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1. Introduction

Since the seminal work of Makanin [37] on equations in free monoids, the decid-

ability of various theories of equations in different monoids and groups has been

studied, and several new decidability and complexity results have been shown. Let

us mention here the results of [51,60] for free monoids, [13,27,32,38,39] for free

groups, [18] for free partially commutative monoids (trace monoids), [19] for free

partially commutative groups (called semifree groups in [2,3], right-angled Artin

groups in [8], and graph groups in [21]), [15] for plain groups (free products of finite

and free groups), [12,55,61] for (relatively) torsion-free hyperbolic groups, [35] for

virtually-free groups and certain HNN-extensions and amalgamated free products,

and [31] for groups with a free regular length function.

In this paper, we will continue this stream of research by considering graph

products of monoids (Section 2.3). The graph product construction is a well-known

construction in mathematics, see e.g. [26,28], that generalizes both free products

and direct products: An independence relation on the factors of the graph product

specifies, which monoids are allowed to commute elementwise. Section 3 deals with

existential theories of graph products. Using a general closure result for existential

∗This work was done while the second author was affiliated with University of Stuttgart, FMI,
Germany.
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theories (Theorem 11), we will show in Section 3.3 that under some algebraic re-

striction on the factors of a graph product (ab = 1 = ac or ba = 1 = ca has to imply

a = c) the decidability of the existential theory of word equations is preserved under

graph products (Theorem 19). This transfer theorem remains also valid if we allow

constraints for variables, which means that the value of a variable may be restricted

to some specified set. More precisely, we will define an operation, which, starting

from a class of constraints for each factor monoid of the graph product, constructs

a class of constraints for the graph product. This construction is inspired by the

notion of bipartite automata, which was introduced by Sakarovitch [58,59] in order

to study rational sets in free products. We will also present an upper bound for

the space complexity of the existential theory of the graph product in terms of the

space complexities for the existential theories of the factor monoids. Using known

results from [35,55,61] it follows that the existential theory of word equations of a

graph product of finite monoids, free monoids, virtually-free groups, and torsion-

free hyperbolic groups is decidable. This result generalizes the decidability result

for graph products of finite monoids, free monoids, and free groups from [17].

In Section 4 we will investigate positive theories of equations (a sentence is

called positive if it is constructed from atomic formulas using only conjunctions,

disjunctions, and quantifiers). We prove that the positive theory of word equations

of a graph product of groups with recognizable constraints can be reduced to

• the positive theories with recognizable constraints of those factors of the

graph product that are allowed to commute elementwise with all the other

factors and

• the existential theories of the remaining factors.

As a corollary we obtain the decidability of the positive theory of a graph product

of finite and free groups with recognizable constraints. This generalizes the well-

known result of Makanin for free groups [38,39]. The technical part relies on a

generalization of the techniques introduced by Merzlyakov for free groups [44]. Our

decision method leads only to a nonelementary algorithm for the positive theory,

but additional restrictions on the graph underlying the graph product give us an

elementary upper bound. Recently, the decidability of the positive theory of a free

partially commutative group (i.e., a graph product of copies of Z) was also proved

in [11] using an alternative approach.

Our transfer theorems for graph products should be compared with similar re-

sults for existential and positive theories of HNN-extensions and amalgamated free

products (see [36] for a definition of these constructions) from [35].

A short version of this paper appeared in [16].

2. Preliminaries

For a binary relation → on some set, we denote by
+
→ (

∗
→) the transitive (reflexive

and transitive) closure of →. Let A be an alphabet (finite or infinite). The empty
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word over A is denoted by ε. The length of a word s ∈ A∗ is |s|, the set of symbols

from A that occur in s is alph(s).

An involution ι on A is a function ι : A→ A such that ι(ι(a)) = a for all a ∈ A.

The involution may have fixpoints, i.e., ι(a) = a. A monoid involution on a monoid

M = (M, ◦, 1) is an involution ι : M → M such that ι(a ◦ b) = ι(b) ◦ ι(a) for all

a, b ∈ M and ι(1) = 1. A partial monoid involution on a monoid M is given by a

submonoid I of M together with a monoid involution ι : I → I.

We assume some familiarity with computational complexity, see e.g. the text-

book [50] for more details.

2.1. Mazurkiewicz traces

For a detailed introduction into trace theory see [20]. An independence alphabet is

a pair (A, I), where A is a possibly infinite set and I ⊆ A × A is symmetric and

irreflexive. The relation I is known as the independence relation, its complement

D = (A×A) \ I is the dependence relation. The pair (A,D) is called a dependence

alphabet. For a ∈ A, we let I(a) = {b ∈ A | (a, b) ∈ I} and D(a) = {b ∈ A |

(a, b) ∈ D} = A \ I(a). An (A, I)-clique is a subset B ⊆ A such that (a, b) ∈ I for

all a, b ∈ B with a 6= b. Let F(A, I) denote the set of all finite (A, I)-cliques. Let

≡I be the smallest congruence on A∗ that contains all pairs of the form (ab, ba)

with (a, b) ∈ I. The trace monoid (free partially commutative monoid) M(A, I)

associated to (A, I) is the quotient monoid A∗/≡I ; its elements are called traces.

Since A may be infinite, we do not restrict to finitely generated trace monoids.

Extreme cases are free monoids (if D = A × A) and free commutative monoids (if

D = {(a, a) | a ∈ A}). Trace monoids were first investigated in [10]. Mazurkiewicz

[41] introduced them in computer science.

The trace represented by the word s ∈ A∗ is denoted by [s]I . The neutral element

of M(A, I) is the empty trace [ε]I , briefly ε. An element a ∈ A will be identified with

the trace [a]I . More generally, for a finite (A, I)-clique C, we can define a unique

trace [C]I = [a1a2 · · · an]I , where a1, a2, . . . , an is an arbitrary enumeration of C.

We will omit the subscript I if the independence relation is clear from the context.

Let t = [s]I ∈ M(A, I). We define |t| = |s| (the length of t), alph(t) = alph(s),

max(t) = {a ∈ A | ∃u ∈ A∗ : t = [ua]I}, and min(t) = {a ∈ A | ∃u ∈ A∗ : t =

[au]I}. Note that min(t) and max(t) are (A, I)-cliques. For two traces t, u ∈M(A, I)

we write (t, u) ∈ I if alph(t)× alph(u) ⊆ I.

Let f be a partially defined function on A with dom(f) = B ⊆ A. We say that

f is compatible with I if (a, b) ∈ I ∩ (B × B) implies (f(a), f(b)) ∈ I. This allows

us to lift f to a partially defined function on M(A, I) by setting f([a1 · · · an]I) =

[f(an) · · · f(a1)]I . The domain of this lifting is M(B, I). Note that we reverse the

order of the symbols in the f -image of a trace. In our applications, f will be always

a partial injection on A like for instance an involution ι : B → B that is defined on a

subset B ⊆ A. In this case, the lifting of ι to M(A, I) is a partial monoid involution

on M(A, I) with domain M(B, I). The structure (M(A, I), ι) is also called a trace
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monoid with partial involution. Assume that ιj : Aj → Aj (j ∈ {1, 2}) is a partially

defined involution, and Ij ⊆ Aj × Aj (j ∈ {1, 2}) is an independence relation.

Moreover, let g : A1 → A2. We define g(I1) = {(g(a), g(b)) | (a, b) ∈ I1}. If ιj is

compatible with Ij , g(I1) ⊆ I2, and g(ι1(a)) = ι2(g(a)) for all a ∈ dom(ι1), then g

can be uniquely lifted to a homomorphism g : (M(A1, I1), ι1) → (M(A2, I2), ι2) by

setting g([a1 · · · an]I1
) = [g(a1) · · · g(an)]I2

.

A trace t ∈ M(A, I) can be visualized by its dependence graph Dt. To define

Dt, choose an arbitrary word w = a1a2 · · · an, ai ∈ A, with t = [w]I and define

Dt = ({1, . . . , n}, E, λ), where E = {(i, j) | i < j, (ai, aj) ∈ D} and λ(i) = ai.

If we identify isomorphic dependence graphs, then this definition is independent

of the chosen word representing t. Moreover, the mapping t 7→ Dt is injective. As

a consequence of the representation of traces by dependence graphs, one obtains

Levi’s lemma for traces, see e.g. [20, p. 74], which is one of the fundamental facts

in trace theory. The formal statement is as follows, it holds for infinite alphabets A

as well.

Lemma 1. Let u1, . . . , um, v1, . . . , vn ∈M(A, I). Then

u1u2 · · ·um = v1v2 · · · vn

if and only if there exist wi,j ∈M(A, I) (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

• ui = wi,1wi,2 · · ·wi,n for every 1 ≤ i ≤ m,

• vj = w1,jw2,j · · ·wm,j for every 1 ≤ j ≤ n, and

• (wi,j , wk,ℓ) ∈ I if 1 ≤ i < k ≤ m and n ≥ j > ℓ ≥ 1.

The situation in the lemma will be visualized by a diagram of the following kind. The

i–th column corresponds to ui, the j–th row corresponds to vj , and the intersection

of the i–th column and the j–th row represents wi,j . Furthermore wi,j and wk,ℓ are

independent if one of them is left-above the other one.

vn w1,n w2,n w3,n . . . wm,n

...
...

...
...

...
...

v3 w1,3 w2,3 w3,3 . . . wm,3

v2 w1,2 w2,2 w3,2 . . . wm,2

v1 w1,1 w2,1 w3,1 . . . wm,1

u1 u2 u3 . . . um

A consequence of Levi’s Lemma is that trace monoids are cancellative, i.e., usv =

utv implies s = t for all traces s, t, u, v ∈M(A, I).

We end this section with a brief discussion of trace rewriting systems, which gen-

eralize semi-Thue systems [7,30] from words to traces. Formally, a trace rewriting

system over M(A, I) is a subset R ⊆ M(A, I) ×M(A, I). We define the one-step

rewrite relation →R on M(A, I) as follows: s →R t if there exist u, v ∈ M(A, I)

and (ℓ, r) ∈ R with s = uℓv and t = urv. With
∗
↔R we denote the least equiva-

lence relation on M(A, I) that contains →R, it is easily seen to be a congruence on
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M(A, I). Hence, we can define the quotient monoid M(A, I)/
∗
↔R that will briefly

be denoted by M(A, I)/R. Let RED(R) = {t | ∃u : t →R u} be the set of reducible

traces and IRR(R) = M(A, I)\RED(R) be the set of irreducible traces (with re-

spect to R). The system R is terminating if there does not exist an infinite chain

s1 →R s2 →R s3 →R · · · in M(A, I). We say that R is length-reducing if |s| > |t| for

all (s, t) ∈ R. The system R is confluent if for all s, t, u ∈M(A, I) with tR
∗
← s

∗
→R u

there exists v ∈M(A, I) with t
∗
→R v R

∗
←u. We say that R is locally confluent if for

all s, t, u ∈ M(A, I) with tR← s→R u there exists v ∈ M(A, I) with t
∗
→R v R

∗
←u.

If R is terminating, then by Newman’s Lemma [48] confluence is equivalent to lo-

cal confluence. If R is both terminating and confluent, then for every s ∈ M(A, I)

there exists a unique normal form NFR(s) ∈ IRR(R) such that s
∗
→R NFR(s). This

normal form is the unique irreducible trace in the equivalence class with respect to
∗
↔R of the trace s.

In general, it is undecidable whether a finite length-reducing trace rewriting

system is confluent, see [47]. This is in sharp contrast to semi-Thue systems, and

makes confluence proofs challenging.

2.2. Rational and recognizable sets

Let M = (M, ◦, 1) be a monoid. The product of two sets L1, L2 ⊆ M is L1 ◦ L2 =

{a1 ◦ a2 | a1 ∈ L1, a2 ∈ L2}. The Kleene star of L ⊆ M is L∗ =
⋃

i≥0 L
i, where

L0 = {1} and Li+1 = L◦Li for i ≥ 0. The set RAT(M) of all rational subsets ofM is

the smallest class of subsets that contains every finite subset of M and that is closed

under union, product, and Kleene star. A subset L ⊆ M is called recognizable if

there exists a finite monoid S and a monoid homomorphism h :M→ S, which may

be assumed to be surjective, such that L = h−1(h(L)). The class of all recognizable

subsets of M is denoted by REC(M).

The classes REC(M) and RAT(M) are classical, see e.g. [6]. If M is a finitely

generated monoid, then REC(M) ⊆ RAT(M) [42]. In general, REC(M) is a proper

subset of RAT(M). For instance, a subgroup of a group G is recognizable if and only

if it has finite index in G [6, p. 55]. Hence, a finite subgroup of an infinite group is

rational but not recognizable. Another example, where REC(M) is a proper subset

of RAT(M), is the trace monoidM = N×N [20, p. 177]. For a free monoid Γ∗ we

have REC(Γ∗) = RAT(Γ∗) by Kleene’s Theorem.

For every monoidM, the class REC(M) is an effective boolean algebra, but in

general REC(M) is neither closed under products nor Kleene stars. On the other

hand RAT(M) is in general not a boolean algebra, for instance RAT(N × {a, b}∗)

is not closed under intersection, see e.g. [20, Example 6.1.16].

For a trace monoid M = M(A, I) with A finite, it is easy to see that L ∈ REC(M)

if and only if the language {u ∈ A∗ | [u]I ∈ L} is a regular subset of A∗, whereas

L ∈ RAT(M) if and only if there is a regular language K ⊆ A∗ such that L =

{[u]I | u ∈ K}. Thus, every finite subset of M is recognizable. Moreover, REC(M)
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is closed under products and connected Kleene stars [49].a Therefore, for a finite

trace rewriting system R over a trace monoid M, we have RED(R) ∈ REC(M) and

IRR(R) ∈ REC(M).

2.3. Graph products

In this section we will introduce graph products of monoids. The graph product con-

struction generalizes both the free product and the direct product. Graph products

were introduced in [26].

Let (Σ, IΣ) be a finite independence alphabet, i.e., Σ is finite, and let Mσ =

(Mσ, ◦σ, 1σ) be a monoid for every σ ∈ Σ. Let Aσ = Mσ \ {1σ}, and define an

independence alphabet (A, I) by

A =
⋃

σ∈Σ

Aσ and I =
⋃

(σ,τ)∈IΣ

Aσ ×Aτ ,

where w.l.o.g. Aσ ∩Aτ = ∅ for σ 6= τ . Let

Rσ = {(ab, c) | a, b, c ∈ Aσ, a ◦σ b = c} ∪ {(ab, ε) | a, b ∈ Aσ, a ◦σ b = 1σ}

and the define the trace rewriting system R over M(A, I) as R =
⋃

σ∈ΣRσ. Then the

graph product P(Σ, IΣ, (Mσ)σ∈Σ) is the quotient monoid M(A, I)/R. Special cases

are the free product ∗σ∈ΣMσ (if IΣ = ∅) and the direct product
∏

σ∈ΣMσ (if IΣ =

(Σ× Σ) \ {(σ, σ) | σ ∈ Σ}). Let us fix a graph product P = P(Σ, IΣ, (Mσ)σ∈Σ) for

the further discussion. The crucial fact for our further investigation is the following,

a proof can be found in [33]:

Lemma 2. The trace rewriting system R is confluent.

Since R is also terminating, the previous lemma implies that P is in one-to-one

correspondence with IRR(R) ⊆ M(A, I), which is the set of all traces that do not

contain a factor of the form ab with a, b ∈ Aσ for some σ ∈ Σ.

2.4. Relational structures and logic

For more details on first-order logic see e.g. [29]. The notion of a structure (or model)

is defined as usual in logic. Formally, we will only consider relational structures,

but we will feel free to use also constants and (partially defined) operations. They

can be encoded by relations in the usual way. Let us fix a relational structure

A = (A, (Ri)i∈J), where Ri ⊆ Ani , i ∈ J . The signature of A contains the equality

symbol =, and for each i ∈ J it contains a relation symbol of arity ni that we

denote without risk of confusion by Ri as well. Given further relations Rj , j ∈ K,

J ∩K = ∅, we also write (A, (Ri)i∈K) for the structure (A, (Ri)i∈J∪K). It is called

an extension of A.

aA Kleene star L∗, where L ⊆ M, is called connected if every t ∈ L is a connected trace, i.e., we
cannot write t = uv with (u, v) ∈ I and u 6= ε 6= v.
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Next, let us introduce first-order logic (FO-logic). Let V be a countable infinite

set of first-order variables, which range over elements of the universe A. First-order

variables are denoted by x, y, z, x′, etc. FO-formulas over the signature of A are

constructed from the atomic formulas Ri(x1, . . . , xni
) and x = y (where i ∈ J

and x1, . . . , xni
, x, y ∈ V) using boolean connectives and (existential and universal)

quantifications over variables from V. The notion of a free variable is defined as

usual. A formula without free variables is called a sentence. If ϕ(x1, . . . , xn) is an

FO-formula with free variables among x1, . . . , xn and a1, . . . , an ∈ A, then A |=

ϕ(a1, . . . , an) means that ϕ evaluates to true in A if the free variable xi evaluates

to ai. The first-order theory of A, denoted by FOTh(A), is the set of all first-order

sentences ϕ such that A |= ϕ. The existential first-order theory ∃FOTh(A) of A is

the set of all sentences in FOTh(A) of the form ∃x1 · · · ∃xn : ϕ(x1, . . . , xn), where

ϕ(x1, . . . , xn) is a boolean combination of atomic formulas. The positive theory

posTh(A) is the set of all sentences in FOTh(A) that do not use negations, i.e., that

are built from atomic formulas using conjunctions, disjunctions, and existential and

universal quantifications.

The length |ϕ| of an FO-formula is the length of the binary encoding of ϕ.

Here, we have to assume that the index set J for the relations is finite or countably

infinite. Then, every relation Ri can be encoded by a finite bit string. We do not

define the precise binary encoding of formulas because it is not really relevant for

the purpose of this paper.

We view a monoid M = (M, ◦, 1) as a relational structure by considering the

multiplication ◦ as a ternary relation and the constant 1 as a unary relation. Instead

of ◦(x, y, z) we write x ◦ y = z or briefly xy = z. We will also consider extensions

(M, (Ri)i∈J) of the structure M, where Ri is a relation of arbitrary arity over

M . In case C is a class of subsets of M , we also write (M, C, (Ri)i∈J) instead of

(M, (L)L∈C , (Ri)i∈J ) and call formulas of the form x ∈ L for L ∈ C constraints. In

many cases, a partial monoid involution ι will belong to the Ri (see e.g. Section 3.1).

It is viewed as a binary relation on M .

Remark 3. Usually the (existential) first-order theory of a monoid is defined by

allowing arbitrary equations of the form u = v, where u and v are words over the

variables, as atomic predicates. But this formulation is easily seen to be equivalent

to our definition and we deliberately write down such equations. Moreover, also

constants fromM are usually allowed in equations. We can deal with constants by

including them as singleton subsets to the additional relations Ri.

Note that ifM is finitely generated by Γ, then constants from Γ suffice in order

to define all monoid elements ofM. In this case, we call FOTh(M, (a)a∈Γ) the first-

order theory ofM with constants. On the other hand, the further investigations are

not restricted to finitely generated monoids.

A well-known example of a decidable theory of equations is Presburger’s Arith-

metic [52]. Translated into our framework, the results of [5] imply the following

statement, where RAT(N) and RAT(Z) are the classes of semi-linear sets in N and
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Z, respectively:

Proposition 4 (cf [5]). If M = N or M = Z, then FOTh(M,RAT(M)) belongs

to SPACE(22O(n)

).

Remark 5. It is known that FOTh({a, b}∗, a, b) is undecidable [53], in fact already

the ∀∃3-fragment of this theory is undecidable [22,40]. Together with Presburger’s

result, it follows that the decidability of the full first-order theory of equations is

not preserved under free products. For a restricted class of monoids, we will show

such a closure result in Section 3.3 for the existential case, even for general graph

products.

The following result, which will be needed later, can be easily deduced from Propo-

sition 4, basically because the free product Z/2Z ∗ Z/2Z of two copies of Z/2Z is

isomorphic to the semi-direct product of Z by Z/2Z, see [17] for a proof.

Corollary 6. For M = Z/2Z ∗ Z/2Z, the theory FOTh(M,RAT(M)) belongs to

SPACE(22O(n)

).

Another example of a theory that can be easily reduced to Presburger’s Arithmetic

is the theory of the bicyclic monoid {a, b}∗/ab=ε with the constants a and b and the

sets a∗ and b∗ as constraints:

Corollary 7. The theory FOTh({a, b}∗/ab=ε, a, b, a
∗, b∗) is in SPACE(22O(n)

).

Proof. An element of {a, b}∗/ab=ε can be uniquely written as bman for m,n ≥ 0.

Moreover, (biaj)(bkaℓ) = bman in {a, b}∗/ab=ε if and only if either j > k, m = i, and

n = ℓ+ j − k or j ≤ k, m = i+ k − j, and n = ℓ. This is a formula of Presburger’s

Arithmetic over Z.

3. Existential theories of graph products

Based on results from [19] for (finitely generated) trace monoids with a partial

involution (see Section 3.1), we will prove in Section 3.2 a general preservation

theorem for existential theories. In Section 3.3 we will use this result in order to

show that for a large class of monoids the decidability of the existential theory is

preserved under graph products.

3.1. Trace monoids with a partial involution

All our decidability results in this section are based on the main result from [19]. In

order to state this result in its whole generality, we have to introduce the following

graph theoretical concept: Let (A, I) be an independence alphabet. We define on A

an equivalence relation ∼I by a ∼I b if and only if I(a) = I(b) (which is equivalent

to D(a) = D(b)). Note that a ∼I b implies (a, b) 6∈ I: if I(a) = I(b) and (a, b) ∈ I,

then also (a, a) ∈ I, which contradicts the irreflexivity of I. The following lemma

will be needed later.
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Lemma 8. For s, t ∈ M(A, I) we have s 6= t if and only if there exists an equiva-

lence class C ⊆ A of ∼I such that one of the following three cases holds:

∃u, v, w ∈M(A, I)∃a, b ∈ C : s = uav ∧ t = ubw ∧ a 6= b (4)

∃u, v, w ∈M(A, I) : s = uv ∧ t = uw ∧ v ∈ C M(A, I) ∧ w 6∈ C M(A, I) (5)

∃u, v, w ∈M(A, I) : s = uv ∧ t = uw ∧ v 6∈ C M(A, I) ∧ w ∈ C M(A, I) (6)

Proof. The if-direction is easy to see using the fact that M(A, I) is cancellative

and that C × C ⊆ D for every equivalence class C of ∼I . Now assume that s 6= t.

Since M(A, I) is cancellative, we can assume by induction that min(s)∩min(t) = ∅.

If either s or t is empty, then (5) or (6) holds for some C (with u = ε). Now assume

that s 6= ε 6= t. Moreover, assume that (4) does not hold. Take a ∈ min(s) and let

C be the unique equivalence class of ∼I containing a. Since a 6∈ min(t) and (4) does

not hold, we have C ∩min(t) = ∅. Hence, (5) holds (with u = ε).

An equivalence class B of ∼I is called a thin clan of (A, I), if I(a) 6= ∅ for some

(and hence all) a ∈ B. The cardinality of the set of thin clans of (A, I) is denoted

by τ(A, I) – of course it may be infinite if A is infinite. The following facts are easy

to verify:

• τ(A, I) is bounded by the cardinality of A.

• There exist at most one equivalence class of ∼I , which is not a thin clan.

It consists of all the isolated nodes of (A, I).

• The cardinality of a maximal (A, I)-clique is at most max{1, τ(A, I)}.

• τ(A, I) 6= 1, and τ(A, I) = 0 if and only if I = ∅.

For the independence alphabet below, the equivalence classes of ∼I are {a, b, f} and

{c, d, e}. Both of them are thin clans.

a

b

c

d

e

f

Now we can state the main result from [19].

Theorem 9. For every k ≥ 0, the following problem is in PSPACE:

INPUT: A finite independence alphabet (A, I) with τ(A, I) ≤ k, a partial in-

volution ι on A that is compatible with I, and an existential sentence φ over the

signature of (M(A, I), ι,REC(M(A, I))) (with ι lifted to M(dom(ι), I)).

QUESTION: Does (M(A, I), ι,REC(M(A, I))) |= φ hold?

A few remarks should be made on Theorem 9.

• A recognizable set L ∈ REC(M(A, I)) has to be represented by a finite

automaton for the regular language {u ∈ A∗ | [u]I ∈ L}. This is crucial. For

9
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instance, if recognizable trace languages are represented by loop-connected

automata (see e.g. [46]), then already universality is EXPSPACE-complete

for some fixed independence alphabet [46].

• Since every singleton subset belongs to REC(M(A, I)), constants are im-

plicitly allowed in Theorem 9.

• In [19], Theorem 9 is only stated for a totally defined involution ι : A→ A.

But if the involution is only defined on B ( A, then we can introduce a

new dummy symbol a for every a ∈ A\B, extend the involution by ι(a) = a

and ι(a) = a, and restrict every variable to the original alphabet A, which

is a recognizable constraint.

Theorem 9 cannot be extended to the case of rational constraints: ForM = {a, b}∗×

{c, d}∗ it is undecidable whether for given L1, L2 ∈ RAT(M) it holds L1 ∩ L2 = ∅,

see [1]. A further investigation leads to the following characterization of Muscholl,

see [45, Prop. 2.9.2 and 2.9.3].

Proposition 10. Let M = M(A, I) be a trace monoid with A finite. Then

∃FOTh(M,RAT(M)) is decidable if and only if M is a free product of free com-

mutative monoids, i.e., M = ∗ni=1Nki for n, k1, . . . , kn ∈ N.

3.2. A general preservation theorem

The aim of this section is to prove a general preservation theorem for existential

theories. We will apply this result in the next section to existential theories of graph

products.

For the further discussion let us fix a set A together with a partial involution ι

on A and a countable subset C ⊆ 2A. Let

A = (A, ι, (L)L∈C). (7)

Moreover, we have given an independence relation I ⊆ A×A and additional pred-

icates Rj (1 ≤ j ≤ m) of arbitrary arity on A such that:

(a) ι is compatible with I,

(b) the set {I(a) | a ∈ A} is finite (thus, ∼I has only finitely many equivalence

classes),

(c) dom(ι) as well as every equivalence class of ∼I belong to C, and

(d) ∃FOTh(A, (Rj)1≤j≤m) is decidable.

Due to (a), we can lift ι to a partial monoid involution on M(A, I). Moreover, (b)

and (c) imply that the independence relation I is definable by a boolean formula

over (A, (L)L∈C), because I is a finite union of Cartesian products of equivalence

classes of ∼I .

From the unary predicates in C we construct a set L(C, I) ⊆ 2M(A,I) as follows:

A C-automaton A is a finite automaton in the usual sense, except that every edge

of A is labeled with some language L ∈ C. The language L(A) ⊆ A∗ is defined

10
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in the obvious way: a1a2 · · · an ∈ L(A) (ai ∈ A) if and only if there exists a path

q0
L1−−→ q1

L2−−→ q2 · · ·
Ln−1
−−−→ qn−1

Ln−−→ qn in A such that q0 is the initial state of A,

qn is a final state of A, and ai ∈ Li for 1 ≤ i ≤ n. We say that A is I-closed if

[u]I = [v]I and u ∈ L(A) imply v ∈ L(A). In the following, we will identify L(A)

with the set of traces {[u]I | u ∈ L(A)}. Then L ⊆ M(A, I) belongs to the class

L(C, I) if there exists an I-closed C-automaton A with L(A) = L. We briefly write

L(C) instead of L(C, I). For effectiveness statements, it is necessary that languages in

C have some finite representation. Then, also languages from L(C) have a canonical

finite representation by I-closed C-automata and the size of a C-automaton can be

defined in a natural way.

Since A ⊆ M(A, I), we can view every relation Rj also as a relation over the

trace monoid M(A, I). This is done in the following theorem,b which is the main

result of this section:

Theorem 11. Let A, I, and (Rj)1≤j≤m satisfy (a)–(d) above. Then

∃FOTh(M(A, I), ι, L(C), (Rj)1≤j≤m) (8)

is decidable. Moreover, if ∃FOTh(A, (Rj)j∈J) is decidable in NSPACE(s(n)), then

the theory (8) can be decided in NSPACE(2O(n) + s(nO(1))).

Later, the relations Rj will be the multiplication relations of the factors of a

given graph product.

3.2.1. Reducing the number of generators

In this section we will prove a purely combinatorial lemma that will be the key in

order to reduce the infinite set A of generators of M(A, I) in Theorem 11 to a finite

set of generators B. This will enable us to apply Theorem 9.

In the sequel, we will restrict to some reduct (A, ι, (L)L∈D) of the structure A

from (7), where D ⊆ C is finite and contains dom(ι) as well as every equivalence

class of ∼I . We denote this reduct by A as well. For the following consideration it is

useful to fix some enumeration L0, . . . , Lk of D, where dom(ι) = L0 and L1, . . . , Lℓ

(ℓ ≤ k) is an enumeration of the equivalence classes of ∼I . Thus, {L1, . . . , Lℓ} is a

partition of A. Moreover there exists a fixed independence relation I ′ on {1, . . . , ℓ}

such that I =
⋃

(i,j)∈I′ Li × Lj .

Given another structure B = (B, ζ, (Ki)0≤i≤k) (with ζ a partial involution on

B, Ki ⊆ B, and K0 = dom(ζ)), a mapping f : A → B is a strong homomorphism

from A to B if for all a ∈ A:

• a ∈ Li if and only if f(a) ∈ Ki for all 0 ≤ i ≤ k and

• f(ι(a)) = ζ(f(a)) if a ∈ dom(ι).

bRecall that in contrast to the Rj , the partial involution ι was lifted from A to the whole trace
monoid M(A, I).

11
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Lemma 12. We can effectively construct a finite structure

B = (B, ζ, (Ki)0≤i≤k)

(with ζ a partial involution on B, Ki ⊆ B, and dom(ζ) = K0) such that

• |B| ≤ 2k+1(2k+1 + 3) and

• there exist strong homomorphisms f : A → B and g : B → A with f

surjective.

Effectiveness in this context means that given a finite set D ⊆ C, we can construct

the finite structure B effectively.

Lemma 12 is our key lemma. The surjective strong homomorphism f : A → B

defines a partition of A into finitely many equivalence classes. Roughly speaking,

elements in the same equivalence classes do not have to be distinguished for the

purpose of satisfying a boolean formula over (M(A, I), ι, L(C), (Rj)1≤j≤m).

Proof of Lemma 12. First we will define B and f : A → B such that every Li is a

finite union of preimages f−1(c) (c ∈ B), i.e., f saturates every Li. Moreover,

(i) f(a) = f(a′) and a, a′ ∈ dom(ι) will imply f(ι(a)) = f(ι(a′)), and

(ii) f(a) = f(ι(a)) will imply a′ = ι(a′) for some a′ with f(a) = f(a′).

Figure 1, where k = 2 is assumed, visualizes the construction. The sets L1 and L2

are represented by the left half and lower half, respectively, of the whole square,

which represents A. The right half (resp. upper half) represents A\L1 (resp. A\L2),

the big inner circle represents dom(ι) = L0, and the thin lines represent the partial

involution ι on A. The 22 regions that are bounded by thick lines represent the

preimages f−1(b) (b ∈ B) and hence the elements of B. Of course, the sets f−1(b)

will be infinite in general.

Let [k] = {0, . . . , k}. We realize B as a subset

B ⊆ 2[k] ∪ (2[k] × 2[k]) ∪ (2[k] × {0, 1}).

The specific representation of B is not really important, we only need some finite

representation. For a subset α ⊆ [k] define

Lα =
⋂

i∈α

Li ∩
⋂

i6∈α

A \ Li.

If α ⊆ [k] is such that 0 6∈ α (i.e., Lα∩dom(ι) = ∅) and Lα 6= ∅, then we put α into B

and define the function f on Lα by f(Lα) = α. Note that by assumption (d) we can

check effectively whether Lα 6= ∅, we just have to decide whether A |= ∃x : x ∈ Lα.

For instance the four outer regions in Figure 1 would be represented by {1, 2},

{1}, {2}, and ∅. If 0 ∈ α, i.e., Lα ⊆ dom(ι), then Lα has to be split into possibly

several (but finitely many) preimages of f in order to satisfy (i) and (ii) above.

To represent them in B, take a second subset β ⊆ [k] with 0 ∈ β. In case α 6= β

we check whether Lα ∩ ι(Lβ) 6= ∅, i.e., A |= ∃x ∈ Lα ∃y ∈ Lβ : x = ι(y). If this

12
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L1 A \ L1

L2

A \ L2

c

b

a

Fig. 1. The construction from the proof of Lemma 12

is true, then we put (α, β) and (β, α) into B and define f(Lα ∩ ι(Lβ)) = (α, β)

and f(Lβ ∩ ι(Lα)) = (β, α). Now assume that α = β. We proceed with testing

whether A |= ∃x ∈ Lα : x = ι(x). If this holds, then we put (α, α) into B and

define f(Lα ∩ ι(Lα)) = (α, α). For instance, the region containing a in Figure 1 is

represented by ({0, 1, 2}, {0, 1, 2}). On the other hand, if A |= ¬∃x ∈ Lα : x = ι(x),

then we check whether Lα∩ ι(Lα) 6= ∅, i.e., A |= ∃x, y ∈ Lα : ι(x) = y. If this holds,

then due to (ii) the set Lα∩ι(Lα) has to be split into precisely two preimages C0 and

C1 of f , where ι(a) ∈ Ci for all a ∈ C1−i. These two classes can be represented by

the pairs (α, 0) and (α, 1), which we put into B. We set f(Ci) = (α, i). For instance

the two regions containing b and c = ι(b) in Figure 1 are represented by ({0, 1}, 0)

and ({0, 1}, 1) (it does not matter which of the two possible assignments is chosen).

This completes the construction of the alphabet B as well as the definition of the

surjection f . The size bound |B| ≤ 2k+1(2k+1 + 3) follows immediately from the

construction.

We define the involution ζ on B as follows: If α, β ∈ 2[k] are such that (α, β) ∈ B,

then we define ζ(α, β) = (β, α). If α ∈ 2[k] is such that (α, 0), (α, 1) ∈ B, then

ζ(α, i) = (α, 1− i) for i ∈ {0, 1}. We define the set Ki ⊆ B by

Ki ={α ∈ B | α ∈ 2[k], i ∈ α} ∪ {(α, β) ∈ B | α, β ∈ 2[k], i ∈ α}∪

{(α, j) ∈ B | α ∈ 2[k], j ∈ {0, 1}, i ∈ α}.

This finishes the construction of B. Clearly Ki = f(Li), B \Ki = f(A \ Li), and

13
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ζ(f(a)) = f(ι(a)), i.e., f : A→ B is a strong homomorphism.

We have defined f : A → B such that if ζ(b) = b, then there ex-

ists a ∈ f−1(b) with ι(a) = a (see (ii)). This allows to select g(b) ∈

f−1(b) for every b ∈ B such that ι(g(b)) = g(ζ(b)). Moreover, since

g(b) ∈ f−1(b), we have b ∈ Ki if and only if f(g(b)) ∈ Ki if and

only if g(b) ∈ Li. Thus, g : B → A is a strong homomorphism as well.

Note that since the strong homomorphism f is surjective in the previous lemma

and {L1, . . . , Lℓ} is a partition of A, also {K1, . . . ,Kℓ} is a partition of B.

Now assume that we have given a third structure C = (C, ξ, (Λi)0≤i≤k), where

C is finite, ξ is a partial involution on C, Λi ⊆ C for 0 ≤ i ≤ k, dom(ξ) = Λ0, and

{Λ1, . . . ,Λℓ} is a partition of C (with Λi = ∅ allowed). In the sequel, an embedding

of C in A is an injective strong homomorphism h : C→ A.

Lemma 13. Given C as above, we can effectively construct a finite structure B =

(B, ζ, (Ki)0≤i≤k) (with ζ a partial involution on B, Ki ⊆ B, and dom(ζ) = K0)

together with an independence relation J ⊆ B ×B such that:

• C ⊆ B,

• |B| ≤ 2k+1(2k+1 + 3) + |C|,

• ζ is compatible with J , and

• for every embedding h : C → A there exist strong homomorphisms f :

A → B and g : B → A such that f(I) ⊆ J , g(J) ⊆ I, and f(h(c)) = c,

g(c) = h(c) for all c ∈ C.

Proof. By Lemma 12 we can construct a finite structure

B′ = (B′, ζ ′, (K ′
i)0≤i≤k)

such that

• dom(ζ ′) = K ′
0, |B

′| ≤ 2k+1(2k+1 + 3), and

• there exist strong homomorphisms f ′ : A → B′ and g′ : B′ → A with f ′

surjective.

W.l.o.g. B′ ∩ C = ∅. Note that {K ′
1, . . . ,K

′
ℓ} must be a partition of B′. Now we

define the structure

B = (B, ζ, (Ki)0≤i≤k)

by B = B′ ∪ C, ζ = ζ ′ ∪ ξ, and Ki = K ′
i ∪ Λi for 0 ≤ i ≤ k. The

given size bound for |B| in the lemma follows from |B′| ≤ 2k+1(2k+1 + 3). Since

{K1, . . . ,Kℓ} is a partition of B, we can define the independence relation J on B

by J =
⋃

(i,j)∈I′ Ki ×Kj . Recall here that I ′ is an independence relation {1, . . . , ℓ}

such that I =
⋃

(i,j)∈I′ Li × Lj .

Given an embedding h : C→ A, we define f : A→ B by f(h(c)) = c for c ∈ C

(since h is injective, this is well-defined) and f(a) = f ′(a) for a ∈ A \ h(C). We

14



November 7, 2007 14:5 WSPC/INSTRUCTION FILE graphprod

define g : B → A by g(b) = g′(b) for b ∈ B′ and g(c) = h(c) for c ∈ C. Since

h : C→ A, f ′ : A→ B′, and g′ : B′ → A are strong homomorphisms, the following

properties are easy to verify for all a ∈ A and b ∈ B = B′ ∪ C:

(i) a ∈ Li if and only if f(a) ∈ Ki and b ∈ Ki if and only if g(b) ∈ Li.

(ii) f(ι(a)) = ζ(f(a)) and g(ζ(b)) = ι(g(b)) (for the first identity note that a ∈

h(C) if and only if ι(a) ∈ h(C)).

Thus, f : A → B and g : B → A are strong homomorphisms with f(h(c)) = c

and g(c) = h(c) for all c ∈ C. Moreover, since I =
⋃

(i,j)∈I′ Li × Lj and J =⋃
(i,j)∈I′ Ki × Kj , (i) implies that (a, a′) ∈ I if and only if (f(a), f(a′)) ∈ J and

(b, b′) ∈ J if and only if (g(b), g(b′)) ∈ I. In particular, f(I) ⊆ J and g(J) ⊆ I.

In order to see that ζ is compatible with J assume that (b, b′) ∈ J and b, b′ ∈

dom(ζ) = K0. Then (g(b), g(b′)) ∈ I and g(b), g(b′) ∈ dom(ι) = L0. Since ι is

compatible with I, we obtain (ι(g(b)), ι(g(b′))) = (g(ζ(b)), g(ζ(b′))) ∈ I. Hence,

(ζ(b), ζ(b′)) ∈ J .

3.2.2. Proof of Theorem 11

For the proof of Theorem 11 let us take a boolean formula θ over the signature of

(M(A, I), ι, L(C), (Rj)1≤j≤m). We have to decide whether θ is satisfiable in the struc-

ture (M(A, I), ι, L(C), (Rj)1≤j≤m). For this, we will present a nondeterministic algo-

rithm that constructs a finitely generated trace monoid M(B, J) with a partial invo-

lution ζ and a boolean formula φ′ over the signature of (M(B, J), ζ,REC(M(B, J)))

such that θ is satisfiable in (M(A, I), ι, L(C), (Rj)1≤j≤m) if and only if for

at least one outcome of our nondeterministic algorithm, φ′ is satisfiable in

(M(B, J), ζ,REC(M(B, J))). This allows to apply Theorem 9.

Assume that every C-automaton in θ only uses sets among the finite set D ⊆ C.

Assume that also dom(ι) as well as every ∼I -equivalence class belongs to D. Let

D = {L0, . . . , Lk}, where L0 = dom(ι) and L1, . . . , Lℓ (ℓ ≤ k) is an enumeration

of the ∼I -equivalence classes of (A, I). Note that k ∈ O(|θ|) for any reasonable

encoding of formulas with constraints from L(C).

Step 1 (pushing negations down and eliminating disjunctions). First we

may push negations to the level of atomic subformulas in θ. Moreover, disjunctions

may be eliminated by nondeterministically guessing one of the two corresponding

disjuncts. Thus, we may assume that θ is a conjunction of atomic predicates and

negated atomic predicates. We replace every negated equation xy 6= z by xy =

z′∧ z 6= z′, where z′ is a new variable. Similarly an equation ι(x) 6= y is replaced by

ι(x) = z ∧ z 6= y. Thus, we may assume that all negated predicates in θ are of the

form x 6= y, x 6∈ L, and ¬Rj(x1, . . . , xn) for variables x, y, x1, . . . , xn and L ∈ L(D).

Step 2 (eliminating disequations). We can write θ as a conjunction φ ∧ ψ, where

ψ contains all predicates of the form (¬)Rj(x1, . . . , xn). Recall that Rj ⊆ A
nj , hence

the formula ψ is the “A-local” part of θ, which only speaks about the base structure
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(A, (Rj)1≤j≤m). Let x 6= y be a negated equation in φ, where x and y are variables.

Since x 6= y is interpreted in the trace monoid M(A, I), we can by Lemma 8 replace

x 6= y by either

x = zau ∧ y = zbv ∧ a, b ∈ Li ∧ a 6= b or

x = zu ∧ y = zv ∧ u ∈ Li M(A, I) ∧ v 6∈ Li M(A, I) or

x = zu ∧ y = zv ∧ u 6∈ Li M(A, I) ∧ v ∈ Li M(A, I),

where z, u, v, a, b are new variables and i ∈ {1, . . . , ℓ} is guessed nondeterministi-

cally. In the first case, we shift a, b ∈ Li ∧ a 6= b to the A-local part ψ. In the second

and third case, we have to construct an I-closed D-automaton for Li M(A, I), which

is easy, since all ∼I -equivalence classes belong to D. Thus, in the sequel we may

assume that φ does not contain negated equations.

Step 3 (eliminating local constraints in the non-local part). So far, we

have obtained a conjunction φ ∧ ψ, where φ (the non-local part) is interpreted

in (M(A, I), ι, L(D)) and ψ (the local part) is interpreted in the base structure

(A, (Rj)1≤j≤m). The non-local part φ does not contain negated equations. Let Ξ be

the set of all variables that occur in φ ∧ ψ, and let Ω ⊆ Ξ contain all variables

that occur in the local part ψ. Thus, all variables from Ω are implicitly restricted to

A ⊆ M(A, I). Note that variables from Ω may of course also occur in φ. In case φ

contains a constraint x ∈ L with L ∈ L(D) and x ∈ Ω, then we can guess an L′ ∈ D,

which labels a transition from the initial state to a final state of the automaton for

L, and replace x ∈ L by the constraint x ∈ L′. We shift this constraint to ψ. Hence,

we may assume that for every constraint x ∈ L that occurs in φ, we have x ∈ Ξ\Ω.

Step 4 (saturating the local part ψ). Next, for every variable x ∈ Ω we guess

whether x ∈ L0 = dom(ι) or x 6∈ dom(ι) holds and add the corresponding (negated)

constraint to ψ. In case x ∈ dom(ι) was guessed, we add a new variable x to Ω and

add ι(x) = x ∧ x ∈ L0 to ψ. Next, we guess for all different variables x, y ∈ Ω

(here Ω refers to the new set of variables including the copies x), whether x = y or

x 6= y. In case x = y is guessed, we can replace y by x everywhere. Thus, we may

assume that for all different variables x, y ∈ Ω the negated equation x 6= y belongs

to ψ. Finally, for every set Li with 1 ≤ i ≤ k and every x ∈ Ω we guess whether

x ∈ Li or x 6∈ Li holds and add the corresponding constraint to ψ. We denote the

resulting formula by ψ as well.

Most of the guessed local formulas ψ will be not satisfiable in (A, (Rj)1≤j≤m)

(e.g., if Li ∩Lj = ∅ and the constraints x ∈ Li and x ∈ Lj were guessed). But since

∃FOTh(A, (Rj)1≤j≤m) is decidable, we can effectively check whether the guessed

formula ψ is satisfiable. If it is not satisfiable, then we reject on the corresponding

computation path. Let us fix a specific guess, which results in a satisfiable local

formula ψ, for the further consideration.

Step 5 (applying Lemma 13). Now we construct a finite structure

C = (Ω̃, ξ, (Λi)0≤i≤k)
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from ψ as follows: Let Ω̃ = {x̃ | x ∈ Ω} be a disjoint copy of the set of variables Ω.

For 0 ≤ i ≤ k let Λi be the set of all x̃ ∈ Ω̃ such that x ∈ Li belongs to the local

part ψ. Finally, we define the partial involution ξ on Ω̃ as follows: The domain of ξ

is Λ0 and ξ(x̃) = ỹ in case ι(x) = y or ι(y) = x belongs to the local part ψ. Since ψ

is satisfiable and x 6= y belongs to ψ for all pairwise different variables x and y, ξ is

indeed a partial involution on Ω̃. Moreover, since {L1, . . . , Lℓ} is a partition of A,

{Λ1 . . . ,Λℓ} must be a partition of Ω̃ (with Λi = ∅ allowed). Thus, C satisfies all the

requirements preceding Lemma 13, and we can apply Lemma 13 to the structures

A and C. Hence, from C we can effectively determine a finite structure

B = (B, ζ, (Ki)0≤i≤k)

together with an independence relation J ⊆ B ×B such that

• Ω̃ ⊆ B,

• |B| ≤ |Ω̃|+ 2O(k) ≤ 2O(|θ|),

• ζ is compatible with J , and

• for every embedding h : C→ A there exist strong homomorphisms f : A→

B and g : B → A with f(I) ⊆ J , g(J) ⊆ I, and f(h(x̃)) = x̃, g(x̃) = h(x̃)

for every variable x ∈ Ω.

Since the partial involution ζ : B → B is compatible with J , we can lift ζ to a

partial involution on M(B, J). We denote this lifting by ζ as well.

Recall that we have to check whether there exist assignments κ : Ω → A and

λ : Ξ\Ω→M(A, I) such that κ satisfies ψ in (A, (Rj)1≤j≤m) and κ∪λ satisfies φ in

(M(A, I), ι, L(D)). We have already verified that the conjunction ψ is satisfiable in

(A, (Rj)1≤j≤m). For the following consideration let us fix an arbitrary assignment

κ : Ω → A that satisfies ψ in (A, (Rj)1≤j≤m).c Since x 6= y belongs to ψ for all

different variables x, y ∈ Ω, κ defines an embedding h : C → A by h(x̃) = κ(x) for

x ∈ Ω. Therefore, by Lemma 13, there exist strong homomorphisms f : A→ B and

g : B→ A with

∀x ∈ Ω : f(κ(x)) = x̃ ∧ g(x̃) = κ(x). (10)

Moreover, f(ι(a)) = ζ(f(a)) for all a ∈ A, g(ζ(b)) = ι(g(b)) for all b ∈ B, f(I) ⊆ J ,

and J ⊆ g(I). Hence, by lifting and f and g to M(A, I) and M(B, J), respectively, we

obtain the following homomorphisms between trace monoids with partial involution:

f : (M(A, I), ι) → (M(B, J), ζ)

g : (M(B, J), ζ)→ (M(A, I), ι).

Given an I-closed D-automatonA, we define a new automatonA′ by replacing every

edge p
Li−→ q in A by p

Ki−−→ q (and changing nothing else). Recall that Ki ⊆ B.

Since A is I-closed, A′ is easily seen to be J-closed. Moreover, since B is finite,

cWe do not have to determine this assignment explicitly, only its existence is important.
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L(A′) ⊆ M(B, J) is a recognizable trace language. Recall that for every 0 ≤ i ≤ k,

we have a ∈ Li if and only if f(a) ∈ Ki and b ∈ Ki if and only if g(b) ∈ Li. Thus,

the following statement is obvious:

Lemma 14. Let t ∈M(A, I) and u ∈M(B, J):

• t ∈ L(A) if and only if f(t) ∈ L(A′).

• u ∈ L(A′) if and only if g(u) ∈ L(A).

Next, we transform the non-local formula φ into a conjunction φ′, which will be

interpreted over (M(B, J), ζ,REC(M(B, J))), by replacing in φ every occurrence of

a variable x ∈ Ω by the constant x̃ ∈ Ω̃ ⊆ B. Thus, φ′ contains constants from

Ω̃ ⊆M(B, J) and variables from Ξ\Ω, which range over the trace monoid M(B, J).

Moreover, every constraint x ∈ L(A) (resp. x 6∈ L(A)) in φ is replaced by x ∈ L(A′)

(resp. x 6∈ L(A′)) (note that x ∈ Ξ \Ω by Step 3). Thus, all constraint languages in

φ′ are recognizable trace languages.

Lemma 15. The following two statements are equivalent:

(a) There exists an assignment λ : Ξ\Ω → M(A, I) such that κ ∪ λ satisfies the

boolean formula φ in (M(A, I), ι, L(D)).

(b) There exists an assignment λ′ : Ξ\Ω → M(B, J) that satisfies the boolean for-

mula φ′ in (M(B, J), ζ,REC(M(B, J))).

Proof. First, assume that (a) holds. We claim that (b) holds with λ′ = f ◦ λ.

Consider a constraint x ∈ L(A′) (resp. x 6∈ L(A′)) of φ′. Then x ∈ Ξ \ Ω and

x ∈ L(A) (resp. x 6∈ L(A)) is a constraint of φ. Thus, (κ ∪ λ)(x) = λ(x) ∈ L(A)

(resp. λ(x) 6∈ L(A)), which implies λ′(x) = f(λ(x)) ∈ L(A′) (resp. λ′(x) 6∈ L(A′))

by Lemma 14. Now let u′ = v′ be an equation of φ′, which results from the equation

u = v of φ. The only syntactic difference between u = v and u′ = v′ is that every

occurrence of every variable x ∈ Ω in u = v is replaced by the constant x̃ in

u′ = v′. The assignment κ ∪ λ is a solution of u = v in (M(A, I), ι). Since f is

a homomorphism between trace monoids with partial involution, f ◦ (κ ∪ λ) =

f ◦ κ ∪ f ◦ λ = f ◦ κ ∪ λ′ is a solution of u = v in (M(B, J), ζ). Since f(κ(x)) = x̃

for every x ∈ Ω by (10), the mapping λ′ is a solution of u′ = v′ in (M(B, J), ζ).

Now assume that (b) holds. We claim that (a) holds with λ = g ◦ λ′. Let

x ∈ L(A) (resp. x 6∈ L(A)) be a constraint of φ. Then x ∈ Ξ \ Ω and x ∈ L(A′)

(resp. x 6∈ L(A′)) is a constraint of φ′. Hence, λ′(x) ∈ L(A′) (resp. λ′(x) 6∈ L(A′)).

Lemma 14 implies that λ(x) = g(λ′(x)) ∈ L(A) (resp. λ(x) 6∈ L(A)). Now consider

an equation u = v of φ and let u′ = v′ be the corresponding equation of φ′. Thus,

λ′ is a solution of u′ = v′ in (M(B, J), ζ). Let the function π map every variable

x ∈ Ω to the constant x̃ ∈ Ω̃ ⊆ B. By construction of u′ = v′, λ′ ∪ π is a solution

of u = v in (M(B, J), ζ). Since g is a homomorphism between trace monoids with

partial involution and g(π(x)) = g(x̃) = κ(x) for every x ∈ Ω by (10), the mapping

g ◦ (λ′ ∪ π) = λ ∪ κ is a solution of u = v in (M(A, I), ι).
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For the previous lemma it is crucial that the conjunction φ does not contain negated

equations (see Step 2), because the homomorphisms f and g are not injective in

general, and therefore do not preserve inequalities.

Since Lemma 15 holds for every κ : Ω → A that satisfies ψ in the structure

(A, (Rj)1≤j≤m), and we already know that such an assignment exists, it only re-

mains to check whether φ′ is satisfiable in (M(B, J), ζ,REC(M(B, J))). By Theo-

rem 9 this can be done effectively. This proves the decidability statement in Theo-

rem 11.

For the upper complexity bound in Theorem 11 one has to notice the following

two points:

• The size of the new alphabet B is bounded by 2O(|θ|) and size of the formula

φ′ is bounded by |θ|O(1), where θ is the initial formula. Moreover, for the

number of thin clans we have τ(B, J) = τ(A, I), where the latter is a

fixed finite constant in Theorem 11. This allows to apply the complexity

statement from Theorem 9 in order to check in NSPACE(2O(|θ|)) whether

φ′ is satisfiable in (M(B, J), ζ,REC(M(B, J))).

• During the construction of B and φ′, we had to check the validity of exis-

tential formulas of size |θ|O(1) in the structure (A, (Rj)1≤j≤m), which can

be done in NSPACE(s(|θ|O(1))) by assumption.

3.3. Closure under graph products

In this section we will apply Theorem 11 in order to show that under some restric-

tions, the decidability of the existential theory is preserved by graph products. Other

closure results for graph products can be found for instance in [25,28,34,43,64,65].

Concerning graph products we will use the notation from Section 2.3 in the follow-

ing.

We fix a graph product P = P(Σ, IΣ, (Mσ)σ∈Σ) for the further discussion, where

Mσ = (Mσ, ◦σ, 1σ) is a monoid. Let Aσ = Mσ\{1σ} and define

A =
⋃

σ∈Σ

Aσ and I =
⋃

(σ,τ)∈IΣ

Aσ ×Aτ ,

where w.l.o.g. Aσ ∩Aτ for σ 6= τ . In Section 2.3 we have defined the trace rewriting

system

R =
⋃

σ∈Σ

{ab→ c | a, b, c ∈ Aσ, a ◦σ b = c} ∪ {ab→ ε | a, b ∈ Aσ, a ◦σ b = 1σ}

over M(A, I). We have stated that R is confluent (Lemma 2) and that P is in

one-to-one correspondence with IRR(R) ⊆M(A, I). Define the binary relations

invσ = {(a, b) ∈ Aσ ×Aσ | a ◦σ b = 1σ} and inv =
⋃

σ∈Σ

invσ. (13)

Let Uσ = dom(invσ), Vσ = ran(invσ), U =
⋃

σ∈Σ Uσ = dom(inv), and V =⋃
σ∈Σ Vσ = ran(inv).
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3.3.1. Constraints

Our announced closure result will also include constraints. In this paragraph we

present a general construction that defines a class of constraints in the graph product

P, starting from a constraint class for every factor monoidMσ.

For every σ ∈ Σ let Cσ ⊆ 2Mσ be a class of languages and let

Dσ = {L \ {1σ} | L ∈ Cσ} ⊆ 2Aσ .

It is not required that Dσ ⊆ Cσ. Let C =
⋃

σ∈Σ Cσ and D =
⋃

σ∈ΣDσ ⊆ 2A. Recall

the definition of the class L(D, I) ⊆ 2M(A,I) (briefly L(D)) from Section 3.2. We

define the class IL(C, I, R) ⊆ 2M(A,I) by

IL(C, I, R) = {L ∩ IRR(R) | L ∈ L(D, I)}.

In the following, we will briefly write IL(C) for IL(C, I, R). Using the one-to-one

correspondence between P and IRR(R), we may view L ∩ IRR(R) also as a subset

of the graph product P, hence IL(C) ⊆ 2P.

Alternatively, we can also define the class IL(C) by I-closed D-automata which

accept subsets of IRR(R). To see this, let A be an I-closed D-automaton. The

closure properties of recognizable trace languages (Section 2.2) imply that

K =
⋃

σ∈Σ

M(Σ, IΣ)σσM(Σ, IΣ) ∈ REC(M(Σ, IΣ)).

Hence,

L = Σ∗ \ {u ∈ Σ∗ | [u]IΣ
∈ K} ⊆ Σ∗ (15)

is a regular string language. Let B be a finite automaton for L. An automaton for

L(A) ∩ IRR(R) can be obtained by a product construction from A and B. The

product automaton contains a transition (p, q)
D
→ (p′, q′) if and only if p

D
→ p′ is a

transition of A, D ⊆ Aσ, and q
σ
→ q′ is a transition of B.

The following lemma will be needed later:

Lemma 16. If P = P(Σ, IΣ, (Mσ)σ∈Σ) is an arbitrary graph product of monoids

Mσ, then REC(P) ⊆ IL(C) for C =
⋃

σ∈Σ REC(Mσ).

Proof. Let D =
⋃

σ∈Σ{L \ {1σ} | L ∈ REC(Mσ)} \ {∅}. Assume that L ∈ REC(P)

and let ̺ : P → S be a surjective homomorphism onto the finite monoid S such

that L = ̺−1(F ) for F ⊆ S. We define Aσ, A, I, and R as above. Let

∆σ = {Aσ ∩ ̺
−1(q) | q ∈ S} \ {∅} ⊆ 2Aσ

and ∆ =
⋃

σ∈Σ ∆σ. Clearly, ∆σ is a partition of Aσ with finitely many classes.

Note that if we restrict ̺ to Mσ ⊆ P, we obtain a homomorphism from Mσ to S.

Thus, ∆ ⊆ D. Let I∆ =
⋃

(σ,τ)∈IΣ
∆σ ×∆τ . Hence, (∆, I∆) is a finite independence

alphabet. Define the homomorphism β : M(∆, I∆) → S by β(Aσ ∩ ̺
−1(q)) = q if

Aσ∩̺
−1(q) 6= ∅. Since (B,C) ∈ I∆ implies β(B)β(C) = β(C)β(B) in S, this defines

indeed a homomorphism. Thus, β−1(F ) ∈ REC(M(∆, I∆)). We can also define a
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homomorphism α : M(A, I) → M(∆, I∆) by mapping a ∈ A to the unique B ∈ ∆

with a ∈ B. If h : M(A, I)→ P denotes the canonical homomorphism that maps a

trace t ∈ M(A, I) to the element of P represented by t, then β(α(t)) = ̺(h(t)) for

all t ∈ M(A, I). Let A be a finite state automaton that accepts {w ∈ ∆∗ | [w]I∆
∈

β−1(F )}. Since every edge of A is labeled with a set from ∆ ⊆ D, we can interpret

A also as a D-automaton, which is moreover I-closed. For every t ∈ M(A, I) we

have: t ∈ L(A) if and only if β(α(t)) ∈ F if and only if ̺(h(t)) ∈ F if and only

if h(t) ∈ ̺−1(F ) = L. Hence, L(A) = h−1(L), i.e., h(L(A) ∩ IRR(R)) = L. Thus,

L ∈ IL(C).

The other inclusion IL(C) ⊆ REC(P) for C =
⋃

σ∈Σ REC(Mσ) does not hold in

general: Take P = Z ∗ Z and let A (resp. B) be a subgroup of finite index in the

first (resp. second) copy of Z in P. Hence A,B ∈ REC(Z) [6]. But the automaton

A \ {1} B \ {1}

defines the subgroup A∗B ≤ Z∗Z, hence A∗B ∈ IL(C). But since A∗B has infinite

index in Z ∗ Z, A ∗B 6∈ REC(Z ∗ Z).

3.3.2. The main result

Throughout this section we will assume that the following two requirements hold:

Assumption 17. For all σ ∈ Σ and all a, b, c ∈ Mσ, if a ◦σ b = a ◦σ c = 1σ or

b ◦σ a = c ◦σ a = 1σ, then b = c. In other words, the relation invσ from (13) is a

partial injection.

For example, cancellative monoids (in particular free monoids and groups), the bi-

cyclic monoid {a, b}∗/ab=ε, and finite monoids satisfy all this requirement,d whereas

{a, b, c}∗/ab=ac=ε does not. By Assumption 17, inv =
⋃

σ∈Σ invσ is a partial injec-

tion on A with dom(inv) = U and ran(inv) = V . Since inv is compatible with the

independence relation I, we can lift inv to M(A, I) (see Section 2.1). The resulting

partial injection inv has domain M(U, I) and range M(V, I).

Assumption 18. For all σ ∈ Σ, the theory ∃FOTh(Mσ, Cσ) is decidable and Uσ, Vσ ∈

Cσ, i.e., Uσ, Vσ ∈ Dσ = {L \ {1σ} | L ∈ Cσ}.

The following theorem is the main result of this section.

Theorem 19. Let (Σ, IΣ) be a finite independence alphabet. Let Mσ be a monoid

and Cσ ⊆ 2Mσ be a class of languages such that Assumption 17 and Assumption 18

hold. Then, for C =
⋃

σ∈Σ Cσ,

∃FOTh(P(Σ, IΣ, (Mσ)σ∈Σ), IL(C)) (16)

dFor a finite monoid note that a ◦ b = 1 implies that the mapping x 7→ b ◦ x is injective, hence it

is surjective. Thus, there exists c with b ◦ c = 1. Clearly a = c, i.e., b ◦ a = 1 and invσ is a partial
involution.

21



November 7, 2007 14:5 WSPC/INSTRUCTION FILE graphprod

is also decidable. Moreover, if each of the theories ∃FOTh(Mσ, Cσ) belongs to

NSPACE(s(n)), then (16) can be decided in NSPACE(2O(n) + s(nO(1))).

Before we go into the details of the proof of Theorem 19 let us first present an appli-

cation. The existential theories with constants and Uσ and Vσ as constraints of the

following (classes of) monoids are decidable: finite monoids (trivial), free monoids

[39], the bicyclic monoid (Corollary 7), virtually-free groups [35], and torsion-free

hyperbolic groups [61].e Since all these monoids satisfy Assumption 17, we obtain

the following corollary:

Corollary 20. Let P be a graph product of finite monoids, free monoids, bicyclic

monoids, virtually-free groups, and torsion-free hyperbolic groups, and let Γ be a

finite generating set for P. Then ∃FOTh(P, (a)a∈Γ) is decidable.

The following example shows that already for quite simple monoids, for which As-

sumption 17 fails, the decidability of the existential theory is a difficult problem.

Example 21. Let M = {a, b, c}∗/{ac = bc = 1}. This monoid does not satisfy

Assumption 17. Clearly, the free monoid {a, b}∗ is a submonoid ofM, and we have

x ∈ {a, b}∗ if and only if ∃y : xy = 1 in M. Moreover, |x| = |y| for x ∈ {a, b}∗ if

and only if ∃z : xz = yz = 1 in M. This shows that the existential theory of a free

monoid with length-constraints |x| = |y| can be reduced to the existential theory

ofM. Whether the former theory is decidable is a longstanding open problem, see

e.g. [9].

We begin the proof of Theorem 19 with a few simple observations. We have

R = {ab→ ε | (a, b) ∈ inv} ∪
⋃

σ∈Σ

{ab→ c | a, b, c ∈ Aσ, a ◦σ b = c}.

We may assume that Mσ ∈ Cσ, i.e., Aσ ∈ D, for every σ ∈ Σ without violating

Assumption 18.f Hence, since every equivalence class of ∼I is a union of some

of the Aσ, we may assume that these classes belong to D as well. Finally, since

Uσ, Vσ ∈ Dσ, we may also assume that U, V, U ∪ V ∈ D. In particular, M(U, I),

which is the domain of the lifting of inv to M(A, I), belongs to L(D).

Note that Aσ ∈ D also implies that IRR(R) ∈ L(D): An I-closed D-automaton

for IRR(R) can be obtained from a finite automaton for the language L in (15) by

replacing every label σ by Aσ. It follows that every constraint x ∈ IL(C) can be

written as x ∈ L1 ∧ x ∈ L2 with L1, L2 ∈ L(D).

eRips and Sela have shown in [55] that it is decidable whether a word equation is solvable over a
torsion-free hyperbolic group. In [61], Sela extended the approach of [55] such that also negated
equations can be handled.
fNote that a constraint of the form x ∈ Uσ could be eliminated by ∃y : x ◦σ y = 1σ , but this is

not possible for constraints x 6∈ Uσ , since we would introduce a universal quantifier in this way.
Therefore we assume explicitly that Uσ ∈ Cσ .
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3.3.3. Isolating the structure of the Mσ

In this paragraph we finish the proof of Theorem 19. Assume that for every σ ∈ Σ

the theory ∃FOTh(Mσ, Cσ) is decidable in NSPACE(s(n)). Then the same holds

for ∃FOTh(Aσ, ◦σ, invσ, (L)L∈Dσ
), where ◦σ is considered as a ternary relation that

is restricted to Aσ. Since by Assumption 17, inv : U → V is a partial injection, we

can define a partial involution ι on A with domain U ∪ V ∈ D by ι(a) = b if and

only if either inv(a, b) or inv(b, a) (note that inv(a, b) and inv(b, c) implies a = c).

This involution on A is compatible with I, hence it can be lifted to a partial monoid

involution ι on M(A, I) with domain M(U ∪ V, I). Let

A = (A, ι, (L)L∈D).

Since the existential theory of a disjoint union of structures can be reduced (in poly-

nomial time) to the constituent structures (this is a very special case of Feferman-

Vaught decomposition [24]), it follows that ∃FOTh(A, (◦σ)σ∈Σ) is decidable in

NSPACE(s(n)) as well. Now we apply Theorem 11 to the structure A together

with the independence relation I and the additional relations ◦σ. Clearly, the struc-

ture (A, (◦σ)σ∈Σ), the constraint set D, and the independence relation I satisfy the

requirements from Section 3.2. It follows from Theorem 11 that

∃FOTh(M(A, I), ι, L(D), (◦σ)σ∈Σ)

is decidable in NSPACE(2O(n) + s(nO(1))).

Let θ be a boolean formula with atomic predicates of the form xy = z and x ∈ L

with L ∈ IL(C),g which is interpreted over (P, IL(C)). We have to check, whether

there exists an assignment for the variables in θ to elements in P that satisfies θ.

The rest of the section shows that θ can be transformed in polynomial time

into an equivalent existential statement over (M(A, I), ι, L(D), (◦σ)σ∈Σ). Thus, in

some sense we isolate the structure of the factor monoidsMσ into the “Mσ-local”

multiplication predicates ◦σ.

First, we may push negations to the level of atomic subformulas in θ. We replace

every negated equation xy 6= z by xy = z′ ∧ z 6= z′, where z′ is a new variable.

Thus, we may assume that all negated predicates in θ are of the form x 6= y and

x 6∈ L for variables x and y.

Recall that P ∼= M(A, I)/R and that R is confluent and terminating. Hence, if ŝ

denotes the unique trace from IRR(R) that represents s ∈ P, then for all s, t, u ∈ P

and L ∈ IL(C), we have:

• s = t if and only if ŝ = t̂,

• st = u in P if and only if ŝ t̂
∗
→R û, and

• s ∈ L if and only if ŝ ∈ L.

For the last point note that every L ∈ IL(C), viewed as a subset of M(A, I), is

contained in IRR(R).

gAtomic predicates of the form x = 1 are not necessary since {1} ∈ IL(C).
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Hence, if we add for every variable x in θ the constraint x ∈ IRR(R) (recall that

IRR(R) ∈ L(D)) and replace every equation xy = z in θ by the rewriting constraint

xy
∗
→R z, then we obtain a formula, which is satisfiable in the trace monoid M(A, I)

if and only if the original formula θ is satisfiable in P. Using the following lemma, we

can replace the rewriting constraints xy
∗
→R z by ordinary equations over M(A, I)

plus A-local ◦σ-predicates.

Lemma 22. There exists a fixed positive boolean formula

ψ(x, y, z, x1, . . . , xm)

over the signature of (M(A, I), ι, L(D), (◦σ)σ∈Σ) such that for all x, y, z ∈ IRR(R)

we have xy
∗
→R z in M(A, I) if and only if

(M(A, I), ι, L(D), (◦σ)σ∈Σ) |= ∃x1 · · · ∃xm : ψ(x, y, z, x1, . . . , xm). (20)

Proof. Recall that F(A, I) is the set of all independence cliques in (A, I). For the

further reasoning it is important to note that a, b ∈ Aσ and (a, c) ∈ I implies

(b, c) ∈ I.

First we show that for all x, y, z ∈ IRR(R), xy
∗
→R z in M(A, I) if and only if

there exist p, r, s, t, u ∈ IRR(R) and C1, C2 ∈ F(A, I) such that in (M(A, I), ι)

[C1][C2]
∗
→R u, inv(p, r), x = s [C1] p, y = r [C2] t, z = s u t. (21)

If (21) holds, then xy
∗
→R z follows immediately. Now assume that xy

∗
→R z. We can

choose p ∈M(A, I) of maximal length such that x = x′p, y = ry′, and inv(p, r). Let

C1 = max(x′) ∈ F(A, I), C2 = min(y′) ∈ F(A, I), and [C1][C2]
∗
→R u ∈ IRR(R).

Hence, there are s and t with x = s[C1]p, y = r[C2]t, and xy
∗
→R sut

∗
→R z. Note

that p, r, s, t, u, [C1], [C2] ∈ IRR(R). Since the length of p was chosen maximal, only

rules of the form (ab, c) ∈ R, where a ∈ C1, b ∈ C2, and a, b, c ∈ Aσ for some σ ∈ Σ,

can be applied to the trace [C1][C2]. Thus, alph(u) = C1 ∪ C2, and if (a, u) ∈ I for

a ∈ A, then also (a,C1) ∈ I. We claim that sut ∈ IRR(R), which implies z = sut

and hence (21).

Assume by contradiction that there exist ab ∈ dom(R) and traces q1, q2 such

that sut = q1abq2. Note that that all left-hand sides of R are included in A2 and

that ab is neither a factor of u nor of s nor of t, because they are irreducible. By

Levi’s Lemma 1 we obtain up to symmetry one of the following two diagrams:

q2 s2 u2 t2
ab a ε b

q1 s1 u1 t1

s u t

q2 s2 u2 t2
ab a b ε

q1 s1 u1 t1

s u t

Assume that a, b ∈ Aσ (σ ∈ Σ). Let us first consider the left diagram. Since (a, u1) ∈

I, (b, u2) ∈ I, and u = u1u2, we obtain (a, u) ∈ I and thus (a,C1) ∈ I. Furthermore,

from the diagram we obtain also (b, s2) ∈ I. Thus, (a, s2) ∈ I, which implies a ∈
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max(s). Together with (a,C1) ∈ I it follows that a ∈ max(s[C1]) = max(x′) = C1,

which contradicts (a,C1) ∈ I.

Now let us consider the right diagram. Again we have a ∈ max(s). Furthermore,

(a, u1) ∈ I, i.e., (b, u1) ∈ I. Hence, b ∈ min(u)∩Aσ. There are now two possibilities:

either there exists a′ ∈ C1∩Aσ or b ∈ C2 and (b, C1) ∈ I. If a′ ∈ C1∩Aσ, then s[C1]

would contain the factor aa′ ∈ dom(Rσ), which contradicts x = s[C1]p ∈ IRR(R).

If b ∈ C2 and (b, C1) ∈ I, then also (a,C1) ∈ I, which implies a ∈ max(s[C1]) = C1;

the same contradiction as in the previous paragraph.

Thus, xy
∗
→R z is equivalent to (21). Next, note that (21) is equivalent to

[C1][C2]
∗
→R u, x = s [C1] p, y = ι(p) [C2] t, p ∈M(U, I), z = s u t. (24)

Recall that M(U, I) belongs to L(D). It remains to replace the additional rewriting

constraints of the form [C1][C2]
∗
→R u, where C1, C2 ∈ F(A, I), by local equations

of the form x′ ◦σ y
′ = z′. Since Ci ∈ F(A, I) we can write down a disjunction over

all independence cliques C ′
1 and C ′

2 in (Σ, IΣ), with the meaning that C ′
i = {σ ∈

Σ | Ci ∩ Aσ 6= ∅}, and replace Ci in (24) by xi,1xi,2 · · ·xi,ni
, where ni = |C ′

i| ≤ |Σ|

and xi,j is a new variable. Moreover, we add the constraints xi,j ∈ Aσ(i,j), where

C ′
i = {σ(i, j) | 1 ≤ j ≤ ni}. Since there are at most |Σ|τ(Σ,IΣ)+1 many cliques

in (Σ, IΣ), this results in a disjunction of |Σ|O(τ(Σ,IΣ)) many conjunctions of size

O(|Σ|). Finally the rewriting constraint x1,1 · · ·x1,n1
x2,1 · · ·x2,n2

∗
→R u is equivalent

to a conjunction of at most |Σ| many local equations of the form x′ ◦σ y
′ = z′ with

x′, y′, z′ ∈ Aσ and a single equation over M(A, I).

Let us illustrate the last step in the previous proof with an example:

Example 23. Assume that Σ = {a, b, c, d} and the independence relation IΣ looks

as follows:

a b

c

d

Then the rewriting constraint

xaxbxc x
′
ax

′
bxd

∗
→R u,

where xa, x
′
a ∈ Aa, xb, x

′
b ∈ Ab, xc ∈ Ac, and xd ∈ Ad, is equivalent to

xa ◦a x
′
a = ya ∧ xb ◦b x

′
b = yb ∧ u = yaybxcxd ∧ ya ∈ Aa ∧ yb ∈ Ab.

Here, the equation u = yaybxcxd is interpreted in the trace monoid M(A, I).

By applying Lemma 22 to every rewriting constraint xy
∗
→R z, we obtain an equiv-

alent formula over (M(A, I), ι, (◦σ)σ∈Σ, L(D)). Since (Σ, IΣ) is assumed to be fixed

in Theorem 19, the size of the resulting conjunction increased only by a constant

factor. This concludes the proof of Theorem 19.
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4. Positive theories of graph products

In this section we consider positive theories of graph products of finitely generated

groups. Assume that P = P(Σ, IΣ, (Gσ)σ∈Σ) is a graph product such that every

Gσ is a finitely generated group. Let Γσ be a finite generating set for Gσ. Then P

is generated by Γ =
⋃

σ∈Σ Γσ. Let DΣ = (Σ × Σ) \ IΣ the dependence relation

corresponding to IΣ. A node σ ∈ Σ is called an isolated node of the dependence

alphabet (Σ,DΣ) if DΣ(σ) = {σ}. Throughout this section, we make the following

two assumptions:

Assumption 24. For every isolated node σ of the dependence alphabet (Σ,DΣ), the

positive theory posTh(Gσ, (a)a∈Γσ
,REC(Gσ)) is decidable.

Assumption 25. For every nonisolated node σ of (Σ,DΣ), the existential theory

∃FOTh(Gσ, (a)a∈Γσ
,REC(Gσ)) is decidable.

Since we restrict to finitely generated groups, we obtain finite representations for

recognizable constraints. More precisely, since P is a group, it follows that L ∈

REC(P) if and only if there exists a surjective group homomorphism ρ : P → S

onto a finite group S such that L = ρ−1(ρ(L)). Thus, L can be represented by the

finite group S, the homomorphism ρ and F ⊆ S with L = ρ−1(F ). To represent ρ,

it suffices to specify its value ρ(a) for every generator a ∈ Γ.

The aim of this section is to prove the following result:

Theorem 26. Let P = P(Σ, IΣ, (Gσ)σ∈Σ) by a graph product such that Assump-

tion 24 and Assumption 25 hold. Then posTh(P, (a)a∈Γ,REC(P)) is decidable.

Since the theory of a finite group is of course decidable, and the same holds for

the theory of Z with rational constraints (Proposition 4), we obtain the following

corollary, which was already stated in [17]:

Corollary 27. Let P be a graph product of finite groups and free groups. Then

posTh(P, (a)a∈Γ,REC(P)) is decidable.

Remark 28. Note that Corollary 27 cannot be extended by allowing monoids

for the factors of the graph product. Already the positive ∀∃3-theory of the free

monoid {a, b}∗ is undecidable [22,40]. Similarly, Corollary 27 cannot be extended

by replacing REC(P) by RAT(P), since the latter class contains a free monoid {a, b}∗

in case P = F2 is the free group of rank 2.

The proof of Theorem 26 follows the arguments from the proof of Corollary 18 in

[17]:

• In a first step, we will reduce posTh(P, (a)a∈Γ,REC(P)) to the positive

theories posTh(Pi, (a)a∈Γi
,REC(Pi)), 1 ≤ i ≤ n, where the Pi result from

the connected components of the dependence alphabet (Σ,DΣ). Thus, P =∏n

i=1 Pi. After this step, we may assume that (Σ,DΣ) is connected and (by

Assumption 24) contains at least two nodes.
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• Next, we will reduce posTh(P, (a)a∈Γ,REC(P)) (where the underlying de-

pendence alphabet (Σ,DΣ) is connected and contains at least two nodes)

to ∃FOTh(P ∗ F, (a)a∈Γ∪K ,REC(P ∗ F ) ∪ C). Here F = F (K) is the free

group generated by the finite set K, and the additional constraint class C

contains all subgroups of P∗F (K) of the form P∗F (K ′) for K ′ ⊆ K.h This

second step is inspired by techniques of Makanin and Merzlyakov [39,44]

developed for free groups. The proof of the main technical lemma is shifted

into Section 4.3.

• The last step consists of an application of Theorem 19. In order to ap-

ply this theorem to ∃FOTh(P ∗ F, (a)a∈Γ∪K ,REC(P ∗ F ) ∪ C), we have to

“decompose” the constraints using Lemma 16.

4.1. Simplifying the graph product P

In a first step we may assume that no finite group Gσ, σ ∈ Σ, is a direct product of

two finite nontrivial groups, since otherwise we could replace σ by two independent

nodes. In particular, if Gσ is not Z/2Z, then there must exist a ∈ Gσ such that

a2 6= 1σ, i.e., a 6= a−1 in Gσ. Next, assume that the dependence alphabet (Σ,DΣ)

consists of two nonempty disjoint components (Σ1,D1) and (Σ2,D2), which define

graph products P1 and P2, respectively. Then P = P1×P2. Furthermore by Mezei’s

Theorem, see e.g. [6], every L ∈ REC(P) is effectively a finite union of sets of the

form L1 × L2 with Li ∈ REC(Pi). Since the corresponding statement for singleton

sets (i.e., constants from Γ) holds as well, we may apply the following Proposition

29, which is a decomposition lemma in the style of the Feferman Vaught Theorem

[24], see [17] for a proof.

Proposition 29. Let M1 and M2 be monoids with classes C1 ⊆ 2M1 and C2 ⊆

2M2 . Let C ⊆ 2M1×M2 such that every L ∈ C is effectively a finite union of sets

of the form L1 × L2 with L1 ∈ C1 and L2 ∈ C2. If both (pos)FOTh(M1, C1) and

(pos)FOTh(M2, C2) are decidable, then (pos)FOTh(M1×M2, C) is decidable, too.

The construction in our proof of Proposition 29 may lead to a nonelementary blow-

up with respect to formula size. This will be the main complexity bottle neck in

our proof of Theorem 26.

By Proposition 29 and Assumption 24 we may assume that the dependence

alphabet (Σ,DΣ) is connected and contains at least two nodes. By Corollary 6 we

can also exclude the case that Σ contains exactly two DΣ-adjacent nodes, which

are both labeled by Z/2Z. Thus, we may assume that either the graph (Σ,DΣ)

contains a path consisting of three different nodes or one of the groups Gσ has a

generator g ∈ Gσ with g−1 6= g 6= 1σ. Hence, there exist three different generators

a ∈ Gσ(a) \ {1σ(a)}, b ∈ Gσ(b) \ {1σ(b)}, and c ∈ Gσ(c) \ {1σ(c)} such that

hA subgroup P ∗F (K′) with K′ (K is not a recognizable subset of P ∗F (K), since P ∗F (K′) has
infinite index in P ∗ F (K).
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• σ(a) 6= σ(b) and (σ(a), σ(b)) ∈ DΣ,

• σ(b) 6= σ(c) and (σ(b), σ(c)) ∈ DΣ, and finally

• either σ(a) 6= σ(c) or a 6= a−1 = c in Gσ(a).

Thus, the dependency between a, b, and c being used is

a−−b−−c.

In Section 4.3, a, b, and c will always refer to these three elements.

4.2. Reducing to the existential theory

Our strategy for reducing the positive theory of P to an existential theory is based on

[39,44], but the presence of partial commutation and recognizable constraints makes

the construction more involved: Given a positive sentence θ, which is interpreted

over P, we construct an existential sentence θ′, which is interpreted over a free

product P ∗ F of P and a free group F , such that θ is true in P if and only if θ′

is true in P ∗ F . Roughly speaking, θ′ results from θ by replacing the universally

quantified variables by the generators of the free group F .

Assume that we have given a positive boolean combination φ of equations with

constants and recognizable constraints xi ∈ Li (1 ≤ i ≤ n), where the latter are

represented via surjective homomorphisms ρi : P→ Si such that Li = ρ−1
i (ρi(Li)).

Let S =
∏n

i=1 Si and define ρ(x) = (ρ1(x), . . . , ρn(x)) for x ∈ P. Now we can

replace every constraint xi ∈ Li by constraints of the form ρ(xi) = q for q ∈ S.

Note that the number of these constraints is bounded exponentially in the size of

the description of φ. Thus, we may assume that all recognizable constraints in our

initial positive formula are given in the form ρ(x) = q for q ∈ S and a fixed surjective

homomorphism ρ : P→ S onto a finite group S.

Let K be a finite set of new constants, K ∩ Γ = ∅. Recall that F (K) is the

free group generated by K. For the free product P ∗ F (K) we write P[K] in the

following. Instead of P[{k1, . . . , kn}], we write P[k1, . . . , kn]. Similarly, instead of

P[K ∪ {k}] we write P[K, k]. In the sequel we also have to deal with formulas,

where the constraints are given by different extensions of our basic homomorphism

ρ : P → S to P[K]. For this we introduce the following notation: Let G be an

arbitrary group, and let ̺ : G → S be a group homomorphism onto some finite

group S. Let K = {k1, . . . , kn} and q1, . . . , qn ∈ S. Then ̺k1,...,kn
q1,...,qn

: G[K] → S

denotes the unique extension of ̺, defined by ̺k1,...,kn
q1,...,qn

(ki) = qi. Similarly, if φ

is some boolean combination of equations and constraints of the form ̺(x) = q,

then φk1,...,kn
q1,...,qn

denotes the formula that results from φ by replacing every constraint

̺(x) = q by ̺k1,...,kn
q1,...,qn

(x) = q. Let us now fix a formulai

θ(z̃) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , yn, y1, . . . , yn, z̃),

iIn the following symbols with a tilde like ex will denote sequences of arbitrary length over some

set that will be always clear form the context. If say ea = (a1, . . . , am), then ea ∈ A means a1 ∈
A, . . . , am ∈ A.
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with φ a positive boolean formula over the signature of (P, (a)a∈Γ,REC(P)) such

that all recognizable constraints are given in the form ρ(x) = q ∈ S for our fixed

homomorphism ρ : P → S. Choose for every universally quantified variable xi in

θ a new constant ki and let K = {k1, . . . , kn}. The following theorem yields the

reduction from the positive to the existential theory.

Theorem 30. Let θ(z̃) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , xn, y1, . . . , yn, z̃) be a for-

mula as above. For all ũ ∈ P we have θ(ũ) in P if and only if

∧

q1∈S

∃y1 · · ·
∧

qn∈S

∃yn





∧

1≤i≤n

yi ∈ P[k1, . . . , ki] ∧

φk1,...,kn
q1,...,qn

(k1, . . . , kn, y1, . . . , yn, ũ)





in P[K]. (29)

Proof. Using Lemma 32 and Lemma 33 below, the proof is the same as in [17,

Theorem 17].

To complete the proof of Theorem 26, we apply Theorem 19 to the group P[K],

which is a graph product as well: Add every k ∈ K as an isolated node to the

independence alphabet (Σ, IΣ) and label it with F (k) ∼= Z. For every σ ∈ Σ let Cσ =

REC(Gσ)∪{{a} | a ∈ Γσ} and for every k ∈ K let Ck = RAT(F (k)), which contains

REC(F (k)) and every singleton subset. Let C =
⋃

τ∈Σ∪K Cτ . By Assumption 25

(note that (Σ,DΣ) does not contain isolated nodes by the simplifications from the

previous section), ∃FOTh(Gσ, Cσ) is decidable for every σ ∈ Σ. By Proposition 4,

for every k ∈ K, ∃FOTh(F (k), Ck) is decidable as well. Thus, in order to apply

Theorem 19, it suffices to show that all constraint sets and constants (viewed as

singleton sets) in (29) belong to IL(C). For the constants this is clear – they all belong

to Γ ∪K. Also P[k1, . . . , ki] ∈ IL(C) is easy to see. Finally, REC(P[K]) ⊆ IL(C) by

Lemma 16.

Remark 31. Concerning the complexity, it can be shown that our proof of The-

orem 26 leads to a nonelementary blow-up due to the construction in our proof of

Proposition 29. On the other hand, if we restrict to connected graphs (Σ,DΣ), then

Proposition 29 becomes superfluous. Due to Corollary 6 and the complexity state-

ment in Theorem 19, we obtain an elementary reduction from the positive theory

to the theories in Assumption 25.

For the further consideration let us fix a set of constants K and a further constant

k 6∈ K. Moreover, let Ki ⊆ K for 1 ≤ i ≤ m. Fix also q ∈ S and a sequence

ũ = (u1, . . . , uN ) (30)

of elements ui ∈ P. The simple proof of the following lemma is the same as for [17,

Lemma 19].

Lemma 32. Let φ(x, y1, . . . , ym, z̃) be a positive boolean formula with constraints

of the form ̺(y) = p for p ∈ S and (possibly different) extensions ̺ : P[K] → S of
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our fixed homomorphism ρ : P→ S. If

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki, k] ∧

φk
q (k, y1, . . . , ym, ũ)





in P[K, k],

then

∀x ∈ P ∩ ρ−1(q) ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki] ∧

φ(x, y1, . . . , ym, ũ)



 in P[K].

Note that the assertion of Lemma 32 does not hold in general if φ involves negations.

For example ∀x : x 6= 1 is false, but k 6= 1 is true. On the other hand, the converse

implication of Lemma 32 is true for arbitrary formulas:

Lemma 33. Let φ(x, y1, . . . , ym, z̃) be a not necessarily positive boolean formula

with constraints of the form ̺(y) = p for p ∈ S and (possibly different) extensions

̺ : P[K]→ S of our fixed homomorphism ρ : P→ S. If

∀x ∈ P ∩ ρ−1(q) ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki] ∧

φ(x, y1, . . . , ym, ũ)



 in P[K],

then

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki, k] ∧

φk
q (k, y1, . . . , ym, ũ)





in P[K, k].

The statement of Lemma 33 will be shown by a reduction to the underlying trace

monoid with involution. For this, we need one more lemma. First, we have to intro-

duce a few notations.

In Lemma 33, the groups P = P(Σ, IΣ, (Gσ)σ∈Σ), P[Ki], P[Ki, k], P[K], and

P[K, k] appear (1 ≤ i ≤ m). Similarly to Section 3.3 we define Aσ = Gσ \ {1σ} for

σ ∈ Σ, A =
⋃

σ∈ΣAσ, and I =
⋃

(σ,τ)∈IΣ
Aσ × Aτ . Let M = M(A, I). Since every

Gσ is a group, we can define a total involution ι on A by taking the inverse in each

group Gσ and lift this involution to M in the standard way. Next, take for each

constant κ ∈ K ∪ {k} a new copy κ. Let K = {κ | κ ∈ K} and similarly for Ki. We

extend the involution ι on A to A∪K ∪K ∪{k, k} by setting ι(κ) = κ and ι(κ) = κ

for κ ∈ K ∪{k}. Then ι can be also lifted to the free product M∗ (K ∪K ∪{k, k})∗,

which will be the largest trace monoid in our further investigation. We will use

the following abbreviations in the sequel: M[Ki] = M ∗ (Ki ∪ Ki)
∗, M[Ki, k] =

M∗(Ki∪Ki∪{k, k})
∗, M[K] = M∗(K∪K)∗, and M[K, k] = M∗(K∪K∪{k, k})∗.

Finally let R be the trace rewriting system on M[K, k] defined by

R =
⋃

σ∈Σ

{ab→ c | a, b, c ∈ Aσ, a ◦σ b = c} ∪ {ι(a)a→ ε | a ∈ Aσ}∪

⋃

κ∈K∪{k}

{κκ→ ε, κκ→ ε}. (35)
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Then R is confluent and M[K, k]/
∗
↔R
∼= P[K, k]. Similarly, if we restrict R to traces

from M[K] (resp. M), then M[K]/
∗
↔R
∼= P[K] (resp. M/

∗
↔R
∼= P).

Let w̃ = (w1, . . . , wN ), where wi ∈ M ∩ IRR(R) is the unique irreducible trace

representing the fixed group element ui ∈ P from (30). In the following, we identify

a homomorphism ̺ : P[K] → S with h ◦ ̺ : M[K] → S, where h : M[K] → P[K] is

the canonical homomorphism that maps a trace t to the group element represented

by t. Moreover, for ̺ : M[K] → S we denote with ̺k
q : M[K, k] → S the unique

extension of ̺, defined by ̺k
q (k) = q and ̺k

q (k) = q−1.

As in Section 3.3, in the following lemma ◦σ denotes the ternary relation

{(a, b, c) | a, b, c ∈ Aσ, a ◦σ b = c} ⊆M3 for σ ∈ Σ.

Lemma 34. Let χ(x, y1, . . . , ym, z̃) be a not necessarily positive boolean formula

over the signature of (M[K], ι, (a)a∈Γ∪K ,REC(M[K]), (◦σ)σ∈Σ) such that all recog-

nizable constraints in χ have the form ̺(y) = p for p ∈ S and (possibly different)

extensions ̺ : M[K]→ S of our fixed homomorphism ρ : M→ S. If

∀x ∈M ∩ IRR(R) ∩ ρ−1(q) ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈M[Ki] ∩ IRR(R)

∧ χ(x, y1, . . . , ym, w̃)



 in M[K],

then there are s1, s2 ∈M ∩ IRR(R) with ρ(s1)qρ(s2) = q in the finite group S and

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈M[Ki, k] ∩ IRR(R)

∧ χk
q (s1ks2, y1, . . . , ym, w̃)





in M[K, k].

The proof of Lemma 34 is the main technical difficulty and shifted to the next

section. Using Lemma 34, we can finish the proof of Lemma 33: Assume that

∀x ∈ P ∩ ρ−1(q) ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki] ∧

φ(x, y1, . . . , ym, ũ)



 in P[K].

By restricting every variable in φ to M[K] ∩ IRR(R) and replacing every equation

x′y′ = z′ by x′y′
∗
→R z′, we obtain a true statement over M[K]. As in the proof of

Lemma 22, we can replace every rewriting constraint x′y′
∗
→R z′ by a formula

ψ(x′, y′, z′, . . .) over the signature of (M[K], ι, (◦σ)σ∈Σ∪K).j This transformation

introduces only new existentially quantified variables (ỹ below). We obtain a formula

jThe formula ψ, constructed in the proof of Lemma 22 contains constraints, which we want to
avoid here. The constraint p ∈ M(U, I) in (24) can be omitted here, because in our situation the

involution ι is completely defined. Furthermore, constraints of the form x ∈ Aσ are also used in
the proof of Lemma 22. Such a constraint is equivalent to x ◦σ ι(x) = 1.
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χ over the signature of (M[K], ι,REC(M[K]), (◦σ)σ∈Σ∪K) such that

∀x ∈M ∩ IRR(R) ∩ ρ−1(q) ∃y1 · · · ∃ym ∃ỹ





∧

1≤i≤m

yi ∈M[Ki] ∩ IRR(R)

∧ ỹ ∈M[K] ∩ IRR(R)

∧ χ(x, y1, . . . , ym, ỹ, w̃)





is true in M[K]. Thus, by Lemma 34 there exist s1, s2 ∈ M ∩ IRR(R) such that

ρ(s1)qρ(s2) = q in the finite group S and

∃y1 · · · ∃ym∃ ỹ





∧

1≤i≤m

yi ∈M[Ki, k] ∩ IRR(R)

∧ ỹ ∈M[K, k] ∩ IRR(R)

∧ χk
q (s1ks2, y1, . . . , ym, ỹ, w̃)





in M[K, k].

By doing the above transformation from P[K] to M[K] via Lemma 22 backwards,

i.e., from M[K, k] to P[K, k], it follows that

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki, k] ∧ φk
q (s1ks2, y1, . . . , ym, ũ)



 in P[K, k], (41)

where si ∈ M ∩ IRR(R) is identified with the group element from P it represents.

Let us define a group homomorphism f : P[K, k] → P[K, k] by f(k) = s−1
1 ks−1

2

and f(x) = x for x ∈ P[K]. First, note that f is injective (the homomorphism

defined by g(k) = s1ks2 defines an inverse). Thus, the truth value of all (negated)

equations is preserved by f . Moreover, f(ũ) = ũ (since ũ ∈ P) and ρ(s1)qρ(s2) = q

in S. Thus, ̺k
q (s−1

1 ks−1
2 ) = ρ(s1)

−1qρ(s2)
−1 = q = ̺k

q (k) for every extension ̺

of ρ, i.e., all recognizable constraints are also preserved by f . Finally, f(s1ks2) =

s1s
−1
1 ks−1

2 s2 = k in P[K, k]. Hence, applying f to (41) yields

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈ P[Ki, k] ∧ φk
q (k, y1, . . . , ym, ũ)



 in P[K, k].

4.3. Proof of Lemma 34

Recall that M ⊆ M[Ki] ⊆ M[K] ⊆ M[K, k], q ∈ S, and w̃ = (w1, . . . , wN ) with

wi ∈ M ∩ IRR(R) are already fixed. On M[K, k] we defined the confluent trace

rewriting system R by (35). Let D = (A ∪K ∪K ∪ {k, k})2 \ I be the dependence

relation corresponding to M[K, k]. The involution ι is totally defined on M[K, k].

In the following we will write t instead of ι(t). Recall that (Σ,DΣ) is assumed to

be connected with |Σ| > 1. Let χ(x, y1, . . . , ym, z̃) be an arbitrary boolean formula

with atomic predicates of the form xy = z, x = y, x = t, x ◦σ y = z, and ̺(x) = p,

where x, y, and z are variables, t ∈ M[K] is a constant (w.l.o.g. |t| ≤ 1), p ∈ S,

and ̺ : M[K]→ S is some extension of our basic homomorphism ρ : M→ S. Since
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ρ was derived from a corresponding group homomorphism on P, s
∗
↔R t implies

ρ(s) = ρ(t) for s, t ∈M. Let

W = {w1, w1, . . . , wN , wN} (43)

and let d be the number of equations of the form xy = z that occur in χ. Choose a

number λ ∈ N such that |S| divides λ− 1 and λ ≥ 2d+ 1.

We start with the definition of some specific traces. A chain is a trace t =

a1a2 · · · aκ such that ai ∈ Aσi
(1 ≤ i ≤ κ) and [σ1, σ2, . . . , σκ] is a path in the

dependence graph (Σ,DΣ) with σi 6= σi+1 for 1 ≤ i ≤ κ− 1. Thus, t ∈M∩ IRR(R)

and (ai, ai+1) ∈ D for 1 ≤ i ≤ κ− 1.

Recall that we have fixed symbols a, b, c ∈ A at the end of Section 4.1 such that

(a, b), (b, c) ∈ D and either a, b, and c belong to pairwise different Aσ or a 6= a = c.

It is possible that (a, c) ∈ I. If a, b, and c belong to pairwise different Aσ, then let

eb = (b a)|S|(c b)|S|.

Otherwise, we have a 6= a, i.e., a2 = a′ for some a′ ∈ A. Then let

eb = (b a)|S|−1 b a′ b (a b)|S|−1;

note that in P this trace equals (b a)|S|(a b)|S|. In both cases, eb ∈M ∩ IRR(R) is a

trace with min(eb) = max(eb) = {b} and ρ(eb) = 1.

Lemma 35. There is a trace ℓ ∈ M ∩ IRR(R) such that ρ(ℓ) = q, (ℓ, t) ∈ D for

every t 6= ε, and min(ℓ) = max(ℓ) = {a}.

Proof. First, for every x ∈ A we construct a trace t(x) ∈ M ∩ IRR(R) such that

min(t(x)) = {x}, max(t(x)) = {x}, and ρ(t(x)) = 1. Let s be a chain such that x s b

is a chain, which exists since (Σ,DΣ) is connected. Then set t(x) = x s eb s x. Now

we construct ℓ as follows:

• Select a trace s = b1b2 · · · bκ ∈ IRR(R), bi ∈ A, with ρ(b1 · · · bκ) = q. Recall

that ρ was assumed to be surjective, hence s exists.

• Let u1, . . . , uκ+1 ∈M∩IRR(R) be chains, visiting every subset Aσ (σ ∈ Σ),

such that the trace au1b1u2b2 · · ·uκbκuκ+1a is also a chain. These ui exist,

since (Σ,DΣ) is connected.

• If ui = c1 · · · cκi
with cj ∈ A, then define vi = t(c1) · · · t(cκi

); thus ρ(vi) = 1.

• Finally, let ℓ = t(a)v1b1v2b2 · · · vκbκvκ+1t(ā).

The construction implies that ℓ has indeed the desired properties.

For the rest of the section let ℓ ∈ M be some trace satisfying the properties from

the previous lemma.

A trace system of degree n is a tupleR = (r0, . . . , rλ) of λ+1 traces ri = tieb with

ti ∈ {(ba)
|S|, (bc)|S|}n for some n large enough. The value of n will be made more

precise later. Note that ρ(ri) = 1 and that the traces ri are irreducible and almost
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chains; only the single factor ac (in case (a, c) ∈ I) in eb leads to commutation.

There are 2n(λ+1) trace systems of degree n. We append the trace eb to every ti in

order to assure that every ri starts and ends with b.

An overlapping of two traces u, v ∈ M is a trace s with u = ts and v = st′ for

some t, t′ ∈M. The trace system R = (r0, . . . , rλ) has no long overlapping, if

• the traces r0, r0, . . . , rλ, rλ are pairwise different, and

• for all 0 ≤ i, j ≤ λ, u ∈ {ri, ri}, and v ∈ {rj , rj} we have: if s is an

overlapping of u and v with |s| ≥ |ri|−|ℓ|
2 = (n+2)|S| − |ℓ|

2 , then s = u = v.

Note that this implies in particular that if riℓri+1 = urv with r ∈ {rj , rj}, then

either u = ε and ri = r or v = ε and rj = r, i.e., r cannot be properly contained in

riℓri+1.

The following lemma can be derived by standard techniques that random strings

are incompressible, the formal proof is therefore omitted. The idea is that if the trace

system R has a long overlapping, then, in case n is large enough, the description

of R can be compressed to less than n(λ + 1) bits. But this cannot happen for all

systems R.

Lemma 36. There exists n0 (depending only on λ and |S|) such that for all n ≥ n0

there exists a trace system of degree n without long overlapping.

Remark 37. Later, we will use R to construct a trace s, which can be replaced

by the trace s1ks2 in Lemma 34. An explicit construction of s without using the

notion of random strings is sketched in [14].

Let us fix a trace system R = (r0, . . . , rλ) of degree n without long overlapping,

where

2|ri|+ |ℓ| = 4(n+ 2)|S|+ |ℓ| > |w| (44)

for all w ∈ W from (43). For every 1 ≤ i ≤ λ define the length-reducing trace

rewriting system

Ti = {ri−1 ℓ ri → ri−1 k ri, ri ℓ ri−1 → ri k ri−1}.

We consider Ti as a trace rewriting system over our largest trace monoid M[K, k].

Note that W ∪A ⊆ IRR(Ti) by (44) and that s→Ti
t implies also s→Ti

t.

Lemma 38. Every trace rewriting system Ti is confluent.

Proof. Since Ti is terminating, we have to verify that Ti is locally confluent. Assume

that t Ti
← s→Ti

u, where t and u both result from s by an application of the rule

ri−1ℓri → ri−1kri, the other two cases can be dealt analogously. Thus, there exist

traces t1, t2, u1, u2 ∈M[K, k] such that

s = t1ri−1 ℓ rit2 = u1ri−1 ℓ riu2 and t = t1ri−1 k rit2, u = u1ri−1 k riu2.
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Now we apply Levi’s Lemma 1 to the identity t1ri−1 ℓ rit2 = u1ri−1 ℓ riu2. Recall

that every rj starts and ends with b. Hence, nonempty prefixes (resp. suffixes) of

ri−1 (resp. ri) are dependent. Moreover, by Lemma 35 the trace ℓ is dependent from

every nonempty trace. Thus, we obtain up to symmetry one of the following two

diagrams:

u2 ε s2 t2
ri−1 ℓ ri ε ri−1 ℓ ri ε

u1 t1 s1 ε

t1 ri−1 ℓ ri t2

u2 ε ε u2

ri−1 ℓ ri ε s s2
u1 t1 s1 v

t1 ri−1 ℓ ri t2

In the first case, s1 = ε = s2 and thus t = u. In the second case, we may assume

that s1 6= ε 6= s2, since otherwise we obtain a special case of the first diagram.

Furthermore, if s = ε, then

t→Ti
t1 ri−1 k ri v ri−1 k ri u2 Ti

← u.

Thus, assume that also s 6= ε. Since ri−1 ℓ ri = s1 s = s s2 with s1 6= ε 6= s2,

and R has no long overlapping, there exist traces r and r′ such that s1 = ri−1 ℓ r,

s2 = r′ ℓ ri, ri = r s, ri−1 = s r′. Since (v, s) ∈ I, we obtain

t = t1ri−1 k rit2 = t1 ri−1 k r s v r
′ ℓ ri u2

= t1 ri−1 k r v s r
′ ℓ ri u2

→Ti
t1 ri−1 k r v s r

′ k ri u2

= t1 ri−1 k r s v r
′ k ri u2

Ti
← t1 ri−1 ℓ r s v r

′ k ri u2

= t1 ri−1 ℓ r v s r
′ k ri u2 = u1ri−1 k riu2 = u.

Thus, Ti is confluent.

The previous lemma implies that for every 1 ≤ i ≤ λ, every trace s ∈ M[K, k] has

a unique normal form NFTi
(s) ∈ IRR(Ti). In the following, we briefly write NFi(s)

for NFTi
(s). The following lemma is easy to verify. For the last point note that

ρ(ℓ) = q = ρk
q (k).

Lemma 39. For every 1 ≤ i ≤ λ and s ∈M[K] we have:

• NFi(s) = s if |s| ≤ 1 or s ∈ W , in particular, if a ◦σ b = c for a, b, c ∈ Aσ

(σ ∈ Σ), then also NFi(a) ◦σ NFi(b) = NFi(c),

• NFi(s) = NFi(s), and

• ̺(s) = ̺k
q (NFi(s)) for every extension ̺ : M[K]→ S of ρ : M→ S.

Thus, every normal form mapping NFi preserves constants, the involution , and

recognizable constraints. On the other hand, concatenation in M[K] is in general

not preserved, but the following statement will suffice:
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Lemma 40. Let u, v ∈ M[K]. There are at most two i ∈ {1, . . . , λ} such that

NFi(u)NFi(v) 6= NFi(uv).

Proof. Assume that 1 ≤ i ≤ λ is such that NFi(u)NFi(v) ∈ RED(Ti). We only

consider the case that NFi(u)NFi(v) = sriℓri+1t for some s, t ∈ M[K]. Due to the

dependencies between nonempty suffixes and prefixes of ri, ℓ, and ri+1, we obtain

one of the following three diagrams (where r′j 6= ε 6= r′′j for j ∈ {i− 1, i}):

NFi(v) s2 r′′i−1 ℓ ri t

NFi(u) s1 r′i−1 ε ε ε

s ri−1 ℓ ri t

NFi(v) ε ε ε r′′i t2
NFi(u) s ri−1 ℓ r′i t1

s ri−1 ℓ ri t

NFi(v) s2 ε ℓ2 ri t2
NFi(u) s1 ri−1 ℓ1 ε t1

s ri−1 ℓ ri t

Since every rj starts and ends with b, it follows that (s2, b) ∈ I (resp. (t1, b) ∈ I)

in the first and third (resp. second and third) diagram. Let π denote the homo-

morphism on M[K, k] that projects onto the subalphabet {a, a, b, b, c, c, k, k}. Thus,

π(s2) = π(t1) = ε. It follows that one of the following three cases holds, where

x, y ∈ {a, a, b, b, c, c, k, k}∗ and ℓ′ = π(ℓ):

• π(NFi(u)) = xr and π(NFi(v)) = r′ℓ′riy where ri−1 = rr′

• π(NFi(u)) = xri−1ℓ
′r and π(NFi(v)) = r′y, where ri = rr′

• π(NFi(u)) = xri−1ℓ
′
1 and π(NFi(v)) = ℓ′2riy, where ℓ′ = ℓ′1ℓ

′
2

But then there are also x′, y′ ∈ {a, a, b, b, c, c}∗ with

• π(u) = x′r and π(v) = r′ℓ′riy
′ where ri−1 = rr′ or

• π(u) = x′ri−1ℓ
′r and π(v) = r′y′, where ri = rr′ or

• π(u) = x′ri−1ℓ
′
1 and π(v) = ℓ′2riy

′, where ℓ′ = ℓ′1ℓ
′
2

The traces x′ and y′ result from x and y, respectively, by replacing every occurrence

of k and k, respectively, by ℓ′ and ℓ′, respectively. Thus π(u) = x′z1, π(v) = z2y
′,

z1 6= ε 6= z2, and z1z2 = ri−1ℓ
′ri. Now assume that this holds for three different i1,

i2, and i3. Then it is easy to see that two of the three traces rj−1ℓ
′rj (j ∈ {i1, i2, i3})

have a “long” overlapping, contradicting the fact that R has no long overlapping.

See Figure 2 for a typical constellation, where there is a long overlapping between

ri1 and ri2−1 as well as between ri2 and ri3−1.

Since moreover NFi(u) = NFi(v) implies u = v for all u, v ∈ M[K], we obtain the

following lemma – recall that λ ≥ 2d+1, where d is the number of equations in the

formula χ.

Lemma 41. Let xj , yj , zj ∈M[K] for 1 ≤ j ≤ d. Then there exists 1 ≤ i ≤ λ such

that for all 1 ≤ j ≤ d we have xjyj = zj if and only if NFi(xj)NFi(yj) = NFi(zj).
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π(u) π(v)

ri1−1 ℓ′ ri1

ri2−1 ℓ′ ri2

ri3−1 ℓ′ ri3

Fig. 2.

Now we are able to prove Lemma 34: Assume that

∀x ∈M ∩ IRR(R) ∩ ρ−1(q) ∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈M[Ki] ∩ IRR(R)

∧ χ(x, y1, . . . , ym, w̃)



 in M[K].

Let s = r0 ℓ r1 ℓ · · · rλ−1 ℓ rλ ∈ M ∩ IRR(R). Since ρ(ri) = 1 and λ was chosen such

that |S| is a divisor of λ−1, we have ρ(s) = ρ(ℓλ) = qλ = q. Thus, there exist traces

ti ∈M[Ki]∩IRR(R), 1 ≤ i ≤ m, with χ(s, t1, . . . , tm, w̃) in M[K]. By Lemma 39 and

Lemma 41 there exists 1 ≤ j ≤ λ such that χk
q (NFj(s),NFj(t1), . . . ,NFj(tm), w̃)

in M[K, k]. Since R has no long overlapping, there exists only a single occurrence

of rj−1ℓrj in s. Thus, we can write NFj(s) = s1 k s2 for s1, s2 ∈ M ∩ IRR(R) such

that ρ(s1)qρ(s2) = ρ(s) = q. Thus,

∃y1 · · · ∃ym





∧

1≤i≤m

yi ∈M[Ki, k] ∩ IRR(R)

∧ χk
q (s1ks2, y1, . . . , ym, w̃)



 in M[K, k].

5. Open problems

Concerning existential theories, the following problems might deserve further inves-

tigations:

• Is the additional exponential summand in Theorem 19 unavoidable?

• Is Assumption 17 necessary in Theorem 19?

• Is the existential theory of an automatic group [23] undecidable? At least

for asynchronous automatic groups [23] this is the case, in fact already

conjugacy is in general undecidable for asynchronous automatic groups [4].

Further results concerning undecidable existential theories for groups and monoids

can be found in [54,57].

For positive theories it remains open whether an elementary reduction is possible

in Theorem 26 in case (Σ,DΣ) is not connected. One might also investigate, whether

the positive theory of a torsion-free hyperbolic group is decidable. Further results

on positive theories can be found in [31,35,56,63].

Finally, one may hope to get decidability results for full first-order theories

of restricted graph products, like for instance graph groups. Kharlampovich and

Myasnikov proved in a series of papers the decidability of the full first-order theory

of a free group (this problem was known as Tarski’s problem) [32]. One approach
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might be to generalize the techniques developed by Kharlampovich and Myasnikov

to broader classes of groups. We should mention here that elementary decision

procedures cannot be expected for full first-order theories. By a result of Semenov

[62], the full first-order theory of a free group of rank 2 is nonelementary.
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