethem by new nonter-
minals that generate the corresponding patterns. We call this techniquemultiplexing
because multiple occurrences of the replaced patterns are represented only once in
the output. The order in which the algorithm scans the nodes in the right-hand sides
of the input grammar corresponds to scanning the generated tree bottom up; for this
reason, the algorithm is called BPLEX (forbottom-up multiplexing).

Before we explain the BPLEX-algorithm in more detail, we first need some defi-
nitions. Assume thatG is an SLT grammar with nonterminalsA1, . . . , Ah (in SL
order). Letl ≤ h. With <l

G we denote the ordering on the union

V l
G =

l
⋃

i=1

V (rhsG(Ai))

(here we assume w.l.o.g. that the node setsV (rhsG(A1)), . . . , V (rhsG(Al)) are
pairwise disjoint) obtained by scanningrhsG(Al) throughrhsG(A1), each in left-
to-right postorder. A nodeρ ∈ V l

G will be identified with itsaddressz = (j, u) ∈
{1, . . . , l} × N

∗ in G, wherej is such thatρ ∈ V (rhsG(Aj)) andu[rhsG(Aj)] = ρ
(i.e.,u is the path in the treerhsG(Aj) to the nodeρ). If z is a node inV l

G that is not
the root ofrhsG(A1), thennext(<l

G, z) is the node followingz in the order<l
G.

BPLEX (see Fig. 3) takes as input an SL regular tree grammarG (with sayl non-
terminalsA1, . . . , Al) and three parameters specifying

7

procedureBPLEX(G: grammar,KN : int, KS: int, KR: int): grammar
begin

Al := last symbol in the SL ordering ofG
z := leftmost leaf ofrhsG(Al)
while true do

RepM := RepM(G, z,KN)
NewM := NewM(G, z,KN , KS, KR)
if NewM 6= ∅ or RepM 6= ∅ then

m := max-match(NewM, RepM)
if m ∈ RepM then

G := G[m← A], with rhsG(A) = pm

else
k := rank(pm)
A := fresh(G, k)
G := add(G,A(y1, . . . , yk)→ pm)
G := G[m, cm ← A]

fi
elseif∃w ∈ V l

G : z <l
G w then z := next(<l

G, z)
else break
fi

od
return G

endBPLEX

Fig. 3. The BPLEX algorithm.

(1) the maximum numberKN of nodes and productions that are examined when
computing patterns matching at a given node,

(2) the maximum sizeKS of a new pattern, and
(3) the maximum rankKR of a new pattern.

In our analysis of BPLEX, we will considerKN , KS, andKR as fixed constants.
This will be crucial in order to obtain a linear running time for BPLEX. ¿FromG,
BPLEX computes a sequence of SLT grammars, each having at least l nontermi-
nals. Moreover, we store a current addressz in the current SLT grammar. At each
step, BPLEX computes a set ofrepeated matchesby comparing the tree patterns
occurring atz with the right-hand sides of the lastKN productions ofG with in-
dex greater thanl, and a set ofnew matchesby finding pairs of non-overlapping
occurrences of tree patterns atz and at theKN most recently visited nodes (thus
exploiting the well-known idea of a sliding window that appears e.g. in many im-
plementations of the LZ77 compression scheme, cf. the discussion in Section 7). If
at least one match is found, BPLEX performs the sharing that provides the highest
size reduction for the grammar, it moves to the next node otherwise. If there is no
next node, then it returns the current SLT grammar.

8

We now examine the algorithm in detail. We describe the progress of the compu-
tation through a sequence of configurations(G1, z1), . . . , (Gh, zh) where, for each
1 ≤ i ≤ h, Gi is an SLT grammar generating the uncompressed tree, andzi is an
address inGi denoting the node that is examined during thei-th iteration (thecur-
rent address).G1 = G is the input to the algorithm;Gh is the output. The starting
addressz1 is the left-most leaf ofrhsG1

(Al) and the final addresszh = (1, ε) is the
root of rhsGh

(A1). For1 ≤ i ≤ h, grammarGi has nonterminalsA1, . . . , Ali , with
l1 = l and, fori > 1, eitherli = li−1 or li = li−1 + 1 andAli = fresh(Gi−1, k) for
somek > 0. By fresh(G, k) we denote a nonterminal of rankk that does not occur
in G.

A tree pattern can be described by a tree with parameters at leaves (parameters
denote subtrees that are not part of the pattern). Formally,a (tree) patternp (of
rank k) is a tree in which eachy ∈ Yk occurs exactly once. Given a treet and a
nodeu ∈ N

∗ of t, the patternp matchest at u if there are treest1, . . . , tk such that
t/u = pΘ, whereΘ is the substitution[y1 ← t1, . . . , yk ← tk]. The triple(p, u, Θ)
is called amatchof p (in t) at u. Given a matchm = (p, u, Θ), let pm = p. Two
matches(p, u, Θ) and(p′, u′, Θ′) in the same treet areoverlappingif either there is
a nodev ∈ N

∗ in p such thatp[v] 6∈ Y anduv = u′ or there is a nodev′ ∈ N
∗ in p′

such thatp′[v′] 6∈ Y andu′v′ = u. Two matchesm = (p, u, [y1 ← t1, . . . , yk ← tk])
andm′ = (p, u′, [y1 ← t′1, . . . , yk ← t′k]) of the same patternp (but in possibly
different trees) aremaximalif ti[ε] 6= t′i[ε] for all 1 ≤ i ≤ k (intuitively: there is
no possibility to extendm andm′ at the leafs to matches of some larger common
pattern). Given a grammarG with nonterminalsA1, . . . , Ah, a patternp matchesG
at the addressz = (j, u) (1 ≤ j ≤ h, u ∈ N

∗) if p matchesrhsG(Aj) at u; in this
case we call the triplem = (p, z, Θ) a match ofp (in G) at z = (j, u) and say that
z is the address ofm in G.

The replacement of patterns is defined as follows. LetG be an SLT grammar with
nonterminalsA1, . . . , Ah, p a pattern of rankk with a corresponding production
Ai(y1, . . . , yk) → p in G, andm = (p, (j, u), [y1 ← t1, . . . , yk ← tk]) a match
of p in G wherei 6= j. The matchm is replaced byAi by replacing the subtree
rhsG(Aj)/u of rhsG(Aj) with the treeAi(t1, . . . , tk). The resulting grammar is
denoted byG[m← Ai]. Similarly, for two non-overlapping matchesm1 andm2 of
p in G (which means that eitherm1 andm2 are matches in two different right-hand
sides ofG or m1 andm2 are matches in the same right-hand side ofG but are not
overlapping according to the above definition),G[m1,m2 ← Ai] is the grammar
obtained fromG by replacing each matchm1 andm2 by Ai.

We now discuss how the size of an SLT grammar changes when occurrences of
a tree pattern are replaced by a nonterminal that generates the pattern. Thesize
of a tree (without parameters) is itsnumber of edges. Since the SLT grammars
that are generated by BPLEX have the property that allk parameters of a non-
terminal appear exactly once in the right-hand side of its production, and in the
ordery1, y2, . . . , yk, we do not need to explicitly represent the parameters as nodes

9

of the tree. Instead, we attach to a node label the information which of its sub-
trees is a parameter (note that the number of parameters in grammars generated
by BPLEX is typically very small, 10 or less; experiments show that compres-
sion hardly improves when allowing more than10 parameters, i.e., when setting
KR > 10). Hence, we do not count the edges to parameters and define thesizeof a
treet with k occurrences of parameters assize(t) = |E(t)|− k. For a tree grammar
G, size(G) is the sum of the sizes of the right-hand sides of the productions ofG.
Clearly, size(G) − size(G[m ← A]) = size(p) andsize(G) − size(G[m1,m2 ←
A]) = 2 × size(p). If the production prod is not inG already then the size of the
grammaradd(G, prod) obtained by adding prod toG is size(G) + size(rhs(prod)).

Let us turn our attention to the computation of pattern sets.During thei-th iteration,
when computing grammarGi+1 from Gi, BPLEX computes first the set

RepM = RepM(Gi, zi, KN) =

{m | ∃j ∈ {l, . . . , min{li, l + KN}} : m is a match ofrhsGi
(Aj) in Gi at zi}

of all matches at the current addresszi of patterns from{rhsGi
(Aj) | l < j ≤

min{li, l + KN}}. This computation considers at mostKN productions of index
greater thanl. Note that one can check whetherrhsGi

(Aj) matchesGi at zi in at
mostsize(rhsGi

(Aj)) steps by reading the label of at mostsize(rhsGi
(Aj)) many

descendant-nodes ofzi and thereby binding parameters ofrhsGi
(Aj) to descendants

of zi. Since, every right-hand siderhsGi
(Aj) with j > l will have size at mostKS

(see the discussion below) we can bound the total cost of computing RepM by
KN ×KS. This is a constant, sinceKN andKS are assumed to be constants.

BPLEX also computes the set

NewM = NewM(Gi, zi, KN , KS, KR)

of all matchesm at zi such that:

• 0 < size(pm) ≤ KS;
• there exists acompanion matchcm of the same patternpm in Gi at some nodew

among the lastKN nodes precedingzi in the order<l
Gi

such thatm andcm are
non-overlapping;
• if size(pm) < KS, then either (1)m andcm are maximal, or (2)m andcm can

only be extended to larger matches that overlap;
• the rank ofpm is at mostKR.

The setNewM can be computed by comparing top-down the tree rooted atzi with
the trees rooted at the lastKN nodes precedingzi in the order<l

Gi
. Since the com-

putation stops whenever it encounters a pattern that is larger thanKS, the cost of
computingNewM is bounded by the constantKN ×KS.

BPLEX chooses a matchm ∈ RepM ∪ NewM with maximal size, denoted by

10

S → E(E(C)) C → c(A,A)

E(y1) → c(C,D(y1)) A → a

D(y1) → d(C, y1)

Fig. 4. SLT grammar generating{c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a)))))}.

max-match(RepM, NewM). If m ∈ RepM, then the match is replaced by the right-
hand side of the corresponding production. Ifm ∈ NewM, then BPLEX adds a new
productionA → pm to the grammar, withA = fresh(Gi, rank(pm)), and replaces
the matchesm andcm by A. In both cases, the size of the grammar is reduced by
size(pm). If no matches are found, BPLEX tries to move the addresszi to the next
node with respect to the order<l

Gi
.

Theorem 1 For a given SL regular tree grammarG, BPLEX produces in time
O(size(G)) an equivalent SL cf tree grammar, where each nonterminal has rank
at mostKR.

PROOF. Each of the setsRepM andNewM can be computed in timeKN ×KS,
which is a constant. Hence, each execution of the while loop in Fig. 3 takes constant
time. The linear running time of BPLEX follows, since for an input grammarG,
the while loop cannot be executed more than2× size(G) times (each execution of
the loop either moves the address forward or reduces the sizeof the grammar). 2

We now illustrate the computation of BPLEX on the regular treegrammar on the
left of Fig. 2. BPLEX does not perform any sharing in the third and second pro-
duction; it then scans the first production. When the highestd is encountered (ad-
dress(1, 2)) a matchm of patternd(C, y1) is found, together with a companion
cm matching in(1, 2.2.2). This has size1 and is chosen for replacement. The new
nonterminalD of rank 1 is added to the grammar together with the production
D(y1) → d(C, y1), and the two matches are replaced so that the first production
becomesS → c(C,D(c(C,D(C)))). The new patternrhs(D) does not match the
new grammar inz = (1, 2) and no pairs of new matches are found either. Therefore
z is changed to the root of theS production (z = (1, ε)). Here, the right-hand side
of D does not match, while the patternc(C,D(y1)) matches in(1, ε) and in(1, 2.1),
and these two matches are maximal. Therefore a new nonterminal E of rank1 is
added together with the productionE(y1) → c(C,D(y1)), and the matches are re-
placed byE, producing the output grammar shown in Fig. 4. Both this grammar
and the cf tree grammar on the right of Fig. 2 have size7. Note that BPLEX has not
detected patternp = c(C, d(C, y1)) appearing in Fig. 2, because the smaller pattern
d(C, y1) is replaced beforep has been scanned completely.

11

<agenda>

<person><name/><street/></person>

. . .

<person><name/><street/></person>

5 times

</agenda>

Fig. 5. An XML skeleton.

4 Memory-Efficient XML Tree Representation using BPLEX

An XML document is a sequential representation of a nested list structure. As an
example, consider the XML document skeleton (i.e., withoutdata values) in Fig. 5.

As mentioned in the Introduction, there are different data models for XML, which
vary in their sizes. For example, DOM trees contain bidirectional pointers between
a node and its children, its parent node, and its direct left and right sibling; the
resulting size is approximately 4-5 times larger than the size of the original XML
document. In this section we explain how BPLEX can be used to generate a small
pointer-based representation of the tree structure of an XML document. BPLEX
operates on ranked trees, that is, trees in which the rank of each symbold is a
fixed numberrank(d). We now discuss two different ranked tree representations
for XML document trees.

Binary Tree Model

One convenient and well-known way of modeling the tree structure of an XML
document in a ranked way is to view it asbinary tree: the first-child of an XML
element node is represented by a left-child pointer and the next-sibling of an ele-
ment node is represented by a right-child pointer. In this way, the pointers allow
constant time top-down and next-sibling access through thetree structure. Other
accessors can be supported by storing additional information dynamically when
traversing the tree. For instance, if the sequence of parents of traversed first-child
nodes is maintained, then it is possible to access in constant time the parent node
and inO(depth) time the next-in-preorder node, wheredepthrefers to the depth of
the XML document, i.e., to the maximal length of such ancestor sequences; more
precisely, the next-in-preorder node of a given node is its next-sibling, i.e., right
child, if it exists, and otherwise it is the next-sibling of the lowest parent of tra-
versed first-child nodes that has a next-sibling node. Similarly, keeping a sequence
of parents of traversed right-child nodes provides constant time previous-sibling
andO(depth) time previous-in-preorder access.

Note that a leaf (resp. the last sibling) of the document treehas no left (resp. no
right) child edge in the binary tree representation; this isdenoted by the superscript

12

agenda1

person1

name2

street0

person

name2

street0

person

name2

street0

person

name2

street0

person

name2

street0

Fig. 6. Binary tree representation of an unranked tree.

2 (resp. 1), and by 0 for a last sibling leaf. In Fig. 6 the binary tree representation of
the tree structure for the XML document from Fig. 5 is shown (with second child
edges of person-nodes drawn horizontally). This binary tree has 15 edges. Let us
now consider how BPLEX works on this tree. As before, we first turn a (ranked)
tree into its minimal DAG, represented as a regular tree grammar, and then apply
BPLEX to the grammar. In our example, the corresponding regular tree grammar
has the three productions

S → agenda1(person(A, person(A, person(A, person(A, person1(A))))))

A → name2(B)

B → street0

and its size is 11. Consider theS-production of this grammar. Its right-hand side
contains four occurrences of the patternp = person(A, y1). Thus, given a pro-
ductionC(y1) → person(A, y1), each of the occurrences can be replaced by the
nonterminalC. However, there is one further occurrence of a similar pattern p′ =
person1(A), which can be obtained by removing the parametery1 from the pattern
p. Note that, sinceA is a first child inp, removingy1 changes person into person1.
In general, we allow a nonterminalK of rankm to appear with any rank0 ≤ r ≤ m
in the right-hand sides of productions, provided it is indicated which parameters are
to be deleted; in the implementation, missing parameters are marked by a special
“empty tree marker”. With this “overloading” semantics of productions in mind,
BPLEX turns the above regular tree grammar into the followinggrammar of size 6:

S → agenda1(C(D(D))) A → name2(B)

D(y1) → C(C(y1)) B → street0

C(y1) → person(A, y1)

(1)

In this grammar, theD-production generates copies along a path of the binary tree.
Repeated applications of such copying productions cause exponential size increase.
In this way, the size of the input grammar can, in certain cases, be reduced expo-
nentially. Consider our example, but now with10000 person entries (thus, a binary
tree with30000 edges). The corresponding minimal regular tree grammarG10000

13

has size20001 while BPLEX outputs the following grammar of size20:

S → agenda1(A8(A5(A4(A3(A1(A1))))))

A1(y1) → A2(A2(y1))

A2(y1) → A3(A3(y1))
...

A12(y1) → A13(A13(y1))

A13(y1) → person(A14, y1)

A14 → name2(A15)

A15 → street0

In this grammar, the symbolA13 generates the tree person(name(street, y1)). More
generally, forj = 1, . . . , 13, Aj generates a chain with213−j occurrences of this
pattern and one parametery1 at the end of the chain. It is easy to see thatS generates
the correct tree with10000 person entries.

Multiary Tree Model

Another way of modeling the tree structure of an XML documentin a ranked way is
to explicitly store the numberk of children of an element nodeu with its label, and
to provide, for each1 ≤ i ≤ k, a childi-pointer fromu to its i-th child (that is, to
the(i− 1)-sibling ofu’s first-child). In this way, the pointers provide constant time
top-down access. If, dynamically, the sequence of parent nodes together with their
child numbers are stored, then parent, previous-sibling, and next-sibling nodes can
be accessed in constant time, and previous-in-preorder andnext-in-preorder nodes
can be accessed inO(depth) time. We refer to this model as themultiary tree model.

It should be clear that, given an XML document, the number of pointers in the
binary tree model is precisely equal to the number of pointers in the multiary tree
model. The multiary tree model is slightly more flexible thanthe binary tree model
with respect to traversal operations; however, with respect to update operations the
multiary tree model is less flexible than the binary tree one,because in the latter,
children pointers are stored in fixed-size arrays. Before we present our experimental
results in the next section, we now want to show that both treerepresentations,
DAGs and SLT grammars, are sensitive to the choice of the representation (binary
or multiary tree).

A multiary tree representation of the XML document of beforeconsists of a root
node labeledagendawhich has associated with it an array of five pointers, each to
a node labeledperson which in turn has an array of two pointers to nodes labeled
name andstreet, respectively. For each pointer to a child node we can addition-

14

ally also keep the inverse pointer from the child to its parent node. This doubles
the number of pointers in the representation. Our investigations are independent of
this choice: we always count in number of edges (these numbers have to be mul-
tiplied by the implementation cost of an edge, which possibly involves the cost of
two pointers). The size of the multiary tree representationof the XML document in
Fig. 5 is thus 15 edges.

DAGs: Binary Trees versus Multiary Trees

Before presenting experimental results with BPLEX, we discuss its relation to an-
other tree compression method that has been applied to XML. Recall that we ap-
plied BPLEX to the minimal regular tree grammar of a binary tree representation
of an unranked tree. An unranked tree has itself a unique minimal DAG (minimal
regular tree grammar) which can be obtained in the same way asfor ranked trees.
However, the size of the minimal DAG of an unranked tree can bedifferent from
the one of the minimal DAG of its binary representation! In most cases the min-
imal unranked DAG is smaller than the binary one. The reason is that chains of
second child edges in the binary tree become sibling subtrees in the unranked tree.
To see this, consider the binary tree in Fig. 6. Clearly, its minimal DAG has only
one copy of the subtree name2(street) and hence has only 11 edges. On the other
hand, the minimal DAG of the corresponding unranked tree hasonly one copy of
the subtree person(name, street) and therefore has only 7 edges. As an example of
a binary tree with a minimal DAG that is smaller than the one ofthe corresponding
unranked tree, consider the unranked tree

t = u(p(x, b, c, b, c), p(y, b, c, b, c), p(z, b, c, b, c)) (2)

Its minimal unranked DAG has 18 edges, but the minimal binaryDAG has only 12,
because only one copy of the subtreeb2(c2(b2(c0))) appears.

Multiplicities. In fact, the size of the minimal DAG representation can even be
further reduced by using multiplicity counters for consecutive equal subtrees [4].
Then the DAG for the unranked tree of the agenda-example fromFig. 5 can be rep-
resented using only 3 edges, or equivalently, by an (unranked) regular tree grammar
with multiplicity counters and productions

A→ agenda([5]P), P → person(name, street).

Of course, multiplicity counters take up space, but following Koch et al. this space
is neglected. Thus, BPLEX produces the grammar in (1), which is smaller (size6)
than the minimal DAG of the unranked tree (size7), but such a minimal DAG has
a smaller representation (size3) when multiplicity counters are added. From now
on, we call the minimal DAG with multiplicity counters for anunranked tree its
mDAG. This representation can easily be turned into a regular tree grammar with
thesame sizethat generates the binary representation of the original unranked tree.

15

This grammar also contains multiplicity counters at nodes,which are expanded
to chains of nodes. We implemented a version of BPLEX which works on such
grammars (and does not change the multiplicity counters). As it turns out, only in
a few cases we obtained small improvements over BPLEX on the binary regular
tree grammar corresponding to the minimal DAG. Thus, the advantage of counters
is compensated for, by the ability of BPLEX to exponentially compress chains of
nodes. On a few files, the minimal binary DAG was even smaller than the mDAG,
due to similar chains as in the treet from (2); cf. in Tab. 2 the two catalog files and
the file NCBI gene.chr1.

SLT Grammars: Binary Trees versus Multiary Trees

As we have seen before, copies of subtrees in the binary tree might not be copies
of subtrees in the multiary tree, and vice versa. This means that the minimal DAGs
for the binary and multiary tree may differ (in both ways). Wenow want to show
that this property carries over to SLT grammars too: there are copies of connected
subgraphs that appear in the binary tree but not in the multiary tree, and vice versa.
First, consider the tree

A(a(p), b(q), c(r), d(a(s), b(t), c(u), d(v), e(w)), e(x)).

In the multiary tree representation, there are no patterns of size at least one, which
appear at least twice in the tree. Hence, the minimal multiary tree SLT grammar for
this tree has the same size as this tree. In the binary representation, however, we
obtain two copies of the right-child chain of nodesa, b, c, d, e; hence, the minimal
binary SLT grammar is by four edges smaller than the tree.

Now, consider the tree

a(b(k, c(l, d(a(b(m, c(n, d(o, e(q))))), e)))).

Clearly, the multiary tree representation of this tree has two occurrences of the
chain of nodesa, b, c, d, e; hence, the minimal multiary tree SLT grammar is by
four edges smaller than the tree. In the binary representation, however, there are no
patterns of size at least one, which appear at least twice. Hence, the minimal binary
SLT grammar for this tree has the same size as the tree itself.

These examples show that, in principle, it is unclear whether the multiary tree or
binary tree will give rise to better compression by DAGs or SLT grammars. Inter-
estingly, our experimental results in the next section showthat, in the DAG case
almost always the unranked DAG is smaller than the binary one, while in the SLT
grammar case, BPLEX performs equally well on the multiary andbinary represen-
tation.

16

Input File Size (MB) Element Count Max Depth Average Depth

SwissProt 457,4 10,903,568 6 4.45

DBLP 103.6 2,611,931 5 3.00

Treebank 55.8 2,447,727 37 9.42

1998statistics 0.64 28,306 6 5.99

catalog-01 / 02 11 / 104 225,194 / 2,240,231 8 5.65

dictionary-01 / 02 11 / 104 277,072 / 2,731,764 8 6.91

JST snp.chr1 36 655,946 8 4.82

JST gene.chr1 11 216,401 7 5.77

NCBI snp.chr1 / gene 190 / 24 3,642,225 / 360,350 4 4

medline 0378 123 2,790,421 7 4.95

Table 1
Characteristics of XML documents used in experiments.

input file size of tree min. binary min. unranked BPLEX(30000,20,10)

in #edges DAG size mDAG size output size #NTs

SwissProt 10,903,568 1,437,445 13.2% 1,100,648 10.1% 311,328 2.9% 112,822

DBLP 2,611,931 533,183 20.4% 222,754 8.5% 115,902 4.4% 21,724

Treebank 2,447,727 1,454,494 59.4% 1,301,688 53.2% 519,542 21.2% 81,900

1998statistics 28,306 2,403 8.5% 726 2.6% 410 1.4% 169

catalog-01 225,194 6,990 3.1% 8,503 3.8% 3,817 1.7% 1,252

catalog-02 2,240,231 52,392 2.3% 32,267 1.4% 26,774 1.2% 2,385

dictionary-01 277,072 77,554 28.0% 46,993 17.0% 20,150 7.3% 4,446

dictionary-02 2,731,764 681,130 24.9% 441,322 16.2% 160,329 5.9% 25,288

JST snp.chr1 655,946 40,663 6.2% 25,047 2.3% 12,858 1.8% 4,231

JST gene.chr1 216,401 14,606 6.7% 5,658 2.6% 4,000 1.8% 1,114

NCBI snp.chr1 3,642,225 809,394 22.2% 15 <0.1% 59 <0.1% 26

NCBI gene.chr1 360,350 14,356 4.0% 11,767 3.3% 7,160 2.0% 3,634

medline 0378 2,790,421 629,853 22.6% 695,505 24.9% 132,733 4.8% 34,873

Table 2
BPLEX in highest compression mode. All sizes are in number of edges. Window size =
30000, max. pattern size = 20, max. rank = 10.

5 Experimental Results

We implemented BPLEX in C using gcc and the Expat XML parsing library (see
http://expat.sourceforge.net/). See http://bplex.sourceforge.net/ for a preliminary
version of BPLEX. Our experiments were done on a Pentium 3Ghz,1GB RAM,
running Linux. We tested BPLEX on three different sets of XML documents. The
first one contains documents used in [4]: SwissProt (proteindata), DBLP (a bib-
liographic database), Treebank (a linguistic database), and 1998statistics (baseball
statistics). The second set contains XML documents generated by XBench [34], and
the third contains documents from the Japanese Single Nucleotide Polymorphism
database (see http://snp.ims.u-tokyo.ac.jp).

17

input file multiary tree BPLEX(500,10,10) binary tree BPLEX(500,10,10)

output size #NTs output size #NTs

SwissProt 686,399 6.3% 15,153 (10,291) 330,595 3.0% 108,724 (103,551)

DBLP 218,638 8.4% 2,452 (2,048) 128,231 4.9% 16,270 (9,922)

Treebank 594,208 24.0% 34,119 (27,443) 593,770 24.0% 69,672 (62,484)

1998statistics 724 2.6% 45 (44) 418 1.5% 160 (86)

catalog-01 3,259 1.4% 590 (534) 3,894 1.7% 1,201 (1,040)

catalog-02 25,832 1.2% 876 (817) 27,725 1.2% 2,049 (1,606)

dictionary-01 37,506 14.0% 1,485 (498) 23,498 8.5% 3,154 (2,597)

dictionary-02 337,456 12.0% 6,962 (2,784) 188,088 6.9% 20,857 (19,211)

JST snp.chr1 11,225 1.7% 353 (309) 12,876 1.8% 3,607 (2,732)

JST gene.chr1 4,962 2.3% 135 (130) 4,374 1.8% 933 (559)

NCBI snp.chr1 14 <0.1% 11 (11) 1,606 <0.1% 19 (10)

NCBI gene.chr1 360,349 1.4% 606 (553) 7,390 2.1% 3,517 (3,284)

medline 0378 223,861 7.8% 8,411 (4,019) 143,792 5.0% 32,234 (29,461)

Table 3
Binary versus ranked BPLEX. Window size = 500, max. pattern size = 10,max. rank = 10.
Number of nonterminals in brackets are for minimal DAG grammars.

Table 2 shows for each document the size of its tree structure(in number of edges)
together with the sizes in three different representations. The minimal unranked
DAG (with multiplicities) is in most of the cases smaller than the minimal binary
DAG. The smallest sizes are generated by BPLEX, ranging between 0.1% and 21%
of the size of the original tree structure; as input for BPLEX we used the minimal
binary DAG, represented as an SLT grammar. As input parameters for BPLEX
we used: window size30000, maximal pattern size20, maximal rank10. The last
column shows the number of nonterminals (#NTs) of the BPLEX-output.

The only examples where the binary DAG is smaller than the mDAG are catalog-01
and a file of the medical bibliographies medline. As can be seen, BPLEX performs
surprisingly well on medline. Note that for the file NCBIsnp.chr1, the small size
of the minimal mDAG (15 edges) is due to a multiplicity counter: a long list of
siblings all labeled by the same nonterminal is representedby just one edge (plus
a counter). In the binary minimal DAG we do not have multiplicities, and hence
its size is much larger (809,394 edges); interestingly, BPLEX is able to reduce this
size to only59 edges (and, if the window size is increased to40, 000 then we obtain
only 48 edges). This is because a long list is broken down exponentially by BPLEX
– viz copy productions or the formAi(y1) → Ai+1(Ai+1(y1)), as outlined in the
example of the person list in the previous section. With a small window size of500,
BPLEX introduces fewer copy productions and hence compressed only to 1, 606
edges.

We also implemented a version of BPLEX that runs on the multiary tree model
of an XML document, instead of the binary tree model. The results are shown in
Table 3; note that the numbers were obtained with lower parameters than those of
Table 2: window size= 500, maximal rank= 10, and maximal pattern size= 10.

18

The table also shows in the last column the number of nonterminals in the gram-
mars generated by BPLEX, and, in brackets, the number of nonterminals of the
corresponding minimal DAG grammars. As can be seen, the achieved compression
ratios are similar to those of BPLEX running on binary trees. In most cases, running
on the binary tree gives slightly better compression; note however that in the multi-
ary tree model we obtain grammars with far fewer nonterminals than in the binary
tree model. One of the reasons for this is the use of multiplicities in the minimal
mDAG; we run multiary tree BPLEX on the mDAG, i.e., we take advantage of the
multiplicity counters. This can be seen on NCBIsnp.chr1: it has an mDAG with 15
edges which is transformed by BPLEX to an SLT grammar with 14 edges. These
experiments suggest that, in practice, tree compression byBPLEX is not sensitive
to un-/rankedness of the input, i.e., whether we work in the binary or multiary tree
model.

Performance and Parameter Tuning

Recall from Fig. 3 the three parameters of BPLEX: the window sizeKN , the max-
imal rankKR of a pattern, and the maximal sizeKS of a pattern. Our experiments
show that the algorithm performs well with small values ofKR andKS and that
values above5 and10 respectively do not increase compression much. For instance,
with KS = 3 (andKN = 30000, KR = 10) we obtain for Treebank a compression
ratio of 22.0%, as compared to the21.2% obtained withKS = 20; similarly, for
dictionary-02 we obtain6.0% compression ratio forKS = 3, compared with5.9%
for KS = 20. The same happens forKR: taking it equal to3 gives22% and6% for
Treebank and dictionary-02, respectively.

The main factor for good compression is the window size. BPLEXachieves best
compression with a window size of> 100; values above20, 000 do not change
compression much in our examples. For instance, fixKR = 10 andKS = 20; then
on medline we get forKN = 10, 100, 1000 the compression ratios5.4%, 5.2%,
and 4.9%, respectively; Similarly, for Treebank we obtain30%, 26%, and24%,
respectively, and for dictionary-02 we obtain7.9%, 7.4%, and6.7%, respectively.
Our current implementation runs slowly on large window sizes, requiring several
hours to obtain all the results shown in Tab. 2. For instance,running on medline with
KN = 10, 100, 1000 takes10, 41, and116 seconds, respectively; similarly, running
on Treebank takes545, 2094, and3165 seconds, respectively. This is mainly due
to the non-optimized way in which matches of patterns are found and recorded,
which results in a large constant hidden in theO(n)-expression for the running
time of BPLEX. Interestingly, even with a small window size, BPLEX already
compresses considerably better than binary DAGs and unranked mDAGs. If we use
KN = KR = KS = 3 then each of our examples compresses in less than one
minute; compression rates are SwissProt 4.1%, Treebank 34%, and dictionary-01
12%. It remains to test the impact of our compression with respect to the total
memory consumption for an XML document in main memory.

19

6 Algorithms on SLT Grammars

SLT grammars are well suited to efficiently represent XML documents. Consider
now a grammar in memory which represents a large XML document. How can we
process the XML tree, without decompressing the grammar? Any read access like,
e.g., reading the label of the root node, or moving along an edge from one node to
another, can be realized on the grammar representation withan additional per-step
overhead of at most the sizeh of the grammar [23]. Additionally, a stack of height at
mosth must be maintained at all times. Thus, the price to be paid forhaving a small
representation that can be accessed without decompression, is a slow down for each
read operation. For some special applications, however, itis possible to eliminate
the slow-down, or to even achieve speed ups. In this section we investigate such
applications.

XML Type Validation

XML type validation means to check whether a given XML document is valid with
respect to an XML type. Popular formalism for XML types (varying in their expres-
siveness) are DTD, XML Schema, or RELAX NG. Here we want to check whether
the tree structure of an XML document, represented by an SL cftree grammarG, is
valid with respect to an XML type. Essentially this can be done in time linear in the
size of the grammarG, if both the maximal number of parametersk of G and the
XML type definition are fixed. In particular, the numberk appears as an exponent
in the constant of the algorithm (see Proposition 2). In BPLEX, k is controlled by
the input parameterKR. Practical experiments show that small values ofk (smaller
than5) already achieve very competitive compression ratios; in fact, we observed
that for all the files shown in Tab. 2 takingKR bigger than10 does not improve
compression anymore. It can therefore be assumed thatk is very small with respect
to the size ofG.

All XML type formalisms mentioned above can conveniently bemodeled by reg-
ular tree languages [27], a classical concept from formal language theory [18]. We
therefore consider the problem of checking whether, for an SL cf tree grammarG,
L(G) is included in a regular tree languageR. Assume thatR is given by a de-
terministic bottom-up tree automatonB (formally defined below). Our inclusion
check is similar to constructing the (context-free) intersection grammarH∩ of a
context-free tree grammarH with R: the productions ofH∩ are obtained by run-
ning the automatonB on the right-hand sides ofH ’s productions. For simplicity,
consider first the string case, i.e.,H is a context-free grammar andB is a DFA:
H∩’s nonterminals are triples of the form[q, A, p] denoting thatB moves from
stateq to statep on some string generated byH ’s nonterminalA. If A → XY
is a production ofH then for every stater the grammarH∩ has the production
[q, A, p] → [q,X, r][r, Y, p]. This well-known triple-construction [2] can be gen-

20

eralized to context-free tree grammars by considering nonterminals of the form
[(q1, q2, . . . , qk), A, p] whereA is a nonterminal of rankk and q1, . . . , qk, p are
states of the tree automatonB (see Theorem 3.2.8 of [12] where a similar triple-
construction is presented for inside-out (IO) macro grammars; that construction can
easily be generalized to trees, thus showing that IO context-free tree languages are
closed under intersection with regular tree languages).

We now come back to the case of validating an SL cf tree grammarG. SinceG
generates only one tree we do not construct an intersection grammar, but a single
run of (an appropriate extension of) the automatonB in order to determine whether
L(G) = {t} ⊆ L.

Formally, a deterministic bottom-up finite-state tree automaton is a tupleB =
(Q, Σ, {δσ}σ∈Σ, F) whereQ is a finite set of states,Σ is a ranked alphabet,δσ :
Qk → Q for σ ∈ Σ of rank k, andF ⊆ Q is a set of final states. For a tree
t ∈ TΣ(Yk) and a mappingΘ : Yk → Q which assigns to each parameter a state,
we define the stateδ(t, Θ) ∈ Q inductively as follows: Ift = yi for some1 ≤ i ≤ k,
thenδ(t, Θ) = Θ(yi). Now assume thatt = σ(t1, . . . , tn) for someσ ∈ Σ of rankn
and treest1, . . . , tn ∈ TΣ(Yk). Then,δ(t, Θ) = δσ(δ(t1, Θ), . . . , δ(t1, Θ)). In case
t ∈ TΣ (i.e., t does not contain parameters), letδ(t) = δ(t, Θ), whereΘ is the
empty mapping. The language accepted byB is L(B) = {s ∈ TΣ | δ(s) ∈ F}.
The size|B| of B is the size of the transition functionδ. In [22] it was shown that
our validation problem is PSPACE-complete, and that the following proposition
holds. For completeness, we present a proof.

Proposition 2 (cf. Theorem 1 of [22]) Given an SL cf tree grammarG and a deter-
ministic bottom-up tree automatonB it can be checked whetherL(G)∩L(B) = ∅

in worst case timeO(mk × |B| × size(G)), wherem is the number of states ofB
andk is the maximal number of parameters of nonterminals ofG.

PROOF. The proof of this proposition is straightforward: letG = (N, Σ, rhs)
with N = {A1, . . . , An} andL(G) = {t}. Let B = (Q, Σ, δ, F) be a deterministic
bottom-up tree automaton. We now run the tree automatonB on the right-hand
sides of the productions ofG. We do this bottom-up, starting with the right-hand
siderhs(An). More formally, we compute for every mappingΘ : Yk → Q (where
k is the rank ofAn) the stateδ(rhs(An), Θ). In this way, we obtain a mapping
δAn

: Qk → Q with δAn
(q1, . . . , qn) = δ(rhs(An), Θ), whereΘ is the mapping

with Θ(yi) = qi for all 1 ≤ i ≤ k. We add the mappingδAn
to the transition

mappingsδσ (σ ∈ Σ) of the automatonB. Extended in this way, we can now run
B on the right-hand siderhs(An−1) and compute the mappingδAn−1

. Note that the
nonterminalAn may occur inrhs(An−1), hence we need the transition mappingδAn

when runningB on rhs(An−1). We continue in this way and compute all mappings
δAi

for 1 ≤ i ≤ n. Note that for each nonterminalAi of rank k, |Q|k = mk

many values ofδAi
are computed and that the computation of each value takes time

21

O(size(rhs(Ai))×|B|). Hence, in total at mostO(mk×|B|×size(G)) computation
steps are needed. This number can be greatly decreased by going top-downin a
“lazy” manner throughG, starting withrhs(A1). Note though, that the price for the
improvement is the necessity to maintain recursive calls. Consider the run ofB on
rhs(A1). If B arrives at a nonterminalAi (i > 1) of rank k, in statesq1, . . . , qk,
then we issue a recursive call to computeδAi

(q1, . . . , qk). Such a call means to
substituteqj for yj, 1 ≤ j ≤ k, in rhs(Ai) and then to runB on the resulting tree.
During the run further recursive calls may be generated. If avalueδAi

(q1, . . . , qk) is
determined, then it is stored in a table in order to avoid its recomputation. The total
number ofδAi

-values that are actually computed in this way may be much smaller
than the worst case bound ofmk. 2

Note that in order to use Proposition 2 in the context of XML types, the corre-
sponding type definition has to first be transformed into a (deterministic bottom-up
finite) tree automaton. If the type is given as DTD or as XML Schema, then the
transformation into a deterministic tree automaton can be done in time linear in
the size of the representation. However, the details are more convoluted: in the
case of DTD, alast-child, previous-sibling binary tree encoding should be used
to guaranteed that the resulting automaton is of linear size. And in the case of
XML Schemas, a deterministictop-downtree automaton should be used (note that
a result similar to Proposition 2 holds for top-down tree automata; see [22]). For
RELAX NG (which employs full regular tree languages and nondeterminism) it
cannot be avoided that the size of the corresponding deterministic tree automaton
(no matter if top-down or bottom-up) is sometimes exponential in the size of the
RELAX NG type definition. This is not a serious issue though, when using BPLEX
(which outputs linear grammars): forlinear SL cf tree grammars (SLT grammars)
Proposition 2 can be extended to the case that the automatonB is nondeterminis-
tic: the δAi

are now functions fromQk to 2Q, wherek is the rank ofAi; they are
computed by checking for all statesp, p1, . . . , pk of B whether there is a run on
rhs(An)[y1 ← p1, . . . , yk ← pk] arriving in p. It follows that the problem can be
solved in timeO(mk+1 × |B| × size(G)), see [22] for a detailed proof and a dis-
cussion explaining the importance of the linearity of the input SL cf tree grammar.

Equality Test

Consider two SL cf tree grammarsG1 andG2. Is it possible to test whether bothG1

andG2 generate the same treet, without fully uncompressing the grammars, i.e.,
without deriving the treet? More precisely, we are interested in the time complexity
of testing equivalence ofG1 andG2.

In the string case, i.e., ifG1 andG2 are SL cf string grammars, then the problem
can be solved in polynomial time with respect to the sum of thesizes ofG1 and
G2 [29]. The proof relies on the fact that, for an SL cf string grammarG (in Chom-

22

sky normal form) of sizen, the length of the string derivable from a nonterminal of
G is ≤ 2n, and therefore can be stored inn bits. Since basic operations (compar-
ing, addition, subtraction, multiplication, etc.) on suchnumbers work in polynomial
time with respect ton, we can compute in polynomial time the length of the word
generated by any nonterminal ofG. Since in the tree case this property doesnot
hold anymore (because the size of the tree generated by an SL cf tree grammar of
sizen can be22n

) it looks unlikely that the equivalence problem can also be solved
by an algorithm running in polynomial time. In fact, we do notknow whether such
an algorithm exists. The following theorem shows that the problem can be solved
using polynomial space, and hence in exponential time. On the other hand, if the
grammarsG1 andG2 are linear, then they can be transformed into SL cf string
grammars generating a depth-first left-to-right traversalof the corresponding tree;
then, the result of [29] can be used to show that in this case testing equivalence can
be done in polynomial time.

Theorem 3 Testing equivalence of two SL cf tree grammarsG1 and G2 can be
done in polynomial space, and in polynomial time ifG1 andG2 are linear.

Before we prove Theorem 3, we first have to introduce some definitions concerning
derivations of SL tree grammars. LetG = ({A1, . . . , An}, Σ, rhs) be an SL tree
grammar. The grammarG generates precisely one treet, i.e.,L(G) = {t}. Given a
nodeu ∈ N

∗ of t, how can we obtain fromG the labelt[u]?

As shown in [23],t[u] can be obtained using only spaceO(size(G)) as follows. A
pointed productionis a pair(i, ρ) where1 ≤ i ≤ n andρ is a node inrhs(Ai). A
stack configurationis a non-empty sequencew = (i1, ρ1) · · · (im, ρm), m ≥ 1, of
pointed productions such thati1 = 1 and for every1 ≤ ν ≤ n− 1, rhs(Aiν)[ρν] =
Aiν+1

. The stack configurationw pointsto the nodeρn of the treerhs(Ain), and the
labelof w, denoted lab(w), is defined as the labelrhs(Ain)[ρn] ∈ Σ (and undefined
if it is not in Σ). The idea of determining the labelt[u] is to build up a stack con-
figuration by scanning the sequenceu from left to right. This sequence will finally
point to aΣ-labeled node and the label of this node ist[u].

As an example for the above definitions, consider the SL tree grammarH with
productions

A1 → A2(A2(e))

A2(y1) → A3(A3(y1))

A3(y1) → c(y1, y1).

Then,w1 = (1, ε) points to theA2-labeled root node ofA1’s right-hand side, while
w2 = (1, ε)(2, ε)(3, 1) points to the left occurrence of the parametery1 in A3’s
right-hand side. The stack configurationw3 = (1, ε)(2, ε)(3, ε) points to thec-
labeled node ofA3’s right-hand side; thus, the label ofw3 is c: lab(w3) = c.

We now define two operations on stack configurations: downν (ν ∈ N) and Expand.

23

For a stack configurationw = w′(i, ρ), downν(w) is defined asw′(i, ρν) if ρν is a
node inrhs(Ai), and is undefined otherwise. Thus, downν(w) is a stack configura-
tion, which points to theν-th child of the node to which the stack configurationw
points. The idea of the Expand-operation is to expand a stackconfiguration, until
it points to aΣ-labeled node. Formally, the stack configuration Expand(w), where
w = w′(i, ρ), is defined as

(i) w if rhs(Ai)[ρ] ∈ Σ,
(ii) Expand(downν(w

′)) if rhs(Ai)[ρ] = yν , and
(iii) Expand(w′(i, ρ)(j, ε)) if rhs(Ai)[ρ] = Aj.

Thus, if w already points to aΣ-labeled node then Expand just returnsw, see (i).
In case (ii), wherew points to a parameteryν , w′ cannot be the empty sequence,
because then we would havei = 1. But since the rank of the initial non-terminal
A1 is zero, rhs(A1) does not contain the parameteryν . Hence,w′ is a stack config-
uration, which points to anAi-labeled node, where the rank ofAi is at leastν (so
that theν-th parameteryν can appear in rhs(Ai)). Hence, downν(w′) is defined. The
Expand-operation now removes the pointed production(i, ρ) from w (which points
to a leaf of rhs(Ai) labeled with the parameteryν) and directly moves to theν-th
child of theAi-labeled node to whichw′ points (by applying downν to w′). Finally,
if w points to anAj-labeled node (case (iii)) then the Expand-operation first adds
the pointed production(j, ε) to w (so that the resulting stack configuration points
to the root of rhs(Aj)) and continues expansion.

In our example,

Expand(w1) = Expand((1, ε)) = (1, ε)(2, ε)(3, ε) = w3

down1(w3) = down1((1, ε)(2, ε)(3, ε)) = (1, ε)(2, ε)(3, 1) = w2

and
Expand(w2) = Expand(down1((1, ε)(2, ε)))

= Expand((1, ε)(2, 1))

= Expand((1, ε)(2, 1)(3, ε))

= (1, ε)(2, 1)(3, ε).

Using these definitions we can now determine the label oft[u] as lab(Find(G, u))
where Find is recursively defined, for an SLT grammarG, a sequence of integers
v, and an integeri as follows:

Find(G, ε) = Expand((1, ε))

Find(G, vi) = Expand(downi(Find(G, v))).

Note that in the definition of Find, the mapping downi is only applied to a stack

24

configuration which points to a terminal-labeled node. It should be clear that the
stack configuration Find(G, u) points to a node with labelt[u]. Additionally, no
stack configuration in the computation ever consists of morethann pairs, because
the first components of pointed productions in a stack configuration are pairwise
different.

In the example

Find(H, 1) = Expand(down1(Find(H, ε)))

= Expand(down1(Expand((1, ε))))

= Expand(down1(w3))

= Expand(w2) = (1, ε)(2, 1)(3, ε).

This means thatt[1] = c, because lab(Find(H, 1)) = rhs(A3)[ε] = c.

PROOF OF THEOREM 3. Let G1 = ({A1, . . . , An1
}, Σ, rhs1) andG2 = ({B1,

. . . , Bn2
}, Σ, rhs2). By Savitch’s Theorem (see, e.g., [28]) and the complement clo-

sure of PSPACE, it suffices to give a nondeterministic polynomial space algorithm
that testsinequivalence. Roughly speaking, the algorithm guesses corresponding
paths in the treest1 andt2, generated byG1 andG2, respectively. The key issue
is that any nodeu ∈ N

∗ of ti can be (non-uniquely) represented in polynomial
space with respect to the size ofGi. In fact, the nodeu in ti can be represented by
the stack configuration Find(Gi, u). Recall that the length of Find(Gi, u) is at most
ni. Of course, the nodeu is in generalnot uniquely represented by Find(Gi, u);
in particular, corresponding nodes generated by parametercopying have the same
Find-representation (as an example: consider the grammarG with productions
A1 → A2(e) andA2(y1) → c(y1, y1); then Find(G, 1) = (1, 1) equals Find(G, 2),
and points to thee-node). The algorithm starts with the two sequences Find(G1, ε)
and Find(G2, ε), representing the root nodes oft1 andt2, respectively. If their labels
are different we accept. Otherwise, we guess a child numberi and move down to the
i-th child (by applying downi and Expand), resulting in Find(G1, i) and Find(G2, i).
If the corresponding labels are different we accept, etc. Ifthere is no child number
(we are at a leaf) we reject. SinceG1 andG2 move synchronized throughti, we do
not need to storeu ∈ N

∗; in fact,u’s length might be exponential in the sizes ofGi.
A pseudo code of this procedure is shown in Fig. 7. It should beclear that there is
a run returningtrue if and only if there is a nodeu with t1[u] 6= t2[u].

Now let G1 and G2 be linear. This means that for any nonterminalA of G1 or
G2, of rankk, the treeA(y1, . . . , yk) derives to a treet over Σ ∪ Yk in which yj

occurs at most once,1 ≤ j ≤ k. It is straightforward to change the grammars
in such a way that (1) everyyj occurs exactly once int and (2) the order of the
parameters int (going depth-first left-to-right) isy1, . . . , yk. The idea is now to
construct cf string grammarsH1, H2 which generate depth-first left-to-right traver-

25

procedure INEQUIVALENT(G1, G2: grammar): bool
begin

s1 := Find(G1, ε)
s2 := Find(G2, ε)
while true do

if lab(s1) 6= lab(s2) then return true
else

f := lab(s1)
if rank(f) = 0 then return false
guess an integeri ∈ {1, . . . , rank(f)}
s1 := Expand(downi(s1))
s2 := Expand(downi(s2))

fi
od

end INEQUIVALENT

Fig. 7. Checking inequivalence of two SL cf tree grammarsG1 andG2.

sals oft1 and t2, respectively. Leti ∈ {1, 2}. For every nonterminalA of Gi of
rankk > 0 let A0,1, A1,2, . . . , Ak−1,k, Ak,0 be new nonterminals ofHi, and for ev-
ery σ ∈ Σ of rank k > 0 let σ0,1, σ1,2, . . . , σk−1,k, σk,0 be new terminals ofHi.
Nonterminals and terminals of rank zero are taken over toHi. The right-hand side
of the nonterminalA0,1 is the traversal starting at the root of the right-hand side
of A (indicated by the index0) up to the first parametery1 in the right-hand side
of A (indicated by the parameter1). The right-hand side ofAν,ν+1 is the traversal
starting at the parameteryν in the right-hand side ofA up to the parameteryν+1.
Similarly, a terminal symbolgν,ν+1 means thatg was entered coming from itsν-th
child and was exited by moving to its(ν + 1)-th child. It should be clear how to
construct the productions ofHi. As an example, consider the tree grammar produc-
tion A(y1, y2, y3) → B(g(y1, a, b), h(B(y2, y3))) and the nonterminalA1,2 of the
constructed string grammar; its production isA1,2 → g1,2 a g2,3 b g3,0 B1,2 h0,1 B0,1.
Clearly, t1 = t2 if and only if the stringw1 generated byH1 equals the stringw2

generated byH2. Moreover,H1 andH2 are SL cf string grammars of polynomial
size with respect toG1 andG2, respectively. By the result of [29], testingw1 = w2

can be done in polynomial time with respect to the sizes ofH1 andH2. 2

7 Related Work

Grammar-based tree compression was independently presented in [33]. However,
their algorithm seems less effective than BPLEX, and in particular it generates
grammars with a very large number of parameters (typically several thousands).
This means that our algorithms of Section 6 are not likely to be applicable to the
grammars they produce, because they sensibly depend on the number of parameters
in a grammar.

26

There are succinct pointer-less representations of trees,see, [19,16,11]. In this way,
ann-node tree can be represented by2n + o(n) bits, while allowingO(1) time for
most read operations on a tree [16]. In the context of XML, pointer-less tree rep-
resentations can, e.g., be found in XPRESS [26]: label paths in an XML document
are encoded by real number intervals following an arithmetic encoding; this allows
to run path queries directly on the compressed instance. This method is typically
applied directly to XML documents on the file system. While XPRESS has smaller
query evaluation times than other systems working on compressed XML files (like,
e.g., XGrind [32]), it is unclear how well it compares to other approaches (like
ours) when documents are loaded into memory. In [13] a succinct representation
for SLT grammars is introduced; using this representation,it is, for instance, possi-
ble to represent our SLT grammars for DBLP and medline, using only 288KB and
358KB, respectively.

It is also possible to use strings to represent XML trees in memory [35]; their ex-
periments show that this offers good compression, while still being able to query
efficiently the representation. XQueC uses a queriable XML representation that is
based on compression of data values [1]. An advanced implementation which ba-
sically uses DAG sharing together with compression of data values is presented
in [9]; their results are convincing, which strengthens thebelief in our approach,
because replacing DAG sharing by SLT grammars should immediately improve
their system.

Consider now the problem of finding the smallest cf string grammar for a given
string. This problem is NP-complete and various approximation algorithms have
been studied [5]. In particular, the size of the smallest cf grammar is lower bounded
by the size of the smallest LZ77 representation of the string(when the size of the
sliding window is unbounded) [5,31]. The question arises whether a similar result
holds in the tree case. But for trees it is unclear how an efficient LZ77 representa-
tion would look like. The problem is how to specify tree prefixes that have appeared
before [8]. In the string case, the LZ77 representation is obtained by performing a
left-to-right scan of the input string; at each moment, the string starting at the cur-
rent position is matched against all prefix strings, and the longest match is selected.
For example, the stringabbbaabbabbb is compressed by LZ77 intoabbba[1, 3][1, 4],
where a pair[i, j] represents the substring starting at positioni of lengthj. In or-
der to bound the time needed for matching, many implementations of LZ77 use a
sliding window of fixed size instead of the complete prefix. Inthe tree case there
is no accepted version of LZ77. The problem is thati should be replaced by a path
p, andj should be replaced by an unlabeled treet with parameters at leaves (or,
alternatively, by a list of paths to parameters) [8], but such pairs[p, t] require too
much space in order to obtain good compression.

In [31] a technique to decrease the size of an SL cf grammar is presented; the idea
is to change the grammar in such a way that its derivation trees become balanced
trees, in the sense of AVL trees. This technique gives good compression ratios,

27

when applied to an SL cf grammar obtained from the minimal LZ77 representation
of the string. Even though there is no obvious way to extend LZ77 to trees, it might
be possible to apply the technique of [31] to SL cf tree grammars. Another variation
of Lempel-Ziv compression, known as LZ78, can more readily be extended to trees.
For LZ78 on strings, new patterns are composed by adding a letter to already exist-
ing patterns. A pattern is specified as a pair(i, a) wherei is the index of a previous
pattern anda is a letter; the casei = 0 represents the one-letter patterna. In this
scheme the stringabbbaabbabbb is compressed to(0, a)(0, b)(2, b)(1, a)(3, a)(3, b).
Thus, the pair(2, b) is the concatenationbb of b (the second pattern) andb, and sim-
ilarly (3, a) representsbba. The LZ78 encoding has a natural interpretation as an SL
cf string grammar (see e.g. [5]). LZ78 can be extended to trees by using a dictio-
nary of tree patterns where, during a top-down scan of the input tree, new patterns
are obtained from existing ones by appending subpatterns atparameter positions;
in the simplest case, only a one-node subpattern is appended. Such a technique is
presented in [6]; other variations, each using a different method for extending the
patterns, are presented in [7]. In [6] no experimental results are provided. In [7] the
proposed algorithms are applied to term compression, and the best performance is a
size reduction to about50% of the original. It remains to be investigated how these
techniques perform on XML documents.

In [14] it was shown that evaluation of Core XPath queries on DAGs is PSPACE
complete. Recently we have shown that this result can be extended to linear SL
cf tree grammars [22]; this means that, while achieving better compression than
DAGs by using BPLEX, the complexity of evaluating a Core XPath still remains
the same for outputs of BPLEX as it is for DAGs.

8 Conclusions and Future Work

A linear time algorithm was presented that transforms a given tree into a small
SLT grammar. The algorithm can be used to “compress” the treestructure of an
XML document into a highly efficient, pointer-based memory representation. The
representation preserves the basic tree operations and canbe accessed via DOM
(using an appropriate proxy). On average, the size of a compressed instance is one
half of the size of the minimal unique DAG of the tree, which inturn is about 1/10
of the size of the original tree [4]. For some computational problems on trees, we
presented efficient algorithms that directly work on SLT grammars; in particular we
considered (1) validation against XML types given by deterministic bottom-up tree
automata and (2) testing equality of documents. In [22] we considered Core XPath
evaluation. It remains to implement these ideas and test howwell they behave on
practical queries. To further increase memory efficiency, our representation could
be combined with a compression of data values (e.g., similarto the one of [1]). It is
also possible to directly keep results of queries in compressed format; this idea has
been considered for DAG compression and a fragment of XQuery[3]. It also has

28

been considered for compression by SLT grammars and macro tree transducers as
query formalism [23]. It is not difficult to change BPLEX to take arbitrary SL cf tree
grammars as input; in this way it might be possible to achievefurther compression
by running BPLEX on its own output.

Several recent programming languages allow to process XML documents via pat-
tern matching constructs. Such constructs are compiled into automata which carry
out the matching in the document. It seems straightforward to extend this compi-
lation to automata which directly work on SLT grammars. In this way an efficient
XML query evaluator is obtained because XQueries and XSLTs can be translated
to pattern matching statements. In this context, other optimizations might become
important (e.g. lazy sequences [15]).

We would like to test how our technique can be used for XML file compression.
We hope that the performance of existing compressors, like XMill, can be further
improved by using BPLEX for the compression of tree structures.

Acknowledgments.We would like to thank the anonymous referees for many use-
ful comments.

References

[1] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, andA. Pugliese.
XQueC: Pushing queries to compressed XML data. InProc. VLDB 2003, pages 1065–
1068. Morgan Kaufmann, 2003.

[2] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase
structure grammars.Z. Phonetik. Shrachwiss. Kommunikationsforsch., 14:143–172,
1961.

[3] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas.Vectorizing and
querying large XML repositories. InProc. ICDE 2005, pages 261–272. IEEE Press,
2005.

[4] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proc.
VLDB 2003, pages 141–152. Morgan Kaufmann, 2003.

[5] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem.IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

[6] S. Chen and J. H. Reif. Efficient lossless compression of trees andgraphs. InProc.
DCC’96, page 428. IEEE Press, 1996.

[7] J. R. Cheney. First-order term compression: techniques and applications. Master’s
thesis, Carnegie Mellon University, August 1998.

29

[8] J. R. Cheney. Personal communication. 2004.

[9] J. Cheng and W. Ng. XQzip: Querying compressed XML using structural indexing.
In Proc. EDBT 2004, volume 2992 ofLNCS, pages 219–236. Springer, 2004.

[10] M. F. Fernandez, J. Siḿeon, B. Choi, A. Marian, and G. Sur. Implementing
XQuery 1.0: The galax experience. InProc. VLDB 2003, pages 1077–1080. Morgan
Kaufmann, 2003.

[11] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees
for optimal succinctness, and beyond. InProc. FOCS 2005, pages 184–196. IEEE
Press, 2005.

[12] M. J. Fischer.Grammars with macro-like productions. PhD thesis, Harvard University,
Massachusetts, May 1968.

[13] D. K. Fisher and S. Maneth. Structural selectivity estimation for XML documents. To
appear inProc. ICDE 2007, IEEE Press, 2007

[14] M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (extended
abstract). InProc. LICS 2003, pages 188–197. IEEE Press, 2003.

[15] V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. XML goes native: Run-time
representations for Xtatic. InProc. CC 2005, volume 3443 ofLNCS, pages 43–58.
Springer, 2005.

[16] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. InProc. SODA 2004, pages 1–10. SIAM Press, 2004.

[17] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation
for balanced parentheses.Theor. Comput. Sci., 368(3): 231–246, 2006.

[18] F. Gécseg and M. Steinby. Tree languages. InHandbook of Formal Languages,
Volume 3, Chapter 1. Springer, 1997.

[19] J. Katajainen and E. M̈akinen. Tree compression and optimization with applications.
Intern. J. of Foundations of Comput. Sci., 1:425–447, 1990.

[20] J. Lamping. An algorithm for optimal lambda calculus reductions. InProc. POPL
1990, pages 16–30. ACM Press, 1990.

[21] H. Liefke and D. Suciu. XMill: An efficient compressor for XML data. In Proc.
SIGMOD 2000, pages 153–164. ACM Press, 2000.

[22] M. Lohrey and S. Maneth. The complexity of tree automata and XPath ongrammar-
compressed trees.Theor. Comput. Sci., 363(2): 196–210, 2006.

[23] S. Maneth and G. Busatto. Tree transducers and tree compressions. InProc. FOSSACS
2004, volume 2987 ofLNCS, pages 363–377. Springer, 2004.

[24] D. Megginson. Imperfect XML: Rants, Raves, Tips, and Tricks ... from an Insider.
Addison-Wesley, 2004.

[25] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comp. Syst.
Sci., 66:66–97, 2003.

30

[26] J. Min, M. Park, and C. Chung. XPRESS: A queriable compressionfor XML data. In
Proc. SIGMOD 2003, pages 122–133. ACM Press, 2003.

[27] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal
language theory. InProc. Extreme Markup Languages 2001.

[28] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, New York, 1994.

[29] W. Plandowski. Testing equivalence of morphisms on context-free languages. InProc.
ESA 1994, volume 855 ofLNCS, pages 460–470. Springer, 1994.

[30] W. Rytter. Algorithms on compressed strings and arrays. InProc. SOFSEM 1999,
volume 1725 ofLNCS, pages 48–65. Springer, 1999.

[31] W. Rytter. Application of Lempel-Ziv factorization to the approximation ofgrammar-
based compression.Theoret. Comput. Sci., 302:211–222, 2002.

[32] P. M. Tolani and J. R. Hartisa. XGRIND: A query-friendly XML compressor. InProc.
ICDE 2002, pages 225–234. IEEE Press, 2002.

[33] K. Yamagata, T. Uchida, T. Shoudai, and Y. Nakamura. An effective grammar-based
compression algorithm for tree structured data. InProc. ILP 2003, volume 2835 of
LNCS, pages 383–400. Springer, 2003.

[34] B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench benchmark and performance
testing of XML DBMSs. InProc. ECDE 2004, pages 621–633. IEEE Press, 2004.

[35] N. Zhang, V. Kacholia, and M. T.̈Ozsu. A succinct physical storage scheme for
efficient evaluation of path queries in XML. InProc. ICDE 2004, pages 54–65. IEEE
Press, 2004.

31

