
June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

COMPRESSED MEMBERSHIP PROBLEMS FOR REGULAR

EXPRESSIONS AND HIERARCHICAL AUTOMATA∗

MARKUS LOHREY

Universität Leipzig, Institut für Informatik, Germany

lohrey@informatik.uni-leipzig.de

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Membership problems for compressed strings in regular languages are investigated.
Strings are represented by straight-line programs, i.e., context-free grammars that gen-

erate exactly one string. For the representation of regular languages, various formalisms
with different degrees of succinctness (e.g., suitably extended regular expressions, hier-
archical automata) are considered. Precise complexity bounds are derived. Among other

results, it is shown that the compressed membership problem for regular expressions
with intersection is PSPACE-complete. This solves an open problem of Plandowski and
Rytter.

Keywords: algorithms on compressed strings; straight-line programs; regular expressions.

1991 Mathematics Subject Classification: 68Q45, 68Q68

1. Introduction

The topic of this paper is algorithms on compressed strings. The goal of such algo-

rithms is to check properties of compressed strings and thereby beat a straightfor-

ward “decompress-and-check” strategy. Potential applications for such algorithms

can be found for instance in bioinformatics, where massive volumes of string data

are stored and analyzed. In this paper we concentrate on compressed membership

problems for regular languages, i.e., we want to check whether a compressed string

belongs to a given regular language. Here, the input consists of two components:

(i) a compressed string and (ii) a regular language. In order to obtain a precise

problem description we have to specify the data representation in (i) and (ii). In

(i), we choose straight-line programs (SLPs); these are context-free grammars that

generate exactly one word. Straight-line programs turned out to be a very flexi-

ble and mathematically clean compressed representation of strings. Several other

dictionary-based compressed representations, like for instance Lempel-Ziv (LZ) fac-

torizations [26], can be converted in polynomial time into straight-line programs

∗This work is supported by the DFG research project ALKODA.

1

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

2 Markus Lohrey

and vice versa [23]. This implies that complexity results can be transfered from

SLP-encoded input strings to LZ-encoded input strings.

For point (ii) we consider various formalisms for describing regular languages

with different degrees of succinctness. In Section 3, we consider regular expressions

(i.e., expressions using the operators ∪, ·, and ∗) extended by some of the operators

intersection (∩), complement (¬), squaring (2), and shuffle (||). For a set C of oper-

ators, we denote with CMP(C) (resp. MP(C)) the problem of checking whether an

SLP-compressed (resp. uncompressed) word belongs to the language described by

an expression over the operators from C.

The complexity of the uncompressed version MP(C) is a well studied topic, see,

e.g., [10, 20, 21, 24, 25]. Let us recall some of the results (for other operator sets the

precise complexity status is not known to the author):

• MP({·,∪}) and MP({·,∪, ∗}) are both NL-complete [9, 10].

• MP({·,∪, ∗,∩}) is complete for LOGCFL (the logspace closure of the class of

context-free languages) [21]. The exact complexity of MP({·,∪,∩}) seems

to be open.

• MP({·,∪,¬}) and MP({·,∪, ∗,¬}) are both P-complete [20].

• MP(C ∪{||}) is NP-complete for every C ⊆ {∪, ·, ∗,∩} that contains at least

one of the operators ∪, ·, or ∗ [18, 25].

For some particular operator sets C, the complexity of the compressed version

CMP(C) was studied in [17, 23]. In [17] it is shown that there exists a fixed regular

language L such that the compressed membership problem for L is P-complete. In

the uniform version, where a representation of the regular language is also part of

the input, first results were obtained in [23]. If the regular language is represented

by a finite automaton of size m, compressed membership can be solved in time

O(nm3), where n is the size of the input SLP. Non-trivial hardness results were

obtained for more succinct representations of regular languages: Among others, it

was shown in [23] that CMP({·,∪, ∗,∩}) is NP-hard, and it was conjectured that

this problem is NP-complete.

In this paper we characterize the complexity of CMP(C) for all operator sets

C with {·,∪} ⊆ C ⊆ {·,∪, ∗,∩,¬, ||, 2}, see also Section 5 for a summary. In most

cases, the complexity turns out to be PSPACE-complete: CMP(C) is PSPACE-hard

if C = {·,∪} ∪ D and D is one the following sets: {¬}, {2}, {∗,∩}, {∗, ||}, in

particular the conjecture from [23] regarding CMP({·,∪, ∗,∩}) is false unless NP =

PSPACE. Concerning upper bounds, we show that if C ⊆ {·,∪, ∗,∩,¬, ||, 2} does not

contain simultaneously ¬ and ||, then CMP(C) belongs to PSPACE. On the other

hand, the presence of both negation and shuffle makes compressed membership more

difficult: CMP(C) is complete for alternating exponential time with a linear number

of alternations (ATIME(exp(n), O(n))) in case {·,∪,¬, ||} ⊆ C. Completeness results

for ATIME(exp(n), O(n)) are typical for logical theories [4], but we are not aware of

any completeness results for this class in formal language theory.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 3

Technically, the most difficult result in this paper is the PSPACE-hardness of

CMP({·,∪, ∗,∩}). Our proof is based on a technique from [13]. The idea is to encode

the transition graph Gn of a linear bounded automaton on configurations of length

n by a string Wn, which can be generated by an SLP of size O(n). In [13], we

constructed a fixed deterministic context-free language L such that Wn ∈ L if and

only if in the transition graph G there is a path from the initial configuration

to a final configuration. Hence, the compressed membership problem for the fixed

deterministic context-free language L is PSPACE-complete; another proof for this

result (that works even for visibly pushdown languages) was recently given in [15].

Here, we show that reachability in the configuration graph Gn can be also checked

by a semi-extended regular expression ρn. But in contrast to the language L from

[13], the expression ρn has to be part of the input (which is clear since compressed

membership in a fixed regular language is in P).

Using this technique, we also prove that the compressed membership problem

for hierarchical automata is PSPACE-complete. In hierarchical automata, states may

either represent atomic states or references to submodules, which again may contain

references to other submodules and so on, see, e.g., [1]. In this way, automata

of exponential size may be represented by a polynomial size structure. PSPACE-

completeness of the compressed membership problem for hierarchical automata was

already shown in [6]. Our lower bound is slightly stronger, since our construction

yields deterministic hierarchical automata. For alternating hierarchical automata,

our main constructions can be adapted in order to prove EXPTIME-completeness

of the compressed membership problem.

2. Preliminaries

2.1. General notations

Let Γ be a finite alphabet. The empty word is denoted by ε. Let s = a1a2 · · · an ∈ Γ∗

be a word over Γ, where ai ∈ Γ for 1 ≤ i ≤ n. The length of s is |s| = n. For a ∈ Γ

and 1 ≤ i ≤ j ≤ n let |s|a = |{k | ak = a}|, s[i] = ai, and s[i, j] = aiai+1 · · · aj .

If i > j we set s[i, j] = ε. The string s is a subsequence of t ∈ Γ∗, briefly s →֒ t,

if t ∈ Γ∗a1Γ
∗ · · · anΓ∗. For a binary relation → on some set, let

∗
→ be the reflexive

and transitive closure of →.

A finite automaton (with ε-transitions) is a tuple A = (Q,Σ, δ, q0, Qf), where

Q is the finite set of states, Σ is the alphabet, δ ⊆ Q × (Σ ∪ {ε}) × Q is the

transition relation, q0 ∈ Q is the initial state, and Qf ⊆ Q is the set of final

states. The automaton A is deterministic if for every state q and all transitions

(q, a, p), (q, b, r) ∈ δ (a, b ∈ Σ ∪ {ε}) the following holds:

• If a = ε then p = r and b = ε.

• If a = b 6= ε then p = r.

In order to define alternating automata, let us first define the alternating graph

accessibility problem, briefly AGAP. An instance of AGAP is a tuple (V,E, v0, F, β),

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

4 Markus Lohrey

where (V,E) is a directed graph, v0 ∈ V is the initial node, F ⊆ V is the set of final

nodes, and β : V → {∃,∀} is a mapping. A node v ∈ V is called accepting, if

• v ∈ F , or

• β(v) = ∃ and there exists a successor node of v, which is accepting, or

• β(v) = ∀ and every successor node of v is accepting.

The instance (V,E, v0, F, β) is positive, if v0 is accepting.

An alternating finite automaton is a tuple A = (Q,Σ, δ, q0, Qf , α) such that

(Q,Σ, δ, q0, Qf) is a finite automaton and α : Q → {∀,∃}. For w ∈ Σ∗, we get an

AGAP-instance

I(A,w) = (V,E, v0, F, β),

where

• V = Q × {w[1, i] | 0 ≤ i ≤ |w|},

• E = {((q, au), (p, u)) ∈ V × V | (q, a, p) ∈ δ},

• v0 = (q0, w),

• F = Qf × {ε}, and

• β(q, u) = α(q).

Finally, let L(A) = {w ∈ Σ∗ | I(A,w) is a positive AGAP-instance}. The problem

whether w ∈ L(A) for a given word w and a given alternating finite automaton A

is a classical P-complete problem; it is equivalent to AGAP [7].

Example 1. Let A be the following alternating finite automaton, where α(q0) = ∀

and α(qi) = ∃ for 1 ≤ i ≤ 7 (q0 is the initial and the unique final state):

q0
q1

q2 q3
q4

q5

q6 q7

a

a a

a

a

aa

a

a

a

b

Then we have L(A) = ((a6)+b)∗.

We assume some background in complexity theory [19]. In particular, the reader

should be familiar with the complexity classes P, (co)NP, PSPACE, and EXPTIME.

An alternating Turing-machine [3, 19]

M = (Q,Σ, δ, q0, qf , α)

is a nondeterministic Turing-machine (Q is the set of states, Σ is the tape alphabet,

δ ⊆ Q×Σ×Q×Σ×{left, right} is the transition relation, q0 ∈ Q is the initial state,

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 5

and qf ∈ Q is the final state) with an additional mapping α : Q → {∀,∃}. The set

of configurations of M is Σ∗QΣ∗. For a given input w ∈ Σ∗ for M , we obtain again

an (infinite) AGAP-instance

I(M,w) = (Σ∗QΣ∗, E, q0w,Σ∗qfΣ∗, β),

where (c1, c2) ∈ E if and only if M can move in one step from configuration c1

to configuration c2 and β(uqv) = α(q) for u, v ∈ Σ∗ and q ∈ Q. The input w is

accepted by M if I(M,w) is a positive instance. Clearly, if M operates in space

s(n) on an input w of size n, then we can restrict the instance I(M,w) to those

configurations uqv with |uv| ≤ s(|w|) and therefore obtain a finite AGAP-instance.

It is well known that PSPACE (resp. EXPTIME) equals the class of all problems

that can be solved on an alternating Turing-machine in polynomial time (resp.

polynomial space). ATIME(exp(n), O(n)) denotes the class of all problems that can

be solved on an alternating Turing-machine in exponential time but where the

number of alternations (i.e., transitions from an existential state to a universal

state or vice versa) is bounded linearly in the input size. Finally, the class PNP

||

consists of all problems that can be accepted by a deterministic polynomial time

machine with access to an oracle from NP where all questions to the oracle are

asked in parallel [19]. PNP

|| is located between the first and the second level of the

polynomial time hierarchy; more precisely NP ∪ coNP ⊆ PNP

|| ⊆ Σp
2 ∩ Πp

2.

2.2. Grammar based compression

Following [23], a straight-line program (SLP) over the terminal alphabet Γ is a

context-free grammar G = (V,Γ, S, P) (V is the set of nonterminals, Γ is the set

of terminals, S ∈ V is the initial nonterminal, and P ⊆ V × (V ∪ Γ)∗ is the set

of productions) such that: (i) for every A ∈ V there exists exactly one production

of the form (A,α) ∈ P for α ∈ (V ∪ Γ)∗, and (ii) the relation {(A,B) ∈ V ×

V | (A,α) ∈ P,B occurs in α} is acyclic. Clearly, the language generated by the

SLP G consists of exactly one word that is denoted by val(G). The size of G is

|G| =
∑

(A,α)∈P |α|. Every SLP can be transformed in polynomial time into an

equivalent SLP in Chomsky normal form, i.e., all productions have the form (A, a)

with a ∈ Γ or (A,BC) with B,C ∈ V .

Example 2. Consider the SLP G over the terminal alphabet {a, b} that consists of

the following productions: A1 → b, A2 → a, and Ai → Ai−1Ai−2 for 3 ≤ i ≤ 7. The

start nonterminal is A7. Then val(G) = abaababaabaab, which is the 7th Fibonacci

word. The SLP G is in Chomsky normal form and |G| = 12.

We will also allow exponential expressions of the form Ai for A ∈ V and i ∈ N

in right-hand sides of productions. Here the number i is coded binary. Such an

expression can be replaced by a sequence of ordinary productions, where the length

of that sequence is bounded linearly in the length of the binary coding of i.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

6 Markus Lohrey

Without explicit reference, we use the fact that the following tasks can be solved

in polynomial time; except for the last point, proofs are straightforward:

• Given an SLP G, calculate |val(G)|.

• Given an SLP G and a number i ∈ {1, . . . , |val(G)|}, calculate val(G)[i].

• Given an SLP G over the terminal alphabet Γ and a homomorphism ρ :

Γ∗ → Σ∗, calculate an SLP H such that val(H) = ρ(val(G)).

• Given SLPs G1 and G2, decide whether val(G1) = val(G2) [8, 22].

2.3. Regular expressions

Regular expressions over the finite alphabet Γ are inductively defined as follows: (i)

ε and every a ∈ Γ are regular expressions, and (ii) if ρ and π are regular expressions,

then also ρ ∪ π, ρ · π, and ρ∗ are regular expressions. The language L(ρ) ⊆ Γ∗ is

defined as usual. In this paper, we consider several extensions of regular expressions.

For a set C of language operations, C-expressions over the alphabet Γ are built up

from constants in Γ ∪ {ε} using the operations from C. Thus, ordinary regular

expressions are {·,∪, ∗}-expressions. The length |ρ| of an expression is defined as

follows: For ρ ∈ Γ ∪ {ε} set |ρ| = 1. If ρ = op(ρ1, . . . , ρn), where op is an n-ary

operator, we set |ρ| = 1+|ρ1|+· · ·+|ρn|. As already defined in the introduction, for a

set C of language operations, the compressed membership problem (resp. membership

problem) is the computational problem of deciding whether val(G) ∈ L(ρ) (resp.

w ∈ L(ρ)) for a given SLP G (resp. string w) and C-expression ρ. This problem is

denoted by CMP(C) (resp. MP(C)).

Beside the operators ·,∪, ∗, we also consider intersection (∩), complement (¬),

squaring (2, where L2 = {uv | u, v ∈ L}), and shuffle (||). The latter operator is

defined as follows: For words u, v ∈ Γ∗ let

u || v = {u0v0u1v1 · · ·unvn | n ≥ 0, u = u0 · · ·un, v = v0 · · · vn}.

For L,K ⊆ Γ∗ let L || K = {u || v | u ∈ L, v ∈ K}. It is well known that the class

of regular languages is closed under ∩,¬, 2, and ||, but each of these operators leads

to more succinct representations of regular languages. Several classes of expressions

have their own names in the literature:

• {·,∪,¬}-expressions are called star-free expressions.

• {·,∪, ∗,∩}-expressions are called semi-extended regular expressions.

• {·,∪, ∗,¬}-expressions are called extended regular expressions.

• {·,∪, ∗, ||}-expressions are called shuffle-expressions.

Due to de Morgan’s law, we do not have to distinguish between the problems

CMP(C) and CMP(C ∪ {∩}) in case ∪,¬ ∈ C.

In the rest of the paper, we use various abbreviations. Instead of ρ1 · ρ2 we

usually just write ρ1ρ2. Moreover, for a finite language L we will denote with L also

the obvious {·,∪}-expression that describes the language L.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 7

2.4. Hierarchical automata

A hierarchical finite automaton (briefly HFA, see e.g [1], where hierarchical finite

automata are called hierarchical state machines) is a tuple A = (Σ, A1, . . . , Am),

where Σ is a finite alphabet. Every Ai is a tuple

Ai = (Qi,Σ, δi, q0,i, Qf,i, µi),

where (Qi,Σ, δi, q0,i, Qf,i) is a finite automaton and µi is a partial mapping µi :

Qi → {i + 1, . . . ,m}. Note that we must have dom(µm) = ∅. We assume that

the sets Qi (1 ≤ i ≤ m) are pairwise disjoint. In order to define the unfolded

automaton unfold(A) let us set Q =
⋃m

i=1 Qi, δ =
⋃m

i=1 δi, and µ =
⋃m

i=1 µi. Let

unfold(A) = (P,Σ, γ, p0, Pf), where the set of states P is the following subset of Q∗:

P = {q1q2 · · · qn | n ≤ m, q1 ∈ Q1, qi+1 ∈ Qµ(qi) for 1 ≤ i < n, µ(qn) is undefined}

In order to define the remaining components γ, p0, and Pf , let us set for a prefix u

of some word in P :

in(u) = {uv ∈ P | v ∈ {q0,1, . . . , q0,m}∗}, out(u) = {uv ∈ P | v ∈

(m⋃

i=1

Qf,i

)∗

}

Since we require uv ∈ P , the set in(u) contains only a single element, and we identify

this element with in(u). Note also that u, uv ∈ P implies v = ε. We now set

γ = {(uqv, a, upw) | (q, a, p) ∈ δ, uqv ∈ out(uq), upw = in(up)}

and p0 = in(ε) and Pf = out(ε). The HFA A is deterministic if unfold(A) is de-

terministic. Intuitively, we obtain the automaton unfold(A) by replacing as long as

possible occurrences of states q ∈ Qi with µi(q) = j > i by a copy of the automaton

Aj .

An alternating HFA is a tuple A = (Σ, A1, . . . , Am) with the same properties

as an HFA, except that every Ai is a tuple (Qi,Σ, δi, q0,i, Qf,i, αi, µi) with αi :

Qi \ dom(µi) → {∀,∃}. We set unfold(A) = (P,Σ, γ, p0, Pf , α), where P, γ, p0, Pf

are defined as above and α(uq) = αi(q) if uq ∈ P with q ∈ Qi.

Example 3. Let us consider the HFA An = ({a, b}, A1, . . . , An) with

An = ({pn, qn}, {a, b}, {(pn, a, pn), (pn, b, qn)}, pn, {qn}, ∅) and

Ai = ({pi, qi}, {a, b}, {(pi, ε, qi)}, pi, {qi}, {pi 7→ i + 1, qi 7→ i + 1})

for 1 ≤ i < n. Then unfold(An) accepts the language (a∗b)2
n−1

. The automaton

unfold(A3) is shown below; note that it is deterministic:

p1p2p3 p1p2q3 p1q2p3 p1q2q3 q1p2p3 q1p2q3 q1q2p3 q1q2q3

a

b ε

a

b ε

a

b ε

a

b

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

8 Markus Lohrey

3. Compressed membership problems for regular expressions

3.1. Upper bounds

There are a few easy upper bounds for CMP(C). We mentioned already in the

introduction that CMP({·,∪, ∗}) is P-complete [17]. Moreover, if C ⊆ {·,∪,∩, ||},

then for every C-expression ρ and every word w ∈ L(ρ) one has |w| ≤ |ρ|. It follows

that for C ⊆ {·,∪,∩, ||}, the problems CMP(C) and MP(C) are equivalent under

polynomial time reductions. Hence, CMP(C) belongs to P for C ⊆ {·,∪,∩} and

is NP-complete for {·, ||} ⊆ C ⊆ {·,∪,∩, ||} due to the results from [18, 25]. The

remaining upper bounds are collected in the following theorem:

Theorem 4. The following holds:

(a) CMP({·,∪, ∗,¬, 2}) ∈ PSPACE

(b) CMP({·,∪, ∗,∩, 2, ||}) ∈ PSPACE

(c) CMP({·,∪, ∗,¬, 2, ||}) ∈ ATIME(exp(n), O(n))

Proof. For point (a) let G be an SLP and let ρ be a {·,∪, ∗,¬, 2}-expression. We

will check in alternating polynomial time whether val(G) ∈ L(ρ). In the following,

we will also write down expressions of the form µk, where µ∗ is a subexpression of

ρ and 1 ≤ k ≤ |val(G)| is a positive integer. Of course, this expression describes the

expression

µ · µ · · ·µ︸ ︷︷ ︸
k many

.

We define the size of such an expression µk as |µ|+ length of the binary coding of

k. Our alternating algorithm will store a tuple (π, i, j, b), where:

• π is either a subexpression of ρ or of the form µk as described above,

• i and j are positions in val(G), and

• b ∈ {0, 1}.

If b = 1 (b = 0), then the tuple (π, i, j, b) will represent an accepting configuration

if and only if val(G)[i, j] ∈ L(π) (val(G)[i, j] 6∈ L(π)). If (π, i, j, b) is the current

tuple, then the algorithm branches as follows:

• If π = a ∈ Σ and b = 1 (resp. b = 0) then the algorithm accepts (resp.

rejects) if and only if i = j and val(G)[i] = a. This can be checked deter-

ministically in polynomial time.

• If π = ¬µ then the algorithm continues with the tuple (µ, i, j, 1 − b).

• If π = π1∪π2 and b = 1 (resp. b = 0) then the algorithm guesses existentially

(resp. universally) k ∈ {1, 2} and continues with the tuple (πk, i, j, b).

• If π = π1 ·π2 and b = 1 (resp. b = 0) then the algorithm guesses existentially

(resp. universally) a position p ∈ {i, . . . , j + 1}, then it guesses universally

(resp. existentially) ℓ ∈ {1, 2} and continues with the tuple (π1, i, p − 1, b)

(if ℓ = 1) or (π2, p, j, b) (if ℓ = 2).

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 9

• If π = µ∗ and b = 1 (resp. b = 0), then the algorithm accepts (resp. rejects)

if i > j. Otherwise, it first guesses existentially (resp. universally) a number

k ∈ {1, . . . , j − i + 1} and continues with the tuple (µk, i, j, b).

• If π = µk, then if k = 1 the algorithm continues with the tuple (µ, i, j, b). If

k ≥ 2 and b = 1 (resp. b = 0) then it existentially (resp. universally) guesses

a position p ∈ {i, . . . , j + 1}, then guesses universally (resp. existentially)

ℓ ∈ {1, 2}, and continues with the tuple (µ⌊k/2⌋, i, p − 1, b) (if ℓ = 1) or

(µ⌈k/2⌉, p, j, b) (if ℓ = 2).

The running time of this algorithm is bounded by O(|ρ| · log(|val(G)|)) which is at

most O(|ρ| · |G|).

For point (b) recall the following simple facts, where A1 and A2 are nondeter-

ministic automata with n1 and n2 many states, respectively.

• For L(A1) || L(A2) and L(A1) ∩ L(A2) there exists an automaton with

n1 · n2 many states (product construction).

• For L(A1)·L(A2) and L(A1)∪L(A2) there exists an automaton with n1+n2

many states.

• For L(A1)
2 (resp. L(A1)

∗) there exists an automaton with 2 ·n1 (resp. n1)

many states.

As a consequence, a given {·,∪, ∗,∩, ||, 2}-expression ρ can be transformed into an

automaton A(ρ) with 2O(|ρ|) many states and such that L(A(ρ)) = L(ρ). In polyno-

mial space we cannot construct this automaton. But this is not necessary. It is only

important that a single state of A(ρ) can be stored in space |ρ|O(1) and that for two

given states and a symbol a ∈ Γ it can be checked in polynomial time whether an

a-transition exists between the two states. Now we simulate the automaton A(ρ) in

polynomial space on the word val(G). Thereby, we only store the current position

p in the word val(G), which only needs polynomial space. Recall that the symbol

val(G)[p] can be calculated in polynomial time.

Finally for (c) we can apply a similar strategy as in (a). Let G be an SLP and

let ρ be a {·,∪, ∗,¬, 2, ||}-expression. We will check with an alternating exponential

time algorithm whether val(G) ∈ L(ρ). This time the algorithm has to store a tuple

(π,w, b), where

• π is a subexpression of ρ and

• w is a subsequence of val(G).

Note that we store the subsequence w of val(G) explicitly (whereas in (a) we store

a factor of val(G) by its first and last position), which needs exponential space in

the worst case.

If b = 1 (b = 0), then the triple (π,w, b) will represent an accepting configu-

ration if and only if w ∈ L(π) (w 6∈ L(π)). Now, for a current tuple (π,w, b), the

algorithm branches in a similar way as in the proof of (a). Only two modifications

are necessary:

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

10 Markus Lohrey

• If π = π1 || π2 and b = 1 (resp. b = 0), then the algorithm guesses existen-

tially (universally) two subsequences w1 and w2 of w such that w ∈ w1 || w2

(note that this needs exponential time). Then it guesses universally (resp.

existentially) ℓ ∈ {1, 2} and continues with the tuple (π1, w1, b) (if ℓ = 1)

or (π2, w2, b) (if ℓ = 2).

• In order to obtain a linear number of alternations, we have to modify the

treatment of an expression π = µ∗: If w = ε and b = 1 (resp. b = 0) then

the algorithm accepts (resp. rejects). If w 6= ε and b = 1 (resp. b = 0),

then the algorithm first guesses existentially (universally) a factorization

w = w1w2 · · ·wm with wi 6= ε for 1 ≤ i ≤ m (again, this needs exponential

time). Then it guesses universally (resp. existentially) ℓ ∈ {1, . . . ,m} and

continues with the tuple (µ,wi, b).

The number of alternations of this algorithm is bounded by O(|ρ|) and hence

bounded linearly in the input length.

3.2. Lower bounds

In the following, we will prove a series of PSPACE-hardness results.

Theorem 5. CMP({·,∪, ∗,∩}) is PSPACE-hard.

We need a few definitions for the proof: A semi-Thue system over an alphabet Γ

is a finite subset S ⊆ Γ∗×Γ∗; it is length-preserving if |ℓ| = |r| for all (ℓ, r) ∈ S. Let

dom(S) = {ℓ ∈ Γ∗ | ∃r : (ℓ, r) ∈ S} and →S = {(uℓv, urv) | (ℓ, r) ∈ S ∧ u, v ∈ Γ∗}.

A linear order ≻ on the alphabet Γ will be extended length-lexicographically to Γ∗

as follows: Let u, v ∈ Γ∗. Then u ≻ v if and only if |u| > |v| or (|u| = |v| and there

exit x, y, z ∈ Γ∗ and a, b ∈ Γ with a ≻ b, u = xay, and v = xbz). We say that the

semi-Thue system S over Γ is length-lexicographic with respect to ≻ if ℓ ≻ r for all

(ℓ, r) ∈ S.

Proof of Theorem 5. We will use a construction from [13]. Let A = (Q,Σ, δ, q0, qf)

be a fixed deterministic linear bounded automaton (Q is the set of states, Σ is the

tape alphabet, q0 (resp. qf) is the initial (resp. final) state, and δ : Q \ {qf} ×Σ →

Q×Σ×{left, right} is the transition function) such that the question whether a word

w ∈ Σ∗ is accepted by A is PSPACE-complete (such a linear bounded automaton

can be easily constructed, see also [2]). The one-step transition relation between

configurations of A is denoted by ⇒A. Let w ∈ Σ∗ be an input for A with |w| = n.

The number n is the input size in the rest of the construction. The following Steps

1–3 are as in [13].

Step 1. Normalization of the automaton A: We may assume that A operates in

phases, where a single phase consists of a sequence of 2 · n transitions of the form

q1γ1
∗
⇒A γ2q2

∗
⇒A q3γ3, where γ1, γ2, γ3 ∈ Σn and q1, q2, q3 ∈ Q. During the transi-

tion sequence q1γ1
∗
⇒A γ2q2 only right-moves are made, whereas during the sequence

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 11

γ2q2
∗
⇒A q3γ3 only left-moves are made (this normalization can be achieved by sim-

ulating one transition of the original automaton by a complete left-right transversal

followed by a right-left transversal). The automaton A accepts if it reaches the final

state qf , otherwise A does not terminate. There exists a constant c > 0 (which only

depends on the fixed machine A, but is independent of the input w) such that if w

is accepted by A, then A, started on w, reaches the final state qf after at most 2c·n

phases.

Step 2. Simulation by a length-preserving and length-lexicographic semi-Thue sys-

tem S: The technical details of our encoding will be simplified by simulating the

automaton A by a length-preserving semi-Thue system.

Let Σ̂ = {â | a ∈ Σ} be a disjoint copy of Σ and similarly for Q̂. Let

∆ = Σ ∪ Σ̂ ∪ {⊳, 0, 1,£} and Θ = Q ∪ Q̂ ∪ ∆. (1)

We simulate A by the following semi-Thue system S over the alphabet Θ:

0q̂ → q̂£ for every q ∈ Q \ {qf} qa → b̂p if δ(q, a) = (p, b, right)

1q̂ → 0q for every q ∈ Q \ {qf} â q̂ → p̂b if δ(q, a) = (p, b, left)

q£ → 1q for every q ∈ Q \ {qf} q⊳ → q̂⊳ for every q ∈ Q \ {qf}

S is length-preserving and

∀v, v1, v2 ∈ ∆∗(Q ∪ Q̂)∆∗ : (v1 S← v →S v2) =⇒ v1 = v2. (2)

If ≻ is any linear order on the alphabet Θ that satisfies

Q ≻ 1 ≻ 0 ≻ Σ̂ ≻ Q̂, (3)

then S is length-lexicographic with respect to ≻. Let us choose such a linear order

on Θ that moreover satisfies

Q ≻ ∆ ≻ Q̂ (4)

(this condition will be only important in step 4). In [13] we have argued that

A accepts w ⇐⇒ ∃v ∈ ∆+{qf , q̂f}∆
+ : 1q0£

c·n−1w⊳
∗
→S v. (5)

We briefly repeat the arguments: First, note that 1q0£
c·n−1w⊳

∗
→S 1c·nq0w⊳. From

the word 1c·nq0w⊳ we can simulate 2c·n phases of A. The crucial point is that

the prefix from {0, 1}∗ acts as a binary counter: for every u ∈ {0, 1}i (i < c · n)

and every q ∈ Q we have: u10c·n−|u|−1q̂
∗
→S u1q̂£c·n−|u|−1 →S u0q£c·n−|u|−1 ∗

→S

u01c·n−|u|−1q. Thus, if A accepts w, then we can derive from 1q0£
c·n−1w⊳ a word

v ∈ ∆+{qf , q̂f}∆
+. On the other hand, if A does not accept w and hence does

not terminate, then we can derive from 1q0£
c·n−1w⊳ a word of the form q̂£c·nu⊳

for some u ∈ Σn and q 6= qf . Since S is confluent (the left-hand sides of S do

not overlap) and q̂£c·nu⊳ is irreducible with respect to S, we cannot reach from

1q0£
c·n−1w⊳ a word from ∆+{qf , q̂f}∆

+.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

12 Markus Lohrey

To simplify the following construction, we expand all rules from S in the fol-

lowing sense: The rule q£ → 1q for instance is replaced by all rules of the form

xq£ → x1q for all x ∈ ∆, whereas the rule 0q̂ → q̂£ is replaced by all rules of the

form 0q̂x → q̂£x for all x ∈ ∆. Let us call the resulting system again S. Then S is

still length-preserving and length-lexicographic with respect to ≻ and satisfies (2)

and (5). Moreover,

dom(S) ⊆ ∆(Q ∪ Q̂)∆.

Let

m = (c + 1)n + 2 ∈ O(n).

Thus, m is the length of words in any derivation starting from 1q0£
c·n−1w⊳.

Step 3. Reduction to the reachability problem for a directed forest (V,E): Let us now

define the directed graph (V,E), where

V =
m−2⋃

i=1

∆i(Q ∪ Q̂)∆m−i−1 and E = {(v, v′) ∈ V × V | v →S v′}. (8)

This graph is basically the transition graph of the automaton A on configurations of

length n. Since S is length-lexicographic, (V,E) is acyclic. Moreover, by (2), every

node from V has at most one outgoing edge. Thus, (V,E) is a directed forest. If we

order V lexicographically by ≻ and write

V = {v1, . . . , vN} with v1 ≻ v2 ≻ · · · ≻ vN , (9)

then (vi, vj) ∈ E implies i < j. Note that

N = |V | = 2(m − 2) · |Q| · |∆|m−1 ∈ 2O(n). (10)

Let

F = V ∩ ∆+{qf , q̂f}∆
+ and vξ = 1q0£

c·n−1w ⊳ . (11)

(F for “final”). Elements of F have outdegree 0 in the directed forest (V,E). More-

over, ξ − 1 is the number of words from V that are lexicographically larger than

1q0£
c·n−1w⊳. The number ξ can be easily calculated in logarithmic space from the

input word w using simple arithmetic. The automaton A accepts w if and only if

there is a path in (V,E) from vξ to a node in F .

Step 4. Reduction to a language membership problem: Note that for all 1 ≤ i, j ≤ N ,

if vi = u1ℓu2 →S u1ru2 = vj with (ℓ, r) ∈ S, then j − i (i.e., the number of words

from V that are lexicographically between vi and vj) is a number that only depends

on the rule (ℓ, r) (and thus ℓ ∈ dom(S)) and |u2| ∈ {0, . . . ,m − 3}. We call this

number λ(ℓ, |u2|); it belongs to the set 2O(n) and can be calculated in logarithmic

space from ℓ and |u2| using simple arithmetic. Since m ∈ O(n) and S is a fixed

system, we can construct an injective mapping

code : (dom(S) × {0, . . . ,m − 3}) ∪ {f} → {a}+

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 13

(f for “final”), where all strings in the range of code have length bounded by

O(n). Note that the mapping code is not an extension of λ. Define the strings

δ1, . . . , δN ∈ a∗ and W ∈ {a, $}∗ as follows:

δi =






code(ℓ, k) if vi = u1ℓu2, where ℓ ∈ dom(S) and |u2| = k

code(f) if vi ∈ F (and thus has no outgoing edge)

ε if vi ∈ V \ F and vi has no outgoing edge

W = δ1$δ2$ · · · δN$. (12)

We make two claims about the data constructed so far:

(a) There is a path in (V,E) from vξ to a node in F if and only if W belongs to

the language

(a∗$)ξ−1

(
⋃

0≤k≤m−3,
ℓ∈dom(S)

code(ℓ, k)$(a∗$)λ(ℓ,k)−1

)∗
code(f)${a, $}∗. (13)

(b) The word W can be generated by an SLP of size O(n).

Point (a) is easy to see: For the only if-direction one shows by induction over the

length of paths in (V,E) that if a node vj ∈ V is reachable in (V,E) from the initial

node vξ then δ1$ · · · δj−1$ belongs to

(a∗$)ξ−1

(
⋃

0≤k≤m−3,
ℓ∈dom(S)

code(ℓ, k)$(a∗$)λ(ℓ,k)−1

)∗
. (14)

The induction base is clear since δ1$ · · · δξ−1$ belongs to (14). For the induction

step assume that δ1$ · · · δi−1$ belongs to (14) and that (vi, vj) ∈ E. Then there

exist 0 ≤ k ≤ m − 3 and ℓ ∈ dom(S) such that δi = code(ℓ, k) and j − i = λ(ℓ, k).

Hence δi$ · · · δj−1$ ∈ code(ℓ, k)$(a∗$)λ(ℓ,k)−1. This proves the only if-direction in

(a). For the if-direction one can argue similarly.

For point (b) let us assume that Q = {p1, . . . , pn1
} and ∆ = {a1, . . . , an2

} with

pi ≻ pi+1, p̂i ≻ p̂i+1, and ai ≻ ai+1.
a We now define an SLP G by the following

productions:b

Ai →
n2∏

j=1

Bi,jAi+1B̂i,j for 0 ≤ i < m − 3

Am−3 →
n2∏

j=1

Bm−3,jB̂m−3,j

aNote that the order ≻ on the subalphabets Q, bQ, and ∆, respectively, is arbitrary except that
1 ≻ 0. Note also that Q and ∆ are fixed alphabets, hence, n1 and n2 are fixed constants and do
not depend on n.
bThe expression

Q

k

i=1
wi is an abbreviation for w1w2 · · ·wk.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

14 Markus Lohrey

Bi,j →
n1∏

k=1

n2∏

ℓ=1

(Ci,j,k,ℓ$)|∆|m−i−3

for 0 ≤ i ≤ m − 3, 1 ≤ j ≤ n2

Ci,j,k,ℓ →






code(ajpkaℓ,m − i − 3) if ajpkaℓ ∈ dom(S)

code(f) if pk = qf

ε if ajpkaℓ 6∈ dom(S) and pk 6= qf

B̂i,j →
n1∏

k=1

n2∏

ℓ=1

(Ĉi,j,k,ℓ$)|∆|m−i−3

for 0 ≤ i ≤ m − 3, 1 ≤ j ≤ n2

Ĉi,j,k,ℓ →






code(aj p̂kaℓ,m − i − 3) if aj p̂kaℓ ∈ dom(S)

code(f) if p̂k = q̂f

ε if aj p̂kaℓ 6∈ dom(S) and p̂k 6= q̂f

The exponents that appear in the right-hand sides of the productions for the non-

terminal Bi,j and B̂i,j , namely |∆|m−i−3, are of size 2O(n) and can therefore be

replaced by sequences of O(n) many ordinary productions. Hence, the total size of

the SLP G is O(m2) = O(n2). As in [13] it can be shown that val(G) = W . The

constraint Q ≻ ∆ ≻ Q̂ from (4) implies that the δi appear in val(G) in the order

corresponding to the lexicographic order of the vi (1 ≤ i ≤ N). This proves point

(b).

The proof of the theorem would be complete if we could construct in polyno-

mial time a {·,∪, ∗,∩}-expression for the language (13). Instead of this, we will

construct a {·,∪, ∗,∩}-expression for a slightly modified language that serves our

purpose as well. Choose prime numbers p1, . . . , pr with N < p1p2 · · · pr. Note that

we can assume p1, . . . , pr, r ∈ O(log(N)) ⊆ O(n) and that these prime numbers

can be computed in polynomial time. For a number M < p1p2 · · · pr we define the

{·,∪, ∗,∩}-expression

ρ[M] =
⋂

1≤i≤r

(
(a∗$)pi

)∗
(a∗$)M mod pi .

Hence, L(ρ[M]) = (a∗$)M
(
(a∗$)p1p2···pr

)∗
by the Chinese remainder theorem. Fi-

nally, set

ρ = ρ[ξ − 1]

(
⋃

0≤k≤m−3,
ℓ∈dom(S)

code(ℓ, k)$ρ[λ(ℓ, k) − 1]

)∗
code(f)${a, $}∗.

Since N < p1p2 · · · pr, the language (13) contains W if and only if W ∈ L(ρ). This

completes the proof of Theorem 5. ¤

The language (13) can be described by a {·,∪, ∗, 2}-expression of polynomial

size. Moreover, occurrences of ∗ can be replaced by suitable exponents. Hence, we

obtain:

Theorem 6. CMP({·,∪, 2}) is PSPACE-hard.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 15

Proof. Consider the language (13) and the word W from (12). First, we can replace

every occurrence of a∗ by a {∪, ·}-expression µ for {ε}∪ ran(code), where ran(code)

is the (finite) range of the mapping code. The resulting expression

(µ$)ξ−1

(
⋃

0≤k≤m−3,
ℓ∈dom(S)

code(ℓ, k)$(µ$)λ(ℓ,k)−1

)∗
code(f)${a, $}∗ (16)

generates the string W if and only if the language (13) contains W . The exponents

ξ − 1 and λ(ℓ, k)− 1 in this expression can be easily eliminated using the squaring-

operator. For instance, an expression π1010, where the exponent is binary coded,

can be replaced by ((π2)2)2 · π2. It remains to eliminate the two remaining Kleene

stars in (16) in such a way that the resulting expression generates the string W if

and only if the language (13) contains W . Recall that the length of W is bounded

by 2O(n). This allows us to replace, e.g., {a, $}∗ in (16) by (· · · ((a ∪ $ ∪ ε)2)2 · · ·)2

where the number of applications of the squaring-operator is ⌈log(|W |)⌉ ∈ O(n).

This expression generates all words over the alphabet {a, $} of length at most 2m,

where m is the smallest number with 2m ≥ |W |. The other Kleene star in (16)

can be eliminated in the same way. The resulting {·,∪, 2}-expression generates the

string W if and only if the language (13) contains W .

In order to prove PSPACE-hardness for star-free expressions, we can reuse a con-

struction from [16], where the authors proved PSPACE-completeness of the problem

of checking whether an SLP-compressed word satisfies a given LTL-formula.

Theorem 7. CMP({·,∪,¬}) is PSPACE-hard.

Proof. The following construction is mainly taken from [16]; we present it for com-

pleteness. We prove the theorem by a reduction from the PSPACE-complete quanti-

fied boolean satisfiability problem (QSAT), see, e.g., [19]. Let θ = Q1x1 · · ·Qnxn : ϕ

be a quantified boolean formula, where Qi ∈ {∃,∀} and ϕ = C1 ∧C2 ∧ · · · ∧Cm is a

formula in 3-CNF, i.e., every Ci is a disjunction of three literals. Let the SLP Gn be

defined as Gn = ({A1, . . . , An},Σn, A1, Pn), where Σn = {bi, ei, ti, fi | 1 ≤ i ≤ n}

and Pn contains the following productions:

Ai → biAi+1tieibiAi+1fiei for 1 ≤ i < n

An → bntnenbnfnen

The idea is that every pair bi, ei is a pair of matching brackets. The symbol ti (resp.

fi) indicates that the variable xi is set to true (resp. false). Then, the word val(Gn)

can be seen as a binary tree of height n, whose leaves correspond to valuations

for the variables {x1, . . . , xn}, i.e., to mappings v : {x1, . . . , xn} → {true, false}.

More generally, for every 0 ≤ j ≤ n and every position 1 ≤ p ≤ |val(Gn)| such

that val(Gn)[p − 1] = bj (here, we assume a hypothetical position 0 labeled with

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

16 Markus Lohrey

the hypothetical symbol b0) we define a (partial) valuation vp : {x1, . . . , xj} →

{true, false} as follows:

vp(xk) =

{
true if ∃r > p : val(G)[p, r] ∈ (Σ \ {ek})

∗tk

false if ∃r > p : val(G)[p, r] ∈ (Σ \ {ek})
∗fk

Example 8. We have

val(G2) = b1b2t2e2b2f2e2t1e1b1b2t2e2b2f2e2f1e1.

For the position p = 6 in the word val(G2) we have v6(x1) = true and v6(x2) =

false.

Now let us define a star-free expression ρ(θ) such that θ is a positive QSAT-instance

if and only if val(Gn) ∈ L(ρ(θ)).

Let the formula θj (0 ≤ j ≤ n) be Qj+1xj+1 · · ·Qnxn : ϕ. Thus, θn = ϕ

and θ0 = θ. The set of free variables in θj is {x1, . . . , xj}. Inductively, we will

construct for every 0 ≤ j ≤ n a star-free expression ρj such that for every position

1 ≤ p ≤ |val(Gn)| with val(Gn)[p − 1] = bj we have

vp satisfies θj ⇐⇒ val(Gn)[p, |val(Gn)|] ∈ L(ρj). (17)

Let us start with ρn. Assume that ϕ = C1 ∧ C2 ∧ · · · ∧ Cm, where

Ci = (x
ai,1

i,1 ∨ x
ai,2

i,2 ∨ x
ai,3

i,3).

Here xi,j ∈ {x1, . . . , xn} and ai,j ∈ {1,−1}. Moreover, we set x1 = x and x−1 = ¬x.

Let us first define for a clause C = (xa
i ∨ xb

j ∨ xc
k) the star-free expression ρ(C) as

ρ(C) =

(
(Σ \ {ei})

∗tai ∪ (Σ \ {ej})
∗tbj ∪ (Σ \ {ek})

∗tck

)
Σ∗,

where t−1
i is defined as fi. Here, for a subalphabet Γ ⊆ Σn, we set

Γ∗ =
⋂

a∈Σn\Γ

¬(Σ∗
naΣ∗

n), (18)

where Σ∗
n = ¬(a ∩ ¬a) for some a. Then, the expression

ρn =

m⋂

i=1

ρ(Ci)

satisfies (17). Now assume that ρj+1 is already defined such that (17) holds for j +1

and let us define ρj . We have to distinguish the cases Qj+1 = ∃ and Qj+1 = ∀. If

Qj+1 = ∃, then

ρj = (Σ \ {e1, . . . , ej})
∗bj+1ρj+1.

If Qj+1 = ∀, then

ρj = ¬

(
(Σ \ {e1, . . . , ej})

∗bj+1¬ρj+1

)
.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 17

In both cases, it is not hard to verify (17).

Now, let us choose j = 0 and p = 1 in (17). Then vp is the empty valuation.

Hence, θ0 = θ is true if and only if val(Gn) ∈ L(ρ0). Finally, note that the expression

ρ0 can be constructed in logspace from the formula θ. This concludes the proof of

Theorem 7.

By [25] the uncompressed membership problem MP({·,∪, ∗, ||}) is NP-complete.

The compressed variant of this problem becomes again PSPACE-complete. For the

proof we use the fact that non-emptiness of the intersection of a list of {·,∪, ∗}-

expressions is PSPACE-complete [11] together with a trick, which was already ap-

plied in [18] in order to encode an intersection as a shuffle.

Theorem 9. CMP({·,∪, ∗, ||}) is PSPACE-hard.

Proof. We use a trick, which was already applied in [18] in order to encode an

intersection as a shuffle. It is well known that for given {∪, ·, ∗}-expressions ρ1, . . . , ρr

over the alphabet {0, 1} it is PSPACE-complete to check whether

r⋂

i=1

L(ρi) 6= ∅

[11]. Let N = n1 · · ·nr, where ni is the number of states in a finite automaton for ρi,

the binary representation of this number can be easily computed in polynomial time

from ρ1, . . . , ρr. Define the homomorphism φ : {0, 1}∗ → {0, 1,#}∗ by φ(x) = x#

for x ∈ {0, 1}. We claim that the following four conditions are equivalent:

(a)
⋂r

i=1 L(ρi) 6= ∅

(b) ∃w ∈
⋂r

i=1 L(ρi) : |w| ≤ N

(c) (0r#r1r#r)N ∈ L(φ(ρ1)) || · · · || L(φ(ρr)) || {0
r#r, 1r#r}∗

(d) {0r#r, 1r#r}∗ ∩

(
L(φ(ρ1)) || · · · || L(φ(ρr)) || {0

r#r, 1r#r}∗
)

6= ∅

The implication (a) ⇒ (b) follows from the choice of N . Now assume that (b) holds,

i.e., there exists w ∈
⋂r

i=1 L(ρi) with |w| ≤ N . Let w = a1a2 · · · an with ai ∈ {0, 1}

and n ≤ N . Then we have

(0r#r1r#r)N ∈ a1#a2# · · · an# || · · · || a1#a2# · · · an# ||

(1 − a1)
r#r · · · (1 − an)r#r(0r#r1r#r)N−n,

where r copies of a1#a2# · · · an# are shuffled on the right-hand side. This proves

(c). The implication (c) ⇒ (d) is trivial.

Finally, assume that (d) holds. We will deduce (a). So, assume that

ar
1#

r · · · ar
k#r ∈ φ(w1) || · · · || φ(wr) || (br

1#
r · · · br

ℓ#
r),

where wi ∈ L(ρi) for 1 ≤ i ≤ r and a1, . . . , ak, b1, . . . , bℓ ∈ {0, 1}. We will show that

w1 = w2 = · · · = wr.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

18 Markus Lohrey

Assume that, w.l.o.g., w1 = · · · = wi = ε and wi+1, . . . , wr 6= ε, where 0 ≤ i ≤ r.

Let wj = cjvj with cj ∈ {0, 1} for i + 1 ≤ j ≤ r. Thus

ar
1#

r · · · ar
k#r ∈ (ci+1#φ(vi+1)) || · · · || (cr#φ(vr)) || (br

1#
r · · · br

ℓ#
r). (19)

If k = 0 then we must have i = r (and ℓ = 0), i.e., w1 = w2 = · · · = wr = ε. Hence,

assume that k > 0. If ℓ = 0, then

ar
1#

r · · · ar
k#r ∈ (ci+1#φ(vi+1)) || · · · || (cr#φ(vr)).

It follows that there exist factorizations cj#φ(vj) = αjβj (i + 1 ≤ j ≤ r) such that

ar
1#

r ∈ αi+1 || · · · || αr (20)

ar
2#

r · · · ar
k#r ∈ βi+1 || · · · || βr. (21)

The only possibility for (20) is that i = 0, c1 = · · · = cr = a1, and αj = a1# for

1 ≤ j ≤ r. Then (21) implies

ar
2#

r · · · ar
k#r ∈ φ(v1) || · · · || φ(vr).

Induction over k implies that v1 = · · · = vr and thus w1 = · · · = wr.

Finally, assume that k > 0 and ℓ > 0 in (19). Again, we obtain factorizations

cj#φ(vj) = αjβj (i + 1 ≤ j ≤ r) and br
1#

r · · · br
ℓ#

r = αβ such that

ar
1#

r ∈ αi+1 || · · · || αr || α (22)

ar
2#

r · · · ar
k#r ∈ βi+1 || · · · || βr || β. (23)

Membership (22) implies that the string α must be a prefix of br
1#

r. If α = ε, then,

as in case ℓ = 0, we get i = 0, c1 = · · · = cr = a1, and αj = a1# for 1 ≤ j ≤ r.

Then (23) becomes

ar
2#

r · · · ar
k#r ∈ φ(v1) || · · · || φ(vr) || br

1#
r · · · br

ℓ#
r.

Induction over k yields v1 = · · · = vr.

If α = br
1#

r then (22) implies a1 = b1 and αj = ε for i + 1 ≤ j ≤ r. Hence (23)

implies that

ar
2#

r · · · ar
k#r ∈ φ(wi+1) || · · · || φ(wr) || (br

2#
r · · · br

ℓ#
r).

Now, induction over ℓ (or k) implies w1 = · · · = wr.

Finally, assume that α is a proper and non-empty prefix of br
1#

r. Clearly, (22)

implies a1 = b1. If α = ar
1#

p for some p < r, then (22) implies αi+1 = · · · = αr = ε

(in order to have only r many occurrences of a1 in the shuffle). But then, the number

of occurrences of # in the right-hand side of (22) is only p < r. If α = a
p
1 for some

0 < p < r, then in order to get r many occurrences of # in the shuffle, we must have

i = 0 and α1 = · · · = αr = a1#. But then, we have r + p > r many occurrences of

a1 in the right-hand side of (22). This proves (a).

The equivalence of (a) and (c) means that

r⋂

i=1

L(ρi) = ∅ ⇐⇒ (0r#r1r#r)N ∈ L(φ(ρ1)) || · · · || L(φ(ρr)) || {0
r#r, 1r#r}∗.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 19

The latter is an instance of CMP({·,∪, ∗, ||}), since the string (0r#r1r#r)N can be

generated by an SLP of size O(r + log(N)) = O(r + log(n1) + · · · log(nr)). This

number is bounded polynomially in |ρ1| + · · · + |ρr|.

For expressions involving shuffle and complement, the computational complexity

of the compressed membership problem increases considerably: We can encode in

CMP({·,∪,¬, ||}) the problem of checking whether a given monadic second-order

formula is true in a given unary word aN , where N is given binary. This problem

was shown to be complete for ATIME(exp(n), O(n)) in [14].

Theorem 10. CMP({·,∪,¬, ||}) is ATIME(exp(n), O(n))-hard.

Proof. In a first step, we will prove an ATIME(exp(n), O(n)) lower bound for the

problem CMP({·,∪, ∗,¬, ||}). In a second step we show how to eliminate the Kleene

star ∗.

For n ≥ 1, let Sn be the relational structure ({0, . . . , n−1}, s) with s = {(i, i+1) |

0 ≤ i < n− 1}. Monadic second-order formulas (briefly MSO-formulas) over such a

structure are built up from atomic formulas of the form s(x, y) (where x and y are

first-order variables ranging over {0, . . . , n−1}) and x ∈ X (where x is a first-order

variable and X is a second-order variable, ranging over subsets of {0, . . . , n − 1})

using boolean connectives and quantification over variables. For an MSO-sentence

ψ, i.e., an MSO-formula where all variables are quantified, we write Sn |= ψ, if

ψ evaluates to true in the structure Sn. In [14], it was shown that the following

problem is complete for ATIME(exp(n), O(n)):c

INPUT: An MSO-sentence ψ and a binary coded number N .

QUESTION: SN |= ψ?

We encode this problem into CMP({·,∪, ∗,¬, ||}). Let us take an MSO-sentence

Q1X1 · · ·QnXn : ϕ(X1, . . . ,Xn),

where Qi ∈ {∃,∀}, ϕ does not contain quantifiers, and every Xi is either a first-order

or a second-order variable (it will simplify notation to denote first-order variables

with capital letters as well). Let F = {i | 1 ≤ i ≤ n,Xi is a first-order variable}

be the set of indices of first-order variables. We will define {·,∪, ∗,¬, ||}-expressions

over the alphabet Σ = {X1, . . . ,Xn, a} (using a simple encoding, we can accomplish

the encoding also with a binary alphabet). For every 0 ≤ i ≤ n let

ρi =

(
(X1 ∪ ε) · · · (Xi ∪ ε)Xi+1 · · ·Xna

)∗

∩ (24)

⋂

j∈F,1≤j≤i

(Σ \ {Xj})
∗Xj(Σ \ {Xj})

∗. (25)

cActually, in [14] it was shown that for every fixed number k, there exists a fixed MSO-sentence of
quantifier alternation depth k for which the model-checking problem is complete for the kth level

of the exponential time hierarchy, i.e., for ATIME(exp(n), k). The proof in [14] immediately leads
to ATIME(exp(n), O(n))-hardness for the case of a variable MSO-sentence.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

20 Markus Lohrey

This expression describes all unary strings over the alphabet {a} together with a

valuation for the variables X1, . . . ,Xi. The idea is that if a certain string-position

belongs to the value of variable Xj then the symbol Xj will occur between the (j −

1)th and jth occurrence of a. To make our encoding possible, we have to demand that

those variables that are already quantified (and hence are not part of a valuation)

label every position; this explains the subexpression Xi+1 · · ·Xn in line (24). In (25)

we express that the value of a first-order variable contains exactly one position.

Example 11. Assume we have variables X1,X2,X3,X4,X5,X6, where X2 and X4

are first-order variables, i.e., F = {2, 4}. Then the string

X1X3X5X6 aX5X6 aX1X2X5X6 aX3X4X5X6 aX1X5X6 aX3X5X6 a

belongs to L(ρ4). It encodes the string a6 together with the following valuation for

the variables X1,X2,X3, and X4 (recall that the universe is {0, 1, 2, 3, 4, 5}):

X1 7→ {0, 2, 4}, X2 7→ 2, X3 7→ {0, 3, 5}, X4 7→ 3.

Now let us translate the MSO-sentence Q1X1 · · ·QnXn : ϕ(X1, . . . ,Xn) into a

{·,∪, ∗,¬, ||}-expression. We start with the boolean part ϕ, for which we define a

{·,∪, ∗,¬, ||}-expression ρ[ϕ] inductively as follows:

ρ[Xj ∈ Xi] = ρn ∩ Σ∗Xi(Σ \ {a})∗XjΣ
∗ if i < j, analogously for j > i (26)

ρ[s(Xi,Xj)] = ρn ∩ Σ∗Xi(Σ \ {a})∗a(Σ \ {a})∗XjΣ
∗ (27)

ρ[ϕ1 ∧ ϕ2] = ρ[ϕ1] ∩ ρ[ϕ2] (28)

ρ[¬ϕ] = ρn ∩ ¬ρ[ϕ] (29)

Then ρ[ϕ] defines all a-strings together with a valuation for the variables X1, . . . ,Xn

which satisfy the boolean formula ϕ(X1, . . . ,Xn). Next, for every 0 ≤ i ≤ n, we

define an expression πi, which defines all a-strings together with a valuation for the

variables X1, . . . ,Xi which satisfy the formula Qi+1Xi+1 · · ·QnXn : ϕ(X1, . . . ,Xn).

Clearly, πn = ρ[ϕ]. Now assume that πi is already defined for i > 0. If Qi = ∃, then

we set

πi−1 = ρi−1 ∩ (πi || X∗
i). (30)

In case Qi = ∀ we can use double negation and define πi−1 as

πi−1 = ρi−1 ∩ ¬(ρi−1 ∩ ((ρi ∩ ¬πi) || X∗
i)). (31)

It is easy to see that every πi indeed defines the desired language. Note also

that π0 can be constructed in polynomial time from the formula Q1X1 · · ·QnXn :

ϕ(X1, . . . ,Xn). Finally, we have SN |= Q1X1 · · ·QnXn : ϕ(X1, . . . ,Xn) if and only

if (X1 · · ·Xna)N ∈ L(π0). Note that (X1 · · ·Xna)N can be defined by an SLP of

polynomial size if N is binary coded.

Finally, let us show how to eliminate the star operator in (24)–(31). First, con-

sider the subexpression ((X1 ∪ ε) · · · (Xi ∪ ε)Xi+1 · · ·Xma)∗ in (24). For i < m

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 21

let

F = {XjXk | j > k or i + 1 ≤ j < m, k > j + 1} ∪ {xa | x ∈ Σ \ {Xm}}.

Then
(

(X1 ∪ ε) · · · (Xi ∪ ε)Xi+1 · · ·Xma

)∗

=

ε ∪

(
{X1, . . . ,Xi+1}Σ

∗ ∩
⋂

f∈F

¬Σ∗fΣ∗ ∩ Σ∗a

)
.

For i = m, we have
(

(X1 ∪ ε) · · · (Xm ∪ ε)a

)∗

= ε ∪

(⋂

j>k

¬Σ∗XjXkΣ∗ ∩ Σ∗a

)
.

After doing these replacements, the only remaining Kleene stars are of the form Γ∗

for some subalphabet Γ ⊆ Σ and can be eliminated as in the proof of Theorem 7,

see (18). This proves Theorem 10.

Since it is PSPACE-complete to check whether a given monadic second-order

formula is true in a given word an, where n is given unary,d the proof of Theorem 10

shows that the uncompressed variant MP({·,∪,¬, ||}) is already PSPACE-complete.

3.3. Shuffle of compressed words

It is NP-complete to check for given strings w,w1, . . . , wn whether w belongs to the

shuffle w1 || · · · || wn [25]. If we fix n to some constant, then this question can be

easily solved in logarithmic space. We next show that in the compressed setting

the situation changes. For the proof of the following problem we need the following

computational problem COMPRESSED-EMBEDDING:

INPUT: Two SLPs G and H over the alphabet {a, b}

QUESTION: val(G) →֒ val(H)?

In [12], it was shown that COMPRESSED-EMBEDDING is hard for PNP

|| .

Theorem 12. The problem of checking val(G) ∈ val(H1) || val(H2) || val(H3) for

four given SLPs G,H1,H2,H3 over a binary alphabet belongs to PSPACE and is

hard for PNP

|| .

Proof. Membership in PSPACE is obvious. Now, for two given SLPs G and H over

the alphabet {a, b} we have val(G) →֒ val(H) if and only if val(H) ∈ val(G) ||

a|val(H)|a−|val(G)|a || b|val(H)|b−|val(G)|b .

Below, we will present a simplified proof for the PNP

|| -hardness of

COMPRESSED-EMBEDDING. In [12], this result is shown in three steps:

dThe upper bound of PSPACE can be established with a simple alternating polynomial time
algorithm. The lower bound of PSPACE follows from the PSPACE-hardness of QSAT.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

22 Markus Lohrey

(i) COMPRESSED-EMBEDDING is NP-hard,

(ii) COMPRESSED-EMBEDDING can be reduced to its own complement (and

hence is also coNP-hard), and

(iii) boolean AND and OR can be simulated with COMPRESSED-EMBEDDING.

The most difficult part in [12] is (i). This step can be simplified by proving first

coNP-hardness and then using (ii):

Theorem 13. COMPRESSED-EMBEDDING is coNP-hard.

Proof. Recall that in the SUBSETSUM problem the input consists of binary-coded

integers w1, . . . , wn, t and it is asked whether there exist x1, . . . , xn ∈ {0, 1} with∑n
i=1 xi · wi = t. This problem is NP-complete, see [5].

For an instance w = (w1, . . . , wn), t of SUBSETSUM, we will construct SLPs

G and H over the alphabet {a, b} such that val(G) →֒ val(H) if and only if

∀x1, . . . , xn ∈ {0, 1} :
∑n

i=1 xi · wi 6= t.

We begin with some notation. Let s = w1 + · · ·+wn. We can assume that t < s.

Let x ∈ {0, 1, . . . , 2n − 1} be an integer. With xi (1 ≤ i ≤ n) we denote the ith

bit in the binary representation of x, where x1 is the least significant bit. Thus,

x =
∑n

i=1 xi2
i−1. We define x ◦ w =

∑n
i=1 xiwi. Hence, x ◦ w is the sum of the

subset of {w1, . . . , wn} encoded by the integer x. Thus, w, t is a negative instance

of SUBSETSUM if and only if ∀x ∈ {0, . . . , 2n − 1} : x ◦w 6= t. In [13] it was shown

that the string
∏2n−1

x=0 (0x◦w10s−x◦w) can be generated by an SLP of polynomial size

with respect to the size of the input w, t. Hence, the same is true for the strings

u = (at(ab)as−t)2
n

and v =

2n−1∏

x=0

(ab)x◦wa(ab)s−x◦w.

It suffices to show that u →֒ v if and only if ∀x ∈ {0, . . . , 2n − 1} : x ◦ w 6= t.

Since |u|a = |v|a, we have u →֒ v if and only if at(ab)as−t →֒ (ab)x◦wa(ab)s−x◦w

for every x ∈ {0, . . . , 2n − 1}. Thus, it suffices to show for every x ∈ {0, . . . , 2n − 1}:

at(ab)as−t →֒ (ab)x◦wa(ab)s−x◦w if and only if x ◦w 6= t. Let us fix x ∈ {0, . . . , 2n −

1}. First, assume that x ◦w 6= t. Then, either x ◦w < t or x ◦w > t. In both cases,

at(ab)as−t is easily seen to be a subsequence of (ab)x◦wa(ab)s−x◦w. Now assume that

x ◦ w = t and at(ab)as−t →֒ (ab)x◦wa(ab)s−x◦w = (ab)ta(ab)s−t. Hence, the prefix

atab of at(ab)as−t has to be embedded into the prefix (ab)taab of (ab)ta(ab)s−t. But

then, as−t →֒ (ab)s−t−1, which is impossible.

The words u and v from the previous proof have the same number of a’s. Hence,

u →֒ v if and only if v ∈ u || bs·2n−2n

. It follows that it is already coNP-hard

to check for only three SLPs G,H1, and H2 over the alphabet {a, b}, whether

val(G) ∈ val(H1) || val(H2). The SLPs G and H constructed in the PNP

|| -hardness

proof of COMPRESSED-EMBEDDING, see [12], do no longer have the property of

generating the same number of a’s. Therefore we need a forth SLP in the statement

of Theorem 12.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 23

4. Compressed membership problems for hierarchical automata

Let us now move from regular expressions to hierarchical finite automata. In [6]

it was proved that the compressed membership problem for hierarchical automata

is PSPACE-complete. Using our main lower bound construction from the proof of

Theorem 5, we can sharpen the lower bound by proving PSPACE-completeness even

for deterministic HFAs:

Theorem 14. It is PSPACE-complete to check for a given SLP G and a determin-

istic HFA A, whether val(G) ∈ L(unfold(A)).

Proof. Let us use the notations from the proof of Theorem 5. For every M < N

we can easily construct in polynomial time a deterministic HFA, which generates

the language (a∗$)M , see Example 3. Hence, the same is also true for the language

(13).

Finally, for alternating HFAs an adaptation of our main construction yields

EXPTIME-completeness:

Theorem 15. It is EXPTIME-complete to check for a given SLP G and an alter-

nating HFA A whether val(G) ∈ L(unfold(A)).

Proof. For the EXPTIME upper bound, let us take an SLP G and an alternating

HFA A. Note that a state of unfold(A) can be stored in polynomial space. Hence,

we can check in alternating polynomial space (= EXPTIME) whether unfold(A)

accepts val(G). An alternating polynomial space machine just has to store a state

of unfold(A) and a position in val(G).

For the EXPTIME lower bound, let us start with an alternating Turing-machine

M = (Q,Σ, δ, q0, qf , α)

with a linear space bound that accepts an EXPTIME-complete language [3] and let

w be an input for M . We follow the steps in the proof of Theorem 5. Let ∆ and

Θ be defined as in (1). Then, a construction similar to those in step 1 and step 2

yields a length-preserving semi-Thue system S over the alphabet Θ = Q ∪ Q̂ ∪ ∆

with dom(S) ⊆ ∆(Q∪ Q̂)∆, which is moreover length-lexicographic with respect to

any linear order that satisfies (3) and (4). Since M is not deterministic, property

(2) is not longer true.

Define the graph (V,E) as in (8) and assume (9)–(11). This time, (V,E) is in

general not a forest but only a dag. From this dag, we define an AGAP-instance

(V,E, vξ, F, β) by setting β(vi) = α(q) if vi ∈ ∆+{q, q̂}∆+. This instance is positive

if and only if w is accepted by M ; this replaces the acceptance condition (5).

For all 1 ≤ i ≤ N the following holds: If {vj1 , . . . , vjk
} is the set of E-successors

of node vi = u1ℓu2 (with ℓ ∈ dom(S)), then the set of integers {j1 − i, . . . , jk − i}

only depends on the left-hand side ℓ and the length |u2|. We call this set Λ(ℓ, |u2|);

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

24 Markus Lohrey

it can be calculated in logarithmic space from ℓ and |u2|. The finite set Λ(ℓ, |u2|)

replaces the number λ(ℓ, |u2|) in the proof of Theorem 5.

Define the word W as in (12). Finally, we describe an alternating HFA A that

accepts the word W if and only if (V,E, vξ, F, β) is a positive AGAP-instance. In a

first step, A reads a prefix from (a∗$)ξ−1 (which is possible with a small deterministic

HFA). Then A enters a loop, in which it first reads the next block from a∗$ from the

input. If u = code(f) then A accepts. Otherwise, u = code(ℓ, k) for some ℓ ∈ dom(S)

and 0 ≤ k ≤ m−3. Let ℓ ∈ ∆{q, q̂}∆ for a state q ∈ Q. Then A guesses existentially

(if α(q) = ∃) resp. universally (if α(q) = ∀) a number δ ∈ Λ(ℓ, k) and jumps over

the next δ − 1 many $’s in the input word.

5. Summary and open problems

By combining our upper and lower bounds for regular expressions from Section 3,

we obtain the following results:

• CMP(C) belongs to P if C ⊆ {·,∪,∩} or C = {·,∪, ∗}.

• CMP(C) is NP-complete if {·,∪, ||} ⊆ C ⊆ {·,∪,∩, ||}.

• CMP(C) is PSPACE-complete if (i) {·,∪} ∪ D ⊆ C ⊆ {·,∪, ∗,∩,¬, ||, 2} for

D one of sets {¬}, {2}, {∗,∩}, or {∗, ||} and (ii) {¬, ||} 6⊆ C.

• CMP(C) is ATIME(exp(n), O(n))-complete if {¬, ||} ⊆ C ⊆ {·,∪, ∗,∩,¬, ||

, 2}.

This characterizes all cases with {·,∪} ⊆ C ⊆ {·,∪, ∗,∩,¬, ||, 2}. Of course, one

might also consider operator sets which do not include {·,∪}.

We conjecture that the problem in Theorem 12 is PSPACE-complete. Another

interesting problem is the membership problem for finite automata with compressed

constants. In this problem it is asked whether an SLP-compressed word is accepted

by a finite automaton A, where transitions of A are labeled with SLPs. An NP lower

bound is shown in [23], and the problem is easily seen to be in PSPACE.

Acknowledgments The author would like to thank the referees for their many

useful comments.

References

[1] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM

Trans. Program. Lang. Syst., 23(3):273–303, 2001.
[2] G. Bauer and F. Otto. Finite complete rewriting systems and the complexity of the

word problem. Acta Inf., 21:521–540, 1984.
[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. Assoc. Comput.

Mach., 28(1):114–133, 1981.
[4] K. J. Compton and C. W. Henson. A uniform method for proving lower bounds on

the computational complexity of logical theories. Ann. Pure Appl. Logic, 48:1–79,
1990.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP–completeness. Freeman, 1979.

June 2, 2010 15:51 WSPC/INSTRUCTION FILE long

Compressed membership problems for regular expressions and hierarchical automata 25

[6] B. Genest and A. Muscholl. Pattern matching and membership for hierarchical mes-
sage sequence charts. Theory Comput. Syst., 42(4):536-567, 2008.

[7] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -

Completeness Theory. Oxford University Press, 1995.
[8] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-

ilarity of normed context-free processes. Theoret. Comput. Sci., 158(1&2):143–159,
1996.

[9] B. Jenner. Knapsack problems for NL. Inform. Process. Lett., 54(3):169–174, 1995.
[10] T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems

for finite automata. Inform. Process. Lett., 40(1):25–31, 1991.
[11] D. Kozen. Lower bounds for natural proof systems. In Proc. FOCS 77, pages 254–266.

IEEE Computer Society Press, 1977.
[12] Y. Lifshits and M. Lohrey. Querying and embedding compressed texts. In Proc. MFCS

2006, LNCS 4162, pages 681–692. Springer, 2006.
[13] M. Lohrey. Word problems and membership problems on compressed words. SIAM

J. Comput., 35(5):1210–1240, 2006.
[14] M. Lohrey. Model-checking hierarchical structures. To appear in J. Comput. System

Sci., 2008. A preliminary version appeared in Proc. LICS 2005, pages 168–177. IEEE
Computer Society Press, 2005.

[15] M. Lohrey. Leaf languages and string compression. In Proc. FSTTCS 2008, pages
292–303, 2008.

[16] N. Markey and P. Schnoebelen. Model checking a path. In Proc. CONCUR 2003,
LNCS 2761, pages 248–262. Springer, 2003.

[17] N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLP-
compressed words. Inform. Process. Lett., 90(1):3–6, 2004.

[18] A. J. Mayer and L. J. Stockmeyer. The complexity of word problems—this time with
interleaving. Inform. and Comput., 115(2):293–311, 1994.

[19] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[20] H. Petersen. Decision problems for generalized regular expressions. Proc. of DCAGRS

2000, pages 22–29, 2000.
[21] H. Petersen. The membership problem for regular expressions with intersection is

complete in LOGCFL. In Proc. STACS 2002, LNCS 2285, pages 513–522. Springer,
2002.

[22] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, LNCS 855, pages 460–470. Springer, 1994.
[23] W. Plandowski and W. Rytter. Complexity of language recognition problems for

compressed words. In Jewels are Forever, Contributions on Theoretical Computer

Science in Honor of Arto Salomaa, pages 262–272. Springer, 1999.
[24] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (pre-

liminary report). In Proc. STOCS 73, pages 1–9. ACM Press, 1973.
[25] M. K. Warmuth and D. Haussler. On the complexity of iterated shuffle. J. Comput.

System Sci., 28(3):345–358, 1984.
[26] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Trans. Information Theory, 23(3):337–343, 1977.

