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Abstract

Hierarchical graph definitions allow a modular description of graphs using mod-
ules for the specification of repeated substructures. Beside this modularity, hierarchi-
cal graph definitions also allow to specify graphs of exponential size using polynomial
size descriptions. In many cases, this succinctness increases the computational com-
plexity of decision problems. In this paper, the model-checking problem for the modal
µ-calculus and (monadic) least fixpoint logic on hierarchically defined input graphs
is investigated. In order to analyze the modal µ-calculus, parity games on hierar-
chically defined input graphs are investigated. Precise upper and lower complexity
bounds are derived. A restriction on hierarchical graph definitions that leads to more
efficient model-checking algorithms is presented.

1 Introduction

A hierarchical graph definition specifies a graph via modules, where every module is a graph
that may refer to modules of a smaller hierarchical level. In this way, large structures can be
represented in a modular and succinct way. Hierarchical graph definitions were introduced
in [21] in the context of VLSI design. Formally, hierarchical graph definitions can be
seen as hyperedge replacement graph grammars [11, 13] that generate precisely one graph.
Specific algorithmic problems (e.g. reachability, planarity, circuit-value, 3-colorability) on
hierarchically defined graphs are studied in [19, 20, 21, 27, 28, 29].

In this paper we consider the complexity of the model-checking problem for least fix-
point logic (LFP) and its fragments monadic least fixpoint logic (MLFP) and the modal
µ-calculus over hierarchically defined graphs. LFP is the extension of classical first-order
logic that allows the definition of least fixpoints of arbitrary arity [22]. MLFP is the frag-
ment of LFP where only monadic fixpoints can be defined. Finally, the modal µ-calculus is
the fragment of MLFP that is obtained from classical modal logic extended by a monadic
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fixpoint operator. The model-checking problem for some logic (e.g. LFP or MLFP) asks
whether a given sentence from that logic is true in a given finite structure (e.g. a graph).
Usually, the structure is given explicitly, for instance by listing all tuples in each of the
relations of the structure. In this paper, the input structure will be given in a compressed
form via a hierarchical graph definition. For the purpose of proving upper complexity
bounds we will use the related formalism of straight-line programs, see also [23]. The term
“straight-line program” is used, because a straight-line program is just a sequence of in-
structions. The left-hand side of each instruction is a variable and the right-hand side is
either an explicitly given graph or consists of an elementary operation (a graph operation
in our context) applied to previously defined variables. The term “straight-line program”
is also used in other contexts, e.g. for hierarchically defined strings [32] or trees [24]. Every
hierarchical graph definition can be transformed in polynomial time into a straight-line
program that generates the same structure, see [5, 23]. A graph that is represented by
a hierarchical graph definition or a straight-line program is called a hierarchically defined
graph in the following.

LFP and its fragments MLFP and the modal µ-calculus found many applications in
database theory, finite model theory, and verification. The interested reader is referred
to the text books [7, 22]. It is therefore not surprising that the model-checking problem
for these logics on explicitly given input structures is a very well-studied problem. Let us
just mention a few references: [9, 10, 14, 15, 16, 33, 34, 35]. Concerning hierarchically
defined graphs, in [1] the complexity of the temporal logics LTL and CTL on hierarchical
state machines was investigated. Hierarchical state machines can be seen as a restricted
form of hierarchical graph definitions that are tailored towards the modular specification
of large reactive systems. Since both straight-line programs generalize hierarchical state
machines and CTL is efficiently translatable into the modal µ-calculus, our work is a
natural extension of [1]. Moreover, our work extends the previous paper [23] of the second
author, where the model-checking problem of first-order logic, monadic second-order logic,
and full second-order logic on hierarchically defined graphs was studied.

Our investigation of model-checking problems for hierarchically defined graphs follows
a methodology introduced by Vardi [34]. For a given logic L and a class of structures C,
Vardi introduced three different ways of measuring the complexity of the model-checking
problem for L and C: (i) One may consider a fixed sentence ϕ from the logic L and
consider the complexity of verifying for a given structure A ∈ C whether A |= ϕ; thus,
only the structure belongs to the input (data complexity or structure complexity). (ii)
One may fix a structure A from the class C and consider the complexity of verifying for
a given sentence ϕ from L, whether A |= ϕ; thus, only the formula belongs to the input
(expression complexity). (iii) Finally, both the structure and the formula may belong to the
input (combined complexity). In the context of hierarchically defined graphs, expression
complexity will not lead to new results. Having a fixed hierarchically defined graph makes
no difference to having a fixed explicitly given graph. Thus, we only consider data and
combined complexity for hierarchically defined graphs.

After introducing the necessary concepts in Section 2 we study parity games on hier-
archically defined graphs in Section 3. Parity games are the main tool for most model-
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checking algorithms for the modal µ-calculus. The main result of this paper states that the
winner of a parity game on a hierarchically defined graph can be determined in PSPACE.
Our PSPACE-algorithm is inspired by Obdržálek’s polynomial time algorithm for parity
games on graphs of bounded tree width [30]. For the restricted class of c-bounded straight-
line programs (where c ∈ N is some fixed constant; c-boundedness roughly means that a
module may refer to at most c many other nodes) we obtain the better upper bound of
NP ∩ coNP for parity games.

In Section 4 we show that the classical polynomial time reduction of the model-checking
problem for the modal µ-calculus to parity games [8, 9] can be extended to hierarchically
defined graphs. Together with a PSPACE lower bound from [1] for CTL over hierarchical
state machines we obtain PSPACE-completeness of the model-checking problem for the
modal µ-calculus on hierarchically defined graphs. Note that the PSPACE upper bound
generalizes the corresponding result for CTL from [1].

A hierarchical graph definition can be viewed as a pushdown automaton, where the
stack height is bounded by some polynomially large number (which is the maximal nesting
depth in the hierarchical graph definition). Under this viewpoint, a hierarchically defined
graph corresponds to the transition graph of a stack bounded pushdown automaton. It is
therefore interesting to compare our complexity results with those for (arbitrary) pushdown
automata. Note that pushdown graphs (i.e. transition graphs of pushdown automata) are
in general infinite. Computing the winner in a parity game on a pushdown graph is
EXPTIME-complete [17, 37]. It follows that modal µ-calculus model-checking is EXPTIME-
complete for pushdown graphs. The EXPTIME lower bound already holds for CTL [36].

In Section 5 we study least fixpoint logic (LFP) and its fragment monadic least fixpoint
logic (MLFP) on hierarchically defined input graphs. MLFP is still more expressive than
the modal µ-calculus. It turns out that in most cases the complexity of the model-checking
problem on hierarchically defined input graphs becomes EXPTIME-complete. Only for the
data complexity of MLFP on graphs given by c-bounded (for some fixed c) straight-line
programs we obtain a polynomial time algorithm. Note that this is the same complexity as
for explicitly given input graphs [14]. Our results for model-checking problems are collected
in Table 1 at the end of Section 2.5 together with the known results for explicitly given
input structures.

2 Preliminaries

2.1 General notations

Let ≡ be an equivalence relation on a set A. Then, for a ∈ A, [a]≡ = {b ∈ A | a ≡ b}
denotes the equivalence class containing a. With [A]≡ we denote the set of all equivalence
classes. With π≡ : A → [A]≡ we denote the function with π≡(a) = [a]≡ for all a ∈ A. For
a function f : A → B let ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}, and for every b ∈ B,
let f−1(b) = {a ∈ A | f(a) = b}. For C ⊆ A we define the restriction f↾C : C → B by
f↾C(c) = f(c) for all c ∈ C. For functions f : A → B and g : B → C we define the
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composition g ◦ f : A → C by (g ◦ f)(a) = g(f(a)) for all a ∈ A. For a set A, we denote
by idA the identity function over A.

2.2 Complexity theory

We assume that the reader has some basic background in complexity theory [31]. In
particular, we assume that the reader is familiar with the classes P (deterministic poly-
nomial time), NP (nondeterministic polynomial time), coNP (complements of problems in
NP), PSPACE (polynomial space), and EXPTIME (deterministic exponential time). Sev-
eral times we will use alternating Turing-machines, see [4] for more details. An alternating
Turing-machine M is a nondeterministic Turing-machine, where the set of states Q is
partitioned into three sets: Q∃ (existential states), Q∀ (universal states), and {qf} (the
accepting state). A configuration C with current state q is accepting, if

� q = qf , or

� q ∈ Q∃ and there exists a successor configuration of C that is accepting, or

� q ∈ Q∀ and every successor configuration of C is accepting.

An input word w is accepted by M if the corresponding initial configuration is accepting.
An alternation on a computation path of M is a transition from a universal state to an
existential state or vice versa.

It is well known that PSPACE (resp. EXPTIME) equals the class of all problems that can
be solved on an alternating Turing-machine in polynomial time (resp. polynomial space).
The levels of the polynomial time hierarchy are defined as follows: Let k ≥ 1. Then Σp

k

is the set of all problems that can be recognized on an alternating Turing-machine within
k − 1 alternations and polynomial time, where furthermore the initial state is assumed to
be in Q∃. The polynomial time hierarchy is PH =

⋃

k≥1 Σp
k. Note that Σp

1 = NP.

2.3 Relational structures and straight-line programs

A signature is a finite set R of relational symbols, where each relational symbol r ∈ R
has an associated arity nr ∈ N. A (relational) structure over the signature R is a tuple
A = (A, (rA)r∈R), where A is a set (the universe of A) and rA is a relation of arity nr over
the set A, which interprets the relational symbol r. Usually, we denote the relation rA also
with r. The size |A| of A is |A|+

∑

r∈R |rA| ·nr. For an equivalence relation relation ≡ on
A we define the quotient A/≡ = ([A]≡, (r

A/≡)r∈R), where rA/≡ = {(π≡(a1), . . . , π≡(anr
)) |

(a1, . . . , anr
) ∈ rA}. For two relational structures A1 and A2 over the same signature R

and with disjoint universes A1 and A2, respectively, we define the disjoint union A1⊕A2 =
(A1 ∪ A1, (r

A1 ∪ rA2)r∈R).
For n ≥ 0, an n-pointed structure is a pair (A, τ), where A is a structure with universe A

and τ : {1, . . . , n} → A is injective. The elements in ran(τ) (resp. A\ran(τ)) are also called
contact nodes (resp. internal nodes). In diagrams, the i-th contact node will be labeled with
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i, set in boldface font. We now define several operations on n-pointed structures, see also
[5]. Let Gi = (Ai, τi) be an ni-pointed structure (i ∈ {1, 2}) over the signature R, where Ai
is the universe of Ai and A1∩A2 = ∅. We define the disjoint union G1⊕G2 as the (n1+n2)-
pointed structure (A1 ⊕A2, τ), where τ : {1, . . . , n1 + n2} → A1 ∪A2 with τ(i) = τ1(i) for
all 1 ≤ i ≤ n1 and τ(i+n1) = τ2(i) for all 1 ≤ i ≤ n2. Now let G = (A, τ) be an n-pointed
structure, where A is the universe of A. For a bijective mapping f : {1, . . . , n} → {1, . . . , n}
define renamef (G) = (A, τ◦f). If n ≥ 1, then forget(G) = (A, τ ↾ {1, . . . , n−1}). Finally, if
n ≥ 2, then glue(G) = (A/≡, (π≡ ◦ τ) ↾ {1, . . . , n−1}), where ≡ is the smallest equivalence
relation on A which contains the pair (τ(n), τ(n − 1)). Note that the combination of
renamef and glue (resp. forget) allows to glue (resp. forget) arbitrary contact nodes.

Straight-line programs offer a succinct representation of large structures. A straight-
line program is a sequence of operations on n-pointed structures. These operations allow
the disjoint union, the rearrangement, the forgetting, and the gluing of its contact nodes.
More formally, a straight-line program (SLP) S = (Xi := ti)1≤i≤l (over the signature R)
is a sequence of definitions, where the right hand side ti of the assignment Xi := ti is
either an n-pointed finite structure (over the signature R) for some n or an expression
of the form Xj ⊕ Xk, renamef (Xj), forget(Xj), or glue(Xj), where 1 ≤ j, k < i ≤ l and
f : {1, . . . , n} → {1, . . . , n} is a permutation. Here, the Xi are formal variables. For every
variable Xi the rank rank(Xi) is inductively defined as follows:

� If ti is an n-pointed structure, then rank(Xi) = n.

� If ti = Xj ⊕Xk, then rank(Xi) = rank(Xj) + rank(Xk).

� If ti = renamef (Xj), then rank(Xi) = rank(Xj) and we require that f is a permuta-
tion on {1, . . . , rank(Xj)}.

� If ti = op(Xj) for op ∈ {forget, glue}, then rank(Xi) = rank(Xj) − 1 and we require
that rank(Xj) > 0.

The rank(Xi)-pointed finite structure eval(Xi) is inductively defined by:

� If ti is an n-pointed structure G, then eval(Xi) = G.

� If ti = Xj ⊕Xk, then eval(Xi) = eval(Xj) ⊕ eval(Xk).

� If ti = op(Xj) for op ∈ {renamef , forget, glue}, then eval(Xi) = op(eval(Xj)).

We define eval(S) = eval(Xl). The SLP S is called c-bounded (c ∈ N) if rank(Xi) ≤ c for
all 1 ≤ i ≤ l. Finally, the size |S| of the SLP S is defined as l plus the size of all explicit
n-pointed structures that appear in a right-hand side ti.
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Figure 1: The graph eval(S) for the SLP from Example 2.1

Example 2.1. In Figure 1, the 2-pointed structure eval(S), where S is the SLP consisting
of the following operations, is shown:

X1 :=

2 1

β
α

β
α

X2 := 2
1

3
β β

X3 := X2 ⊕X1

X4 := X3 ⊕X1 (this is a 7-pointed graph)

X5 := renamef1(X4),with f1 : 3 7→ 6, 6 7→ 3, 2 7→ 4, 4 7→ 2, i 7→ i for i ∈ {1, 5, 7}

X6 := glue(X5) (this is a 6-pointed graph)

X7 := forget(X6)

X8 := glue(X7) (this is a 4-pointed graph)

X9 := forget(X8)

X10 := glue(X9) (this is a 2-pointed graph)

X11 := renamef4(X10),with f4 : 1 7→ 2, 2 7→ 1

In [23] we used hierarchical graph definitions for the specification of large structures. Hi-
erarchical graph definitions will be introduced in Section 5.2. Every hierarchical graph
definition can be transformed in polynomial time into an SLP that generates the same
structure [5, 23].
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2.4 Transition systems

Formulas of the modal µ-calculus are interpreted on special relational structures that are
called transition systems. Let P be a finite set of atomic propositions. A transition system
over P is a tuple T = (Q,R, λ), where (i) Q is a finite set of states, (ii) R ⊆ Q×Q, and (iii)
λ : Q→ 2P . Thus, a state may be labeled with several atomic propositions. An initialized
transition system over P is a pair (T, qinit), where T = (Q,R, λ) is a transition system
over P and qinit ∈ Q is the initial state. Clearly, T can be identified with the relational
structure AT = (Q,R, ({q ∈ Q | p ∈ λ(q)})p∈P). This allows us to use SLPs in order
to construct large transition systems. Note that if two states q1 and q2 are glued via the
glue-operation, where the set Pi ⊆ P is associated with state qi, then P1 ∪P2 is associated
with the resulting state.

2.5 Least fixpoint logic

More details concerning the material in this section can be found in [7, 22]. Let us fix
a signature R for the further discussion. First-order (FO) formulas over the signature
R are built from atomic formulas of the form x = y and r(x1, . . . , xnr

) (where r ∈ R
and x, y, x1, . . . , xnr

are first-order variables ranging over elements of the universe) using
boolean connectives and (first-order) quantifications over elements of the universe. Least
fixpoint logic (LFP) extends FO by the definition of least fixpoints. For this, let us take
a countably infinite set of fixpoint variables. Each fixpoint variable R has an associated
arity n and ranges over n-ary relations over the universe. Hence, atomic formulas of the
form R(x1, . . . , xn), where x1, . . . , xn are first-order variables, are allowed in LFP-formulas.
Fixpoint variables will be denoted by capital letters. Syntactically, LFP extends FO by
the following formula building rule: Let ϕ(x̄, R, P̄ , ȳ) be a formula of LFP. Here, x̄ and ȳ
are tuples of first-order variables with x̄ repetition-free, P̄ is a tuple of fixpoint variables,
the arity of the fixpoint variable R is |x̄| (the length of the tuple x̄), and R only occurs
positively in ϕ (i.e., within an even number of negations). Then also lfpx̄,R ϕ(x̄, R, P̄ , ȳ) is

a formula of LFP. The semantics of the lfp-operator is the following: Let b̄ ∈ A|ȳ| and let S̄
be a tuple of relations that is interpreting the tuple P̄ of fixpoint variables. Since R only
occurs positively in ϕ(x̄, R, P̄ , ȳ), the function Fϕ that maps T ⊆ A|x̄| to {ā ∈ A|x̄| | A |=
ϕ(ā, T, S̄, b̄)} is monotonic. Hence, by the Knaster-Tarski Fixpointtheorem, the smallest
fixpoint fix(Fϕ) exists. Now for ā ∈ A|x̄| we have A |= [lfpx̄,R ϕ(x̄, R, S̄, b̄)](ā) if and
only if ā ∈ fix(Fϕ). The greatest fixpoint operator can be defined as gfpx̄,R ϕ(x̄, R, P̄ , ȳ) =
¬lfpx̄,R ¬ϕ(x̄,¬R/R, P̄ , ȳ), its semantics can be defined in the same way as the lfp-operator,
except that we refer to the greatest fixpoint of the function Fϕ.

Monadic least fixpoint logic (MLFP) is the fragment of LFP that only contains unary
(i.e., monadic) fixpoint variables.

The rank rank(ϕ) of an MLFP formula (we will not need this notion for general LFP-
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formulas) is inductively defined as follows:

rank(ϕ) = 0 if ϕ is atomic

rank(¬ϕ) = rank(ϕ)

rank(ϕ opψ) = max{rank(ϕ), rank(ψ)} for op ∈ {∧,∨}

rank(Qxϕ) = rank(lfpx,P ϕ(x, P, P̄ , ȳ)) = rank(ϕ) + 1 for Q ∈ {∃,∀}

It is well-known that for every k ≥ 1, there are only finitely many pairwise nonequivalent
formulas of rank at most k over the signature R. This value only depends on k and the
signature R, see [18] for an explicit estimation. The MLFPk-theory of a structure A,
briefly MLFPk(A), consists of all MLFP-sentences of rank at most k over the signature of
A that are true in A; by the previous remark it is a finite set up to logical equivalence.

The modal µ-calculus can be defined as a fragment of MLFP that is defined as follows.
Formulas of the modal µ-calculus are interpreted on initialized transition systems as defined
in Section 2.4. Let P be a finite set of atomic propositions. The set of formulas Fµ = Fµ(P)
over P of the modal µ-calculus is inductively defined as follows:

� p,¬p ∈ Fµ for all p ∈ P

� X ∈ Fµ for every unary fixpoint variable X

� if ϕ, ψ ∈ Fµ, then ϕ ∧ ψ, ϕ ∨ ψ ∈ Fµ

� if ϕ ∈ Fµ, then �ϕ,♦ϕ ∈ Fµ

� if X is a unary fixpoint variable and ϕ ∈ Fµ, then µX.ϕ, νX.ϕ ∈ Fµ.

We define the semantics of a formula ϕ ∈ Fµ by translating it to an MLFP-formula ||ϕ||(x)
over the signature {R} ∪ P, where R has rank 2, every p ∈ P has rank 1, and x is a
first-order variable. The translation is done inductively:

||(¬)p||(x) = (¬)p(x)

||X||(x) = X(x)

||ϕ opψ||(x) = ||ϕ||(x) op ||ψ||(x) for op ∈ {∧,∨}

||�ϕ||(x) = ∀y : R(x, y) ⇒ ||ϕ||(y)

||♦ϕ||(x) = ∃y : R(x, y) ∧ ||ϕ||(y)

||µX.ϕ||(x) = [lfpx,X ||ϕ||(x)](x)

||νX.ϕ||(x) = [gfpx,X ||ϕ||(x)](x)

For an initialized transition system (T, qinit) over P with T = (Q,R, λ) and a formula
ϕ ∈ Fµ, we write (T, qinit) |= ϕ if AT |= ||ϕ||(qinit).

Example 2.2. Let (T, qinit) be an initialized transition system. Then (T, qinit) |= µX.(ϕ ∨
♦X) if and only if there exists a state in which ϕ holds and which is reachable from qinit.
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explicit
[9, 14, 33, 34]

c-bounded SLP
unrestricted

SLP

data P-complete
µ-calc.

combined
P-hard, in
NP ∩ coNP

PSPACE-complete

data P-complete
MLFP

combined PSPACE-complete EXPTIME-complete

data P-complete
LFP

combined
EXPTIME-complete

Table 1: Data and combined complexity for fixpoint logics

The model checking problem for a logic L asks whether for a structure A and a sentence
ϕ ∈ L we have A |= ϕ. Following Vardi [34] we distinguish between the following three
measures of complexity:

� Data Complexity: Input is the structure A. The formula ϕ is fixed.

� Expression Complexity: The structure A is fixed and the input is the formula ϕ.

� Combined Complexity: Both the structure A and the formula ϕ are the input.

In this paper, we will only consider data and combined complexity for structures that are
represented by SLPs. Considering expression complexity in this context does not lead to
new insights: Having a fixed SLP is the same as having a fixed structure.

Table 1 collects the known results as well as our new results concerning the (data and
combined) complexity of the model-checking problems for the logics LFP, MLFP, and the
modal µ-calculus.

2.6 Parity games

In this section we introduce parity games and state the close relationship between parity
games and the modal µ-calculus.

A parity game between two players, called Adam and Eve, is played on a particular
kind of relational structure, called game graphs. Let C = {0, . . . , k} (k ∈ N) be a finite
set of priorities. A game graph G over the set of priorities C is a tuple G = (V,E, ρ)
such that V is a finite set of nodes, E ⊆ V × C × V is the set of labeled edges, and
ρ : V → {Eve,Adam} assigns to every node v a player ρ(v). The size of a game graph is
defined by |G| = |V | + |E|. We define Eve = Adam and Adam = Eve. Let Vσ = ρ−1(σ)
denote the set of σ-nodes for a given player σ ∈ {Eve,Adam}. The set of successor
nodes of a given node v ∈ V is vE = {u ∈ V | ∃c ∈ C : (v, c, u) ∈ E}. Note that we
diverge from common conventions as in [9, 12, 30] since priorities are assigned to edges
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Figure 2: The game graph G from Example 2.3

instead to nodes. This is no restriction when considering parity games. We call a sequence
π = v0, c0, v1, c1, . . . ∈ V (CV )ω an infinite path in G if for all i ≥ 0 we have (vi, ci, vi+1) ∈ E.
A sequence π = v0, c0, v1, . . . , cn−1, vn ∈ V (CV )∗ is called a finite path in G if for all
0 ≤ i ≤ n− 1 we have (vi, ci, vi+1) ∈ E. A finite path π is called empty if π = v for some
v ∈ V . The set of priorities occurring in π is denoted by Occ(π). For an infinite path π we
denote with Inf(π) ⊆ Occ(π) the set of those priorities that occur infinitely often in the
path π. We call a path maximal if and only if it is infinite or it ends in a dead end, i.e., a
node v with vE = ∅.

Example 2.3. Figure 2 shows a game graph G = (V,E, ρ) over the priorities C =
{0, 1, . . . , 7}. Here, � denotes an Eve-node and � denotes an Adam-node. An infinite path
is for example v1, 3, v2, 2, (v4, 0, v6, 2)ω ∈ V (CV )ω. The finite path v7, 7, v1, 3, v2, 3, v3 ∈
V (CV )∗ ends in v3 which is the only dead end of G.

Clearly, the game graph G = (V,E, ρ) can be identified with the relational structure
(V, ({(u, v) | (u, c, v) ∈ E})c∈C , VEve, VAdam). This allows us to generate large game graphs
using SLPs. Here we have to be careful with the glue-operation. If (G, τ) is an n-pointed
relational structure, where G is the game graph G = (V,E, ρ) — we call such a structure
an n-game graph — then glue(G, τ) is only defined (as an (n − 1)-game graph) if n ≥ 2
and ρ(τ(n − 1)) = ρ(τ(n)), i.e., the two nodes that are glued belong to the same player.
Thus, glue is only a partial operation on n-game graphs.

Example 2.4. Figure 3 shows a 3-game graph G and the resulting 2-game-graph glue(G).
Contact node τ(i) is labeled with i.

In the following letG = (V,E, ρ) be a game graph over the priorities C = {0, . . . , k} (k ∈
N). A play is a maximal path in G. Let π = v0, c0, v1, . . . be an infinite play in G and
σ ∈ {Eve,Adam} a player. We say that player Eve (resp. Adam) wins the infinite play
π if and only if max(Inf(π)) is even (resp. odd). Let π = v0, c0, v1, . . . , cn−1, vn be a finite

10



�
v1

1

�

v2

�
v32

�

v4

�v5
3

�
v6

�
v7

2

3 5

2

4

1

2

2

1
3

0 0

7

7

�
v1

1

�

v2

�v3

2

�

v4

�
v5

�
v6

2

3

5

4

1

2

2

2

1
3

0 0

7

7

Figure 3: A 3-game graph G and the 2-game graph glue(G)

play. We say that player σ wins the finite play π if and only if ρ(vn) = σ, i.e., the play
ends in a dead end that belongs to player σ.

It is an important question whether a given player σ ∈ {Eve,Adam} has the possibility
to force the game to a play which she/he can win, i.e., if she/he has a winning-strategy.
For parity games, so called memoryless strategies suffice. Let σ ∈ {Eve,Adam} be a
player. Then a map Sσ : Vσ \ {v | vE = ∅} → V such that Sσ(v) ∈ vE for all v ∈
Vσ \ {v | vE = ∅} is called a memoryless strategy for player σ. We say that a finite
play π = v0, c0, v1, . . . cn−1, vn is Sσ-confirm if and only if for all 0 ≤ i ≤ n − 1 we have
vi ∈ Vσ ⇒ Sσ(vi) = vi+1. Similarly an infinite play π = v0, c0, v1, . . . is called Sσ-confirm
if and only if for all i ≥ 0 we have vi ∈ Vσ ⇒ Sσ(vi) = vi+1. For v ∈ V we call the
memoryless strategy Sσ a memoryless winning strategy for player σ from the node v if
and only if player σ wins every Sσ-confirm play which begins in v. Note that the question
whether the memoryless strategy Sσ for player σ is a winning strategy can be answered in
deterministic polynomial time by searching for a play which player σ wins in the subgraph
of G which is restricted by Sσ.

A triple (G, v, σ), where G is a game graph, v is a node of G, and σ ∈ {Eve,Adam} is a
player is called an instance of the parity game problem. We call an instance (G, v, σ) positive
if there exists a memoryless winning strategy for player σ from v. The set of all positive
instances of the parity game problem is denoted by PARITY. The determinacy theorem
for parity games [9] states that (G, v, σ) ∈ PARITY if and only if (G, v, σ) /∈ PARITY. It
implies that PARITY belongs to NP ∩ coNP.

Example 2.5. Let the game graph G = (V,E, ρ) over the priorities {0, 1, 2} be given in
Figure 4. Apparently, player Eve wins the node set WEve = {v5, v6, v7}, whereas player
Adam wins WAdam = {v1, v2, v3, v4, v8}. The fat drawn edges show a winning strategy for
player Eve for the nodes in WEve. If player Adam always controls the game to node v1,
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Figure 4: The game graph G from Example 2.5

player Eve either has to go to v2 or to v8. The largest infinitely often occurring priority
is 1, hence player Adam wins on the set WAdam. Player Eve can force the game into the
cycle (v6, 1, v7, 2)ω for all nodes from {v5, v6, v7}. Therefore she wins the set WEve.

Theorem 2.6 ([8, 9]). Let P be a set of atomic propositions, (T, qinit) an initialized tran-
sition system over P, and ϕ ∈ Fµ(P). Then there exists a game graph GT,ϕ and a node
v of GT,ϕ s.t. (GT,ϕ, v,Eve) ∈ PARITY if and only if (T, qinit) |= ϕ. Furthermore, the
reduction can be done in polynomial time.

We will extend Theorem 2.6 in Section 4 to the case of hierarchically defined graphs.

3 Parity games on SLP-defined graphs

In this section we will prove a PSPACE upper bound for parity games on game graphs
that are given via SLPs. Our construction is inspired by [30], where parity games and the
modal µ-calculus on graphs of bounded tree width are examined. Thereby, first a strategy
for player Eve is fixed. Then optimal reactions of player Adam are calculated efficiently on
the tree decomposition in a bottom-up manner. For our PSPACE-algorithm we first have
to introduce several concepts.

3.1 The strategy reduct of an n-game graph

Let G = (H, τ) be an n-game graph with H = (V,E, ρ) and let W ⊆ ρ−1(Eve)∩ran(τ) be a
set of contact nodes that belong to Eve. Then we call an n-game graph G′ a strategy reduct
of G w.r.t. W if and only if G′ can be obtained from G by (i) removing all outgoing edges
for all w ∈W , and (ii) keeping exactly one outgoing edge for all w ∈ ρ−1(Eve) \ (W ∪{v ∈
V | vE = ∅}). Thus, a strategy reduct of G is the remainder of G by restricting G to a
given strategy for Eve and making certain contact nodes that belong Eve to dead ends.
Note that a strategy reduct is always defined w.r.t. a subset W of contact nodes that

12
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Figure 5: A strategy reduct of a 3-game graph G w.r.t. {v4}

belong to Eve and is not unique in general. The reason for making an Eve-node u to a
dead end in G is the fact that u is a contact node which will be glued with another contact
node u′ from another n′-game graph G′ in an SLP, and for u′ an outgoing edge (as a part
of the strategy for Eve on G′) has already been guessed.

Example 3.1. In Figure 5 a 3-game graph G together with a strategy reduct w.r.t. {v4}
is shown.

3.2 The evaluation function reward

For some guessed strategy reduct G′ of a potentially exponentially large n-game graph
G = (H, τ) we will only store a polynomial amount of relevant information in a so called
n-interface. More precisely, for each pair of contact nodes τ(i) and τ(j) we will only store
the maximal priority along an optimal path for player Adam from τ(i) to τ(j). In order
to define this formally, we introduce the evaluation function reward, see also [30]. Let
C = {0, . . . , k} (k ∈ N) be a set of priorities. Then we define reward : 2C \ {∅} → C as
follows, where B ⊆ C, B 6= ∅:

reward(B) =

{

max(B ∩ {2n+ 1 | n ∈ N}) if B ∩ {2n+ 1 | n ∈ N} 6= ∅

min(B) else

Intuitively, reward(B) is the best priority in B for Adam: if there is an odd priority in B,
then the largest odd priority is the best for Adam. But if there are only even priorities in
B, then the smallest priority in B causes the smallest harm for Adam.

13



Let G be an (n-)game graph over the priorities C = {0, . . . , k} (k ∈ N) and Π 6= ∅ a
set of finite paths in G. Then we define

reward(Π) = reward({ max(Occ(π)) | π ∈ Π}).

The intuition behind this definition is the following: If G′ is a strategy reduct of an n-game
graph G, then it is only player Adam who can freely choose the next outgoing edge in G′.
Hence, if Π is the set of all paths in G′ between two contact nodes τ(i) and τ(j), then, if
Adam is smart, he will choose a path π ∈ Π with max(Occ(π)) = reward(Π) when going
from τ(i) to τ(j). Note that max(Occ(π)) is the relevant priority on the path π. We have
to take the maximum of Occ(π) since this priority is the relevant one to be considered.
Hence, we can replace the set of paths Π by a single edge from τ(i) to τ(j) with priority
reward(Π). For technical reasons we will only put paths into Π that do not visit any
contact nodes except its start and end node. We call such paths ττ -internal paths and
introduce them next.

3.3 (τ)τ-internal paths

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N). For
v0, vn ∈ ran(τ) we call a non-empty finite path π = v0, c0, v1, . . . , cn−1, vn a ττ -internal
path from v0 to vn if for all 1 ≤ i ≤ n− 1 we have vi 6∈ ran(τ); note that v0 = vn is allowed.
We will be also interested in maximal paths that start in a contact node, but that never
visit a contact node again. We call such paths τ -internal paths. More precisely, we call a
finite non-empty maximal path π = v0, c0, v1 . . . , cn−1, vn a finite τ -internal path from v0

to vn in G if v0 ∈ ran(τ) and for all 1 ≤ i ≤ n we have vi 6∈ ran(τ). Note that vn must be
a dead end, since π is assumed to be maximal. We call an infinite path π = v0, c0, v1, . . .
an infinite τ -internal path if v0 ∈ ran(τ) and for all i > 0 we have vi 6∈ ran(τ). Later, we
will be only interested in τ -internal paths which can be won by player Adam.

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N). Then
Πτ
i,j(G) denotes the set of all ττ -internal paths from τ(i) to τ(j) for all 1 ≤ i, j ≤ n in G.

Note that an arbitrary path between two contact nodes can be split up into consecutive ττ -
internal paths. Similarly, an arbitrary maximal path that begins in a contact node starts
with a sequence of ττ -internal paths possibly followed by a τ -internal path. Intuitively,
this is the reason, why we do not lose any information by only considering (τ)τ -internal
paths.

Example 3.2. Figure 6 shows a fat drawn ττ -internal path in a 3-game graph G from
contact node τ(2) to contact node τ(3).

3.4 The reduce operation

Assume that G′ is a strategy reduct of an n-game graph G. Then it is only player Adam
who can choose any path in G′. Of course, there is no reason for player Adam to move
from contact node τ(i) to contact node τ(j) along a path which is not optimal for him.
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Figure 6: A ττ -internal path in a 3-game graph G

Hence we can replace the set Πτ
i,j(G) of all ττ -internal paths from τ(i) to τ(j) by a single

edge with priority reward(Πτ
i,j(G)). The operation reduce is doing this for every pair of

contact nodes. We define the reduce-operation on arbitrary n-game graphs, but later we
will only apply it to strategy reducts.

Let G = (H, τ) be an n-game graph over the priorities C = {0, . . . , k} (k ∈ N), where
H = (V,E, ρ). Then reduce(G) is the game graph ({1, . . . , n}, F, ̺), where ̺(i) = ρ(τ(i))
for all 1 ≤ i ≤ n and (i, p, j) ∈ F if and only if Πτ

i,j(G) 6= ∅ and reward(Πτ
i,j(G)) = p. We

identify reduce(G) with the n-game graph (({1, . . . , n}, F, ̺), id{1,...,n}). Note that if G is
not a strategy reduct, then player Adam cannot, in general, force an optimal path with
maximal priority reward(Πτ

i,j(G)) from τ(i) to τ(j). But if G is a strategy reduct, then he
can do so, because Eve has no choice anymore.

Example 3.3. In Figure 7 a 3-game graph G together with reduce(G) is shown.

In Section 3.6 we will need the following two lemmas:

Lemma 3.4. Let n ∈ N (n ≥ 1), op ∈ {forget, glue}, and G = (H, τ) an (n + 1)-
game graph s.t. op(G) exists (as an n-game graph). Then, we have reduce(op(G)) =
reduce(op(reduce(G))).
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Proof. We have to show that

reward(Πτ
i,j(op(G))) = reward(Πτ

i,j(op(reduce(G)))) (1)

for all 1 ≤ i, j ≤ n. First note that Πτ
i,j(op(G)) = ∅ if and only if Πτ

i,j(op(reduce(G))) =
∅, in which case both sides of equation (1) are undefined. Moreover, for every path
π ∈ Πτ

i,j(op(reduce(G))) there exists a path π′ ∈ Πτ
i,j(op(G)) such that max(Occ(π)) =

max(Occ(π′)), because every edge (i′, c, j′) in reduce(G) corresponds to an optimal ττ -
internal path for player Adam from τ(i′) to τ(j′) in G with priority c. On the other
hand, for every optimal path π ∈ Πτ

i,j(op(G)) for player Adam we find a path π′ ∈
Πτ
i,j(op(reduce(G))) with max(Occ(π)) = max(Occ(π′)). This implies (1).

Lemma 3.5. Let G = (H, τ) be an n-game graph over the priorities C. Then reduce(G)
can be computed in deterministic polynomial time (w.r.t. |G| and |C| ).

Proof. For a game graph G′ and two nodes u and v of G′ let Πu,v(G
′) denote the set of

all paths in G′ from u to v. Let Gi,j be the game subgraph of G which is induced by
(V \ ran(τ)) ∪ {τ(i), τ(j)} for all 1 ≤ i, j ≤ n (where V is the node set of G). Then we
have

reward(Πτ
i,j(G)) = reward(Πτ(i),τ(j)(Gi,j))

for all 1 ≤ i, j ≤ n. The algorithm in Table 2 computes reward(Πτ(i),τ(j)(Gi,j)) by succes-
sively removing edges from Gi,j.

The first if-condition can be checked for instance by Dijkstra’s algorithm determin-
istically in polynomial time. The number of loops is bounded by |C|. We execute the
algorithm for all pairs 1 ≤ i, j ≤ n and get a polynomial time bound.
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procedure reward(Gi,j, τ(i), τ(j)) return p ∈ C is

pmin := max(C)

for c = max(C) downto 0 do

if ∃π ∈ Πτ(i),τ(j)(Gi,j) : max(Occ(π)) = c then

if c is odd then return c

else

pmin := c

remove all edges (u, c, v) from Gi,j

endif

endif

endfor

return pmin

end reward

Table 2: Algorithm for computing reduce(G)

3.5 Interfaces and realizability

An n-interface stores all the relevant information for a given strategy reduct. For a given
variable Xi of an SLP, the rank(Xi)-game graph eval(Xi) may have exponential size, and
the same is true for some strategy reduct G′ of eval(Xi). But any n-interface for G′ can be
stored in polynomial space, and this will be crucial in our overall PSPACE-algorithm. The
notion of an interface is inspired by the notion of a border from [30].

An n-interface S (n ∈ N) over the priorities C = {0, . . . , k} (k ∈ N) is a 5-tuple
S = ({1, . . . , n}, F, ̺, I, U) s.t.

� ({1, . . . , n}, F, ̺) is a game graph over the priorities C, which we denote by graph(S),

� I ⊆ {1, . . . , n} is a subset of the set of nodes {1, . . . , n}, and

� U ⊆ ̺−1(Eve) is a subset of the nodes which belong to player Eve.

We identify graph(S) with the n-game graph (({1, . . . , n}, F, ̺), id{1,...,n}), which formally
also contains the identity over {1, . . . , n} as a component.

Formally an n-interface is nothing more than a game graph with node set {1, . . . , n}
and two subsets of {1, . . . , n}. We now define what it means that an n-interface is realized
by an n-game graph.

Definition 3.6. We say that an n-interface S = ({1, . . . , n}, F, ̺, I, U) is realized by an
n-game graph G = (H, τ) if there exists a strategy reduct G′ = (H ′, τ) of G w.r.t. τ(U) s.t.

(1) graph(S) = reduce(G′), and
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Figure 8: The 3-game graph G realizes the 3-interface S

(2) i ∈ I if and only if there exists a τ -internal path π in G′ which begins in τ(i) and
which player Adam wins (recall that π is necessarily non-empty by the definition of
τ -internal paths).

We also say that G′ is a witness that S is realized by G.

So the notion of realization intuitively expresses the fact that an n-interface correctly
summarizes reactions of player Adam in a remainder on an n-game graph w.r.t to a re-
stricted strategy for Eve.

Remark 3.7. Note that Condition (2) in Definition 3.6 can be checked in polynomial time
for a given strategy reduct G′ and 1 ≤ i ≤ n.

Example 3.8. In Figure 8 a 3-game graph G together with a strategy reduct G′ w.r.t.
{τ(2)} shown. The interface S = ({1, 2, 3}, F, ρ, I, U) with I = {1} and U = {2} on the
right is realized by G, and G′ is a witness for this. We have 1 ∈ I, because the infinite
τ -internal path v1, 2, (v4, 1)ω starts at node v1 = τ(1) in G′ and Adam wins this path. The
loop with priority 4 at node 1 in S exists due to the ττ -internal path v1, 2, v4, 4, v5, 2, v1 in
G′.

Lemma 3.9. Let S = ({1, . . . , n}, E, ρ, I, U) be an n-interface, let G be an n-game graph,
and let G′ be a strategy reduct of G w.r.t. τ(U). Then it can be decided in polynomial time,
whether G′ is a witness that S is realized by G.

Proof. We compute reduce(G′) deterministically in polynomial time (Lemma 3.5) and
check the two conditions of Definition 3.6 in polynomial time, see Remark 3.7.
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Lemma 3.10. Let S = ({1, . . . , n}, F, ρ, I, U) be an n-interface and let G be an n-game
graph. Then the question whether S is realized by G is in NP.

Proof. We guess a strategy reduct G′ of G w.r.t. τ(U) and apply Lemma 3.9.

3.6 Operations on interfaces

Our PSPACE algorithm will only manipulate n-interfaces instead of whole n-game graphs.
In order to do this, we have to extend the operations ⊕, renamef , forget, and glue on inter-
faces. The crucial correctness property is expressed by Definition 3.11, which is formulated
for arbitrary operations. In the following, we restrict to n-game graphs G = (H, τ) such
that every contact node τ(i) has at least one outgoing edge. This can be ensured by adding
for a contact node τ(i) without outgoing edges an outgoing edge to a new internal node v,
which is a dead end and which belongs to the same player as τ(i). The owner of node τ(i)
will not choose this edge, because she/he will immediately loose at node v. Hence the new
edge has no influence on the winner of a parity game.

Definition 3.11. Let op be a partial operation, mapping a k-tuple (G1, . . . , Gk), where Gi

is an ni-game graph, to an n-game graph op(G1, . . . , Gk). We say that op has a faith-
ful polynomial implementation (briefly FPI) on interfaces, if there exists a partial opera-
tion ops, mapping a a k-tuple (S1, . . . , Sk), where Si is an ni-interface, to an n-interface
op(S1, . . . , Sk) s.t. the following holds:

� ops is computable in polynomial time.

� Assume that G = op(G1, . . . , Gk), where Gi is an ni-game graph and G is an n-
game graph, and let S be an n-interface. Then G realizes S if and only if there exist
ni-interfaces Si (1 ≤ i ≤ k) s.t. S = op(S1, . . . , Sk) and Gi realizes Si.

Lemma 3.12. The operations ⊕, renamef , forget, and glue have FPIs on interfaces.

Proof. Let Si = (graph(Si), Ii, Ui) (i ∈ {1, 2}) be an ni-interface. We set S1 ⊕s S2 =
(graph(S1) ⊕ graph(S2), I1 ∪ (n1 + I2), U1 ∪ (n1 + U2)), where n1 + I2 = {n1 + i | i ∈ I2}
and similarly for n1 + U2.

For an n-interface S = (graph(S), I, U) and a permutation f : {1, . . . , n} → {1, . . . , n}
let renamesf (S) = (renamef (graph(S)), f(I), f(U)).

For an (n + 1)-interface S = ({1, . . . , n + 1}, E, ρ, I, U) we define forgets(S) only if
n+ 1 6∈ U . Then forgets(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′), where:

(a) graph(forgets(S)) = reduce(forget(graph(S)))

(b) I ′ =

{

I \ {n+ 1} ∪ {i | 1 ≤ i ≤ n ∧ n+ 1 ∈ iE} if n+ 1 ∈ I

I else

(c) U ′ = U
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The intuition behind this definition is the following. Assume that the (n + 1)-interface
S = ({1, . . . , n+ 1}, E, ρ, I, U) is realized by an (n+ 1)-game graph G = (H, τ) and let G′

be a witness for this. We want to define forgets(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) in such a
way that forgets(S) is realized by forget(G) and moreover forget(G′) is a witness for this.
Since n+ 1 is no longer a contact node in forget(G), there may be more ττ -internal paths
in forget(G′) between two contact nodes τ(i) and τ(j). In order to determine the maximal
priority of an optimal path (for player Adam) from τ(i) to τ(j) in forget(G′), it suffices
to look at the n-game graph forget(graph(S)), i.e., to calculate reduce(forget(graph(S))).
This graph will be therefore graph(forgets(S)). Second, if in the strategy reduct G′ there
exists a ττ -internal path from the contact node i to the contact node n + 1 (i.e., in the
interface S there is an edge from i to n + 1) and n + 1 ∈ I (i.e., there exists a τ -internal
path starting from τ(n + 1) in G′ and which player Adam wins), then there exists a τ -
internal path starting from τ(i) in forget(G′) and which player Adam wins. Therefore we
put i into I ′. Finally, we require n + 1 6∈ U , because after applying the forget-operation,
the former contact node τ(n + 1) is no longer accessible, in particular it cannot be glued
with another node and will not get any further outgoing edges. But if τ(n + 1) belongs
to Eve, for a strategy of Eve we have to guess precisely one outgoing edge for τ(n + 1);
recall that we assume that every contact node, and hence also τ(n + 1), has at least one
outgoing edge in G. If we would have n+ 1 ∈ U , then we would remove all outgoing edges
for τ(n+ 1), and this would not change anymore, since τ(n+ 1) remains inaccessible after
the forget-operation.

Finally, for an (n+1)-interface (n ≥ 1) S = ({1, . . . , n+1}, E, ρ, I, U) we define glues(S)
only if

(1) ρ(n + 1) = ρ(n) (thus, node n and n + 1 belong to the same player and can actually
be glued) and

(2) if ρ(n+ 1) = ρ(n) = Eve then n ∈ U or n+ 1 ∈ U .

Then we define the n-interface glues(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) as follows:

(a) graph(glues(S)) = reduce(glue(graph(S))).

(b) I ′ =

{

I \ {n+ 1} ∪ {n} if I ∩ {n, n+ 1} 6= ∅

I else

(c) U ′ =

{

U \ {n+ 1} if n, n+ 1 ∈ U

U \ {n, n+ 1} else

The intuition behind this definition is the following. Assume that the (n + 1)-interface
S = ({1, . . . , n+ 1}, E, ρ, I, U) is realized by an (n+ 1)-game graph G = (H, τ) and let G′

be a witness for this. We want to define glues(S) = ({1, . . . , n}, E ′, ρ′, I ′, U ′) in such a way
that glues(S) is realized by glue(G) and moreover glue(G′) is a witness for this. Note that
by (1), (2), and (c), glue(G′) is in fact a strategy reduct of glue(G) w.r.t. U ′. In particular,
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Figure 9: The situation in the proof of Lemma 3.12

(2) is necessary for this, since by our assumption both τ(n) and τ(n+ 1) have at least one
outgoing edge in G and hence would have both precisely one outgoing edge in G′ if we
would have n 6∈ U and n + 1 6∈ U . Thus, the n-th contact node of glue(G′) would have
two outgoing edges. The assignment graph(glues(S)) = reduce(glue(graph(S))) in (a) can
be explained as for the forget-operation. Note that in glue(graph(S)), there may be more
than one edge between two contact nodes. By applying reduce to glue(graph(S)) we select
the optimal edge for player Adam between two contact nodes. Finally, if n ∈ I or n+1 ∈ I,
i.e., there exists a τ -internal path in G′ that starts in τ(n) or in τ(n+ 1) and which player
Adam wins, then we can be sure that there exists a τ -internal path in glue(G′) that starts
in τ(n) and which player Adam wins. Here it is important that τ -internal paths are always
non-empty. Hence, we put n into the set I ′.

This concludes the definition of the operations on interfaces. Each of these operations
can be computed in polynomial time; for forgets and glues we need Lemma 3.4 in order to
compute reduce(op(graph(S))) (op ∈ {forget, glue}). We present the proof for the second
condition of Definition 3.11 only for the glue-operation.

Let G1 = (H1, τ1) be an n-game graph and G2 = (H2, τ2) an (n + 1)-game graph with
glue(G2) = G1. Let S1 be an n-interface. We have to show that the following two properties
are equivalent:

(1) S1 is realized by G1.

(2) There exists an (n+1)-interface S2, which is realized by G2 and such that glues(S2) =
S1.

Figure 9 makes the situation clearer.
(1) ⇒ (2): Assume that G1 realizes S1 = ({1, . . . , n}, E1, ρ1, I1, U1) and let G′

1 be a
witness for this. Since we have G1 = glue(G2), there exists a strategy reduct G′

2 of G2

w.r.t. a set U2 satisfying

U1 =

{

U2 \ {n+ 1} if n, n+ 1 ∈ U2

U2 \ {n, n+ 1} else.
(2)
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Furthermore, we have glue(G′
2) = G′

1. We put i into I2 if and only if there exists a τ -internal
path starting from τ2(i) in G′

2 which player Adam wins. We set S2 = (reduce(G′
2), I2, U2).

Then, G′
2 is a witness that G2 realizes S2. In order to prove glues(S2) = S1, we show the

three conditions (a),(b), and (c) from the definition of the glues-operation. Condition (a)
follows from:

reduce(glue(graph(S2))) = reduce(glue(reduce(G′
2)))

Lemma 3.4

= reduce(glue(G′
2))

= reduce(G′
1)

= graph(S1)

In order to show condition (b), we distinguish the following two cases (note that G′
1 =

glue(G′
2) and that G′

i is a witness that Gi realizes Si):

� I2 ∩ {n, n + 1} = ∅: Then we have I1 = I2 due to Definition 3.6. Hence, condition
(b) is satisfied.

� I2 ∩ {n, n + 1} 6= ∅: Then we have n ∈ I1. Thus, i ∈ I1 if and only if i ∈ I2 \ {n +
1} ∪ {n}. Hence, condition (b) is satisfied.

Condition (c) is satisfied by equation (2) above.

(2) ⇒ (1): Assume that S2 = ({1, . . . , n + 1}, E2, ρ2, I2, U2) is an (n + 1)-interface, which
is realized by G2 and such that glues(S2) = S1. Let G′

2 be a witness for this. We set
G′

1 = glue(G′
2). We have to verify condition (1) and (2) of Definition 3.6 for S1, G

′
1 and

G1. Condition (1), i.e. graph(S1) = reduce(G′
1), follows from Lemma 3.4 analogously to

the first part of the proof. For condition (2) of Definition 3.6, we again distinguish between
the following two cases:

� I2 ∩ {n, n + 1} = ∅: Then we have I1 = I2 according to the definition of the glues-
operation. Moreover, there does not exist a τ -internal path in G′

2 starting in τ2(n)
or τ2(n+ 1) and which Adam wins. Thus, for all i ∈ {1, . . . , n} we have:

i ∈ I1 ⇐⇒ i ∈ I2

⇐⇒ ∃ τ -internal path in G′
2 starting in τ2(i) and which Adam wins

⇐⇒ ∃ τ -internal path in G′
1 = glue(G′

2) starting in τ1(i) and

which Adam wins

� I2∩{n, n+1} 6= ∅: Then we have I1 = I2\{n+1}∪{n} according to the definition of
the glues-operation. Moreover, there exists a τ -internal path in G′

2 starting in τ2(n)
or τ2(n+ 1) and which Adam wins. Thus, for all i ∈ {1, . . . , n} we have:

i ∈ I1 ⇐⇒ i ∈ I2 \ {n+ 1} ∪ {n}

⇐⇒ i = n or

∃ τ -internal path in G′
2 starting in τ2(i) and which Adam wins

⇐⇒ ∃ τ -internal path in G′
1 = glue(G′

2) starting in τ1(i) and

which Adam wins
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This concludes the proof of Lemma 3.12.

3.7 Upper bounds for parity games on SLP-defined graphs

We are now ready to prove an upper bound of PSPACE for the parity game problem on
general SLPs. For c-bounded SLPs we will obtain the better upper bound of NP ∩ coNP.
W.l.o.g. we will restrict to SLPs such that for every right hand side, which is an n-game
graph G, every contact node of G has at least one outgoing edge, see the remark at the
beginning of Section 3.6. Note that this property transfers to every game graph eval(X)
for a variable X of the underlying SLP.

Theorem 3.13. The following problem is in PSPACE:
INPUT: An SLP S = (Xi := ti)1≤i≤l generating a 1-game graph eval(S) = (G, τ).
QUESTION: (G, τ(1),Eve) ∈ PARITY?

Proof. Without loss of generality we can assume that node τ(1) belongs to Eve and that
τ(1) has no incoming edges. Otherwise we construct an SLP that generates G′ by adding
a new node v to G whose only edge is an outgoing one leading to τ(1) and give v to Eve.
Then we have (G′, v,Eve) ∈ PARITY if and only if (G, τ(1),Eve) ∈ PARITY. Due to this
convention, the following holds: (G, τ(1),Eve) ∈ PARITY if and only if eval(G) realizes the
interface Sl = ({1}, ∅, [1 7→ Eve], ∅, ∅).1 We present the algorithm in form of the following
procedure P , which works on a polynomial time bounded alternating Turing machine;
(Q∀) (resp. (Q∃)) indicates that the machine branches universally (resp. existentially).
Procedure P has two parameters, the current line i of the SLP and a rank(Xi)-interface
Si, and it returns true if and only if Si is realized by eval(Xi). At the beginning we call
P with the parameter (l, Sl).

procedure P(i ∈ {1, . . . , l}, Si) return boolean is

if ti is a rank(Xi)-game graph then return (ti realizes Si) (∗)
elseif ti = op(Xi1 , . . . , Xik) then
(Q∃): for 1 ≤ j ≤ k guess rank(Xij)-interfaces Sij s.t. Si = ops(Si1 , . . . , Sik) (**)
(Q∀): return

∧

1≤j≤k P(ij, Sij)
endif

The correctness of the algorithm follows easily by induction on the index i ∈ {1, . . . , l}
using Definition 3.11. For the alternating polynomial time bound note that: (i) the test in
line (∗) is in NP by Lemma 3.10, (ii) an interface can be stored in polynomial space, i.e.,
polynomial time suffices for guessing an interface in line (∗∗), and (iii) each of the operations
ops in line (∗∗) is computable in polynomial time by the definition of an FPI.

One might present the above algorithm also in terms of top-down tree automata. The
state set of the tree automaton is the set of all n-interfaces, where n is the maximal rank

1Since τ(1) has no incoming edges, we can assume that the interface Sl has no edges, i.e., consists of
an isolated point. Since the I-component of Sl is empty, we assert that Adam cannot win from node τ(1),
i.e., Eve wins.
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of a variable Xi. The tree on which the automaton runs is the unfolding of the SLP viewed
as a dag (directed acyclic graph), where the variables are the nodes.

By the following theorem, we can improve the PSPACE upper bound from Theorem 3.13
to NP ∩ coNP, when we restrict to c-bounded SLPs for some fixed constant c.

Theorem 3.14. Let c ∈ N be a fixed constant. Then the following problem is in NP∩coNP:
INPUT: A c-bounded SLP S = (Xi := ti)1≤i≤l such that eval(S) is a 1-game graph (G, τ).
QUESTION: (G, τ(1),Eve) ∈ PARITY?

Proof. In analogy to the proof of Theorem 3.13 we may assume that node τ(1) belongs to
Eve and that τ(1) has no incoming edges. Now, we guess for all 1 ≤ i ≤ l a set of interfaces
Mi. Note that for the representation of a single interface c2 log |C| + 2c bits suffice, where
C is the set of priorities used in the SLP S. Moreover, for every 1 ≤ i ≤ l there maximally
exist |C|c

2

22c possible interfaces. Hence, since c is a constant, polynomial space suffices in
order to store all interfaces in

⋃

1≤i≤lMi. Next, we check in polynomial time whether for
all 1 ≤ i ≤ l the set Mi is a subset of the set of interfaces which are realized by eval(Xi).
If the interface Sl = ({1}, ∅, [1 7→ Eve], ∅, ∅) additionally belongs to Ml, then we know that
(G, τ(1),Eve) ∈ PARITY. In Table 3 the algorithm is shown. For the correctness of the
algorithm we prove the following two points:

(1) If (G, τ(1),Eve) ∈ PARITY, then there exists a run in our non-deterministic algorithm
of Table 3, where true is returned.

(2) If the algorithm of Table 3 returns true, then (G, τ(1),Eve) ∈ PARITY.

To show (1), we simply guess in line (∗) for all 1 ≤ i ≤ l exactly the set of interfaces that
are realized by eval(Xi). Moreover, in line (∗∗) we guess for every S ∈Mi such that ti = G
is an n-game graph a witness G(i, S) that G realizes S. Then the algorithm will return
true. For (2) let Mi be the set of interfaces for eval(Xi) (1 ≤ i ≤ l) that are guessed in a
successful run of the algorithm. By induction over i we easily obtain that every interface in
Mi is realized by eval(Xi). Hence, ({1}, ∅, [1 7→ Eve], ∅, ∅) is realized by eval(S) = eval(Xl),
i.e., (G, τ(1),Eve) ∈ PARITY.

By Lemma 3.9 the test in line (∗ ∗ ∗) can be done in polynomial time. The tests in the
other cases can be also done in polynomial time, which implies the upper bound of NP.
Due to the determinacy theorem for parity games [9], the problem is also in coNP.

4 The modal µ-calculus on SLP-defined graphs

In this section, we show that both the data and combined complexity of the modal µ-
calculus on transition systems that are represented by SLPs is PSPACE-complete. The
PSPACE upper bound generalizes a corresponding result for CTL from [1], and will be
shown by a reduction to parity games, which is analogous to the corresponding reduction
for explicitly given input graphs. For this, we need a few notions concerning the modal
µ-calculus.
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procedure P(S) return boolean is

for i = 1 to l do

guess a set Mi of rank(Xi)-interfaces. (∗)

if ti = G for a rank(Xi)-game graph G then

guess a strategy reduct G(i, S) of G for every S ∈Mi (∗∗)

endif

endfor

for i = 1 to l do

if ti = G for a rank(Xi)-game graph G then

for S ∈Mi do

if G(i, S) is not a witness that G realizes S then (∗ ∗ ∗)

return false

endif

endfor

elseif ti = op(Xi1 , . . . , Xik) then

if ∃Si ∈Mi ∀(Si1 , . . . , Sik) ∈
∏k

j=1Mij : Si 6= ops(Si1 , . . . , Sik) then

return false

endif

endif

endfor

return ({1}, ∅, [1 → Eve], ∅, ∅) ∈Ml

end P

Table 3: NP-algorithm for the c-bounded case

Let P be a set of atomic propositions. If ϕ is a subformula of ψ we also write ϕ � ψ.
In the following we assume w.l.o.g. that all sentences ϕ ∈ Fµ(P) have the property that
for every fixpoint variable X that occurs in ϕ there is a unique subformula σX.ψ � ϕ with
σ ∈ {µ, ν} and such that all occurrences of X in ϕ are inside of σX.ψ.

Theorem 4.1. The following problem can be calculated in polynomial time:
INPUT: A c-bounded SLP St defining a transition system eval(St), a node qinit of eval(St),
and a sentence ϕ of the modal µ-calculus s.t. ϕ has precisely k subformulas.
OUTPUT: A (c·k)-bounded SLP Sg defining a game graph eval(Sg) and a node v of eval(Sg)
such that (eval(St), qinit) |= ϕ if and only if (eval(Sg), v,Eve) ∈ PARITY.

Proof. Let us first repeat the construction for explicitly given input graphs [8, 9, 12].
Thus, let T = (Q,R, λ) be a transition system, let Θ := {ψ | ψ � ϕ} denote the set
of all subformulas of the formula ϕ, and let {ψ1, ψ2, . . . , ψk} be an enumeration of these
subformulas (i.e. |Θ| = k). The alternation depth α(ψ) of a formula can be defined as in
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[12, p 176]; the concrete definition is not important for the further construction. We define
the map χ : Θ → {0, . . . , α(ϕ)} for all ψ ∈ Θ as follows:

χ(ψ) =















smallest even number greater or equal to α(ψ) − 1 if ψ = νX.ψ′

smallest odd number greater or equal to α(ψ) − 1 if ψ = µX.ψ′

0 else

Let Gϕ,T = (V,E, ρ) be the game graph that is defined as follows: The set of nodes is
V = (Q× Θ) ∪ {⊥,⊤}. We set

ρ(v, ψ) =

{

Adam if ψ of the form ¬p (p ∈ P) or ψ1 ∧ ψ2 or �ψ′

Eve else

and ρ(⊥) = ρ(⊤) = Eve. Finally the set E contains precisely the following edges:

⊤
0

−→ ⊤

⊥
1

−→ ⊥

(q, p)
0

−→

{

⊤ if p ∈ P, p ∈ λ(q)

⊥ if p ∈ P, p 6∈ λ(q)

(q,¬p)
0

−→

{

⊤ if p ∈ P, p 6∈ λ(q)

⊥ if p ∈ P, p ∈ λ(q)

(q, σX.ψ)
χ(ψ)
−−→ (q, ψ) for σ ∈ {µ, ν}

(q,X)
χ(σX.ψ)
−−−−−→ (q, σX.ψ) if σX.ψ is the unique subformula of ϕ binding X

(q, ψ1 op ψ2)
χ(ψi)
−−−→ (q, ψi) for i ∈ {1, 2} and op ∈ {∧,∨}

(q, σψ)
χ(ψ)
−−→ (q′, ψ) if (q, q′) ∈ R and σ ∈ {�,♦}

Then for every q ∈ Q we have (T, q) |= ϕ if and only if (Gϕ,T , (q, ϕ),Eve) ∈ PARITY, see
[8, 9, 12].

Hence, for a given SLP St defining a transition system eval(St), we have to construct an
SLP defining the game graph Gϕ,eval(St). In fact, we will construct an SLP Sg for a slight
variant ofGϕ,eval(St). Let St = (Xi := ti)1≤i≤l. In the SLP Sg we will use generalized versions
of the operations glue and forget. First of all, if G = (H, τ) is an n-game graph, then for
every m ≤ n we define the (n − m)-game graph forgetm(G) = (H, τ ↾ {1, . . . , n − m}),
i.e., we forget the last m contact nodes. Moreover, for every m ≤ n with 2m ≤ n we
define the (n−m)-game graph gluem(G) = (H/≡, τ

′), where ≡ is the smallest equivalence
relation on {1, . . . , n} that contains every pair (n − i, n −m − i) for 0 ≤ i ≤ m − 1 and
τ ′ = (π≡ ◦ τ)↾{1, . . . , n−m}.

Now, we define the SLP Sg = (Yi := ui)1≤i≤l as follows. First of all, the rank of Yi will be
rank(Xi) ·k; recall that k is the number of subformulas of ϕ. If ti is an n-transition system
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(T, τ), then ui is the (n · k)-game graph (Gϕ,T , τ
′), where τ ′(r + j · k) = (τ(j + 1), ψr)

for 1 ≤ r ≤ k and 0 ≤ j ≤ n − 1. Next, if ti = Xj ⊕ Xk, then ui = Yj ⊕ Yk. If
ti = op(Xj) for op ∈ {forget, glue}, then ui = opk(Yj). Finally, if ti = renamef (Xj),
then ui = renamef ′(Yj), where f ′(r + s · k) = r + (f(s + 1) − 1) · k for 1 ≤ r ≤ k
and 0 ≤ s ≤ rank(Xi) − 1. The only difference between eval(Sg) and Gϕ,eval(St) is that
there are several copies of the nodes ⊤ and ⊥, and moreover, from a node of the form
(q, p) with p ∈ P we may have edges to both ⊥ and ⊤: If q1 and q2 are glued by some
instruction Xi = glue(Xj) of the straight-line program St, where q1 is labeled with the
atomic proposition p in eval(Xj) but q2 is not, then the node of eval(Yi) that results from
gluing (q1, p) with (q2, p) has edges to both ⊥ and ⊤. But for every node q of eval(St) we
have: if q is labeled with p in eval(St), then in eval(Sg) there is at least one edge from (q, p)
to a ⊤-node plus possibly additional edges to ⊥-nodes, whereas if q is not labeled with p in
eval(St), then there are only edges from (q, p) to ⊥-nodes. But note that in the first case
(q is labeled with p), additional edges to ⊥-nodes are not problematic. The node (q, p)
belongs to Eve, and she wins a ⊤-node but loses a ⊥-node. Hence, she will not choose an
edge from (q, p) to ⊥. A similar argument applies to nodes of the form (q,¬p); note that
such a node belongs to Adam. Therefore we still have as desired (eval(St), q) |= ϕ if and
only if (eval(Sg), (q, ϕ),Eve) ∈ PARITY.

Corollary 4.2. The following problem is PSPACE-complete:
INPUT: An SLP St defining a transition system eval(St), a node qinit of eval(St), and a
sentence ϕ of the modal µ-calculus.
QUESTION: (eval(St), qinit) |= ϕ ?
Moreover,

� the above problem is already PSPACE-complete when restricted to c-bounded SLPs
(for a suitable large c), and

� there exists already a fixed sentence of the modal µ-calculus for which the above prob-
lem is PSPACE-complete.

Proof. The upper bound follows from Theorem 3.13 and 4.1. For the lower bounds, we
can use two results from [1]:

� The combined complexity of CTL for hierarchical state machines is PSPACE-complete
[1, Theorem 9]; recall that a CTL-formula can be translated in polynomial time into
an equivalent formula of the modal µ-calculus. Hierarchical state machines are a
slightly restricted class of hierarchical graph definitions in the sense of [23]. Moreover,
it is easy to see that the hierarchical state machines that are constructed in the proof
of [1, Theorem 9] can be translated into 4-bounded SLPs.

� There exists already a fixed CTL-sentence, for which the model-checking problem for
hierarchical state machines is PSPACE-complete [1, Theorem 11].
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In the next section, we will see that the data complexity of the modal µ-calculus becomes
polynomial time when the input graph is given by a c-bounded SLP. In fact, we will prove
a polynomial upper bound for the more expressive monadic least fixpoint logic (MLFP).

5 LFP and MLFP on hierarchically defined graphs

In this section we study the complexity of the model-checking problems for the fixpoint
logics LFP and MLFP on hierarchically defined graphs. We start with upper bounds in
Section 5.1. In Section 5.2 we will introduce hierarchical graph definitions, which are closely
related to straight-line programs, but which are more suitable for the purpose of proving
lower bounds in Section 5.3.

5.1 Upper bounds for fixpoint logics on SLP-defined structures

An upper bound for the most general case (combined complexity of LFP) is given by the
following theorem:

Theorem 5.1. The following problem belongs to EXPTIME:
INPUT: An SLP S and a sentence ϕ of LFP.
QUESTION: eval(S) |= ϕ?

Proof. We can use the standard EXPTIME-algorithm that evaluates a fixpoint formula
on a finite structure by building for a subformula lfpx̄,Rϕ(x̄, R) a sequence of increasing
approximations of the fixpoint until convergence is reached [34]. If n is the size of the
structure A and ϕ is an LFP-formula, where ℓ is the nesting depth of alternating fixpoint
operations and k is the maximal arity of fixpoint variables in ϕ, then A |= ϕ can be checked
in time |ϕ|O(1) · nk·ℓ [34]. Now if the structure A is given by an SLP S, then n ∈ 2O(|S|).
Thus, the running time is |ϕ|O(1) · 2O(|S|)·k·ℓ, which is still exponential.

Only for the data complexity of MLFP on graphs given by c-bounded (for some fixed
c) straight-line programs we obtain a polynomial time algorithm.

Theorem 5.2. For every fixed MLFP sentence ϕ and every fixed constant c ∈ N the
following problem belongs to P:
INPUT: A c-bounded SLP S
QUESTION: eval(S) |= ϕ?

Proof. Except for the cited results, the proof is in fact identical to a corresponding proof
for first-order logic from [23], which is based on Courcelle’s technique for evaluating fixed
MSO formulas in linear time over graph classes of bounded tree width [5]. Let us repeat
the arguments for completeness.

Let ϕ be a fixed MLFP-sentence of rank k. Let R be the fixed signature, over which
ϕ is defined. W.l.o.g. we may assume that our c-bounded input SLP S = (Xi := ti)1≤i≤ℓ

is also defined over the signature R. For every 1 ≤ i ≤ ℓ, the structure eval(Xi) can
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be viewed as a relational structure over some subsignature Θi of the fixed signature Θ =
R ∪ {pin(1), . . . , pin(c)}. Here, pin(i) is a constant symbol that denotes the i-th contact
node of eval(Xi). Since this signature Θ is fixed (i.e., does not vary with the input) and
since moreover also the rank k is fixed in the theorem, the number of pairwise nonequivalent
MLFP-sentences of rank at most k over the signature Θ is bounded by some constant g(k).
Thus, also the number of possible MLFPk-theories (in the sense of Section 2.5) over the
signature Θ is bounded by some constant.

The crucial fact for our polynomial time algorithm is the existence of functions F⊕,
Fforget, Fglue, and Ff (where f : {1, . . . , n} → {1, . . . , n} is bijective, n ≤ c) over the set of
all MLFPk-theories over the signature Θ such that:

MLFPk(G1 ⊕G2) = F⊕(MLFPk(G1),MLFPk(G2)) (3)

MLFPk(forget(G)) = Fforget(MLFPk(G)) (4)

MLFPk(glue(G)) = Fglue(MLFPk(G)) (5)

MLFPk(renamef (G)) = Ff (MLFPk(G)) (6)

The existence of Fforget, Fglue, and Ff follows easily, since the graph-operations forget, glue,
and renamef can be defined by a quantifier free transductions [6, 25]. For the existence of
F⊕ see [26, Theorem 10] and [3, Theorem 28]; it is based on an Ehrenfeucht-Fraissé game
for MFLP [2, 3, 7]. Note that the functions in (3)–(6) do not depend on the input; they
can be assumed to be given hard-wired.

Now we replace the straight-line program S by a straight-line program for calculating
MLFPk(eval(S)) as follows:

1. If Xi := ti is a definition from S such that ti is an n-pointed (n ≤ c) structure G,
then we calculate MLFPk(G), which is possible in polynomial time [14] and replace
the definition Xi := ti by Xi := MLFPk(G).

2. A definition of the form Xi := Xp⊕Xq is replaced by Xi := F⊕(Xp, Xq) and similarly
for definitions of the form Xi := forget(Xj), Xi := glue(Xj), and Xi := renamef (Xj).

Note that this is a straight-line program over a fixed finite set, namely the set of all MLFPk-
theories. Hence, we can evaluate this straight-line program in polynomial time and thereby
calculate MLFPk(eval(S)). We finally check, whether ϕ ∈ MLFPk(eval(S)).

5.2 Hierarchical graph definitions

Fix a signature R. A hierarchical graph definition (over the signature R) is a triple D =
(N,S, P ) such that:

(1) N is a finite set of reference names. Every B ∈ N has a rank rank(B) ∈ N.

(2) S ∈ N is the initial reference name, where rank(S) = 0.
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Figure 10: The productions of the hierarchical graph definition from Example 5.3

(3) P is a set of productions. For every B ∈ N , P contains exactly one production B →
(A, τ, E), where (A, τ) is a rank(B)-pointed relational structure (over the signature
R) with universe A and E ⊆ {(B′, σ) | B′ ∈ N, σ : {1, . . . , rank(B′)} → A is injective}
(the set of references).

(4) Define the relation ED on N as follows: (B,C) ∈ ED if and only if for the unique
production of the form B → (A, τ, E), E contains a reference of the form (C, σ). Then
we require that ED is acyclic.

The size |D| of D is defined by
∑

(B→(A,τ,E))∈P |A| + |E|. We say that D is c-bounded if

rank(B) ≤ c for every B ∈ N and moreover for every rule B → (A, τ, E) we have |E| ≤ c.
In the lower bound proofs in the rest of the paper, we will only use relational structures

where all relations have arity one or two. In diagrams, relations of arity two will be drawn
as labeled edges, where the edge label is the name of the relation. The fact that a node
v belongs to a unary relation r will be indicated by labeling v with r. Note that our
definition allows several node labels for a single node. A reference (B, σ) will be drawn as
a big circle with inner label B. This circle is connected via dashed lines with the nodes
σ(i) for 1 ≤ i ≤ rank(B), where the connection to σ(i) is labeled with i. These dashed
lines are also called tentacles. If G = (A, τ) is an n-pointed relational structure, then we
label the contact node τ(i) with i. In order to distinguish this label i better from node
labels that correspond to unary relations, we will use, as for SLPs, boldface font for the
label i.

Example 5.3. Let D = (N,S, P ) be the hierarchical graph definition over the signature
R containing two binary relational symbols α and β, where N = {S,A1, A2, A3} with
rank(S) = 0, rank(A1) = 1, and rank(A2) = rank(A3) = 2. The set P of productions is
shown in Figure 10.

Let us now define the structure eval(D), which results from unfolding a hierarchical graph
definition D = (N,S, P ) (over the signature R). For every B ∈ N we define a rank(B)-
pointed relational structure eval(B) (over the signature R) as follows: Assume that B →
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Figure 11: The graph eval(D) for the hierarchical graph definition from Example 5.3

(A, τ, E) is the unique production for B in P . Let E = {(Bi, σi) | 1 ≤ i ≤ n}. Of course
we may have Bi = Bj for i 6= j. Assume that eval(Bi) = (Ai, τi) is already defined. Then
eval(B) = ((A⊕A1 ⊕ · · ·⊕An)/≡, π≡ ◦ τ), where ≡ is the smallest equivalence relation on
the universe of A ⊕ A1 ⊕ · · · ⊕ An, which contains every pair (σi(j), τi(j)) for 1 ≤ i ≤ n
and 1 ≤ j ≤ rank(Bi). Finally, we define eval(D) = eval(S); since rank(S) = 0 it can
be viewed as an ordinary relational structure. From this definition, it is obvious that
from a hierarchical graph definition D we can construct in polynomial time a straight-line
program S with eval(S) = eval(D), see also [5, 23]. Moreover, if D is c-bounded, then S
is c(c+ 1)-bounded.

Example 5.3 (continued). The graph eval(D) for the hierarchical graph definition D
from Example 5.3 is shown in Figure 11. Edge labels are omitted; edges going down in the
tree have to be labeled with β, and the other edges going from the leafs to the root have
to be labeled with α. Figure 1 in Section 2.3 shows the 2-pointed structure eval(A2). Two
intermediate structures that occur during the unfolding of D are shown in Figure 12.

As already mentioned in the introduction, hierarchical state machines [1] can be viewed
as a particular form of hierarchical graph definitions, which is tailored towards the spec-
ification of modular reactive systems (or automata). For this purpose, modules (which
correspond to right-hand sides in hierarchical graph definitions) in hierarchical state ma-
chines have two types of contact nodes: entry nodes (where control enters) and exit nodes
(where control leaves the module).
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Figure 12: Two intermediate structures that arise when unfolding D from Example 5.3

5.3 Lower bounds for fixpoint logics on hierarchically defined
structures

When looking at Table 1, we see that we have to prove three EXPTIME lower bounds in
order to obtain together with Theorem 5.1 the EXPTIME completeness results in Table 1:

� The data complexity of LFP for c-bounded hierarchical graph definitions is EXPTIME-
hard.

� The data complexity of MLFP for (unrestricted) hierarchical graph definitions is
EXPTIME-hard.

� The combined complexity of MLFP for c-bounded hierarchical graph definitions is
EXPTIME-hard.

We start with the data complexity of LFP for c-bounded hierarchical graph definitions.

Theorem 5.4. There exists a fixed LFP-sentence ϕ such that the following problem is
EXPTIME-hard:
INPUT: A 2-bounded hierarchical graph definition D.
QUESTION: eval(D) |= ϕ?

Proof. Let us fix a deterministic exponential time Turing machine T = (Q,Σ, q0, qf , δ) with
an EXPTIME-complete membership problem. Note that Q is the set of states, Σ is the tape
alphabet, q0 is the initial state, qf is the unique accepting state, and δ is the transition
function. W.l.o.g. assume that T operates in time 2n on any input of length n. Let � ∈ Σ
be the blank symbol of T . We assume that the tape cell 1 (resp. 2n) always contains the
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c1 cm
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Figure 13: The structure eval(D) from the proof of Theorem 5.4

blank symbol �. Let Γ = Σ ∪ (Q × Σ) and let c1, . . . , cm be an arbitrary enumeration of
Γ. A configuration of the machine can be encoded as a word over Γ of length 2n, where
exactly one position contains a symbol from Q×Σ ⊆ Γ. We view every c ∈ Γ as a relational
symbol of arity one, i.e., as a node label. Let ∆ be the set of all tuples (c0, c1, c2, c) ∈ ∆
such that the following is true: If at some point of time t three consecutive tape positions
i − 1, i, and i + 1 contain the symbols c0, c1, and c2, respectively, then at time t + 1 the
tape cell i contains the symbol c. Let w = a1 · · · an be an input of length n for T . Then the
initial tape content is �a1 · · · an� · · ·� and the read-write head scans the first symbol a1

of w. It is straight-forward to construct a 2-bounded hierarchical graph definition D such
that eval(D) is the structure in Figure 13, where the s-chain (s is a binary relation symbol)
consists of 2n many Γ-labeled nodes. Thus, eval(D) is a chain of length 2n encoding the
initial configuration together with |Γ| = m many isolated nodes. For every c ∈ Γ there is
exactly one isolated node with label c.

Tape positions and time points will be both represented as nodes of the s-chain. A
triple (x, y, z), where x and y belong to the s-chain and z is the isolated ci-labeled node,
encodes the fact that in the unique computation of T on input w at time y the tape cell x
contains the symbol ci. The set of all “correct” triples for which this is actually true will
be generated as a fixpoint.

In order to construct the fixed LFP-sentence ϕ from the theorem, we first define a few
auxiliary formulas:

ω(x) ≡ ∃y : s(x, y) ∨ s(y, x) (x belongs to the s-chain)

zero(x) ≡ ω(x) ∧ ¬∃y : s(y, x) (x is the first node of the s-chain)

last(x) ≡ ω(x) ∧ ¬∃y : s(x, y) (x is the last node of the s-chain)

border(x, y, z) ≡ (zero(x) ∨ last(x)) ∧ �(z)

init(x, y, z) ≡ ω(x) ∧ zero(y) ∧ ¬ω(z) ∧
∨

c∈Γ

(c(x) ∧ c(z))

consistent(z0, z1, z2, z) ≡ ¬ω(z) ∧
2
∧

i=0

¬ω(zi) ∧
∨

(c0,c1,c2,c)∈∆

(c(z) ∧
2
∧

i=0

ci(zi))
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ψ(x, y, z, R) ≡ init(x, y, z) ∨ border(x, y, z) ∨

∃x0, x2, y
′, z0, z1, z2











s(x0, x) ∧ s(x, x2) ∧ s(y
′, y)∧

consistent(z0, z1, z2, z)∧

R(x0, y
′, z0) ∧R(x, y′, z1) ∧R(x2, y

′, z2)











Note that init(x, y, z) is true for a triple (x, y, z) if and only if this triple is a correct triple
(in the above sense) for the initial configuration, whereas border(x, y, z) is true for a triple
(x, y, z) if and only if this triple is a correct triple for the left-most or right-most tape cell.
Now, the input w is accepted by T if and only if the following sentence ϕ is true in eval(D),
where A = {(qf , a) | a ∈ Σ} ⊆ Γ (recall that qf is the unique accepting state):

∃s, t, u : [lfp(x,y,z),R ψ(x, y, z, R)](s, t, u) ∧
∨

c∈A

c(u)

This concludes the proof of the theorem.

If we do not restrict to c-bounded hierarchical graph definitions then an EXPTIME lower
bound can be also shown for MLFP:

Theorem 5.5. There exists a fixed MLFP-sentence ϕ such that the following problem is
EXPTIME-hard:
INPUT: A hierarchical graph definition D.
QUESTION: eval(D) |= ϕ?

Proof. As in the previous proof we start with a fixed deterministic exponential time ma-
chine T = (Q,Σ, q0, qf , δ) with an EXPTIME-complete membership problem and which
operates in time 2n on an input of length n. We make the same assumptions on T as in
the previous proof. Let Γ = Σ ∪ (Q × Σ) and let c1, . . . , cm be an arbitrary enumeration
of Γ. Let w = a1a2 · · · an be an input of length n for T and define a0 = � and ai = � for
n < i < 2n.

We will construct a hierarchical graph definition D such that eval(D) is the following
structure A: The universe of A is

{(i, w) | 0 ≤ i < 2n, w ∈ {0, 1}≤n} ∪ {(i, w, c) | 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ} ∪ {0, . . . , n},

where {0, 1}≤n denotes the set of all string over {0, 1} of length at most n and {0, 1}n

denotes the set of all string over {0, 1} of length exactly n.
The idea is that the nodes (i, ε) (0 ≤ i < 2n) form a chain of length 2n using a binary

relation s. Here i is a point of time in the run of the machine T . Every node (i, ε) is the
root of a binary tree Ti of height n. The left (resp. right) child-relation is s0 (resp. s1).
The node set of the tree Ti is {(i, w) | 0 ≤ i < 2n, w ∈ {0, 1}≤n}. A leaf (i, w) (where
|w| = n) of the tree Ti represents the tape cell w (where w is viewed as the binary coding
of a number in {0, . . . , 2n − 1}) at time i. For every node (i, w) of Ti, there is an ℓ-labeled
edge (ℓ for level) to the “level-node” |w| ∈ {0, . . . , n}. Using these edges, we can express
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Figure 14:

that two nodes in possibly two different trees Ti and Tj are on the same level. This is
needed in order to express that for two leafs (i, v) and (j, w) (of two different trees) we
have v = w, i.e., the tape cell is the same. Finally, to every leaf (i, w) (with |w| = n) of Ti
we attach for every c ∈ Γ an additional c-labeled node (i, w, c), representing the fact that
at time i tape cell w contains the symbol c. Thus, the meaning of such a node is the same
as that of a triple in the previous proof. Again we will generate the set of all “correct”
nodes (i, w, c) (i.e., in the unique computation on input w, at time i tape cell w actually
contains the symbol c) as a (this time unary) fixpoint. From every node (i, w, c) there is
a b-labeled (b for back) “back-edge” to every node along the path from the root (i, ε) of
the tree Ti to the leaf (i, w). An additional unary relation init will represent the initial
configuration of the machine T . It contains a triple (0, w, ai) if and only if w is the binary
coding of i (bin(i) = w for short). For the trivial case n = 1 the graph eval(D) without the
init-relation is shown in Figure 14, where we furthermore assume that Γ = {c} has only
one element. Formally, the relations of A are (� denotes the prefix relation on strings):

s = {[(i, ε), (i+ 1, ε)] | 0 ≤ i < 2n − 1}

s0 = {[(i, w), (i, w0)] | 0 ≤ i < 2n, w ∈ {0, 1}<n}

s1 = {[(i, w), (i, w1)] | 0 ≤ i < 2n, w ∈ {0, 1}<n}

ℓ = {[(i, w), |w|] | 0 ≤ i < 2n, w ∈ {0, 1}≤n}

b = {[(i, w, c), (i, v)] | 0 ≤ i < 2n, w ∈ {0, 1}n, v � w, c ∈ Γ}

c = {(i, w, c) | 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ} for every c ∈ Γ
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Figure 15: The structure generated from the initial variable S

init = {(0, w, ai) | w ∈ {0, 1}n, bin(i) = w}

Let us now sketch a hierarchical graph definition D that generates this structure. It is
straight-forward to generate from the initial reference name S the structure shown in
Figure 15, where the s-chain consists of 2n many nodes. Here, A0 and B0 are reference
names. Using additional reference names A1, . . . , An−1, we generate from the A0-labeled
reference the binary trees Tj (1 ≤ j < 2n) as well as the ℓ-labeled edges to the level-nodes
from {1, . . . , n}. The rule for Ai−1 (1 ≤ i ≤ n) is shown in Figure 16. The rule for An is
shown if Figure 17; it generates the c-labeled (c ∈ Γ) nodes and the b-labeled back-edges.
Every reference name Ai (0 ≤ i ≤ n) has rank n + 1. The first i + 1 tentacles (labeled
with 0, . . . , i in Figure 16) of an Ai-labeled reference e access those nodes of the binary tree
that were produced by ancestor-references of e. These nodes form a path starting at the
root of the tree. The last n− i tentacles (labeled with i+ 1, . . . , n in Figure 16) access the
level-nodes i+ 1, . . . , n of the structure A. From the reference B0 we generate the tree T0.
Recall that T0 is the same tree as Ti for i > 0 except that every node of the form (0, w, ai)
with bin(i) = w belongs to the unary init-relation. The rules for generating T0 are similar
to the rules for the reference name Ai (0 ≤ i ≤ n), we leave the details to the reader.

Let us now describe a fixed MLFP-sentence ϕ such that eval(D) |= ϕ if and only if the
machine T accepts the input word w. We first define a few auxiliary formulas:

γ(x) ≡
∨

a∈Γ

c(x) (x is a node from {(i, w, c) | 0 ≤ i < 2n, w ∈ {0, 1}n, c ∈ Γ})

leaf(x) ≡ ¬γ(x) ∧ ¬∃y : s0(x, y) ∨ ℓ(y, x) (x is a node from {(i, w) | 0 ≤ i < 2n,

w ∈ {0, 1}n}, i.e. x is a leaf of the tree Ti)

succ-time(x, y) ≡ γ(x) ∧ γ(y) ∧ ∃x′, y′ : b(x, x′) ∧ b(y, y′) ∧ s(x′, y′)
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Figure 16: Production rule for Ai−1
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Figure 17: Production rule for An

succ-pos(x, y) ≡ γ(x) ∧ γ(y) ∧

∃x′, x′′, y′, y′′, z



















b(x, x′) ∧ b(y, y′) ∧ leaf(x′) ∧ leaf(y′) ∧

s0(z, x
′′) ∧ s1(z, y

′′) ∧

[lfpu,U(u = x′′ ∨ ∃v ∈ U : s1(v, u))](x
′) ∧

[lfpu,U(u = y′′ ∨ ∃v ∈ U : s0(v, u))](y
′)



















same-pos(x, y) ≡ γ(x) ∧ γ(y) ∧

∀x′, y′

{

b(x, x′) ∧ b(y, y′) ∧ ∃z : (ℓ(x′, z) ∧ ℓ(y′, z)) ⇒
∧

i=0,1 ∃x
′′ : si(x

′′, x′) ⇔ ∃y′′ : si(y
′′, y′)

}

border(x) ≡ �(x) ∧ ∃x′, y











b(x, x′) ∧ b(x, y) ∧ leaf(x′) ∧

∃z : (s(y, z) ∨ s(z, y)) ∧
∨

i=0,1[lfpu,U(u = y ∨ ∃v ∈ U : si(v, u))](x
′)











The formula succ-time(x, y) expresses that the time point associated with the node y is
one plus the time point associated with the node x. The formula succ-pos(x, y) expresses
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that the nodes x and y belong to the same binary tree (i.e., the point of time is the same)
and moreover the tape position associated with y is one plus the tape position associated
with x. This is expressed by saying that the leafs x′ and y′, to which x and y, respectively,
are associated, have a common predecessor z in the tree such that the unique path from z
to x′ (resp. y′) belongs to the relation s0 ◦ s

∗
1 (resp. s1 ◦ s

∗
0). The formula same-pos(x, y)

expresses that the tape positions associated to x and y are the same, but x and y may
belong to different trees. For this, we have to say that whenever x′ and y′ can be reached
via a b-labeled back-edge from x and y, respectively, and x′ and y′ are one the same level
(i.e., ∃z : ℓ(x′, z) ∧ ℓ(y′, z)), then x′ is an si-successor of its parent node in the tree if and
only if y′ is an si-successor of its parent node (i ∈ {0, 1}). Finally, border(x) expresses that
the blank symbol is associated to x and that the tape position associated to x is either the
left-most or the right-most one. Note that b(x, y) ∧ ∃z : (s(y, z) ∨ s(z, y)) says that y is
the root of the tree to which x belongs. Now let ψ(x,X) be the following formula, where
∆ has the same meaning as in the previous proof:

init(x) ∨ border(x) ∨ ∃x1, x2, x3 ∈ X











































∨

(c1,c2,c3,c)∈∆

c(x) ∧
3
∧

i=1

ci(xi) ∧

2
∧

i=1

succ-pos(xi, xi+1) ∧

3
∧

i=1

succ-time(xi, x) ∧ same-pos(x2, x)











































Let A = {(qf , a) | a ∈ Σ} ⊆ Γ. Then w is accepted by the Turing-machine T if and only if
eval(D) |= ∃z :

∨

c∈A c(z) ∧ [lfpx,Xψ(x,X)](z).

For the combined complexity of MLFP, we can derive an EXPTIME lower bound also
in the c-bounded case:

Theorem 5.6. The following problem is EXPTIME-hard:
INPUT: A 2-bounded hierarchical graph definition D and an MLFP-sentence ϕ.
QUESTION: eval(D) |= ϕ?

Proof. Since EXPTIME equals alternating polynomial space, we can start with a fixed
alternating PSPACE-machine T = (Q,Σ, q0, qf , δ) with an EXPTIME-complete membership
problem. Here δ ⊆ Q×Σ×Q×Σ×{L,R} is the transition relation. A tuple (q, a, p, b, L)
for instance means that if the machine T is in state q and reads an a, then it may enter
state p, write b, and move left. W.l.o.g. assume that T operates in space n on an input of
length n. Let Γ = Σ∪ (Q×Σ). Let w = a0a1 · · · an−1 ∈ Σn be an input for the the machine
T . A configuration of T is a word from the language C =

⋃n−1
i=0 Σi(Q × Σ)Σn−1−i ⊆ Γn.

From n, it is easy to construct a 2-bounded hierarchical graph definition D such that
eval(D) = (pref(C), (sa)a∈Γ), where pref(C) is the set of all prefixes of words in the language
C and sa = {(c, ca) | c, ca ∈ pref(C)}. The leafs of eval(D) precisely correspond to the
configurations of T of length n. First of all, let us define a formula ϕ(x1, x2) such that
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eval(D) |= ϕ(c1, c2) if and only if c1 and c2 are leafs of eval(D) and the configuration
represented by c1 can evolve in one step into the configuration represented by c2. For this
we need a formula same-label(z1, x1, z2, x2), saying that the path from z1 to x1 in the tree
(pref(C), (sa)a∈Γ) is labeled with the same word as the path from z2 to x2. This can be
expressed as follows:

n−2
∨

i=0

∃u1, . . . , ui+1, v1, . . . , vi+1











z1 = u1 ∧ z2 = v1 ∧ x1 = ui+1 ∧ x2 = vi+1 ∧
i
∧

j=1

∨

a∈Σ

sa(uj, uj+1) ∧ sa(vj, vj+1)











Now we can define ϕ(x1, x2) as follows:

ϕ(x1, x2) =
∧

a∈Γ,i=1,2

¬∃y : sa(xi, y) ∧

∃y, y1, y2, z1, z2 : same-label(z1, x1, z2, x2) ∧
(

∨

(q,a,p,b,L)∈δ,
c∈Σ

(sc(y, y1) ∧ s(q,a)(y1, z1) ∧ s(p,c)(y, y2) ∧ sb(y2, z2)) ∨

∨

(q,a,p,b,R)∈δ,
c∈Σ

(s(q,a)(y, y1) ∧ sc(y1, z1) ∧ sb(y, y2) ∧ s(p,c)(y2, z2))

)

.

The following formula univ(x) expresses that the leaf x represents a configuration, where
the current state is a universal state:

univ(x) =
n
∨

i=0

∃x0, . . . , xi :
∨

q∈Q∀,a∈Σ

s(q,a)(x0, x1) ∧
i−1
∧

j=1

∨

a∈Σ

sa(xj, xj+1) ∧ x = xi

Similarly we can construct a formula exist(x) (resp. accept(x)) expressing that x represents
a configuration, where the current state is an existential (resp. the accepting) state. Now
let us define the formula ψ(x,X) by:

accept(x) ∨ (univ(x) ∧ ∀y : ϕ(x, y) ⇒ y ∈ X) ∨ (exist(x) ∧ ∃y : ϕ(x, y) ∧ y ∈ X).

Then w is accepted by the Turing-machine T if and only if

eval(D) |= ∃x0 · · · ∃xn : s(q0,a0)(x0, x1) ∧
n−1
∧

i=1

sai
(xi, xi+1) ∧ [lfpx,Xψ(x,X)](xn).

This concludes the proof of the theorem.
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