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Abstract. We show that the membership problem in a finitely generated sub-
monoid of a graph group (also called a right-angled Artin group or afeaetally
commutative group) is decidable if and only if the independence graphrfw-
tation graph) is a transitive forest. As a consequence we obtain thex@nsipée

of a finitely presented group with a decidable generalized word problardadlesa

not have a decidable membership problem for finitely generated subidsoiVe

also show that the rational subset membership problem is decidablegyfaph
group if and only if the independence graph is a transitive forest, airsyva
question of Kambites, Silva, and the second author [24]. Finally we piwate

for certain amalgamated free products and HNN-extensions the ratiobaét
and submonoid membership problems are recursively equivaleparticular,

this applies to finitely generated groups with two or more ends that are either
torsion-free or residually finite.

1 Introduction

Algorithmic problems concerning groups are a classicattopalgebra and theoretical
computer science. Since the pioneering work of Dehn fron®18]l. decision problems
like the word problem or the generalized word problem (whglalso known as the
subgroup membership problem since it asks whether one cadedé a given group
element belongs to a given finitely generated subgroup) heee intensively studied
for various classes of groups. A first natural generaliratibthese classical decision
problems is the submonoid membership problem: given a fieit§ of elements of=
and an elemenj € G, doesg belong to the submonoid generated$fy Notice thaty
has finite order if and only i§ ! is in the submonoid generated pynd so decidability
of the submonoid membership problem lets one determineitigdcally the order of
an element of the grou@. A recent paper on the submonoid membership problem is
Margolis, Meakin, andunk [27].

A further generalization is the rational subset membergingblem: for a given
rational subsef. of a groupG and an elemeny € G it is asked whethey € L.
The class of rational subsets of a gradps the smallest class that contains all finite
subsets o7, and which is closed under union, product, and the KleendgduKleene
star; it associates to a subdetC G the submonoid.* generated by.). Equivalently,

* The second author would like to acknowledge the support of an NSE&®.gr



it consists of the all subsets 6f recognizable by finite automata. Rational subsets in
arbitrary groups and monoids are an important research topanguage theory, see,
e.g., [3,24, 31]. The rational subset membership probleneigdizes the submonoid
membership problem and the the generalized word problem §woup, because every
finitely generated submonoid (and hence subgroup) of a geagtional.

It is easy to see that decidability of the rational subset benship problem trans-
fers to finitely generated subgroups. Grunschlag has shuatriitte property of having a
decidable rational subset membership problem is presemveer finite extensions, i.e.,
if G has a decidable rational subset membership problentzaddH , where the index
of G in H is finite, thenH also has a decidable rational subset membership problem
[20]. Kambites, Silva, and the second author [24] proved the fundamental group
of a finite graph of groups [36] with finite edge groups has ad#die rational sub-
set membership problem provided all vertex groups have alalele rational subset
membership problem. In particular, this implies that debitity of the rational subset
membership problem is preserved by free products, see3l$o [

The main result of this paper is to characterize the deditiabif the submonoid
membership problem and the rational subset membershipepndor graph groups. In
particular we provide the first example, as far as we know, grioaip with a decidable
generalized word problem that does not have a decidablesutich(and hence rational
subset) membership problem.

A graph group[13] G(X, I) is specified by a finite undirected graph, I'), which
is also called arindependence alphabgbr commutation graph The graph group
G(X, 1) is formally defined as the quotient group of the free groupegated byX’
modulo the set of all relationgh = ba, where(a, b) € I. Graph groups are a group ana-
logue to trace monoids (free partially commutative monpiddich play a prominent
role in concurrency theory [12]. Graph groups are also ddhee partially commuta-
tive groupq10, 40],right-angled Artin groupg6, 7], andsemifree groupf?]. They are
currently a hot topic of interest in group theory, in partésubecause of the richness
of the class of groups embeddable in graph groups. For iostdhe Bestvina-Brady
groups, which were used to distinguish the finiteness ptigsef,, and FR, [4] (and
were also essential for distinguishing the finiteness ptageeFDT and FHT for string
rewriting systems [33]), are subgroups of graph groupspCaind Wiest show that the
fundamental group of any orientable surface (and of mostar@ntable surfaces) em-
beds in a graph group [7]. Another class of groups that emivedgraph groups are
fundamental groups of finite state complexes [16].

Algorithmic problems concerning graph groups have beeensively studied in
the past, see, e.g., [10,11, 15, 24, 25, 40]. In [10, 40] it skamvn that the word prob-
lem for a graph group can be decided in linear time (on a randocess machine).

A recent result of Kapovich, Weidmann, and Myasnikov [25)wk that if (X, ) is a
chordal graph (i.e., if ¥, I') does not have an induced cycle of length at least 4), then
the generalized word problem f&¥(X, I) is decidable. On the other hand, a classical
result of Mihailova [30] states that already the generalia®rd problem for the direct
product of two free groups of rank 2 is undecidable. Note thistgroup is the graph
groupG(X, I), where the grapliX, I) is a cycle on 4 nodes (also call€d). In fact,
Mihailova proves a stronger result: she construcigxed subgroupH of G(C4) such



that it is undecidable, whether a given element0€4) belongs tof. Recently, it was
shown by Kambites that a graph groGi§ X', I') contains a direct product of two free
groups of rank 2 if and only ifX, I') contains an induce@4 [23]. This leaves a gap
between the decidability result of [25] and the undecidhiesult of Mihailova [30].

In [24] it is shown that the rational subset membership pobis decidable for
a free product of direct products of a free group with a freeslfim group. Such a
group is a graph groufs (X, I), where every connected component(&f, I) results
from connecting all nodes of a clique with all nodes from agesttee graph. On the
other hand, the only undecidability result for the ratiosialbset membership problem
for graph groups that was known so far is Mihailova’'s resalifidependence alphabets
containing an induce@4.

In this paper, we shall characterize those graph groupsfiarthwthe rational subset
membership problem is decidable: we prove that these atlgxhose graph groups
G(X,I),where(X, I) is atransitive forest (Theorem 2). The grag, I) is a transitive
forest if it is the disjoint union of comparability graphs mfoted trees. An alternative
characterization of transitive forests was presenteddh [&, I) is a transitive forest if
and only if it neither contains an induc€d nor an induced path on 4 nodes (also called
P4). Graph group&(X, I), where(X, I) is a transitive forest, have also appeared in
[28]: they are exactly those graph groups which are subgsepprable (the case B#
appears in [32]). Recall that a grotpis called subgroup separable if, for every finitely
generated subgroupg < G and every € G\ H there exists a normal subgrodp< G
having finite index such that¢ N H. Subgroup separability implies decidability of the
generalized word problem.

One half of Theorem 2 can be easily obtained from a result dheékaberg and
Hoogeboom [1]: The problem of deciding whether the inteisacf two rational sub-
sets of the trace monoid (free partially commutative mopdid X, I') is nonempty is
decidable if and only if X, I) is a transitive forest. Now[. N K # {) for two given
rational subset&, K C M(X, I)ifand only if 1 € LK~ in the graph groufis(X, I).
Hence, if(X, I) is not a transitive forest, then the rational subset menhifeoblem
for G(X, I) is undecidable. In fact, we construct a fixed rational suliset G(X', I)
such that it is undecidable whethge L for a given group elemente G(X, I).

The converse direction in Theorem 2 is an immediate cogotb&iour Theorem 1,
which is one of the main group theoretic results of this pafiestates that the ra-
tional subset membership problem is decidable for everymtbat can be built up
from the trivial group using the following four operatior(®: taking finitely generated
subgroups, (ii) finite extensions, (iii) direct productsw?, and (iv) finite graphs of
groups with finite edge groups. Note that the only operatiat is not covered by the
results cited earlier is the direct product with In fact, it seems to be an open ques-
tion whether decidability of the rational subset membgrginoblem is preserved under
direct products wittZ. Hence, we have to follow another strategy. We will introgluc
a property of groups that implies the decidability of thaaa&l subset membership
problem, and which has all the desired closure propertiasp@of of Theorem 1 uses
mainly techniques from formal language theory (e.g., Serdlr sets, Parikh’s theorem)
and is inspired by the methods from [1, 5].



It should be noted that due to the above reduction from tlegettion problem for
rational trace languages to the rational subset membepshippem for the correspond-
ing graph group, we also obtain an alternative to the quifecdit proof from [1] for
the implication (X, I) is a transitive forest> intersection problem for rational subsets
of M(X, I) is decidable”.

In Section 4 we consider tresbmonoid membership probldar groups. We prove
that for an amalgamated free produd¢t- 4, H such thatA is a finite proper subgroup
of G and H and there exisy € G, h € H with g=tAgN A =1 = h 1A N A, the
rational subset membership problem is recursively egemtab the submonoid mem-
bership problem (Theorem 4). An analogous result is proeedértain HNN exten-
sions with finite associated subgroups. As a consequencebtaindhat the rational
subset membership problem is recursively equivalent tostimmonoid membership
problem for a group with two or more ends that is either tordiee or residually finite
(Corollary 2). Using similar techniques, we are also ablprtwve that the submonoid
membership problem is undecidable for the graph gGuQ’, I), where(X', I) is P4
(Theorem 7). The result of [25] shows that this graph grougsdtave a decidable gen-
eralized word problem, thereby giving our example of a graigh a decidable gen-
eralized word problem but an undecidable submonoid memigepsoblem. Together
with Mihailova’s undecidability result foC4 and our decidability result for transitive
forests (Theorem 2) it also follows that the submonoid menstiip problem for a graph
groupG(X, I) is decidable if and only if X, I) is a transitive forest (Corollary 3).

Another consequence of our results is that the rationaleiubnembership prob-
lem for groups is recursively equivalent to the submonoidninership problem if and
only if a free product of groups with decidable submonoid rhership problems has a
decidable submonoid membership problem.

2 Preliminaries

We assume that the reader has some basic knowledge in fangaldge theory (see,
e.g., [3,22]) and group theory (see, e.g., [26, 35]).

2.1 Formal languages

Let X be a finite alphabet. We usE~! = {a~! | « € X} to denote a disjoint
copy of ¥. Let ¥+ = ¥ U ¥~ Define(a=!)~! = q; this defines an involution
-l »+l . ¥+ which can be extended to the free mon¢X*!)* by setting
(a1---a,)~" = a;'---a;'. Forawordw € X* anda € X we denote byw|,
the number of occurrences ofin w. For a subsef” C X, we denote byrr(w) the
projection of the wordv to the alphabel’, i.e., we erase i all symbols fromX' \ I".
Let N¥ be the set of all mappings frod to N. By fixing an arbitrary linear order
on the alphabef’, we may identify a mapping € N* with a tuple fromN/*I. For
awordw € X*, the Parikh image? (w) is defined as the mapping(w) : ¥ — N
such thaf¥ (w)](a) = |w|, for all « € X. For a languagd. C X*, the Parikh image
iSW(L) = {¥(w) | w e L}. ForasetKk C N* andI"' C Y let7r(K) = {f|r €
N | f € K}, wheref| denotes the restriction of to I". We also need a notation



for the composition of erasing letters and taking the Pairige. So, fol. C X* and
I C 2, let¥r(L) = 7p(¥(L))(= ¥(xr(L))); it may be viewed as a subsetiSf’ .
A special case occurs whdn= (). Then eithewy(L) = 0 (if L = () or ¥y(L) is the
singleton set consisting of the unique mapping fibto N.

A subsetK C NF is said to bdinear if there arex, z1,...,z, € N* such that
K ={z+4+ Ma1+ -4+ Xz¢ | M,..., ¢ € N}, i.e. K is a translate of a finitely
generated submonoid Bf. A semilinearset is a finite union of linear sets.

LetG = (N, I, S, P) be a context-free grammar, whekeis the set of nontermi-
nals,I” is the terminal alphabe$ € N is the start nonterminal, arfd C N x (NUI")*
is the finite set of productions. Farv € (NUI')* we writeu = v if v can be derived
from « by applying a production fron®. For A € N, we defineL (G, A) = {w € I'* |
A =¢ w}yandL(G) = L(G, S). Parikh’s theorem states that the Parikh image of a
context-free language is semilinear [34].

We will allow a more general form of productions in contesgd grammars, where
the right-hand side of a production is a regular language thvealphabefv U I'. Such
a productiond — L represents the (possibly infinite) set of producti¢ds— s | s €
L}. Clearly, such an extended context-free grammar can bsftnaned effectively into
an equivalent context-free grammar with only finitely mangductions.

Let M be a monoid. The s&®AT (M) of all rational subset®f M is the smallest
subset o2, which contains all finite subsets 8f, and which is closed under union,
product, and Kleene hull (the Kleene hillt of a subsetl, C M is the submonoid of
M generated by.). By Kleene’s theorem, a subsktC X* is rational if and only if
can be recognized by a finite automatonMfis generated by the finite sét andh :
X* — M is the corresponding canonical monoid homomorphism, thenRAT (M)
if and only if L = h(K) for someK € RAT(X*). In this caseL can be specified by
a finite automaton over the alphab®Bt The rational subsets of the free commutative
monoidN* are exactly the semilinear subsetS\df [14].

2.2 Groups

Let G be a finitely generated group and IBtbe a finite group generating set f6t.
Hence X *! is a finite monoid generating set férand there exists a canonical monoid
homomorphisnh : (¥+1)* — G. The language

WPx(G) = h™'(1)

is called theword problemof G with respect ta¥, i.e., WP (G) consists of all words
over the alphabeE+! which are equal td in the groupG. It is well known and easy
to see that iff" is another finite generating set f6f, then WR;(G) is decidable if and
only if WP, (G) is decidable.

Thesubmonoid membership probldar G is the following decision problem:

INPUT: A finite set of wordsA C (£+1)* and a wordw € (X+1)*,
QUESTION:/h(w) € h(A*)?

Note that the subsét(A*) C G is the submonoid off generated by.(A) C G. If
we replace in the submonoid membership problem the finitelyegated submonoid



’ g1 | 9j2 A Gja gm
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1inG1*G2 1inG1*G2 1inG1*G2 1inG1*G2

Fig. 1. Case (3) in Lemma 1: we haveg;, gj; 95, 9m = 1in eitherG: or G

h(A*) by the finitely generated subgroap(A U A~1)*), then we obtain theubgroup
membership problemvhich is also known as thgeneralized word problefior G. This

term is justified, since the word problem is a particularanse, namely withA = (.

A generalization of the submonoid membership problemdads therational subset
membership problem

INPUT: A finite automaton4 over the alphabeE*! and a wordw € (£+1)*.
QUESTION:h(w) € h(L(A))?

Note thath(w) € h(L(A)) ifand only if 1 € h(w™'L(A)). Sincew !'L(A) is again a
rational language, the rational subset membership profiled is recursively equiva-
lent to the decision problem of asking whethes h(L(A)) for a given finite automa-
ton A over the alphabeX'*!. It should be noted that for all the computational problems
introduced above the decidability is independent of thesehayenerating set far.

In the rational subset (resp. submonoid) membership pmolkilee rational subset
(resp. submonoid) is part of the input. Non-uniform varsaot these problems, where
the rational subset (resp. submonoid) is fixed, have beeiestas well. More generally,
we can define for a subsgtC G themembership problem fdf within G:

INPUT: Awordw € (X%1)*,
QUESTION:h(w) € §?

Thefree groupF'(X') generated by can be defined as the quotient monoid
F(X) = () /{aa ™ =¢|a € ZF}.

As usual, thefree productof two groupsG; and G, is denoted byG; * Go. We will
always assume thaf; N G, = 0. An alternating wordin G; * G5 is a sequence
9192 -+ gm With m > 0, g; € G1 U Go, andg; € G1 < g;+1 € Gs. Its length ism.
The alternating word g» - - - g, is irreducibleif g; # 1 for everyl < i < m. Every
element ofG; x G5 can be written uniquely as an alternating irreducible wavd.will
need the following simple fact about free products:

Lemma l. Letg,gs - - - g, b an alternating word irGy * Go. If g192--- g, = 110
G4 * G2, then one of the following three cases holds:

Q) m<1

(2) there existd < i <msuchthatyigs---g; = gir1- - gm = 1IN G1 x G2

(3) there exist € {1,2}, k > 2,and1 = j; < jo < --- < jr = m such that
Gjrs Gjas -+ 9w € Giv 95195, G, = 1IN Gy, and gy, 1195,42°* Gjpyn—1 = 110N
GixGoforalll1 </ < k.



Proof. Case (3) from the Lemma is visualized in Figure 1 foe= 5. Shaded areas

represent alternating sequences, which are equaht6r, «Gs. The non-shaded blocks

are either all fromG, or from G5, and their product equalsin G or G5, respectively.
We prove the lemma by induction aon, the casen < 1 being trivial. So assume

thatm > 2. Sincegi gz - - - gm = 1in G1 G2, there must exist < j < m with g; = 1.

If 7 =1o0rj =m,thenwe are in case (2) from the lemma. Hence, we may assae th

m > 3 and that < j <m — 1. It follows

g1 gj—2(9j-19j+1)gj+2* gm =1

in G1 * G. Since the alternating worgh - - - g;_2(g;-19;+1)gj+2 - - - gm has length
m — 2, we can apply the induction hypothesis to itnlf — 2 = 1, i.e.,m = 3, then
we obtain case (3) from the lemma (with= 2, j; = 1, andj, = 3). If a non-empty
and proper prefix 0§ - - - g;—2(g;j—19;+1)gj+2 - - - gm €QuUalsL in the groupGy * G,
then the same is true fan g> - - - g,,. Finally, if case (3) from the lemma applies to
the alternating word - - - g;—2(g;—19j+1)9;+2 - - - gm, then again the same is true for

9192 GIm- O

Notice that (3) in Lemma 1 can only occur whenis odd.
Assume thatd < G andB < H are groups ang : A — B is an isomorphism.
Theamalgamated free product x, H is the quotient

(GxH)/{a=¢(a)|ac A}.

Without loss of generality we may assume thlat= G N H and thaty is the identity
map onA; in this situation we briefly writez x4 H for G *, H. Every element of
G * o H can be written as aword - - - ¢,,, wheren > 0,¢1,...,¢, € GUH,ifn>1
thency,...,c, € (GUH)\ A, ifn=1thenc; #1,andc; e G\ A& ¢ € H\A
forall 1 < i < n. Such a word is called @duced sequenc&he normal form theorem
for amalgamated free products states that every nonemgiigeel sequence represents
a nontrivial element of7 x4 H [26, Chapter IV, Theorem 2.6].

If Gisagroupand : A — B is an isomorphism between subgroupsB of G,
then theHNN extensionk,, G, with baseG, stable lettert, and associated subgroups
A, B is the quotient group

Gx* (t)/{t " at = p(a) | a € A}

wheret is the generator of an infinite cyclic group. Every elementgfG can be
written as a wordygt¢tgy - - - t°~ g, Wheren > 0, go,...,9, € G, andey,..., e, €
{1, —1}. Such a word is referred to aseduced sequendgit contains no factor of the
form¢~at ortbt—! with a € A, respectivelyp € B. Britton’s Lemma [26, Chapter V]
says that ifw = got¢tg; - - - t° g, is a reduced sequence with> 1, thenw represents
a nontrivial element ok, G.

We will also consider fundamental groups of finite graphs mfugs, which is a
group theoretic construction generalizing free produce® products with amalgama-
tion, and HNN-extensions, see e.g. [36]. We omit the quitbrieal definition. In order
to deal with the rational subset membership problem for lyigoups, free products
suffice.



2.3 Trace monoids and graph groups

In the following we introduce some notions from trace thease [9, 12] for more
details. Anindependence alphabistjust a finite undirected gragtt’, I') without loops.
Hence,I C X' x X' is an irreflexive and symmetric relation. Ttrace monoidVI(X, I)
is defined as the quotient

M(2,1) = £*/{ab = ba | (a,b) € I}.

Elements ofMI(X, ) are calledraces Note thatM(I, J) is a submonoid oM(X, I)
in case(I, J) is aninduced subgraplof (X, I). The latter means that C X and
J=INnIx1TI).

Traces can be represented convenientlydbpendence graphsvhich are node-
labelled directed acyclic graphs. Let a; - - - a,, be aword, where; € X. The vertex
set of the dependence graphewofs {1,...,n} and vertex: is labelled witha; € X.
There is an edge from vertéxo j if and only ifi < j and(a;, a;) ¢ I. Then, two words
define the same traceMi(X, I) if and only if their dependence graphs are isomorphic.
The set of minimal (resp. maximal) elements of a traeeM(X, I) ismin(t) = {a €
Y| 3ueM(X,I):t=au} (respmax(t) ={a € X | Fue M(X,I): ¢t =ua}). A
trace rewriting systeni? overM(X, I) is just a finite subset d¥l( X', I') x M(X, I) [9].
We can define thene-step rewrite relatior-p C M(X, 1) x M(X,I) by: z —p y if
and only if there are,,v € M(X, I) and(¢,r) € R such thatt = ufv andy = urv in
M(X, I). Atracet is irreduciblewith respect taR if there does not exist a traezewith
t — R U.

Thegraph groupG (X, I) is defined as the quotient

G(X,I) = F(X)/{ab=ba | (a,b) € I}.

If (X, 1)is the empty graph, i.eX = 0, then we seM(X,I) = G(X,I) = 1 (the
trivial group). Note thata,b) € I impliesa='b = ba~! in G(X, I). Thus, the graph
groupG(X, I') can be also defined as the quotient

GE, 1) =MZ*, )/{aa =¢|ac ZF}.

Here, we implicitly extend C ¥ x ¥ toI C X*! x L*! by setting(a®,b’) € I if
and only if(a,b) € I fora,b € X ande, 8 € {1, —1}. Note thatM[(X, I) is a rational
subset ofG(X, I).

Define a trace rewriting system overM(X*!, ) as follows:

R={(aa"t¢) |a € Z*}. 1)

One can show that for every trates M(X*!, I), there exists a uniqueormal form
NF(t) such that =z NFx(t) andNFg(t) is irreducible with respect t&. More-
over, for allu,v € M(X*! I),u = vin G(X,I) ifand only if NF z(u) = NFx(v) (in
M(X*1, 1)) [10]. This leads to a linear time solution for the word peblof G(X, T)
[10, 40].

If the graph(X, I) is the disjoint union of two graph&¥, I;) and (X5, I5), then
G(E, I) = G(El, Il) * G(227 IQ) If (2, I) is obtained fron(El, Il) and(Eg, 12) by



Fig. 2. The graph<L4 andP4

connecting each element &f; to each element aby, thenG (X, I) = G(X1, 1) %
G(Xy, Iy). Graph groups were studied e.g. in [13]; they are also kna/frea partially
commutative groupfl.0, 40],right-angled Artin groupg6, 7], andsemifree groupf2].

A transitive foresis an independence alphal§ét, I) such that there exists a forest
F of rooted trees (i.e., a disjoint union of rooted trees) witlde set” and such that
for all a,b € X with a # b: (a,b) € I if and only if a andb are comparable &
(i.e., eithera is a proper descendant bfor b is a proper descendant oj. It can be
shown tha{ X, I) is a transitive forest if and only {f¥, I') does not contain an induced
subgraph, which is a cycle on 4 nodes (also callddsee Figure 2 on the left) or a
simple path on 4 nodes (also called, see Figure 2 on the right) [39]. The next lemma
follows easily by induction. We sketch the proof.

Lemma 2. The classC of all groups, which are of the forfs(X, I) for a transitive
forest(X, I), is the smallest class such that:

D1ecC
(2) ifG1,G4 € C,thenalsaGy * G € C
() ifGeCthenGxZ e C

Proof. First we verify that graphs groups associated to transitivests satisfy (1)-(3).
Case (1) results from the empty graph. It is immediate tlzetsitive forests are closed
under disjoint union, which implies (2). If' is a forest of rooted trees, then one can
obtain a rooted tree by adding a new root whose children areothts of the trees from
F. On the group level this corresponds to (3).

For the converse, we proceed by induction on the number ditesr If the forest
(X, I) consists of more than one rooted tree, ti&(E, I) is the free product of the
graph groups associated to the various rooted tres,iif), all of which have a smaller
number of vertices. If there is a single tree, the(lih I) the root is connected to every
other vertex. Thu& (X, I) = G x Z whereG is the graph group corresponding to the
transitive forest obtained by removing the vertex corresiirg to the root and making
its children the roots of the trees in the forest so obtained. O

Of course, a similar statement is true for trace monoids efthm M(X, I') with
(X, 1) atransitive forest; one just has to replace in (3) the giblyy the monoid\N.

3 The rational subset membership problem

Let C be the smallest class of groups such that:

— the trivial groupl belongs taC



if G € CandH < G is finitely generated, then aldé € C

if G € C andG < H such thatG has finite index inH (i.e., H is a finite extension
of G), then alsaHd € C

if G €C,thenalsaG x Z € C

if A is a finite graph of groups [36] whose edge groups are finitendrase vertex
groups belong t@, then the fundamental group @f belongs taC (in particular,
the clas< is closed under free products).

This last property is equivalent to saying tltais closed under taking amalgamated
products over finite groups and HNN-extensions with finitgoagted subgroups [36].
The main result in this section is:

Theorem 1. For every group’ € C, the rational subset membership problem is decid-
able.

It is well known that decidability of the rational subset nieership problem is pre-
served under taking finitely generated subgroups and firtensions [20]. Moreover,
the decidability of the rational subset membership probiemreserved by graph of
group constructions with finite edge groups [24]. Hence riteoto prove Theorem 1,
it would suffice to show that the decidability of the ratioeabset membership problem
is preserved under direct productsbyBut currently we can neither prove nor disprove
this. This forces us to adopt an alternate strategy: we mtilbduce an abstract property
of groups that implies the decidability of the rational setatmembership problem, and
which has the desired closure properties.

Let £ be a class of formal languages closed under inverse homdisarpA finitely
generated groufy is said to be arC-group if WP (G) belongs toL for some finite
generating sek'. This notion is independent of the choice of generatingls&td1, 24].

A languageL, C X* belongs to the clasRID (rational intersection decidable)
if there is an algorithm that, given a finite automaton o¥&recognizing a rational
languagel, can determine whethdry N L # (). It was shown in [24] that the class
RID is closed under inverse homomorphism and that a géotps a decidable rational
subset membership problem if and only if it is an RID-groupisTfollows from the fact
that if L is a rational subset of a group, theng € L ifand only if 1 € ¢g~' L and that
¢~ 'L is again a rational subset.

Let K C ©* be a language over an alphatégt Then K belongs to the class SLI
(semilinear intersection) if, for every finite alphabEt(disjoint from ©) and every
rational languagé. C (6 U I')*, the set

Ur({w e L | me(w) € K}) = ¥r(LNmg' (K)) (@)

is semilinear, and the tuples in a semilinear represemtafithis set can be effectively
computed from/” and a finite automaton fdk. This latter effectiveness statement will
be always satisfied throughout the paper, and we shall nditipcheck it. In words,
the set (2) is obtained by first taking those words frbrthat project intoX when -
letters are erased, and then erasing@Hetters, followed by taking the Parikh image.
In a moment, we shall see that the class SLlI is closed undersesnomomorphism,
hence the class of SLI-groups is well defined. In fact, we straxe generally that the
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class SLlI is closed under inverse images by sequentialibimec{3]. This will imply,
moreover, that the class of SLI-groups is closed under tphinite extensions [17, 21,
24].

A sequential transduced with input alphabet™’ and output alphabe®? can be
defined as a finite state automaton with transitions labejedléments from the set
X7 x £2* such that the following restriction is satisfied: If there atatesg, ¢1, g> and a
transition fromg to ¢; (for i € {1,2}) with label (a, w;) € X' x £2* thenq; = ¢ and
w1 = ws. This is not the standard definition of a sequential transd(see e.g. [3]), but
itis easily seen to be equivalent. The language defined Isya relationR C X* x 2%,
and it is easy to see thatis the graph of a partial functiofi: X* — 2*. A sequential
functionis a partial function, which is computed by a sequentialddarcer.

Lemma 3. Let K C ©* belong to SLI and lef : X* — ©* be a sequential function.
Thenf~!(K) belongs to SLI. In particular, the class of SLI-groups islwlefined and
is closed under taking finite extensions.

Proof. Let I" be an alphabet disjoint frofy and letL be a rational subset ¢f" U X)*.
Let A be a sequential transducer computing the sequential mgti: 3* — %,
Define a transduced’ by adding to each state of a loop with label(a, a) for each
a € I'. Clearly, A" is a sequential transducer, which computes a sequentiafidun
F:(IruX)*— (I'ue)~.

The following two observations are immediate from the faet the only transitions
of A" involving letters from/” are loops with labels of the forifu, a):

(a) ¥ F coincides with?- on the domain of” (we read the composition of functions
from right to left, i.e., in@- F" we first applyF’, followed by¥ )
(b) moF = fry.

We now claim that the following equality holds:
F(Lnxg (f71(K))) = F(L)N7g' (K). ©)

First note that, N 7' (f~'(K)) = LN F~(ng'(K)) by (b). So ifw belongs to
the left hand side of (3), thew = F(u) with u € LN F~(ng'(K)). Thusw €
F(L)Nnng'(K). Conversely, ifu € F(L)Nwg"(K), then there exista € L such that
F(w) = u. Butthenw € LN F~Y(ng"(K)) = LN 7' (f1(K)) and sou belongs
to the left hand side of (3).

Now, sinceL N 75.' (f1(K)) = LN F~ (75" (K)) is contained in the domain of
F, we may conclude from (a) and (3) that

Ur(LOrgt (71 (K)) = UrF(LN w5 (51 (K)) = Ur(F(D) Nrg ' (K)). (4)

But F(L) is rational since the class of rational languages is closettuimages via
sequential functions [3]. Therefore, sinéebelongs to SLI, we may deduce that the
Parikh-imagel,-(F (L) N 75" (K)) is semilinear. This completes the proof of the first
statement from the lemma in light on (4).

Since a homomorphism is a sequential function, the langokags SLI is closed
under inverse homomorphism. Hence, the class of SLI-greupell defined. Finally,
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let us assume tha¥ is an SLI-group and that is a finite index subgroup off. Let
X (resp.A) be a finite generating set fér (resp.H). Then in [24, Lemma 3.3] it is
shown that there exists a sequential functjfon A* — X* such that WR(H) =
f~1(WPx(G)). Hence,H is an SLI-group. O

Let us quickly dispense with the decidability of the ratibeabset membership
problem for SLI-groups.

Lemma 4. The class of languages SLlI is contained in the class of lagga®ID. In
particular, every SLI-group has a decidable rational sulrsembership problem.

Proof. Let K C ©* belong to SLI. LetA be a finite automaton over the alphalset
We have to decide whethérA) N K = (. SinceK belongs to SLI, the set

U ({w € L(A) | ro(w) € K}) = ¥y(L(A) N K)

is effectively semilinear and so has a decidable membenstdaplem (c.f. [24]). As
mentioned earlielyy(L(A) N K) consists of the unique functidgh— Nif L(4) N K
is non-empty and is empty otherwise. Thus we can test engstifoe L(A) N K. O

Having already taken care of finite extensions by Lemma 3 tatn to finitely
generated subgroups. We show that the language class Sbsedaunder intersection
with rational subsets. This guarantees that the class e§8luUps is closed under taking
finitely generated subgroups [21].

Lemma 5. Let K C ©* belongto SLI and lek C ©* be rational. TherRN K belongs
to SLI. In particular, every finitely generated subgroup ofELI-group is an SLI-group.

Proof. Let L C (I"U ©)* be rational, wherd" is a finite alphabet disjoint fror®. We
have
LNnng (RNK)=LNnng"' (R)Nng'(K).

But rational languages are closed under inverse homonsrphid intersection, so
(L Nrgt(R) N 7o' (K)) is semilinear agk belongs to SLI. This establishes the
lemma. ad

Next, we show that the class of SLI-groups is closed undectproducts witt¥:
Lemma 6. If G is an SLI-group, theli7 x Z is also an SLI-group.

Proof. Let X be a finite generating set fa¥. Choose a generatar ¢ X' of Z. Then
G x Zis generated byr U {a}. Let I be a finite alphabet/{ N (X*1 U {a,a"'}) = ()
and letZ be a rational subset ¢+ U {a,a!} U I")*. We have

wp<{w € L | mtiifaay (W) € WPs 0y (G x Z)}) -
ﬂ( Urigaa—ry({w € L] wga (w) € WPs(G)}) N
{f N | f(a) = flah)}).

This set is semilinear, sincgf € N'V{®a""} | f(a) = f(a~!)} is semilinear and
semilinear sets are closed under intersection and proiefiB]. O
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By Lemmas 3-6, Theorem 1 would be established, if we couldgeptbe closure
of C under graph of groups constructions with finite edge group$ortunately we are
only able to prove this closure under the restriction thargvertex group of the graph
of groups is residually finite (which is the case for group€)nin general we can just
prove closure under free product. This, in fact, constitate most difficult part of the
proof of Theorem 1.

Lemma 7. If G; andG4 are SLI-groups, thel'; * G is also an SLI-group.

Proof. Assume thaty; is a finite generating set fa&;. Thus, Y = X, U X5 is a
generating set for the free produ@t * G». Let I be a finite alphabetl{ N X*! = ()

and let® = S+ U T. Let L C 6* be rational and letl = (Q, 9, 6, qo, F) be a finite
automaton withl, = L(A), whereQ is the set of states, C @ x © x @ is the transition
relation,qy € Q is the initial state, and’ C @ is the set of final states. Fprq € @

andw € O* we writep —- 4 ¢ if there exists a path inl from p to ¢, labelled by the
word w.

For every pair of state@, ¢) € @ x @ let us define the language
Lp,g) € (FFTUTU(Qx Q)" U (X' UTU(Qx Q)" S (OU(@Qx*Q)

as follows:

Llp,q] = U {wo(p1, q1)wi(p2, g2) - - - wi—1(Pr, i) wi |
ie{1,2}

k=1 A (prqi)--os Py k) €Q@X QA
wo, ..., wg € (ZELUT)* A T+ (wo - wg) € WPx, (Gi) A

PESapt A A A A Qo1 ——ape A G 54 q)
Since the language
{wo(p1, q1)wi(p2, g2) - - wr—1 (P, qr)wr |
kzl A (p17q1)7"'7(pk’7q]€)€QXQ A wOaawke(E;tlup)*/\

Wi —
PEBADp A qrBapr A A Qo1 —— A D A G —a q)

is a rational language over the alphabgt’ U I" U (Q x Q) fori € {1,2} andG;
is an SLI-group, it follows that the Parikh image-gxo)(Lp,q]) € N'V(@xQ) s
semilinear. LetK'[p, q] C (I"U (Q x @))* be some rational language such that

Next, we define a context-free gramntar= (N, I, S, P) as follows:

— the set of nonterminals %7 = {S} U (Q x @), whereS is a new symbol not
contained iy x Q.
— Sis the start nonterminal.
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— P consists of the following productions:

S — (qo,qy) forall g € F
(p,q) = Klp,q| forallp,q € Q
(¢,9) — ¢ forallg e Q
By Parikh’s theorem, the Parikh imag€L(G)) C N’ is semilinear. Thus, the follow-
ing claim proves the lemma:
Claim 1. W(L(G)) = WF({IU S L(A) | ngl(w) S WPZ‘(Gl * Gz)})
Proof of Claim 1.We prove the following more general identity for gll, ¢) € @ x Q:

U(L(G, (p,9))) = Ur({w € O [ p =4 q A Tg+i(w) € WPs(Gy * Ga)})
For the inclusion
W (L(G, (p,q) S¥r({w e O |p=4q A mg(w) € WP5(Gr % G2)})  (6)

assume thap, ¢) =¢ u € I'*. We show by induction on the length of tederivation
(p, q) =¢ uthat there exists aword € ©* suchthap = 4 ¢, 7x+1(w) € WPs (G *
Gs), and¥ (u) = ¥r(w).

Case 1p = g andu = ¢: We can choose = «.

Case 2.(p,q) =¢ v =¢ u for someu’ € Klp,q|. By (5), there exists a word
v € Lp,q] such that?(u') = ¥pryoxq)(v). Sincev € L[p,q], there existt > 1,
(P1sq1)s -+, (ks qr) € Q x Q.4 € {1,2}, anduy, ..., v € (U U T)* such that

Vo U1 V-1 Vi
— P —AP1,q1 —AP2,---yqk—1 — APk, qk —AQq,
— v = vo(p1,q1)v1(P2,q2) - - - Ve—1(Pk, @) vk, @nd
— mg+1(vo - vg) € WPx, (Gi).

Sincew’ =¢ u € I'* and¥(u') = Wrygxq)(v), there must existiy, ..., u, € I'*
such that

(pi, ;) =cu; and W(u) = Vpr(vg) +---+Pr(ve) + ¥(ug) + -+ ¥(up)

forall 1 < i < k. By induction, we obtain words), ..., w; € @* such that for all
1<i<k:

- pi —5A G
- 7T2i1(’wi) S WPE(Gl * Gg), and
- Lp(uz) = !Pp(wl)

Let us setw = vow, vy - - - wrvE € OF. We have:

— P AP A QAP Dl A QA Q18D 54 4,

- ﬂgil(w) S WPE(Gl * GQ), and

— U(u) = ¥r(vo)+---+Wr(vr) +¥(ur) +---+¥(ug) = Pr(vo) +- - - +¥r(vg) +
Ur(wy) + -+ ¥r(wg) = ¥r(w).
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This concludes the proof of inclusion (6). For the otherusan, assume that
pSaq and 7wy (w) € WP (G * Gy)

for a wordw € ©*. By induction over the length of the wokd we show that(w) €
¥ (L(G, (p, q)))-

We will make a case distinction according to the three casésinma 1. Note that
we either havev € I'* or the wordw € ©* can be (not necessarily uniquely) written
asw = wy - --w, with n > 1 such thatw; € (I' U Zi¥)* U (I'u XF1H)*) \ I'* and
w; € (MU XEY* & wyy € (MUSEH™
Case lw € (I'U Xi™")" (the casew € (I'U X5 is analogous): Them s (w) €

WPy, (G1). Together withp 4 ¢, we obtainw(q, q) = w(q,q)s € L[p,q]. Since
(p,q) — K][p,q] and(q, q) — ¢ are productions o, there exists a word € I'* such
that(p, q) Scu and¥ (u) = ¥r(w), i.e.,.¥r(w) € ¥(L(G, (p,q))).

Case 2w = wyws With wy # € # we andr g1 (w), Tx1(wa) € WPx(Gy * Ga).
Then there exists a statec ) such that

par Zaq
By induction, we obtain
Wr(wi) € U(L(G, (p,r))) and
¥r(w2) € U(L(G, (1, q)))-
Hence, we get
Ur(w) = ¥r(wi) + ¥r(ws)

€ V(L(G, (p, 7)) +¥(L(G, (r,9)))
C ¥(L(G, (p:9))),

where the last inclusion holds, sinég,r)(r,q) € Lp,q], and so eithe(p,q) —
(p,7)(r,q) or (p,q) — (r,q)(p,r) is a production of.

Case 3w = vowy vy - - - wi vy Such thatk > 1,

— met1(w;) € WPx(Gy x Gy) foralli € {1,...,k}, and
— for somei € {1,2}: vo,...,vp € (' U ZEY*\ I'* and w1 (vg---vg) €
WPy, (G;).

There exist states, q1, - . ., bk, ¢ € @Q such that
vo w1 v1 Wi Vi
P—7AP1 —A4 —AP2 " "Pk —"Aqk —A(4-

By induction, we obtain
Wr(w;) € ¥(L(G, (pi; 4:))) (7
forall 1 < i < k. Moreover, from the definition of the languadép, ¢] we obtain

v =v9(p1,q1)v1(p2,q2) -+ - Vk—1(Pk, g )V € Lp, q].
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Hence, by (5) there is a word' € Klp, q] such that¥'(u') = ¥prygxe)(v) and
(p,q) — v is a production of7. With (7) we obtain

(p,q) =g u =g u
for awordu € I'* such that
@(u) = Wp(vo) + -+ Wp(wf) + Wp(wl) + -+ &Dp(wk) = Wp(w),

i.e.,¥r(w) € ¥(L(G, (p,q))). This concludes the proof of Claim 1 and hence of the
lemma. O

If we were to weaken the definition of the clag®y only requiring closure under
free products instead of closure under finite graphs of ggauith finite edge groups,
then Lemmas 4—7 would already imply Theorem 1. In fact, tresiker result suffices
in order to deal with graph groups, and readers only inteceistgraph groups can skip
the following considerations concerning graphs of groups.

To obtain the more general closure result for the afassncerning graph of group
constructions, we reduce to the case of free products. Reabh group? is residually
finite if, for eachg € G \ {1}, there is a finite index normal subgroup of G with
g ¢ N. Now we use a standard trick for graphs of residually finiteugs with finite
edge groups.

Lemma 8. Let A be a finite graph of groups such that the vertex groups areludly
finite SLI-groups and the edge groups are finite. Then thedionehtal group ofs is an
SLI-group.

Proof. Let G be the fundamental group @f. ThenG is residually finite [36, 11.2.6
Proposition 12]. Since there are only finitely many edge psoand each edge group
is finite, there is a finite index normal subgrop < G intersecting trivially each
edge group, and hence each conjugate of an edge group. Tfisitaly generated
subgroupN < G acts on the Bass-Serre tree f6r[36] with trivial edge stabilizers,
forcing NV to be a free product of conjugates of subgroups of the ver@xs ofG and

a free group [36]. SincéV is finitely generated, these free factors must also be finitel
generated. Since every finitely generated subgroup of argRiup is an SLI-group
(Lemma 5) andZ is an SLI-group (Lemma 6), we may deduce thats a free product
of SLI-groups and hence is an SLI-group by Lemma 7. SidggntainsNV as a finite
index subgroup, Lemma 3 implies th@tis an SLI-group, as required. O

Clearly, the trivial groupl is an SLI-group. Also all the defining properties ©f
preserve residual finiteness (the only non-trivial caseddéhe graph of group con-
structions [36]). Hence, Lemmas 4—6 and Lemma 8 immedigielyd Theorem 1.

Our main application of Theorem 1 concerns graph groups:

Theorem 2. The rational subset membership problem for a graph gréi{g”, ) is
decidable ifand only ifX, I) is a transitive forest. Moreover, (&, I) is not a transitive
forest, then there exists a fixed rational subseif G(X, I) such that the membership
problem forL within G(X, I) is undecidable.
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Proof. The decidability part follows immediately from Theorem Jerhma 2 implies
that every graph grou@ (X, I) with (X, I) a transitive forest belongs to the class
Now assume that™, I) is not a transitive forest. By [39] it suffices to consider the

case tha{ X, I) is either aC4 or aP4. For the case of &4 we can use Mihailova’'s
result [30]. Now assume th&f, ) is aP4. We will reuse a construction by Aalbers-
berg and Hoogeboom [1], which is basedZnounter machineg\ 2-counter machine
is a tupleC = (Q,Ins, g0, qy) Where@ is a finite set of stateg, € @ is the initial
state,qy € Q@ is the final state, and In§ @ x {i1,2,d1,d2, =1, 22,pl,p2} x Q is
the set of instructions. The set of configuration€at Q x N x N. For two configura-
tions (g, n1, n2), (¢', m1, ma) we write (¢, n1,n2) =¢ (¢',m1, ms) if there exists an
instruction(q, ak,q’) € Ins, soa € {i,d,z,p}, k € {1,2}, such thatns_ = nz_p
and one of the following three cases holds:

—a=tandmy =n; +1

- a:dandmk:nk—l

—a=zandm, =n, =0

—a=pandmg =ng >0

Since Turing machines can be simulated by 2-counter masi2®3, it is undecidable
whether for a given 2-counter machide = (Q,Ins, go, g¢) there existm,n € N
with (go, 0,0) =¢ (¢¢, m,n). In[1], this problem is reduced to the question, whether
LN K = ( for given rational trace languagés K C M(X, ), whereX' = {a, b, ¢, d}
andI = {(a,b), (b,c), (c,d)}. In fact, the languag& is fixed, more precisely

K = ba(d(cb)a)*dc*
= {[abo dab’ 72d - - - ab =1 ) | £ > 1,50 = 1,51, ..., 50 > 1}

The problem is that in the construction of [1] the langudgés not fixed since it
depends on the 2-counter machifie Aalbersberg and Hoogeboom encode the pair
of counter valuegm,n) € N x N by the single numbe2™3"™. The languageL

is constructed in such a way that N L contains exactly those traces of the form
[ablociidabirci2d - - - ablt-1c9td)r, such that! > 1, jo = 1, and there exist states
q,---,qe andmy, nq,...,mg,ne € Nwith gp = gy, 23" = j;, and(go,0,0) =¢
(qg1,m1,m1) =¢ (g2, ma,n2) =¢ -+ =¢ (qe, me, ng) (NOte thatjy = 1 encodes the
initial counter valueg0, 0)).

In order to construct a fixed rational subse@4f, I') with an undecidable member-
ship problem, we start with a fixed (universal) 2-counter hireC' = (Q, Ins, qo, g5)
such that it is undecidable whethén’, n’ € N : (g0, m,n) =% (g7, m’, n’) for given
natural numbersn, n. Such a machin€' can be obtained by simulating a universal
Turing machine. Letl. C M(X, I) be thefixed rational trace language constructed
by Aalbersberg and Hoogeboom frofy and let us replace the fixed trace language
K = ba(d(cb)Ta)*dc* by the (non-fixed) language

Koy = 023" a(d(cb)ta)*dc*
= {[aboc dab? ¢72d - - - ab 1 ) | > 1,50 = 273 g1, ..., G > 1.

Thenitis undecidable, whethés,,, , N L # ) for givenm,n € N. Hence, it is unde-
cidable, whetheb=2"3" ¢ a(d(cb)*a)*dc*L~" in the graph grougds (X, I). Clearly,
a(d(cb)ta)*de* L1 is a fixed rational subset of the graph gragpy, I). O
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We conclude this section with a further application of Theorl tograph products
(which should not be confused with graphs of groups). A gragduct is given by a
tuple (X, I, (G )vex), Where(X, I) is an independence alphabet afid is a group,
which is associated with the nodez X'. The groupG (X, I, (G,).cx) defined by this
tuple is the quotient

G(27I7 (G’U)UEE) = v;kE Gu/{xy =y | S Gu7y S G’U? (U,U) € I}7

i.e., we take the free produgt,c »» G, of the groups=, (v € X)), but let elements from
adjacent groups commute. Note tli&at>, 7, (G, ),cx) is the graph groufi(X, T) in
the case everg, is isomorphic tdZ. Graph products were first studied by Green [19].

Theorem 3. If (X, 1) is a transitive forest and every grou@, (v € V) is finitely
generated and virtually Abelian (i.e., has an Abelian salogrof finite index), then the
rational subset membership problem 8(X, I, (G, ),cx) is decidable.

Proof. Assume that the assumptions from the theorem are satisfiedshttv that
G(X,1I,(Gy)vex) belongs to the class. Since(X, I) is a transitive forest, the group
G(X,1,(Gy)vex) can be built up from trivial groups using the following twoesp-
tions: (i) free products and (ii) direct products with fimjtgenerated virtually Abelian
groups. Since the clagsis closed under free products, it suffices to prove that if
belongs to the clasé and H is finitely generated virtually Abelian, thed x H also
belongs to the clasS. As a finitely generated virtually Abelian grougl is a finite
extension of a finite rank free Abelian grodfy. By the closure of the clas3 under
direct products wittZ, G x Z™ belongs to the clags. Now, G x H is a finite extension
of G x Z', proving the theorem, sinegis closed under finite extensions. O

4 The submonoid membership problem

Recall that the submonoid membership problem for a grGugsks whether a given
element ofG belongs to a given finitely generated submonoid-ofHence, there is a
trivial reduction from the submonoid membership problemdato the rational subset
membership problem foZ. We will show that for every amalgamated free product
G x4 H such that:

1. A= GnN H is afinite, proper subgroup ¢f andH;
2. there exisy € G, h € Hwithg='AgNA=1=h"tAhN A,

there is in fact also a reduction in the opposite directiomil@rly, if *, G is an HNN
extension withp : A — B with

1. Ais afinite subgroup of7;
2. there existg € G suchthay~'AgNA=1org 'AgNnB=1

then the rational subset problem reduces to the submonaoidbership problem for
*, G. We remark that in 2, one could by symmetry switch the roleB aind A.

Using the following lemma, it will suffice to consider a fremductG * Fy, where
F; is a free group of rank two.
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Lemma 9. LetGx*4 H be an amalgamated free product such thatt A, [G : A] > 5,
and there existd € H withh=1AhN A = 1. ThenG * 4 H contains as a subgroup the
free productG x F5 of G with a free group of rank two.

Proof. Since[G : A] > 5, we can choose elemends, g2, 93,94 € G\ A which
belong to pairwise distinct lefi-cosets. Moreover, choose an elemiert H \ A with
h='Ah N A = 1. First we claim that: = g;hg, * andy = gshg, ' freely generate a
free subgroup ofi x4 H. For this, note thag; *g; € G\ Aif i # j. Thus, every word
over{z,z~ 1 y,y~ '} which does not contain a factor frofez =%, 2~ ta, yy =1, y 1y}
yields a reduced sequence for the amalgamated product.orhehform theorem for
amalgamated free products [26, Chapter IV, Theorem 2.8]ithelies that{ z, y} is the
base of a free subgroup 6fx 4 H. Hence, the conjugates= hah~! andv = hyh~!
also form a base for a free subgroup®@fs4 H. Sinceh='!Ah N A = 1 (and hence
if a € A, thenh~tah € H \ A) a word overG \ {1} U {u,u~t,v,v71}, which
does not contain a factor frofd \ {1})(G\ {1}) U{uu=t, u=tu,vo=1, v~ 10}, yields
a reduced sequence for the amalgamated product. Againptheahform theorem for
amalgamated free products implies that the subgrodp«of H generated bz U{u, v}
is isomorphic toG * Fy. O

We now prove the analogous result for HNN extensions.

Lemma 10. Let *, G be an HNN extension with stable letteand finite associated
subgroupsA, B (sop : A — B) such thatlG : B] > 3 and there existg € G with

g 'AgnA =1org 'AgnB = 1. Thenk,, G contains as a subgroup the free product
G * F5 of G with a free group of rank two.

Proof. By Lemma 9, it suffices to show that, G contains a subgrou@ = Z. We may
assume tha#l # 1 # B, because otherwise, G ~ G * Z. Choosey,, g, € G\ B
so thatgy, go are in different left cosets aBB. Suppose first there existsc G with
g 'AgN A =1andsetr = gt 'gtg; . Sinceg ¢ A (because otherwisé = 1) and
g5 ‘g1 ¢ B, one easily deduces that is a reduced sequence for the HNN extension for
all n > 0 and hencer is of infinite order by Britton’s lemma. Sgt= ¢t~ lgtat—1g—'t.
Theny is of infinite order, being a conjugate of We claim thatG and (y) generate
their free product inside of,, G. We need to show that a word ov@n\ {1} U{y,y '}
with no factor from(G'\ {1})(G\{1})U{yy~!,y~ 'y} results in a reduced sequence for
the HNN extension. The key point is thatife G'\ B, thent—1g=1tht~1gt is reduced.
On the other hand, #f € B\ {1}, thent=tg=1tbt=1gt = t=1g=Lp~1(b)gt~1, which
is reduced since " 'AgnN A = 1.

Now assume that there existsc G with g~ Ag N B = 1. The groupA must be
a proper subgroup af, because otherwise we have= g'AgN B = GN B = B.
So choosgyy € G\ A and setr = glt—lgotggl. The same argument as above shows
thatz has infinite order. Sey = t~!gt~lxtg—!t; againy has infinite order, being a
conjugate ofr. Again, we claim thatz and (y) generate their free product ik, G.
Once more, we must prove that a word o¢ek {1} U {y,y '} with no factor from
(G\{1})(G\{1})U{yy~t,y~ 'y} yields a reduced sequence for the HNN extension.
The key point is that ifh € G\ B, thentg='tht~1gt~! is reduced. On the other
hand, ifb € B\ {1}, thentg=1tbt—1gt=1 = tg=1e~1(b)gt—!, which is reduced since
g tAgNn B =1. O
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The following lemma is crucial for us:
Lemma 11.

(1) LetG and H be finitely generated groups such that the finite greujs a proper
subgroup of bothG and H and there existé ¢ H withh~'Ah N A = 1. Then
the rational subset membership problem &&rcan be reduced to the submonoid
membership problem faF 4 H.

(2) If ¢ : A — B is an isomorphism between finite subgroups of a finitely geadr
group G and there existg € G withg='AgN A =1o0rg 'AgnN B = 1, then
the rational subset membership problem &@rcan be reduced to the submonoid
membership problem fok,, G.

Remark 1.In our proof of Lemma 11 we will implicitly construct Turingachines that
carry out the reductions in (1) and (2). These machines wifleshd on the element
(andh) in (1), respectively (2). Here one might argue that thesmehts are not known.
But this is not a real problem, singeandh are fixed elements which do not depend on
the input for the reduction. So there exists a Turing mactiiaécan do the reduction,
although we don’t know which Turing machine if we don’t kndvetelementg andh.

Proof of Lemma 11If G is finite, then the rational subset membership problenGfor
is decidable, so we may assume without loss of generalityGhia infinite. SinceA
is finite, we havelG : A] > 5 in (1), respectively{G : B] > 3 in (2). Then Lem-
mas 9 and 10 imply that’ « F» is a subgroup ot x4 H, respectively*, G. Since
the submonoid membership problem for a finitely generatédswp of a groupk’
reduces to the submonoid membership problemHoitself, it suffices to prove the
following: the rational subset membership problem ¢dcan be reduced to the sub-
monoid membership problem f6# x F5. Let X' be a finite generating set f6¥ and use
h: (¥ UT*)* — G * F, for the canonical morphism. Let = (Q, X*',6, o, F)
be a finite automaton and let (X*+!)*. By introducinge-transitions, we may assume
that the set of final statefs consists of a single statg # go. One can effectively find
a subse@ C F; in bijection with @ via ¢ — g such that@ freely generates a free
subgroup offs.

We construct a finite subsgt C (X*'u*!)* and an element € (L u+1)*
such thati(t) € h(L(A)) if and only if h(u) € h(A*). Let

A={Gep " | (g,c,p) €6} and w=qotq; " ®)

Note that in (8), we have € X*! U {}, since we introduced-transitions. Recall
(¢,¢,p) € 6 means; 5 pin A. We begin with a critical claim.

Claim 1.Suppose that i67 « F5, we have

Qtq; = Eod ) - (Pavndy, ) ©)

wherep; 2 ¢; in A, fori € {1,...,n}. Thenh(t) € h(L(A)).

The claim is proved by induction om. If n = 1, then sinceyy # gy, the normal form
theorem for free products easily impliegs = p1, ¢f = ¢ andt = vy in G. Thus
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g = g7 in A, whencev; € L(A), and soh(t) € h(L(A)). Next suppose the claim
holds forn — 1 > 1 and consider the claim for > 1.
First suppose that; = p; 1 for somei. Then

Qotq; =g ) Givviadiyh) - Bavady, )

in G = Fy andp; Litit, gi+1 In A. Induction now gives the desired conclusion.
Next suppose that for somewe havep; = ¢; andv; = 1in G. Then

Gty = Pr1o1qy ") - (Pi-10i-1G; ) Pis1vi1@i1) - - (Pavndy ')

in G x I and we can again apply the induction hypothesis.

Finally, suppose,; = ¢; impliesv; # 1 in G and suppose; # p;+1, all i. Then
we claim that the right hand side of (9) is already in normahfoConsider a typical
window g, %, piviq; 'Pi+1 (Where we takey = 1 = p,+1). Then no two neighbouring
elements belong to the same factor of the free proGuetQ) = G * (31) - - * (3,,),
where@ = {s1,...,Sm}, Sinceg; # p,;11 forj =i —1,iandp; # ¢, whenv; =1
in G. Since such windows cover the right hand side of (9) we mayloole that it is
in normal form inG * F,. Comparison with the left hand side then shows that 1,
contradictingn > 1. So this case does not arise and the proof of the claim is eimpl

Now we may prove thak(t) € h(L(A)) if and only if h(u) € h(A*). Suppose first
thath(t) = h(t') with ¢’ € L(A). Writet' = a; - - - a,, with a; € X1 U {¢} and such
thatgy 5 ¢ 22 qo — -+ — qu_1 2 ;. Then, ash(t) = h(t'), clearly we
have

u=Got'gy " = (qoarqy )(Grazgy ) - - (Gn-1anq; ') € A
in G x F,. Conversely, suppodgu) € h(A*). Then we can write

uw=3qotq;" = (Prarq ') - (Pnang, ")

in G x Fy, wherep; 2 ¢; are certain transitions of. Claim 1 then impliesh(t) €
h(L(A)). O

Theorem 4. Let G and H be finitely generated groups such that the finite greus
a proper subgroup of botli’ and H and there exisy € G, h € H with g=*Ag N
A =1 = h"'Ah N A. Then, for the amalgamated free prodd&t, H the rational
subset membership problem and the submonoid membersHifeprare recursively
equivalent.

Proof. It suffices to show that the rational subset membership pmolibrG x4 H can

be reduced to the submonoid membership problentGfery H. The rational subset
membership problem foff x4, H can be reduced to the rational subset membership
problems forG and H [24]. By Lemma 11 both these problems can be reduced to the
submonoid membership problem f@r«4 H. O

Note that the assumptions in Theorem 4 are satisfied for dxagyproduciz « H
of nontrivial finitely generated groupgs and H.
A similar result holds for HNN extensions:
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Theorem 5. LetG be a finitely generated group and let A — B be an isomorphism
between finite subgroups 6f. Suppose there existsc G, withg='AgnN A =1 or

g 1Ag N B = 1. Then the rational subset membership problem and the sutichon
membership problem are recursively equivalent for the HXeresiore , G.

Proof. We just need to establish that the rational subset memipgpsbiblem fork , G
can be reduced to the submonoid membership problem. Tla@aatiubset membership
problem for*, G can be reduced to the rational subset membership probler for
by the results of [24]. By Lemma 11 this problem can be reduoetthe submonoid
membership problem fok,, G. This completes the proof. a

Let us say that a grouf is virtually a free producif it has a finite index subgroup
H that splits nontrivially as a free produgt = G * G,.

Corollary 1. LetG be a finitely generated group that is virtually a free produidten
the rational subset and submonoid membership problemsartesively equivalent.

Proof. Suppose has decidable submonoid membership problem. We need to show
thatG has decidable rational subset problem. Hebe a finite index subgroup @f that

splits nontrivially as a free product. Clearly has decidable submonoid membership
problem and hence has decidable rational subset membgnsiifem by Theorem 4.

It then followsG has decidable rational subset membership problem by [20, 240

In order for a finitely generated group to be virtually a freeduct, it must have two
or more ends. On the other hand, a group with two or more erdsstieither virtually
torsion-free or residually finite is easily seen, via St ends theorem [38], to be
virtually a free product, as we now show. First we recall tbdon of ends of a locally
finite graph.

Let I" be a locally finite graph, i.e., every node Bfhas only finitely many neigh-
bours. Consider the inverse systdm\ C' whereC runs over the finite subgraphs of
I'. Then the sets of connected componergd™ \ C) form an inverse system of sets;
the projective limitEnds(I") = limmo (1" \ C') is known as the set afndsof I". The
number of ends of” is the cardinality ofEnds(I"). The number of ends of a finitely
generated groug is the number of ends of the Cayley-graph®@fwith respect to
any finite set of generators; this number is independentefitiite generating set we
choose foiGG and it is eitheid, 1, 2 or co [38]. Here are some examples: (i) every finite
group had) ends, (ii)Z x Z has one end, (iii¥. has two ends, and (iJ)> has infinitely
many ends. Stallings’ famous ends theorem [38] says thatisf a finitely generated
group with two or more ends, the# splits nontrivially as an amalgamated product or
an HNN-extension over a finite subgroup. This can be refoaiedlin terms of actions
on trees via Bass-Serre theory [36].

A group actsnontrivially on a tree if it has no global fixed-point, i.e., there is no
nodew in the tree withGv = {v}. A groupG is said tosplit over a subgroud if
there is a nontrivial action off on a treeT’ such thatH is the stabilizer of an edge
e and the orbitGe consists of all edges df'. This is equivalent td splitting as an
amalgamated product or HNN-extension wifhas the amalgamation base, respectively
the associated subgroup [36]. We shall need the followingpkd lemma.
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Lemma 12. Let G be a finitely generated group with a nontrivial action on aetfg
and letH < G be a finite index subgroup. Théh acts nontrivially on7".

Proof. Recall that ifg is an automorphism of a treg, theng is said to beelliptic if
g fixes some point of". It is well known (this follows immediately from [36, 1.6.4,
Proposition 25], for instance) thatgf* (n > 1) is elliptic, theng is elliptic. Now if H
has a global fixed point, theH consists entirely of elliptic automorphisms Bf Let
[G : Hl = nandg € G. Theng™ € H and hence is elliptic. It follows that every
element ofG is elliptic. But it is well known [36, 1.6.5, Corollary 3] thany finitely
generated group of elliptic automorphisms of a tree haslzedfixed point, contradict-
ing that the action of7 is nontrivial. It follows that the action off is nontrivial. O

Theorem 6. Let G be a finitely generated group with two or more ends such that th
intersection of all the finite index subgroups@fis torsion-free. Thert is virtually

a free product and hence the rational subset membership albehanoid membership
problems forG are recursively equivalent.

Proof. By Stallings ends theorem [38]; splits nontrivially over a finite subgroup. So
by Bass-Serre theory [3&} acts nontrivially on a tre& so that there is one orbit of
edges and the stabilizer of an edge is finite. Hebe an edge stabilizer; sindé is

a finite group, by hypothesis there is a normal subgrdup: G of finite index such
H N N = {1}. By Lemma 12 the action oN on T is nontrivial. Since each edge
stabilizer inG is a conjugate ofd, it follows no element ofV \ {1} fixes an edge.
Therefore, NV splits nontrivially as a free product [36]. This compleths proof. O

Corollary 2. Let G be a finitely generated group with two or more ends which is ei-
ther virtually torsion-free or residually finite. Then thational subset membership and
submonoid membership problems forre recursively equivalent.

Proof. Clearly Theorem 6 applies under either of these hypotheses. O

Let us now come back to graph groups. Theorems 2 and 4 imgiynthaubmonoid
membership problem is undecidable for every graph groupesfarm

GX U{a}, ) =G(X,I)*Z,

wherea ¢ X and (X, 1) is not a transitive forest. In the rest of the paper, we will
sharpen this result. We show that for a graph group the subitiomembership problem
is decidable if and only if the rational subset membershgblem is decidable, i.e., if
and only if the independence alphabet is a transitive fotasfact, by our previous
results, it suffices to considerPat:

Theorem 7. Let ¥ = {a,b,¢,d} andI = {(a,b), (b,c),(c,d)}, i.e,(X,I) is aP4.
Then there exists a fixed submonaifiof G(X, I') such that the membership problem
of M within G(X, I) is undecidable.

Proof. We follow the strategy of the proof of Lemma 11, but workingtie graph
groupG(X, I') makes the encoding more complicated. Retenote the trace rewriting
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system over the trace mondid( X+, I) defined in (1), Section 2.3. As usual denote by
h: (E*h* — G(X,I) denote the canonical morphism, which will be identified with
the canonical morphisrh : M(X*! 1) — G(X,I). Let us fix a finite automatorl
over the alphabeE*! such that the membership problem tdi.(A)) within G(X, I)

is undecidable; such an automaton exists by Theorem 2. Witless of generality
assume that

A= ({17"'7”}72i1757QO5{Qf})5

wheres C {1,...,n} x (¥ U {e}) x {1,...,n} andgy # q; (since we allowe-
transitions, we may assume that there is only a single fia& g}, which is different
from the initial statey,). For a statg € {1,...,n}, define the tracg € M(X*!, I) by

7 = (ada)?d(ada)™? = (ada)?d(a= d  a™1)2.

Note that the dependence graphgof a linear chain. Moreover, every symbol from
X+l is dependent ond, i.e., does not commute witld. The following statement is
straightforward to prove.

Claim 2.Letqy,...,qr € {1,...,n},€1,...,e, € {1,—1} such thay; # ;11 for all
1<¢<k-—1.Then

NFR(&? a;z .. a;:;k) — (ada)lh det (ada)%*fh R AL (ada)qk*%—ldﬂ: (ada)fq"".

Note that this trace starts (resp. ends) with a copydaf (resp.a—'d~'a™1).

Letp : (XF1)* — (Z*1)* be the injective morphism defined py(x) = zz for x €
X+ Thus,w € L(A) if and only if o(w) € p(L(A)). Since(z,y) € I implies that
¢(x) andy(y) commute,p can be lifted to an injective morphisg: M(X*! 1) —
M(Z*! I). The reader can easily verify that, for every traceM(X*!, I), the equal-
ity NFr(p(t)) = ¢(NFg(t)) holds. In particulary(t) is irreducible if and only ift is
irreducible andh(t) = h(u) if and only if A(p(t)) = h(e(w)).

Let us fix a trace € M(X*!, I) and define

A={go(x)p~" | (g, ,p) € 6} CM(EF', 1) and u = Gop(t)g; ' € M(EF,1).

We will show thath(t) € h(L(A)) if and only if h(u) € h(A*).
Let us define d-cycleto be a word in( *!)*of the form

Qip(v1)gy " q~2<p(v2)q~§1 e %-1@(%—1)@;1 (o) gyt

such thatk > 1, q1,...,qx € {1,...,n}, v1,...,v, € (ZFH*, andv; ---v, = 1
in G(X,I) (hence, als@(v1) - - - p(vi) = 1in G(X, I)). Note that al-cycle equald
in G(X, I). We say that a word of the for ¢ (v1)p; " G (v2)Py - - - G (Vm )Pty
whereq, p1, .-+, @m,pm € {1,...,n} andvy, ..., v, € (X*1)*, contains a-cycle,
if there are positions < i < j < m such tha;o(v;)p; ' - - g;(v;)p; ' is al-cycle.
If a word does not contain kcycle, then it is called-cycle-free

Claim 3.Letm > 1 and

v=q1p(v)pr " G (v2)Dy ' G (Vi) Pt
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whereg:, p1, - -+, Gm, pm € {1,...,n}andvy, ... v, € (X)) Ifv=1InG(X, ),
thenwv contains al-cycle.

Proof of Claim 3.We prove Claim 3 by induction over. Assume thaty = 1 in
G(X,I). If m = 1, then we obtain the identity

Ejlga(vl)ﬁl_l = (ada)qld(ada)*qlc,o(vl)(ada)plalfl(ada)*p1 =1 (20)

in G(X, I). Assume without loss of generality that, viewed as a trace, is irreducible
with respect taR. Then alsap(v, ) is irreducible. Ifp(vy) = € andp; = ¢1, thenvis a
1-cycle. If o(v1) = €, andp; # ¢1, then we obtain a contradiction, sinN@R(Zjljo“;l)

is nonempty by Claim 2. Now assume thgt; ) # <. In the trace

(ada)? d(ada) ™ ¢(v1)(ada)P* d~ ' (ada) P

only the lasta—! of the factor(a='d~'a~1)% may cancel against the firgtof ¢ (v;)
(in casea € min(v;)) and the first of the factor(ada)P* may cancel against the last
a=t of p(v;) (in casea™! € max(v;)). To see this, note that if ¢ min(v;), then
(ada) ™% (v1) is irreducible with respect t&®. If a € min(vy) thenp(vy) = aap(t)
for some trace. Then

(a td a2 p(v1) = (a td e N aap(t) —g (a7 d a2 a7t d  ap(t).

Sincea and d do not commute, we cannot hade € min(ap(t)), hence cancella-
tion stops andNFr((a~'d~ta) ¢(v1)) = (a~*d~ta=")*a~ d L ap(t) wherek =
q1 — 1 > 0. Moreover, ifa~! is a maximal symbol of, theny(t) = p(t')a=ta~! for
some trace’. Hence, by making a possible cancellation with the firét (ada)?, it
follows finally that

NFr(Gie(v1)pr ) = (ada)? d(ada)*a~'d " zda(ada)’d " (ada) ™P* # ¢

for some tracer, where/ = p; — 1 > 0. This contradicts again (10) and proves the
inductive base case = 1 in Claim 3.
Now assume that, > 2.

Case 1There isl < i < m such thap; = ¢;+1. Thenv = 1in G(X, I) implies
Ge(w)py " Gim10(Uim)Pi ) Ge(Vivig1)Dily Gigap(Vig2)Digs -+ Gm(Um)Dry!
is1in G(X, I). By induction, we can conclude that above word contaihsgcle. But
then also the word must contain d-cycle.

Case 2p; # ¢;+1 forall 1 <i < m.Ifthereisl <i < msuchthat;, = 1in G(X,I)
andg; = p; thenv contains thd-cycleg;¢(v;)p; . Now assume thaj; # p; whenever
v; = 1in G(X, I). Letv’ be the word that results fromby deleting all factors>(v;),
which are equal in G(X, I). In the following, we considet’ as a trace. Consider a
maximal factor ofv’ of the form

By QP G D AT (11)
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wherej > i+ 1andp(vip1) = -+ = @(vj—1) = 1, p(v;) # 1 # ¢(v;) InG(X, ).
Claim 2 show that th&-normal form of this trace starts (resp. ends) with a copydaf
(resp.a—td~'a~1), and similarly for maximal prefixes (resp. suffixes) of toerf
QP @b G (SPGB B - (12)
In o', factors of the form (11) and (12) are separated by trages), wherep(v;) # 1
in G(X, I). Without loss of generality assume that each such tgdog) is irreducible
and hence non-empty. As for the base case- 1, one can show that in such a con-
catenation, only a single minimaland a single maximai~! of a tracep(v;) # € may
be cancelled. It follows thaVF z(v) # e, which contradictsy = 1 in G(X,I). This
concludes the proof of Claim 3.
Now we can provéi(t) € h(L(A)) if and only if h(u) = h(Zjocp(t)Eijl) € h(A*).
First assume thdi(t) € h(L(A)). Leta; - - a, € L(A) such that(g;—1,a;,¢;) € §
forl <i<m,qm, =gqs,anda;---a, =tinG(X,I). Then

h(iioso(t)iifl) = h(Gop(a1)q; ' Qre(a2)dy ' -+ Gm-1p(am)Gy,') € h(A%).
Now assume that(goe(t)q; ') € h(A*). Thus,

Qoy(t)a; ' = qip(a1)py ' @2p(az)Py ' - - Gmp(am)by,!
in G(X, 1), whereqi,p1, .-, Gm,Pm € {1,...,n}, a1,...,a, € X+ U {c}, and
(gisai,pi) € 0 for 1 <i < m.Without loss of generality we may assume that the word
Gie(a)py  Gap(a2)py b - - Gnelam)p;! is 1-cycle-free (otherwise we can remove all
1-cycles from this word; note thatlacycle equald in the groupG(X, I)). Let

v=qre(t)do ' Gip(a)pr ! Gep(az)by - Gmp(am)br, -

Sincev = 1in G(X, I), Claim 3 implies that contains a-cycle. We claim that this-
cycle must be the whole word first of all, the SUf‘fiXZﬁ(p(al)ﬁl_l o Gmep(am D, of
vis 1-cycle-free. If a prefixgrp(t=1)gy ' qre(ar)py " - Giplai)p; ! fori < mis al-
cycle, thergi1(ai+1)P - - Gmep(am)p! = 1in G(X, I). Hence, Claim 3 implies
that the WOI’qui_,_l(p(ai_,_l)ﬁ;rll - gmep(am)p;,! contains al-cycle, contradicting the
fact that the wordj; p(a1)p; ' - - - Gmp(am)B;,,! is 1-cycle-free. Thus, indeed,is al-
cycle. Henceqo = q1, ¢f = Pm, Di = qi+1 forl < i < m, andt~la;---a, =1

in G(X,I), i.e.,h(t) = h(ay---am) € h(L(A)). This shows that the membership
problem for the submonoitl( A*) within G(X, I) is indeed undecidable. O

Recall that a graph is not a transitive forest if and onlyédfiher contains an induced
C4 or P4 [39]. Together with Mihailova'’s result for the generalizegrd problem of
F({a,b}) x F({c,d}), Theorems 2 and 7 imply:

Corollary 3. The submonoid membership problem for a graph greyp’, I) is de-
cidable if and only if( ¥, I) is a transitive forest. Moreover, {£, ) is not a transitive
forest, then there exists a fixed submondidof G(X, I) such that the membership
problem forM within G(X, I) is undecidable.

SinceP4 is a chordal graph, the generalized word problem@¢P4) is decidable
[25]. HenceG(P4) is an example of a group for which the generalized word prable
is decidable but the submonoid membership problem is uddbl.

26



5 Open problems

The definition of the clas§ at the beginning of Section 3 leads to the question whether
decidability of the rational subset membership problenréserved under direct prod-
ucts withZ. An affirmative answer would lead in combination with theulesfrom [24,
31] to a more direct proof of Theorem 1.

Concerning graph groups, the precise borderline for thaldbiity of the general-
ized word problem remains open. By [25], the generalizedhpooblem is decidable if
the independence alphabetis chordal. Since every tnamfitiest is chordal, Theorem 2
does not add any new decidable cases. On the other handjntidggendence alphabet
contains an induce@4, then the generalized word problem is undecidable [30].iBut
is open for instance, whether for a cycle of length 5 the amwading graph group has
a decidable generalized word problem.

Another open problem concerns the complexity of the ratisnbaset membership
problem for graph groups, where the independence alphatsetransitive forest. If
the independence alphabet is part of the input, then ousidecprocedure does not
yield an elementary algorithm, i.e., an algorithm where rilnening time is bounded
by an exponent tower of fixed height. This is due to the fact #s&h calculation of
the Parikh image of a context-free language leads to an exyiahblow-up in the size
of the semilinear sets in the proof of Lemma 7. An NP lower labfollows from the
NP-completeness of integer programming.

Theorem 4 and 5 lead to various research directions. Onetrrigho get rid of
the restriction thay"*AgN A = 1 = h=*Ah N A for someg € G, h € H and the
analogous restrictions for HNN extensions. These two tesadjether would imply that
Corollary 2 holds for all groups with two or more ends.

In fact it is natural to ask whether, for every finitely gertethgroupG, the sub-
monoid membership and rational subset membership proldeensecursively equiva-
lent. By Theorem 4, this is equivalent to the preservatiothefdecidability of the sub-
monoid membership problem under free products (which ignagat known to hold):
simply choose fof{ in Theorem 4 any nontrivial group with a decidable rationddset
membership problem. Recall that the decidability of theggalized word problem as
well as the rational subset membership problem is presamddr free products. No-
tice that for a torsion group, the submonoid membershiplprobs equivalent to the
generalized word problem, while the rational subset mestfypproblem reduces to
membership in productd; - - - H,, of finitely generated subgroups.
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