
Partially commutative inverse monoids

Volker Diekert, Markus Lohrey, Alexander Miller

Universität Stuttgart, FMI, Germany
{diekert,lohrey,miller}@informatik.uni-stuttgart.de

Abstract

Free partially commutative inverse monoids are investigated. Analogously to free
partially commutative monoids (trace monoids), free partially commutative inverse
monoids are the quotients of free inverse monoids modulo a partially defined com-
mutation relation on the generators.

A quasi linear time algorithm for the word problem is presented, more precisely,
we give an O(n log(n)) algorithm for a RAM. NP-completeness of the submonoid
membership problem (also known as the generalized word problem) and the mem-
bership problem for rational sets is shown. Moreover, free partially commutative
inverse monoids modulo a finite idempotent presentation are studied. It turns out
that the word problem is decidable if and only if the complement of the partial
commutation relation is transitive.

1 Introduction

Many real systems have a determinstic behavior and they allow an undo-
operation. This implies that the system is codeterministic, too. If we model
such a system by some labelled transition system, then we meet two properties.
The system is deterministic, thus in every state there is at most one outgoing
edge for each label. Codeterminism means that for each state and label there
is at most one incoming edge with this label. In this setting every label defines
a partially defined injective mapping from states to states. It follows that
the resulting transformations form an inverse monoid. Moreover, it it is well-
known that every inverse monoid arises this way: It is the transformation
monoid of some (possibly infinite) deterministic and codeterministic labelled
transition system. Because of this background and its close connection to
automata theory inverse monoids received quite an attention in theoretical
computer science and there is a well-established literature on this subject, see
e.g. [24,30].

Preprint submitted to Elsevier Science 9 January 2007

In this paper we are interested in the situation where the labels describe actions
where some of them can be performed independently. This leads to a partial
commutation and therefore to partially commutative inverse monoids. There
is a natural notion of free partially commutative inverse monoids and this
concept has been studied in the thesis of da Costa [34], first. Da Costa showed
among others that the word problem of free partially commutative inverse
monoids is decidable, but he did not give any complexity bounds. Section 3 of
the present paper shows that the word problem is solvable in time O(n log(n))
on a random access machine (RAM).

In order to achieve this time complexity we give a direct approach to define
free partially commutative inverse monoids which is in fact our first contri-
bution. Our construction is closer to the standard Birget-Rhodes expansion
[3] and to the construction of Margolis and Meakin [22,23]. However instead
of using (connected) subsets (of the Cayley graph) of a group, we consider
closed subsets for some natural closure operation on subsets of graph groups
[12], which are also known as free partially commutative groups.

In Section 4, we extend our decidability result for the word problem to the
submonoid membership problem. The submonoid membership problem asks
whether a given monoid element belongs to a given finitely generated sub-
monoid. In fact, we consider the more general membership problem for ra-
tional subsets of a free partially commutative inverse monoid and we show
its NP-completeness. NP-hardness appears already for the special case of the
submonoid membership problem for a 2-generator free inverse monoid. It is
quite remarkable that the submonoid membership problem remains decidable
in our setting, because it is known to be undecidable for direct products of
free groups [27]. So there is an undecidable problem for a direct product of
free groups where the same problem is decidable for a direct product of free
inverse monoids.

In the second part of the paper we consider free partially commutative in-
verse monoids modulo a finite idempotent presentation, which is a finite set
of identities between idempotent elements. We show that the resulting quo-
tient monoids have decidable word problems if and only if the underlying
dependence structure is transitive. In the transitive case, the uniform word
problem (where the idempotent presentation is part of the input) turns out to
be EXPTIME-complete, whereas for a fixed idempotent presentation the word
problem is solvable both in linear time on a RAM and logarithmic space on a
Turing machine. These results generalize corresponding results for free inverse
monoids modulo an idempotent presentation from [21,23]. Our decidability re-
sult for the case of a transitive dependence structure is unexpected in light of a
result of Meakin and Sapir [26], where it was shown that there exist E-unitary
inverse monoids over a finitely generated abelian group, where the word prob-
lem is undecidable. The proof of this result in [26] is quite involved and relies

2

on a sophisticated encoding of computations of Minsky machines. A slight
variation of our undecidability proof for non-transitive dependence structures
gives as a byproduct a simpler proof for the result of Meakin and Sapir. More-
over, we exhibit such a situation for every free abelian group of rank at least
two. This is tight since free abelian groups of rank one are virtually free and
there positive results are known [9].

Finally, in Appendix B we exhibit a connection between the reachability prob-
lem for Petri nets and our formalism.

A preliminary version of this paper appeared as a conference abstract in [8].

2 Preliminaries

In the following Σ denotes a finite alphabet and we let Σ−1 = {a−1 | a ∈ Σ}
be a disjoint copy of Σ. We define Γ = Σ ∪ Σ−1. The set Γ is equipped
with an involution −1 : Γ → Γ by (a−1)−1 = a for all a ∈ Σ. We extend
this involution to an involution −1 : Γ∗ → Γ∗ on words over Γ by setting
(a1 · · · an)−1 = a−1

n · · · a−1
1 for ai ∈ Γ, 1 ≤ i ≤ n, n ≥ 0. The free group

generated by Σ is denoted by F (Σ); it can be defined as the quotient monoid
Γ∗/{aa−1 = 1 | a ∈ Γ}. If the elements of Σ are listed explicitly, we omit the
surrounding braces, e.g., we write F (a, b) instead of F ({a, b}).

LetM be a finitely generated monoid and let Γ be a finite generating set forM ,
i.e., there exists a surjective homomorphism h : Γ∗ → M . The word problem
for M is the computational problem that asks for two given words u, v ∈ Γ∗,
whether h(u) = h(v). The submonoid membership problem for M asks whether
for given words u, v1, . . . , vn the element h(u) belongs to {h(v1), . . . , h(vn)}∗ ⊆
M , which is the submonoid generated by h(v1), . . . , h(vn).

The Cayley graph of a group G with respect to a generating set Γ is the
concrete undirected graph C(G,Γ) = (G, {{u, v} | u−1v ∈ Γ}). Note that
the undirected edge {u, v} can be viewed as a pair of directed edges (u, v)
and (v, u), where (u, v) is labelled with u−1v ∈ Γ and (v, u) is labelled with
v−1u ∈ Γ.

2.1 Free partially commutative inverse monoids

An inverse monoid is a monoid M such that for every x ∈M there is a unique
x−1 ∈M with

xx−1x = x and x−1xx−1 = x−1. (1)

3

It is well-known that uniqueness of the inverse x−1 follows, if we require ad-
ditionally to (1) that for all x, y ∈M we have:

xx−1yy−1 = yy−1xx−1. (2)

Exactly the elements xx−1 are the idempotents in M .

Every inverse monoid M can be viewed as a monoid of partially defined in-
jections over a set Q. The inverse of a partial injection a : dom(a) →֒ Q is the
partial injection a−1 with domain dom(a−1) = { a(q) | q ∈ dom(a) }.

We are interested in inverse monoids with an independence relation. Consider
the following situations:

I II
a

b

a

b a

b

In situation I the transitions a and b commute: The result of ab is the same
as ba; it is the undefined mapping, which corresponds to a zero in the monoid
of partial injections. It is clear however that a and b should not be called
independent, because a can disable b (and vice versa). Hence, whether or not
b is possible depends on a. The situation II is different: Again a and b commute,
but this time a and b act truly independently. We can view Q as the set of
global states of the asynchronous product of two independent components.
Both components have two states. The first component can perform an action
a and the second one a b.

This leads to the following definition. Let Q be a set (of states) and a :
dom(a) →֒ Q and b : dom(b) →֒ Q be partially defined injections where
dom(a) ∪ dom(b) ⊆ Q. Then a and b are called independent, if the following
three conditions are satisfied for all q ∈ Q:

(i) if q ∈ dom(a), then: a(q) ∈ dom(b) ⇐⇒ q ∈ dom(b),
(ii) if q ∈ dom(b), then: b(q) ∈ dom(a) ⇐⇒ q ∈ dom(a),
(iii) if q ∈ dom(a) ∩ dom(b), then: ab(q) = ba(q).

These conditions look technical, but a brief reflection shows that they are
indeed natural translations of an intuitive meaning of independence. Note that
independence implies that a and b commute, because dom(ab) = dom(ba) =
dom(a) ∩ dom(b). A simple calculation shows that independence of a and b
implies the independence of a−1 and b, too.

Given an inverse monoid M it is clear that every mapping ϕ : Σ → M lifts
uniquely to a homomorphism ϕ : Γ∗ → M such that ϕ(u−1) = ϕ(u)−1 for all
u ∈ Γ∗. Next, we lift the notion of independence.

An independence relation over Γ is an irreflexive and symmetric relation IΓ ⊆

4

Γ × Γ such that (a, b) ∈ IΓ implies (a−1, b) ∈ IΓ for all a, b ∈ Γ. Note that IΓ
is specified by IΣ = IΓ ∩ Σ × Σ. The pair (Σ, IΣ) yields an undirected graph

with IΣ ⊆
(

Σ
2

)
. In the following we simply write I, if the reference to Σ or Γ

is clear.

For words u, v ∈ Γ∗ we write (u, v) ∈ I if u = a1 · · · am, v = b1 · · · bn, and
(ai, bj) ∈ I for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

An inverse monoid over (Σ, I) is an inverse monoid M together with a map-
ping ϕ : Σ →M such that ϕ(a)ϕ(b) = ϕ(b)ϕ(a) and ϕ(a)−1ϕ(b) = ϕ(b)ϕ(a)−1

for all (a, b) ∈ I = IΣ. Thus, we can define the free inverse monoid over (Σ, I)
by

FIM(Σ, I) = FIM(Σ)/{ab = ba, a−1b = ba−1 | (a, b) ∈ I}.

Here, FIM(Σ) denotes the free inverse monoid over Σ, which is defined as the
quotient monoid of Γ∗ = (Σ ∪ Σ−1)∗ modulo the equations in (1) and (2) for
all x, y ∈ Γ∗. The monoid FIM(Σ, I) is also called a free partially commutative
inverse monoid.

Da Costa has studied FIM(Σ, I) in his Ph.D. thesis from a more general view-
point of graph products [34]. As a consequence he showed that FIM(Σ, I) has a
decidable word problem. In his construction he used the general approach via
Schützenberger graphs and Stephen’s iterative procedure [33]. The decidabil-
ity of the word problem follows because da Costa can show that the procedure
terminates. However, no complexity bounds are given in [34].

Another starting point for defining free partially commutative inverse monoids
is the Birget-Rhodes expansion [3]. One would start with the free partially
commutative group G(Σ, I) (defined below) and consider as elements of an
inverse monoid the pairs (A, g) where A is a finite and connected subset of the
Cayley graph of G(Σ, I) with 1, g ∈ A. Although this construction yields for
I = ∅ indeed FIM(Σ) by a result of Munn [29], it fails for I 6= ∅, simply because
independent generators do not commute. Thus we have to do something else.
Fortunately it is enough to modify the construction of Birget and Rhodes
slightly in order to achieve a simple and convenient description of the elements
in FIM(Σ, I). Our approach is based on the notion of coherently prefix-closed
subsets which we make precise in Section 2.2.

2.2 Trace monoids and graph groups

Recall that Γ = Σ∪Σ−1 and I ⊆ Γ×Γ is an irreflexive and symmetric relation
such that (a, b) ∈ I implies (a−1, b) ∈ I. Let M(Γ, I) = Γ∗/{ab = ba | (a, b) ∈
I} be the free partially commutative monoid (or trace monoid) over (Γ, I).
Due to (a, b) ∈ I ⇒ (a−1, b) ∈ I, the involution −1 : Γ∗ → Γ∗ is well-defined

5

on M(Γ, I). The relation D = (Γ × Γ) \ I is called the dependence relation.

A clique covering of the dependence relation D is a tuple (Γi)1≤i≤k such that

Γ =
k⋃

i=1

Γi,

D =
k⋃

i=1

Γi × Γi.

Note that we have a ∈ Γi if and only if a−1 ∈ Γi. Let πi : M(Γ, I) → Γ∗
i the

projection homomorphism which deletes all letters from Γ \Γi. The morphism
π : M(Γ, I) →

∏k
i=1 Γ∗

i defined by π(u) = (π1(u), . . . , πk(u)) is injective. This
property is sometimes called projection lemma in the literature.

There is a rich theory on trace monoids [11], but we need only a few more basic
results. The projection lemma can be used to show that traces (i.e., elements
of M(Γ, I)) have a unique description as dependence graphs, which are node-
labelled acyclic graphs. Let u = a1 · · · an ∈ Γ∗ be a word. The vertex set of
the dependence graph of u is {1, . . . , n} and vertex i is labelled with ai ∈ Γ.
There is an arc from vertex i to j if and only if i < j and (ai, aj) ∈ D. Now,
two words define the same trace in M(Γ, I) if and only if their dependence
graphs are isomorphic. A dependence graph is acyclic, so it induces a labelled
partial order, which can be uniquely represented by its Hasse diagram. This
means whenever the partial order contains arcs from i to j and j to k for three
vertices i, j, k, then we do not draw the arc from i to k.

For u, v ∈M(Γ, I) we write u ≤ v if u is a prefix of v, i.e., v = uw in M(Γ, I)
for some trace w. A trace f is a factor of u if we can write u = pfq in M(Γ, I).
Let max(u) = {a ∈ Γ | u = ta for some trace t}; it is the set of labels of the
maximal nodes in the dependence graph for u.

A basic tool for working with traces is Levi’s Lemma, see e.g. [11, p. 10]:

Lemma 1 (Levi Lemma) Let x, y, z, t ∈M(Γ, I), then the following asser-
tions are equivalent.

xy = zt,

∃p, r, s, q ∈M(Γ, I) : x = pr, y = sq, z = ps, t = rq, and (r, s) ∈ I.

Another important fact about traces is the following: Consider the prefix order
≤ and assume u ≤ w and v ≤ w for some u, v, w ∈ M(Γ, I). Then the
supremum u ⊔ v ∈ M(Γ, I) exists. We can define u ⊔ v by restricting the
dependence graph of w to the domain of u and v, where u and v are viewed as

6

downward-closed subsets of the dependence graph of w. If (Γi)1≤i≤k is a clique
covering of the dependence relation, then for every i, either πi(u) ≤ πi(v) and
πi(u ⊔ v) = πi(v) or πi(v) ≤ πi(u) and πi(u ⊔ v) = πi(u).

A trace p is called prime if |max(p)| = 1. For t ∈ M(Γ, I) let P(t) = {p ≤ t |
p is prime}. Note that t = ⊔P(t) (the supremum of the traces in P(t)). Let
A ⊆M(Γ, I). We define P(A) =

⋃
t∈A P(t). The set A is called prefix-closed, if

u ≤ v ∈ A implies u ∈ A. It is called coherently-closed if for every C ⊆ A such
that ⊔C exists, ⊔C ∈ A. One can show that A is coherently-closed if and only
if for all u, v ∈ A such that u ⊔ v exists, we have u ⊔ v ∈ A. In the following
we say that A is closed, if it is both prefix-closed and coherently-closed.

Note however that closed sets do not form a topology, since the union of two
closed sets is not closed, in general. Indeed, let (a, b) ∈ I. Then {1, a} and
{1, b} are closed, but the union {1, a, b} is not, since a ⊔ b = ab is missing.
The notations prime and coherence are standard in domain theory and the
connection to trace theory is exposed in [11, Sec. 11.3].

Clearly, for every A ⊆M(Γ, I) there is a smallest closed set

A = {⊔C | C is a set of prefixes of A such that ⊔ C exists }

with A ⊆ A = A. We also have

A = {⊔C | C ⊆ P(A),⊔C exists},

since the set on the right side of the equation is prefix-closed, coherently-
closed, and it contains A. In particular, P(A) = P(B) implies A = B. The
converse holds, too:

Lemma 2 For A,B ⊆M(Γ, I) we have A = B if and only if P(A) = P(B).

Proof. As we have mentioned above P(A) = P(B) implies A = B. The other
direction follows because every trace is the supremum of its primes. 2

A trace rewriting system R over M(Γ, I) is just a finite subset of M(Γ, I) ×
M(Γ, I), for details see [7]. We can define the one-step rewrite relation →R

⊆ M(Γ, I) ×M(Γ, I) by: x →R y if and only if there are u, v ∈ M(Γ, I) and
(ℓ, r) ∈ R such that x = uℓv and y = urv. The notion of a confluent and
terminating trace rewriting system is defined as for other types of rewriting
systems. A trace u is an irreducible normal form of t if t

∗
→R u and there does

not exist a trace v with u→R v.

The free partially commutative group (or graph group [12]) over (Σ, I), briefly
G(Σ, I), is the quotient of the free group F (Σ) modulo the defining relations

7

ab = ba for all (a, b) ∈ I. Clearly,

G(Σ, I) = M(Γ, I)/{aa−1 = 1 | a ∈ Γ}.

We can define a confluent and terminating trace rewriting system.

R = {aa−1 → 1 | a ∈ Γ}.

Thus, as long as a trace contains a factor aa−1 we replace this factor by the
empty trace 1 ∈M(Γ, I). Given a trace u ∈M(Γ, I) by any representing word
u ∈ Γ∗ we can compute its irreducible normal form û ∈ M(Γ, I) w.r.t. R in
linear time, see [7] or [36] for a similar method. We also say that the trace û is
reduced. Thus, a reduced trace is a trace without any factor of the form aa−1

for a ∈ Γ. We have u = v in G(Σ, I) if and only if û = v̂. This allows us to
solve the word problem in G(Σ, I) in linear time, too.

The other idea, to use a projection lemma in order solve the word problem of
G(Σ, I), works for trace monoids, but fails for graph groups: Indeed, let (a, b),
(b, c) ∈ D, but (a, c) ∈ I. Then abcb−1a−1bc−1b−1 is reduced, but it is in the
kernel of the projections to the free groups F (a, b) and F (b, c). (In fact, the
free product of Z and the direct product Z × Z is no subgroup of any finitely
generated direct product of free groups, [13].)

In the following, whenever u ∈ Γ∗ (or u ∈ M(Γ, I) or u ∈ G(Σ, I)), then
û ∈M(Γ, I) denotes the unique reduced trace such that u = û in G(Σ, I). The
set M̂(Γ, I) = {û | u ∈ M(Γ, I)} is in canonical one-to-one correspondence
with G(Σ, I), hence we may identify û with the corresponding group element.

Here comes a crucial definition: A subset A ⊆ G(Σ, I) is called closed, if the
set of reduced traces Â = {ĝ ∈ M̂(Γ, I) | g ∈ A} is closed. Clearly, for every
A ⊆ G(Σ, I), there is a smallest closed subset A ⊆ G(Σ, I) such that A ⊆ A.

We have A = A and we can identify A with Â ⊆ M̂(Γ, I). Note that M̂(Γ, I) is
closed. Recall that I is irreflexive, hence {1, a, a−1} is closed since (a, a−1) ∈ D.

We now give a geometric interpretation of closed sets. Let g, h ∈ G(Σ, I). A
geodesic between g and h is a shortest path between g and h in the Cayley
graph of G(Σ, I). The labelling of such a path is unique as a reduced trace

û ∈ M̂(Γ, I) such that gû = h in G(Σ, I). We have û = ĝ−1h and we say that
f ∈ G(Σ, I) is on a geodesic from g to h if f̂ ≤ û.

Proposition 3 A subset A ⊆ G(Σ, I) is closed if and only if both 1 ∈ A and
whenever f is on a geodesic from g to h with g, h ∈ A, then gf ∈ A, too.

Proof. First, let 1 ∈ A and assume that whenever f is on a geodesic from

8

g to h with g, h ∈ A, then gf ∈ A, too. We have to show that Â ⊆ M(Γ, I)
is prefix-closed and coherently-closed, where Â = {ĝ ∈ M̂(Γ, I) | g ∈ A}. If
u ≤ ĝ ∈ Â, then u is on a geodesic from 1 to g, hence u ∈ A. Let ĝ, ĥ ∈ Â
such that ĝ ⊔ ĥ exists. Then, by Levi Lemma 1 we have ĝ = pu, ĥ = pv, and
ĝ⊔ĥ = puv with (u, v) ∈ I. This implies that (u−1, v) ∈ I and vu−1 is reduced.
Hence vu−1 = u−1v is a geodesic from g to h and f = gv = puv = ĝ ⊔ ĥ ∈ A.
Together this shows that Â is closed.

For the converse assume that Â is closed. This implies 1 ∈ A. Let ĝ, ĥ ∈ Â
and let f be on a geodesic from g to h. We have to show gf ∈ A. We can write
ĝŵ = ĥ in M(Γ, I) with f ≤ ŵ. As shown in [10, Lemma 23] this implies that
there are p, x, y ∈ M̂(Σ, I) with ĝ = px−1, ŵ = xy, and ĥ = py. Moreover,
xy = ŵ = fz for some z ∈ M̂(Σ, I). Again, by lemma 1 x = ru, y = vs,
f = rv, and z = us with (u, v) ∈ I. Now, pu−1 ≤ ĝ ∈ Â, hence pu−1 ∈ Â, and
pv ≤ pvs = py = ĥ ∈ Â, hence pv ∈ Â. Since Â is closed and (u−1, v) ∈ I, we
have pu−1v ∈ Â. Finally, in G(Σ, I) we obtain gf = px−1rv = pu−1r−1rv =
pu−1v ∈ A. 2

Corollary 4 Let A ⊆ G(Σ, I) be closed and g ∈ A. Then g−1A is closed.

Proof. Since g ∈ A, we have 1 ∈ g−1A. The property

“f is on a geodesic from h1 to h2 with h1, h2 ∈ A implies h1f ∈ A”

is invariant by translation. Thus, A satisfies this property if and only if g−1A
satisfies this property. 2

2.3 A realization of free partially commutative inverse monoids

We are now ready to give a concrete realization of the free inverse monoid
over (Σ, I). The realization is very much in the spirit of the Birget-Rhodes
expansion [3], but differs in the subtle point that we allow closed subsets of
G(Σ, I), only. Consider the set of pairs (A, g) where A ⊆ G(Σ, I) is a finite
and closed subset of the graph group G(Σ, I) and g ∈ A. This set becomes a
monoid by

(A, g) · (B, h) = (A ∪ gB, gh).

An immediate calculation shows that the operation is associative and that
({1}, 1) is a neutral element. Moreover, the idempotents are the elements of
the form (A, 1) and idempotents commute. By Corollary 4, if g ∈ A ⊆ G(Σ, I)
and A is closed, then g−1A is closed, too. Hence, we can define (A, g)−1 =
(g−1A, g−1). A simple calculation shows that (1) and (2) are satisfied. Thus

9

our monoid is an inverse monoid. We view Γ as a subset of this monoid by
identifying a ∈ Γ with the pair ({1, a}, a), and this yields a canonical homo-
morphism γ defined by

γ(u) = ({v̂ | v ≤ u}, û)

for u ∈ Γ∗. We obtain γ(ab) = ({1, a}, a) · ({1, b}, b) = ({1, a, ab}, ab). Now, if
(a, b) ∈ I, then {1, a, ab} = {1, a, b, ab} = {1, b, ba}, i.e., γ(ab) = γ(ba). Hence,
we obtain an inverse monoid over (Σ, I) since (a, b) ∈ I implies (a−1, b) ∈ I.
As a consequence, the homomorphism γ can be viewed as a canonical homo-
morphism

γ : FIM(Σ, I) → { (A, g) | g ∈ A ⊆ G(Σ, I), A finite}. (3)

Theorem 5 The morphism γ in (3) is an isomorphism.

Proof. Consider a pair (A, g) with A ⊆ G(Σ, I) finite and closed and g ∈ A.
Recall that Â = {û ∈ M̂(Γ, I) | u ∈ A}. Let w ∈ Γ∗ be an arbitrary word
representing the trace (

∏
û∈Â

û û−1)ĝ where the product is taken in any order.
Then a simple reflection shows γ(w) = (A, g). Hence γ is surjective. It remains
to show that γ is injective. To see this let w ∈ Γ∗ and γ(w) = (A, g). Note
that ŵ = ĝ. It suffices to show

w = (
∏

u∈Â

uu−1)ŵ in FIM(Σ, I). (4)

This is enough because then γ(w) = γ(w′) implies w = w′ in FIM(Σ, I) for all
w,w′ ∈ Γ∗. If w = 1 then (A, g) = ({1}, 1) and (4) is true. Hence let w = va
with a ∈ Γ. By induction v = (

∏
u∈B̂

uu−1)v̂ in FIM(Σ, I), where γ(v) = (B, h)

and v̂ = ĥ. We obtain Â = B̂ ∪ {ŵ} and w = (
∏

u∈B̂
uu−1)v̂a in FIM(Σ, I).

We distinguish whether v̂a is reduced or not. If v̂a is not reduced, then v̂ =
ŵa−1 ∈ B̂, i.e., ŵ ∈ B̂ since B̂ is prefix-closed. It follows B̂ = Â. We obtain
in FIM(Σ, I):

w = (
∏

u∈B̂

uu−1)v̂a = (
∏

u∈Â

uu−1)ŵa−1a = (
∏

u∈Â

uu−1)ŵ ŵ−1ŵ a−1a

= (
∏

u∈Â

uu−1)ŵa−1aŵ−1ŵ = (
∏

u∈Â

uu−1)v̂ v̂−1ŵ = (
∏

u∈Â

uu−1)ŵ.

It remains the case where v̂a = v̂a = ŵ. We obtain in FIM(Σ, I):

w = (
∏

u∈B̂

uu−1)ŵ = (
∏

u∈B̂

uu−1)ŵŵ−1ŵ.

10

Clearly, ŵ ∈ Â. Hence w = (
∏

u∈A′ uu−1)ŵ in FIM(Σ, I) for some subset
A′ ⊆ Â such that A′ = Â (set A′ = B̂ ∪ {ŵ}). Therefore it is enough to show∏

u∈A′ uu−1 =
∏

u∈Â
uu−1 in FIM(Σ, I). This is the assertion of the following

claim.

Claim: Let A ⊆M(Γ, I). Then
∏

u∈A uu
−1 =

∏
u∈A uu

−1 in FIM(Σ, I).

To prove this claim, let v ≤ u ∈ A. Then u = vw = vv−1vw = vv−1u in
FIM(Σ, I). Hence we may assume that A is prefix closed. Now, let u, v ∈ A
such that w = u⊔ v exists. Then, by Levi Lemma 1, u = pr, v = ps, and w =
prs with (r, s) ∈ I. We obtain in FIM(Σ, I): uu−1vv−1 = prr−1p−1pss−1p−1 =
prr−1ss−1p−1 = prss−1r−1p−1 = ww−1. This means that we may assume that
A is coherently-closed, too. But if A is both prefix-closed and coherently-
closed, then A = A by definition of A. Hence the claim and the theorem
follow. 2

For I = ∅, Theorem 5 yields Munn’s theorem [29] as a special case. Note that
for I = ∅, the closure A of a prefix-closed subset A of the free group F (Σ)
equals A itself. It follows that γ(u) = ({v̂ | v ≤ u}, û), where v̂ ∈ Γ∗ is the
unique irreducible word corresponding to v ∈ Γ∗. The set {v̂ | u ≤ v} is also
called the Munn tree of u.

Since we are interested in computational problems, we are concerned with
the input size of elements in FIM(Σ, I). The standard input representation
for word problems over monoids generated by Γ is just a word u over the
alphabet Γ. If γ(u) = (A, g), then |A| ≤ |u|k, where k is the number of cliques
in a clique covering for the dependence relation, because t ∈ Â implies that
πi(t) is a prefix of πi(u) for all 1 ≤ i ≤ k. Hence, for a fixed (Σ, I), the size of A
is bounded polynomially in the length of u, and moreover A can be calculated
in polynomial time from u. Thus, if we care only for polynomial time, we can
represent (A, g) ∈ FIM(Σ, I) by listing all the elements of A followed by g. In
fact, instead of writing down all elements of the closed set A, it suffices to list
the primes in P(A) by Lemma 2. The set P(A) has size at most |u| whatever
(Σ, I) is. But in general, the more concise representation is still the standard
representation where the input is just a word, and the input size is the length
of the word. This is our input measure.

3 The word problem in FIM(Σ, I)

Using Munn’s theorem [29], it is easy to solve the word problem for a free in-
verse monoid in linear time on a random access machine (RAM). Working with
a Turing machine would slow down the time complexity by poly-logarithmic

11

factors, since internally the RAM algorithm uses pointers. For free partially
commutative inverse monoids the solution of the word problem is slightly more
involved, even for a RAM. We are able to present an O(n log(n))-algorithm
on a RAM by using some combination of simple data structures.

Theorem 6 For every independence relation I ⊆ Σ×Σ, the word problem of
FIM(Σ, I) can be solved in time O(n log(n)) on a RAM.

Proof. Let u, v ∈ Γ∗. As mentioned above or by [7,36], we can test in linear
time whether u = v inG(Σ, I), i.e., whether û = v̂. It remains to check equality
of the closures:

{û′ | u′ ≤ u} = {v̂′ | v′ ≤ v}.

Let (Γi)1≤i≤k be a clique covering of the dependence relation D = (Γ×Γ) \ I.
With w ∈ Γ∗ we associate the following data:

• the prefix-closed set of words Ti(w) = {πi(ŝ) | s ≤ w},
• the word pi(w) = πi(ŵ) ∈ Ti for every 1 ≤ i ≤ k,
• the set of primes P (w) = P({ŝ | s ≤ w}),
• the linearly ordered (w.r.t. the prefix order) set Pi(w) = P(ŵ) ∩ {p |

max(p) ∈ Γi}.

By Lemma 2, we have to check whether P (u) = P (v). Before we present an
efficient implementation of the data structures above, let us first show how to
compute (Ti(wa), pi(wa), Pi(wa))1≤i≤k and P (wa) from (Ti(w), pi(w), Pi(w))1≤i≤k

and P (w) for a ∈ Γ. For this, we have to distinguish the two cases a−1 6∈
max(ŵ) and a−1 ∈ max(ŵ) and we use the following: For a ∈ Γ such that a
occurs in a trace t, define the prime δa(t) by the maximal prefix of t such that
max(δa(t)) = {a}. In case that a does not occur in t let δa(t) = 1. We obtain

δa(ta) = (⊔{δb(t) | (a, b) ∈ D}) a.

Case 1. a−1 6∈ max(ŵ), i.e., ŵa = ŵa. We have:

Ti(wa) =




Ti(w) ∪ {pi(w)a} if a ∈ Γi

Ti(w) otherwise

pi(wa) =




pi(w)a if a ∈ Γi

pi(w) otherwise

P (wa) = P (w) ∪ {δa(ŵa)}

Pi(wa) =




Pi(w) ∪ {δa(ŵa)} if a ∈ Γi

Pi(w) otherwise

12

Note that

δa(ŵa) = (⊔{δb(ŵ) | (a, b) ∈ D}) a = (⊔{maxPi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a.

Case 2. a−1 ∈ max(ŵ), i.e., ŵ = sa−1 and ŵa = s for an irreducible trace
s ∈ M̂(Γ, I). Moreover, note that maxPi(w) = δa−1(ŵ) for all i with a−1 ∈ Γi

(i.e., a ∈ Γi). We have:

Ti(wa) = Ti(w)

pi(wa) =




v if a−1 ∈ Γi, pi(w) = va−1

pi(w) otherwise

P (wa) = P (w) ∪ P(s) = P (w)

Pi(wa) =




Pi(w) \ maxPi(w) if a−1 ∈ Γi

Pi(w) otherwise

For the equality P (w)∪P(s) = P (w) note that P(s) ⊆ P (w) since the trace s
is a prefix of the trace ŵ. Let us now discuss an efficient implementation of our
data structures such that the updates above can be done in time O(log(n)).
The prefix-closed set Ti(w) can be stored as a trie [14] with at most |πi(w)|
many nodes, i.e., a rooted tree, where every node has for every a ∈ Γ at most
one a-labelled outgoing edge and Ti(w) equals the set of all path-labels from
the root to tree nodes. We assign with every node of Ti(w) a key from N. The
root gets the key 1, and with every new node of Ti(w) the key is increased
by one. This allows to calculate maxU for a subset U ⊆ Ti(w), which is
linearly ordered by the prefix relation, in time O(|U |) by comparing the keys
for the nodes in U . The word pi(w) = πi(ŵ) is just a distinguished node of
the trie Ti(w). Clearly, a−1 ∈ max(ŵ) if and only if pi(w) ends with a−1 for all
1 ≤ i ≤ k with a−1 ∈ Γi. This means that whenever a−1 ∈ Γi, then pi(w) is
the a−1-successor of its parent node. This allows to distinguish between case
1 and case 2 above in constant time. In case 1, we have to add an a-successor
to the node pi(w) in case a ∈ Γi and pi(w) does not have an a-successor yet.
This new node becomes pi(wa). If a ∈ Γi but pi(w) already has an a-successor
v, then v becomes pi(wa). In case 2, the tries do not change, but if a ∈ Γi,
then pi(wa) is the father node of pi(w).

The set of primes P (w) is stored as the set of tuples {(πi(t))1≤i≤k | t ∈
P (w)}, where every projection πi(t) is represented by the corresponding node
in the trie Ti(w). For the set P (w) we use a data structure which allows
O(log(n)) time implementations for the operations insert and find. The linearly
ordered set Pi(w) is stored as a list of tuples (πi(t))1≤i≤k for t ∈ Pi(w). Using
this representation, the necessary updates for case 2 are possible in constant
time. For case 1, we have to calculate the tuple corresponding to δa(ŵa) =
(⊔{maxPi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a. Note that

πj(δa(ŵa)) = ⊔{πj(maxPi(w)) | 1 ≤ i ≤ k, a ∈ Γi}πj(a) (5)

13

for 1 ≤ j ≤ k. The ⊔ in (5) refers to the prefix order on words. Note that since
maxPi(w) is a prefix of the trace ŵ for every i, the set {πj(maxPi(w)) | 1 ≤
i ≤ k, a ∈ Γi} is linearly ordered by the prefix relation on Γ∗

j , i.e., the supre-
mum exists. Moreover, this supremum can be computed in time O(k), where k
is the number of cliques (which is a constant) by using the keys associated with
the nodes from Tj(w). This concludes the description of our data structures.
Now for our input words u, v ∈ Γ∗ we first compute (Ti(u), pi(u), Pi(u))1≤i≤k,
P (u) and (Ti(v), pi(v), Pi(v))1≤i≤k, P (v) in time O(n log(n)). When building
up the tries Ti(u) and Ti(v) we have to use the same node name for a certain
string over Γi. Then we can check P (u) = P (v) in time O(n log(n)) using the
set data structures for P (u) and P (v). 2

For the uniform word problem, where the independence relation I is part of
the input, the above algorithm still yields a polynomial time algorithm. More
precisely, the running time is O((k2 + log(n))n), where k is the number of
cliques in a clique covering for the dependence relation and n is the length of
the input words.

4 The submonoid membership problem and the membership prob-
lem for rational sets in FIM(Σ, I)

Rational subsets in a monoid M are defined inductively: Finite subsets are
rational, and if L1 and L2 are rational, then the following subsets are rational
as well:

L1 ∪ L2

L1 · L2 = {uv | u ∈ L1, v ∈ L2 }

(L1)
∗ = submonoid of M generated by L1

For M = Γ∗, rational subsets are also called regular languages. By Kleene’s
Theorem a regular language can be specified by a non-deterministic finite
automaton. Hence, if M is generated by Γ, then we may use non-deterministic
finite automata over the alphabet Γ for a concise specification of rational
subsets over M as well, since the homomorphic image of a rational subset is
rational again. Hence, a rational subset of FIM(Σ, I) can always be represented
by some non-deterministic finite automaton over Γ.

The submonoid membership problem is a special instance of the membership
problem for rational sets. In this section, we show that the submonoid mem-
bership problem for the free inverse monoid FIM(a, b) is NP-hard, and we show
that the membership problem for rational sets of FIM(Σ, I) is still in NP. So,
the submonoid membership problem and the membership problem for rational

14

sets are both NP-complete for free partially commutative inverse monoids, in
general.

Theorem 7 For every independence relation I ⊆ Σ × Σ, the membership
problem for rational subsets of FIM(Σ, I) belongs to NP.

Proof. For given (B, g) ∈ FIM(Σ, I) and a finite automaton A over the al-
phabet Γ we have to determine whether (B, g) ∈ γ(L(A)), where γ : Γ∗ →
FIM(Σ, I) is the canonical morphism and L(A) ⊆ Γ∗ denotes the accepted
language. In the following, we view B as a closed subset of of G(Σ, I). In a
first step we guess a connected (in the Cayley graph of G(Σ, I)) subset C ⊆ B
with 1, g ∈ C such that its closure C equals B. For this it is enough to check
that all primes of B appear in C. It remains to check in NP whether there is
a path in the Cayley-graph from 1 to g, which visits exactly the nodes in C
and such that this path is labelled with a word from L(A).

Let n be the number of states of the automaton A. Assume that p = (v1, . . . , vm)
is a path in C such that v1 = 1, vm = g, C = {v1, . . . , vm} and let q1 . . . , qm be
a corresponding path in the automaton A, where q1 is some initial state and qm
is some final state. Let i1 < · · · < iℓ be exactly those positions j ∈ {2, . . . ,m}
such that vj 6∈ {v1, . . . , vj−1}. Clearly, ℓ < |C|. Set i0 = 1 and iℓ+1 = m + 1.
Assume that |ik+1 − ik| > |C| · n for some k ∈ {0, . . . , ℓ}. Then there are
positions ik ≤ α < β < ik+1 such that vα = vβ and qα = qβ. It follows that
v1, . . . , vα, vβ+1, . . . , vm is a again a path from 1 to g, which visits all nodes of
C, and q1, . . . , qα, qβ+1, . . . , qm is a corresponding path in the automaton A.

From the above consideration it follows that if there exists a path from 1 to
g in C, which visits all nodes of C and such that this path is labelled with a
word from L(A), then there exists such a path of length at most |C|2 ·n. Such
a path can be guessed in polynomial time. This finishes the proof. 2

NP-hardness can be already shown for the submonoid membership problem of
FIM(a, b):

Theorem 8 The submonoid membership problem for FIM(a, b) is NP-hard.

Proof. We prove the theorem by a reduction from CNF-SAT (Satisfiability
of Boolean formulas in conjunctive normal form).

Let Ψ = {C1, . . . , Cm} be a set of clauses over variables x1, . . . , xn. Let k =
m + n. For 1 ≤ i ≤ n let Pi = {j | xi ∈ Cj} and Ni = {j | ¬xi ∈ Cj}. Let
t = (A, an) ∈ FIM(a, b) be defined such that the subgraph of the Cayley graph

15

of F (a, b) induced by A looks as follows:

1 a a2 am−1 am am+1 ak−1 ak

ab a2b am−1 amb

a a a a a
b b b b

.

This means that we have

t = (abb−1)m an a−m.

The idea is that the node ajb represents the clause Cj. For every 1 ≤ i ≤ n
define ti,p = (Ai,p, a) ∈ FIM(a, b) and ti,f = (Ai,f , a) ∈ FIM(a, b), where:

Ai,p = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Pi}) ⊆ F (a, b)

Ai,f = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Ni}) ⊆ F (a, b)

Then we have t ∈ {t1,p, t1,f , . . . , tn,t, tn,f}
∗ if and only if Ψ is satisfiable. 2

The NP upper bound in Theorem 7 generalizes to the uniform case, where the
independence relation I is part of the input but the number of cliques in a
clique covering for D = I \ (Σ × Σ) is bounded by a fixed constant. However,
the uniform complexity becomes PSPACE-complete:

Theorem 9 The following problem is PSPACE-complete:

INPUT: An alphabet Σ, an independence relation I ⊆ Σ × Σ, and words
u, u1, . . . , un ∈ Γ∗.

QUESTION: u ∈ {u1, . . . , un}
∗ in FIM(Σ, I)?

In fact we prove stronger theorems. We give an PSPACE-upper bound for the
membership problem in rational sets, and we show PSPACE-hardness in the
case where the graph group G(Σ, I) is free abelian. In fact, our hardness proof
of Theorem 11 is very similar to the proof that the reachability problem for 1-
safe Petri nets is PSPACE-hard [6]. The similarity is no surprise by Appendix B.

Theorem 10 The following problem is in PSPACE:

INPUT: An alphabet Σ, an independence relation I ⊆ Σ × Σ, a word u ∈ Γ∗

and a rational subset L ⊆ FIM(Σ, I) (given by a nondeterministic finite state
automaton over the alphabet Γ).

QUESTION: Is u ∈ L if we read u ∈ FIM(Σ, I)?

16

Proof. Let (Σ, I) be an independence alphabet, let u ∈ Γ∗, and let A be a
non-deterministic finite state automaton over the alphabet Γ. Let (B, g) ∈
FIM(Σ, I) be the element represented by the word u. Note that |B| may be
of size |u||Σ|, but the set of primes P = P({ŝ | s ≤ u}) has size at most |u|.
Using the algorithm from the proof of Theorem 6, we can construct the set P

in polynomial time. Every reduced trace from the set B can be represented
by a subset of at most |Σ| many elements from P. In order to check whether
u ∈ L(A) in FIM(Σ, I), we have to guess a word v ∈ L(A) such that v̂ = û
and P = P({ŝ | s ≤ v}). If we have guessed a prefix s of v so far, then instead
of storing the whole prefix s, we only store the current state of the automaton
A as well as the two sets of primes P(ŝ) and P({t̂ | t ≤ s}). If the latter set is
no longer contained in P, then we immediately reject. We accept if we reach a
final state of A and at the same time ⊔P(ŝ) = û and P({t̂ | t ≤ s}) = P. Since
at any step of this algorithm we only have to store a polynomial amount of
information, the PSPACE upper bound follows. 2

Theorem 11 The following problem is PSPACE-hard:

INPUT: An alphabet Σ with the independence relation I = (Σ×Σ) \ idΣ, and
words u, u1, . . . , un ∈ Γ∗

QUESTION: u ∈ {u1, . . . , un}
∗ in FIM(Σ, I)?

Proof. We make a reduction from the following PSPACE-complete problem:

INPUT: A finite alphabet Θ, two strings u, v ∈ Θ∗ with |u| = |v|, and a
string rewriting system R, where all rules of R have the form ab → cd for
a, b, c, d ∈ Θ.

QUESTION: u
∗
→R v?

PSPACE-hardness of this problem is well-known and can be easily shown by
a reduction from the word problem of LBA (linear bounded automata). Let
us take an input Θ, u, v ∈ Θ∗, together with a system R as described above.
Let n = |u| = |v| ≥ 1. For all 1 ≤ i ≤ n let Θi = {[a, i] | a ∈ Θ} be a new
copy of Θ. Let Σ =

⋃n
i=1 Θi and let I = (Σ × Σ) \ idΣ. Note that G(Σ, I) is a

free abelian group with rank n |Θ|. However, FIM(Σ, I) is not commutative.
Although most generators commute, we have aa−1 6= a−1a in FIM(Σ, I).

For a word w = a1a2 · · · an of length n with ai ∈ Θ let

h(w) = [a1, 1][a2, 2] · · · [an, n] ∈ Θ1Θ2 · · ·Θn

17

and define:
g(w) = (

∏

a∈Σ

aa−1)h(w) ∈ FIM(Σ, I).

Note that for |w| = |w′| = n and g(w) = g(w′) we have w = w′.

Next, for a rule (ab→ cd) ∈ R and 1 ≤ i < n let

g(i, ab→ cd) = [a, i]−1[b, i+ 1]−1[c, i][d, i+ 1].

Note that the ordering of the elements on the right hand side is irrelevant, if
a 6= c and b 6= d. However if e.g. a = c, then we insist that [a, i]−1 appears
before [c, i].

Now assume that w = w1abw2 with |w1|+ 1 = i and |w| = n and (ab→ cd) ∈
R. Then we obtain w′ = w1cdw2 by applying the rule at position i.

Moreover, we obtain:

g(w) · g(i, ab→ cd) = (
∏

a∈Σ

aa−1)h(w) · g(i, ab→ cd)

= (
∏

a∈Σ

aa−1)h(w) · [a, i]−1[b, i+ 1]−1[c, i][d, i+ 1]

= (
∏

a∈Σ

aa−1) · [a, i][a, i]−1[b, i+ 1][b, i+ 1]−1 · h(w′)

= (
∏

a∈Σ

aa−1) · h(w′)

= g(w′)

(6)

Then the following two statements are equivalent:

(1) u
∗
→R v

(2) g(v) ∈ {g(u), g(i, r) | 1 ≤ i < n, r ∈ R}∗ in FIM(Σ, I)

The calculation (6) yields (1) ⇒ (2): Indeed let u
∗
→R v be any derivation from

u to v. Then (6) shows that g(v) belongs to {g(u), g(i, r) | 1 ≤ i < n, r ∈ R}∗.

For the other direction let

g(v) = g1 · · · gm with gj ∈ {g(u), g(i, r) | 1 ≤ i < n, r ∈ R}.

We have to show u
∗
→R v. Let g(v) = (V, x) in FIM(Σ, I) where V = Σ ⊆

G(Σ, I) and x ∈ V . We must have m ≥ 1. Moreover, we cannot have g1 =
[a, i]−1[b, i+ 1]−1[c, i][d, i+ 1], because then [a, i]−1 would belong to V , which
is not the case. Hence g1 = g(u). We claim that for all 1 ≤ k ≤ m:

• for every 2 ≤ j ≤ k, the element gj is of the form g(ij, rj) for some 1 ≤ ij < n
and rj ∈ R,

18

• there is a word w ∈ Θn such that g1g2 · · · gk = g(w) and w results from u
by applying the rules r2, . . . , rk in that order.

For k = m this implies u
m
→R v. For k = 1 there is nothing to show. Hence

assume that the conditions above are true for some k < m. Since g(v) =
g1g2 · · · gkgk+1 · · · gm = g(w)gk+1 · · · gm we cannot have gk+1 = g(u), because
then an element of Σ2 would belong to V , which is not the case. More precisely,
[b, 1][a, 1] would belong to V where b is the first symbol of w and a is the first
symbol of u.

Hence, gk+1 = [a, i]−1[b, i+ 1]−1[c, i][d, i+ 1] for some 1 ≤ i < n and (ab →
cd) ∈ R. We must have w = w1abw2 with |w1|+1 = i, since otherwise V would
contain the group element [a, i]−1 or [b, i+ 1]−1. Thus, by abuse of notation
we may write:

g(w)gk+1 = (
∏

a∈Σ

aa−1)w1[a, i][b, i+ 1]w2[a, i]
−1[b, i+ 1]−1[c, i][d, i+ 1]

=
∏

a∈Σ

aa−1w1[c, i][d, i+ 1]w2

= g(w′)

Hence, w′ results from w by applying the rule ab→ cd at position i. 2

5 FIM(Σ, I) modulo an idempotent presentation

Let I ⊆ Σ × Σ be an independence relation. An idempotent presentation over
(Σ, I) is a finite set of identities P = {(ei, fi) | 1 ≤ i ≤ n}, where every ei and
fi are idempotent elements in FIM(Σ, I). Based on a reduction to Rabin’s tree
theorem, Margolis and Meakin have shown that for I = ∅, the word problem
for quotient monoids of the form FIM(Σ)/P is decidable [23].

In this section we prove that the uniform word problem for monoids of the
form FIM(Σ, I)/P , where P is an idempotent presentation over FIM(Σ, I), is
decidable if and only if the dependence relation D = (Σ×Σ) \ I is transitive.
Transitivity means that FIM(Σ, I) is a direct product of free inverse monoids.
In the transitive case we prove EXPTIME-completeness for the uniform prob-
lem. For the upper bound, we use analogously to [23] a closure operation on
subsets of G(Σ, I). The lower bound follows directly from [21].

Assume that P is an idempotent presentation. Consider a pair (e, f) ∈ P .
Then we have e = (E, 1) and f = (F, 1), where E and F are finite and closed
subsets of the graph group G(Σ, I) and 1 ∈ E∩F . In the following, we identify
the pair (E, 1) with the finite closed set E. Since e and f are idempotents of

19

FIM(Σ, I) and idempotents commute, we can replace the relation e = f by
the two relations e = ef and f = ef without changing the quotient monoid.
This means that for every pair (E,F) ∈ P , we can assume E ⊆ F .

Now assume that A,B ⊆ G(Σ, I) are finite and closed. We write A ⇒P B
if and only if there exist (E,F) ∈ P (hence E ⊆ F) and f ∈ G(Σ, I) such
that fE ⊆ A and B = A ∪ fF . Note that A ∪ fF is not necessarily closed,
even if both, A and fF are closed. Therefore we take the closure A ∪ fF . The
relation ⇒P is strongly confluent, i.e., if A ⇒P B and A ⇒P C, then there
exists D such that B ⇒P D and C ⇒P D. Hence, A

∗
⇔P B if and only if

there exists C such that A
∗
⇒P C and B

∗
⇒P C. Define

clP (A) =
⋃
{B ⊆ G(Σ, I) | A

∗
⇒P B}.

Clearly, clP (A) ⊆ G(Σ, I) is closed.

Lemma 12 We have (A, g) = (B, h) in FIM(Σ, I)/P if and only if both,
g = h in G(Σ, I) and A

∗
⇔P B.

Proof. Straightforward, and left to the reader. 2

Lemma 13 Let (A, g), (B, h) ∈ FIM(Σ, I). Then (A, g) = (B, h) in FIM(Σ, I)/P
if and only if both, g = h in G(Σ, I) and clP (A) = clP (B).

Proof. By Lemma 12, it suffices to show that clP (A) = clP (B) if and only
if A

∗
⇔P B. First assume that A

∗
⇔P B and x ∈ clP (A). Thus, A

∗
⇒P C for

some C with x ∈ C. Hence, B
∗
⇔P A

∗
⇒P C and there exists D with B

∗
⇒P D

and C
∗
⇒P D. This implies x ∈ C ⊆ D, i.e, x ∈ clP (B). We have shown

clP (A) ⊆ clP (B); the other inclusion follows analogously.

Now assume that clP (A) = clP (B). Thus, there must exist C,D such that
A

∗
⇒P C ⊇ B and B

∗
⇒P D ⊇ A. By induction over the length of the

derivation A
∗
⇒P C one can show that D

∗
⇒P C ∪D and analogously C

∗
⇒P

C ∪D. Hence, A
∗
⇔P B. 2

In the following we use the modal µ-calculus with simultaneous fixpoints. The
necessary details can be found in the Appendix A.

Theorem 14 The following problem is EXPTIME-complete:

INPUT: An independence relation I ⊆ Σ × Σ such that D = (Σ × Σ) \ I is
transitive, an idempotent presentation P over (Σ, I) and words u, v ∈ Γ∗.

20

QUESTION: u = v in FIM(Σ, I)/P?

Proof. Hardness for EXPTIME follows from [21, Theorem 5]. For membership
in EXPTIME we will analogously to [21] reduce the uniform word problem to
the model-checking problem for the modal µ-calculus (with simultaneous fix-
points) over a context-free graph. Since D = (Σ×Σ)\I is transitive, the graph
(Σ, D) is a disjoint union of cliques Σ1, . . . ,Σn. Thus, G(Σ, I) =

∏n
i=1 F (Σi).

In the following, we assume that n = 2 in order to simplify notation. Let
P = {(ei, fi) | 1 ≤ i ≤ ℓ} be the given idempotent presentation over (Σ, I).
Let (A, g) ∈ FIM(Σ, I) be the element of FIM(Σ, I) represented by the word
u ∈ Γ∗. Similarly (B, h) (resp. (Ci, 1), (Di, 1)) is the element represented by v
(resp. ei, fi). Here g, h ∈ G(Σ, I) = F (Σ1)×F (Σ2) and A,B,Ci, Di are closed
subsets of F (Σ1) × F (Σ2). Thus, these sets can be written as A = A1 × A2,
B = B1×B2, Ci = Ci,1×Ci,2, and Di = Di,1×Di,2, where Aj, Bj, Ci,j, Di,j are
finite and closed subsets of F (Σj) (i.e., Munn trees) for 1 ≤ j ≤ 2, 1 ≤ i ≤ ℓ.
If g 6= h in G(Σ, I) then u 6= v in FIM(Σ, I)/P . Thus assume that g = h. It
remains to check in exponential time whether clP (A) = clP (B), i.e., whether
A ⊆ clP (B) and B ⊆ clP (A). Let us consider the inclusion B ⊆ clP (A).
Let (b1, b2) ∈ B = B1 × B2. We will show that we can check in exponen-
tial time whether (b1, b2) ∈ clP (A1 × A2). Then we can check the inclusion
B1 × B2 ⊆ clP (A1 × A2) in exponential time as well. In the following, we as-
sume that |Σ1| = |Σ2|. This is not a restriction; if say |Σ1| < |Σ2|, then F (Σ1)
can be naturally embedded into F (Σ2). Hence, by renaming symbols, we can
assume that A1, A2, B1, B2, Ci,j, Di,j ⊆ F (Θ) for 1 ≤ j ≤ 2, 1 ≤ i ≤ ℓ, where
Θ is an alphabet of size |Σ1| = |Σ2|.

Let G be the edge-labelled graph that results from the Cayley graph C(Θ)
by labelling 1 ∈ F (Θ) with the (only) node label 1. Since C(Θ) is a context-
free graph (see the Appendix A), also G is context-free. We decide (b1, b2) ∈
clP (A1 ×A2) by constructing a formula ϕ of the modal µ-calculus with simul-
taneous fixpoints such that (b1, b2) ∈ clP (A1 × A2) if and only if (G, 1) |= ϕ.
Then the EXPTIME upper bound follows from Theorem 20 in the Appendix A.

First, for j ∈ {1, 2} let

ψj(X1, X2) =
∨

x∈Aj

〈x−1〉1 ∨
ℓ∨

i=1

∨

y∈Di,j

〈y−1〉


 ∧

z∈Ci,j

〈z〉Xj ∧ EF
∧

z∈Ci,3−j

〈z〉X3−j


 .

The formula ψj(X1, X2) holds in a node p, if either p ∈ Aj (which is expressed
by

∨
x∈Aj

〈x−1〉1) or there is 1 ≤ i ≤ ℓ and nodes q, q′ ∈ F (Θ) such that
p ∈ qDj, qCj ⊆ Xj and q′C3−j ⊆ X3−j. Here it is important that the graph G
is strongly connected. Hence, with the EF-operator (EF for “exists finally”,
see (A.1) in Appendix A) in the above formula, we can reach every node q′ of

21

G. Then for the sentence

ϕj = [µ(X1, X2).(ψ1(X1, X2), ψ2(X1, X2))]j

we have (G, p) |= ϕj if and only if the node p belongs to the j-th component
of clP (A1 ×A2). Finally, we can take for ϕ the sentence 〈b1〉ϕ1 ∧ 〈b2〉ϕ2. 2

For a fixed idempotent presentation P we can again generalize a corresponding
result from [21]:

Theorem 15 Let I ⊆ Σ × Σ be an independence relation such that D =
(Σ×Σ) \ I is transitive, and let P be an idempotent presentation over (Σ, I).
Then the word problem for FIM(Σ, I)/P can be solved both in linear time on
a RAM and logarithmic space on a Turing machine.

Proof. Let us fix a finite idempotent presentation P over (Σ, I) and let
u, v ∈ Γ∗. Both our logspace and linear time algorithm are extensions of the
corresponding algorithms for the case I = ∅ from [21]. Let us first sketch the
logspace algorithm.

Let Σ =
⋃n

i=1 Σi, where the Σi are the cliques of (Σ, D). As in the proof of
Theorem 14, it is no essential restriction to assume that n = 2 and |Σ1| = |Σ2|.
Let (A1 × A2, (g1, g2)) and (B1 × B2, (h1, h2)) be the elements of FIM(Σ, I)
represented by the words u and v, respectively. Hence, Aj, Bj ⊆ F (Σj) and
gj, hj ∈ F (Σj). The equality (g1, g2) = (h1, h2) can be verified in logspace,
since the word problem of a free group belongs to deterministic logspace [19].
The sets A1, A2, B1, and B2 can be calculated by a logspace transducer from
the words u and v. For this, we have to use the fact that the irreducible normal
form of a word can be calculated by a logspace transducer, see [21]. We will
present a logspace algorithm for checking the inclusion B1×B2 ⊆ clP (A1×A2).

As in the proof of Theorem 14, let Θ be an alphabet of size |Σ1| = |Σ2|. By
renaming symbols, we may assume that A1, B1, A2, B2 ⊆ F (Θ). The modal
µ-calculus formulas from the proof of Theorem 14 can be used in order to
construct a fixed MSO-formula CLP (X1, X2, Y1, Y2) over the signature of the
Cayley graph C(Θ) such that for all subsets C1, C2, D1, D2 ⊆ F (Θ): C(Θ) |=
CLP (C1, C2, D1, D2) if and only if C1, C2, D1, D2 are finite and closed subsets
of the Cayley graph C(Θ) containing the 1 and D1×D2 = clP (C1×C2). Define
the MSO-formula

in-clP (X1, X2, Y2, Y2) = ∃Z1, Z2 : CLP (X1, X2, Z1, Z2) ∧ Y1 ⊆ Z1 ∧ Y2 ⊆ Z2.

Thus, we have to check whether

C(Θ) |= in-clP (A1, A2, B1, B2). (7)

22

Here, it is important to note that since P is a fixed presentation, in-clP (X1, X2, Y1, Y2)
is a fixed MSO-formula over the signature of the Cayley graph C(Θ). Hence,
as in [21], by using Rabin’s tree theorem [31], we can reduce (7) to the mem-
bership problem for a fixed deterministic bottom-up tree automaton. The
only difference to [21] is that tree nodes are not labelled with symbols from
{0, 1} × {0, 1} but with symbols from {0, 1}4. Such a 4-tuple encodes the in-
formation, whether the tree node belongs to A1, A2, B1, and B2, respectively.
Finally, we can use the fact that the membership problem for a fixed tree au-
tomaton can be solved in deterministic logspace, when the input tree is given
by a pointer representation: By [20, Theorem 1], the membership problem for
a fixed tree automaton can be even solved in NC

1 ⊆ L if the input tree is rep-
resented by a well-bracketed expression string. On the other hand, as noted
in [5,15], transforming the pointer representation of a tree into its expression
string is possible in logspace.

This concludes the description of the logspace algorithm. A linear time algo-
rithm follows the same line of arguments. We only have to use the following
facts:

• The word problem of a finitely generated free group can be solved in linear
time on a RAM [4].

• Tries for the sets A1, A2, B1, B2 ⊆ F (Θ) can be calculated in linear time.
• The membership problem for a fixed deterministic bottom-up tree automa-

ton can be solved in linear time. 2

Theorem 14 and 15 give an interesting contrast to [26], which shows that the
variety of E-unitary inverse monoids over an abelian cover has an undecidable
word problem. The difference is that in our setting pairs (A, g) are defined
over closed sets, whereas [26] has not this restriction. On the other hand,
if I ⊆ Σ × Σ is not transitive, then we can construct a finite idempotent
presentation P over (Σ, I) such that the word problem for FIM(Σ, I)/P is
undecidable.

Theorem 16 Let I ⊆ Σ × Σ be an independence relation such that D =
(Σ × Σ) \ I is not transitive. Then there exists effectively a finite idempotent
presentation P over (Σ, I) such that the word problem for FIM(Σ, I)/P is
undecidable.

Proof. Calculations of deterministic Turing machines can be coded by some
labelling of the grid N × N in the following way. Depending on the Turing
machine we fix a finite alphabet Θ with three special symbols $, ¢, B ∈ Θ.
The role of ¢ is the left and right end marker of the tape and the role of $
corresponds to accepting states. The B is used for a blank. Configurations of

23

the Turing machine are just words w ∈ ¢(Θ \ {¢})∗¢B∗ and we identify a
configuration w = ¢u¢ ∈ ¢(Θ \ {¢})∗¢ with any word w′ ∈ ¢uB∗¢B∗. (Blanks
before or after the right marker ¢ do not change the behavior of the Turing
machine.) The initial configuration is just some word u(0) = ¢u1 · · · un¢ where
ui ∈ Θ \ {¢} for 1 ≤ i ≤ n. We define a labelling λ : N × N → Θ as follows.
Initially the labelling is λ(0, t) = ¢ for all t, λ(i, 0) = ui for 1 ≤ i ≤ n,
λ(n+ 1, 0) = ¢, λ(i, 0) = B for n+ 1 < i. Inductively, assume λ(i, t) has been
defined for all i and some t > 1 such that λ(0, t) · · ·λ(nt, t) = ¢u(t)¢ is the
configuration of the Turing machine at time t and λ(i, t) = B for all i > nt.
We can normalize the deterministic Turing machine in such a way that there
is a partially defined function δ : Θ × Θ × Θ → Θ which determines the i-th
position of the configuration at time t + 1 depending only on the positions
i − 1, i, and i + 1 of the configuration at time t. Moreover, we may assume
that δ(¢, B,B) = ¢ and δ(a, ¢, B) = B for all a ∈ Θ. These rules serve to push
the right marker ¢ to the right.

Hence, the triple (λ(i − 1, t), λ(i, t), λ(i + 1, t)) defines the label λ(i, t + 1)
uniquely according to δ for all i > 0.

The question whether or not the initial configuration leads to some accepting
state becomes equivalent to the question whether $ appears at some label.
This is therefore undecidable, in general.

Now, we make a reduction from this undecidable problem to the word prob-
lem for FIM(Σ, I)/P for Σ = {r, s, t}, I = {(s, t), (t, s)}, and some fixed
idempotent presentation P . This suffices to show the undecidability for every
non-transitive dependence alphabet. The idempotent presentation P can be
derived from Θ and δ as follows:

First, we include equations in P which allow to mimic the behaviour of the
Turing machine. The elements s and t generate a two-dimensional grid where
each node sitj corresponds to a certain string position i and time step j of
the configuration of the Turing machine, and r can be used to put some
information (i.e., a letter from Θ) at that node. We present the equations from
P by drawing the closed subsets of the Cayley graph C(G(Σ, I)) corresponding
to the idempotent elements of FIM(Σ, I), where the bigger circle represents
the 1. To keep notation simple, we label some edges with letters from Θ. This
is a shorthand for paths labelled with a suitable encoding; for all letters except
$ we use distinct elements of the form rsir, 1 ≤ i < |Θ|. The letter $ has to be
encoded as a set of paths which includes the path of every other letter, thus
we use

⋃
i<|Θ| rs

ir. Again, for simplicity we still draw a single edge labelled
with $ for this set of paths.

For δ(a, b, c) = d, we use the following equations:

24

a b c
s s = s s

t

s s

t t

a b c

d

Note that we don’t include the blanks after the right marker ¢ in our (s, t)-
grid. Therefore, we use the following extra equations combining δ(a, ¢, B) = B
and δ(¢, B,B) = ¢, and for the labelling of the left vertical border.

a ¢
s = s

t

s

t

s

s

t

a ¢

B ¢

¢ a
s = s

t

s

t

¢ a

¢

In addition, we need another equation which can fill the entire plane with $ if
there is a $ attached to some node:

$
=

s s

t t t
s s

t t t

s s

$

$ $ $

$

Now, for an input string u = ¢u1 · · ·un¢ where ui ∈ Θ \ {¢} for 1 ≤ i ≤ n we
can ask whether we have

¢¢
−1su1u

−1
1 · · · sunu

−1
n s¢¢−1s−n−1 = $$−1.

This means we ask whether

· · ·s s
¢ u1 un ¢

equals
$

in FIM(Σ, I)/P .

Assume first ¢¢−1su1u
−1
1 · · · sunu

−1
n s¢¢−1s−n−1 = $$−1 in FIM(Σ, I)/P . Then

we can apply the rules from P from left to right until at some point we
produce some $. This defines a labelling of the grid where at some point $

25

appears. For the other direction recall that we may identify a configuration
¢u¢ ∈ ¢(Θ \ {¢})∗¢ with any word in ¢uB∗¢B∗. Therefore, using the rules
from P in any order defines a marking of the grid, which corresponds to
the computation of the Turing machine on the initial configuration. If the
initial configuration leads to an accepting state, we produce a $; and hence
¢¢−1su1u

−1
1 · · · sunu

−1
n s¢¢−1s−n−1 = $$−1 in FIM(Σ, I)/P . 2

Using the Birget-Rhodes expansion [3] we can define for every group G an
inverse monoid IM(G) as follows. The elements of IM(G) are the pairs (A, g)
where A is a finite connected subset of C(G) and 1, g ∈ A. Multiplication and
inverses are defined by

(A, g) · (B, h) = (A ∪ gB, gh) and (A, g)−1 = (g−1A, g−1).

Note that here we do not ask that subsets are closed. This makes it possible
to encode letters by holes in the grid instead of adding unique new letters.
Now, we can present a simpler proof an undecidability result of Meakin and
Sapir [26, Theorem 4]. In fact we can state a more precise result because it
applies to every abelian group G of rank at least 2, which is the best we can
expect by [9]. Moreover the E-unitary monoid over G having an undecidable
word problem is simply some IM(G)/P :

Theorem 17 Let G be a group which contains Z×Z as a subgroup. Then there
exists an idempotent presentation P such that the word problem for IM(G)/P
is undecidable.

Proof. The proof is rather similar to the one of Theorem 16, so we will
only sketch the differences here. Again, we reduce the acceptance problem
for deterministic Turing machines to the word problem for IM(G)/P . We also
have the same types of equations in P which reproduce the labelling of the grid
N×N corresponding to the Turing machine calculation, but we use a different
encoding of the labelling. Denote the generators of the free abelian subgroup
of G by s and t. Then the connected subsets of C(G), which correspond to
idempotents in IM(G), may have holes in the grid generated by s and t. This
suffices to encode a labelled two-dimensional grid. Let n = |Θ|; for 1 ≤ i < n
we encode the i-th letter of Θ \ {$} like shown on the left in the image below,
and the encoding of $ is shown on the right.

t

s

t

s

s si

t

sn−i

t

s

t

s

s

t

s sn−1

sn−1

. . . t

s

s

t

The positions of the configuration of the Turing machine have a distance of

26

sn+3 in this representation and a new time step starts every t2, i.e., the node
(i, j) of the two-dimensional grid corresponds to the group element s(n+3)it2j.
Now, for δ(a, b, c) = d, where a, b, c, and d are the i-th, j-th, k-th, and ℓ-th
symbols of Θ, respectively, we get the following equation (the picture is for
the case j > ℓ):

t

s

t

s

si+1

t

sn−i+1

t

s

s

t

sj+1

t

sn−j+1

t

s

s

t

sk+1

t

sn−k

=

t

s

t

s

si+1

t

sn−i+1

t

s

s

t

sℓ+1
sj−ℓ

t

sn−j+1

t

s

s

t

sk+1

t

sn−k

t

t

s

s

t

t

sℓ+1

t

t

sn−ℓ

The other equations can be translated analogously and the remaining argu-
ments are exactly the same as in the proof of Theorem 16. 2

Corollary 18 If the dependence relation D is not transitive then there is
some finite idempotent presentation P such that the submonoid membership
problem is undecidable in FIM(Σ, I)/P .

Proof. By [21, Remark 7.9] we know that the submonoid membership prob-
lem for FIM(Σ, I)/P can be decidable only if the word problem for FIM(Σ, I)/P
is decidable, too. Hence we can apply Theorem 16. 2

However, even for a transitive dependence relation, the submonoid member-
ship problem for FIM(Σ, I) modulo an idempotent presentation may become
undecidable:

Proposition 19 Let the graph group G(Σ, I) contain a direct product of two
free groups of rank 2, then there is some finite idempotent presentation P such
that the submonoid membership problem is undecidable in FIM(Σ, I)/P .

27

Proof. Let Σ = {a, b, c, d}, I = {a, b} × {c, d} ∪ {c, d} × {a, b}, and let the
idempotent presentation P contain all identities αα−1 = 1 for α ∈ Γ. Then
FIM(Σ, I)/P is a direct product of two free groups of rank 2. By [27], this
group has an undecidable submonoid membership problem. 2

The only remaining case is a dependence relation which consists of one non-
trivial clique together with additional isolated nodes. The corresponding free
partially commutative group is of the form F ×Zk, where F is a free group of
rank at least one and k ≥ 1. For the group F × Zk the submonoid member-
ship problem is decidable [16], but it remains open, whether the submonoid
membership problem for FIM(Σ, I)/P is decidable for every idempotent pre-
sentation P .

A Modal µ-calculus with simultaneous fixpoints over context-free
graphs

In Section 5 we used an extension of modal µ-calculus by simultaneous fix-
points. In this appendix we give the basic facts. For more details see [1].
Formulas of this logic are interpreted over edge-labelled and node-labelled di-
rected graphs. Let Σ be a finite set of edge labels, let Ξ be a finite set of node
labels, and let Ω be a set of variables, which will range over sets of nodes.
The syntax of the modal µ-calculus is given by the following grammar, where
X ∈ Ω, a ∈ Σ, and p ∈ Ξ:

ϕ ::= p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

Modal µ-calculus with simultaneous fixpoints extends modal µ-calculus by
allowing instead of ρX.ϕ (ρ ∈ {µ, ν}) formulas of the following form, where
X1, . . . , Xn ∈ Ω and 1 ≤ i ≤ n:

[ρ(X1, . . . , Xn).(ϕ1, . . . , ϕn)]i

We define the semantics of formulas of the modal µ-calculus with simultaneous
fixpoints w.r.t. an edge and node-labelled graph G = (V, (Ea)a∈Σ, (Up)p∈Ξ)
(Ea ⊆ V × V is the set of a-labelled edges, Up ⊆ V is the set of p-labelled
nodes) and a valuation σ : Ω → 2V . To each formula ϕ we assign the set
ϕG(σ) ⊆ V of nodes where ϕ evaluates to true under the valuation σ. For
a valuation σ, variables X1, . . . , Xn ∈ Ω, and sets U1, . . . , Un ⊆ V , we define
σ[U1/X1, . . . , Un/Xn] as the valuation with

σ[U1/X1, . . . , Un/Xn](Xi) =Ui (1 ≤ i ≤ n) and

σ[U1/X1, . . . , Un/Xn](Y) =σ(Y) for Y 6∈ {X1, . . . , Xn}.

28

Now we can define ϕG(σ) inductively as follows:

• pG(σ) = Up for p ∈ Ξ
• (¬p)G(σ) = V \ Up for p ∈ Ξ
• XG(σ) = σ(X) for every X ∈ Ω
• (ϕ ∨ ψ)G(σ) = ϕG(σ) ∪ ψG(σ)
• (ϕ ∧ ψ)G(σ) = ϕG(σ) ∩ ψG(σ)
• (〈a〉ϕ)G(σ) = {u ∈ V | ∃v ∈ V : (u, v) ∈ Ea ∧ v ∈ ϕG(σ)}
• ([a]ϕ)G(σ) = {u ∈ V | ∀v ∈ V : (u, v) ∈ Ea ⇒ v ∈ ϕG(σ)}

For a formula [µ(X1, . . . , Xn).(ϕ1, . . . , ϕn)]i we first define a monotone map-
ping on the lattice (2V)n by

(U1, . . . , Un) 7→ (ϕG
1 (σ[U1/X1, . . . , Un/Xn]), . . . , ϕG

n (σ[U1/X1, . . . , Un/Xn])).

By the fixpoint theorem of Knaster and Tarski this mapping has a smallest
fixpoint (U ′

1, . . . , U
′
n). We define

[µ(X1, . . . , Xn).(ϕ1, . . . , ϕn)]Gi (σ) = U ′
i .

The set [ν(X1, . . . , Xn).(ϕ1, . . . , ϕn)]Gi (σ) is defined in the same way, we only
have to take the largest fixpoint. Note that in order to determine ϕG(σ), only
the values of the valuation σ for free variables of ϕ are important. In particular,
if ϕ is a sentence (i.e., a formula where all variables are bound by fixpoint
operators), then the valuation σ is not relevant and we can write ϕG instead
of ϕG(σ), where σ is an arbitrary valuation. For a sentence ϕ and a node v ∈ V
we write (G, v) |= ϕ if v ∈ ϕG. To make formulas more readable, we introduce
a few abbreviations. For a word w = a1 · · · an ∈ Σ∗ (a1, . . . , an ∈ Σ) we write
〈w〉ϕ := 〈a1〉 · · · 〈an〉ϕ. Moreover, let

EFϕ := µY.(ϕ ∨
∨

a∈Σ

〈a〉Y) (A.1)

express that there exists a reachable state where ϕ holds.

A labelled graph is context-free if it is the configuration graph of a pushdown
automaton, see [28] for more details on context-free graphs, a precise definition
is not necessary for the purpose of this paper. In [18,35] it was shown that
it is EXPTIME-complete to check (G, v) |= ϕ for a given context-free graph
G (represented by a pushdown automaton), a node v of G, and a formula ϕ
of the modal µ-calculus. This result can be easily extended to the modal µ-
calculus with simultaneous fixpoints: By Bekic’s Lemma [2], a formula ϕ with
simultaneous fixpoints can be translated into an equivalent formula ϕ′ of (or-
dinary) modal µ-calculus. For instance, µ(X,Y).(ψ(X,Y), θ(X,Y)) is equiv-
alent to µX.ψ(X,µY.θ(X,Y)). This transformation may increase the size of
the formula exponentially, but the number of subformulas increases only lin-
early. Now, for the complexity of the model-checking problem for the modal

29

µ-calculus over context-free graphs, only the number of subformulas is im-
portant. For instance, in the approach from [18], a modal µ-calculus formula
is translated into a two-way alternating tree automaton, where the states of
this automaton are basically the subformulas of the input formula. Hence, we
have:

Theorem 20 ([18,35]) The following problem is EXPTIME-complete:

INPUT: A context-free graph G given by a pushdown-automaton, a node v of
G, and a sentence ϕ of the modal µ-calculus with simultaneous fixpoints.

QUESTION: (G, v) |= ϕ?

Let us denote with C(Σ) the Cayley graph of the free group F (Σ) w.r.t. the
generating set Σ. We will need Theorem 20 only for the case that the context-
free graph G is C(Σ), where additionally node 1 ∈ F (Σ) is distinguished by a
node label. It is straightforward to see that this graph is indeed context-free
and for a given alphabet Σ one can easily construct a pushdown automaton,
which defines this graph [28].

B Petri nets and free partially commutative inverse monoids

We do not present any result which is necessary for the other parts of the paper.
However we establish some link to Petri nets which allows to see partially
commutative inverse monoids from some different viewpoint.

Petri nets form a well-established formalism for studying concurrent systems,
see e.g. [32]. From an abstract viewpoint a Petri net system N is specified by
a mapping F : T → NS × NS and an initial marking m0 ∈ NS. Elements of
the set T are called transitions and elements of the set S are called places, in
German Stellen. Vectors m ∈ NS are called markings. If m ∈ NS is a marking
and t is a transition with F (t) = (u, v) such that m ≥ u (in the component
wise ordering of NS), then t is enabled and can fire such that the follower
marking m′ is defined by the vector m− u+ v. One also writes:

m [t〉 m′ or m′ = m [t〉

A firing sequence is a word t1 · · · tn ∈ T ∗ such that each ti is enabled at the
marking m [t1 · · · ti−1〉 and then m [t1 · · · ti〉 is defined by (m [t1 · · · ti−1〉) [ti〉.

The reachability problem is to decide whether a given marking m′ is reachable
in a given Petri net system via some firing sequence. The problem is known

30

to be decidable by a famous result of Mayr [25,17].

Let us establish the bridge from Petri nets to partially commutative inverse
monoids.

For each place p consider the free inverse monoid FIM(p) over one letter.
Note that in this monoid we have pp−1 6= p−1p. If F (t) = (u, v) and u(p) =
k, v(p) = ℓ, then we define f(t, p) = p−kpℓ ∈ FIM(p). The direct product∏

p∈S FIM(p) is a free partially commutative inverse monoid over the alphabet
S with I = S×S\idS. Hence,

∏
p∈S FIM(p) = FIM(S, I). In particular, FIM(p)

is a submonoid of FIM(S, I).

We extend f to a homomorphism, which is denoted again by f :

f : T → FIM(S, I)

t 7→
∏

p∈S

f(t, p)

Thus, every word v = t1 · · · tn ∈ T ∗ becomes an element f(v) ∈
∏

p∈S FIM(p).
Thus, we can view f(v) as a pair (V, g) where V ⊆ ZS is a closed subset and
g ∈ ZS. We see that m [t1 · · · tn〉 m

′ if and only if both m + V ⊆ NS and
m + g = m′. Note also that closed subsets in ZS are just direct products of
intervals [k, ℓ] with k ≤ 0 ≤ ℓ.

A Petri net system is called 1-safe, if for every place p and every reachable
marking m we have m(p) ∈ { 0, 1 }. The reachability problem for 1-safe nets is
known to be PSPACE-complete, see [6]. Let us see that the reachability problem
for a 1-safe net N can be reduced to the submonoid membership problem of
FIM(S, I). As we have seen in Theorem 9, even more general problems for
FIM(S, I) can be solved in PSPACE. The reduction works as follows: First, we
observe that NS has a natural embedding in FIM(S, I). Thus we can view a
marking as an element of FIM(S, I). Let m0 be the initial marking. Then a
marking m is reachable if and only if

(
∏

p∈S

pp−1)m ∈



 (

∏

p∈S

pp−1)m0, f(t)

∣∣∣∣∣∣
t ∈ T





∗

.

The verification of this statement is a good exercise and therefore left to the
reader.

How about the reachability problem for general Petri nets? Again we can give
a reduction to a submonoid membership problem, but unfortunately this does
not give (yet) any algorithm because we have (yet) no decidability for this type
of submonoid membership problem. The obstacle is that we move to finite
idempotent presentations. Consider FIM(S, I) modulo defining equations of
the form pp−1 = 1 for all p ∈ S. We can imagine that for each p ∈ S there is

31

(some new type of) a transition tp which has this effect: f(tp) = pp−1. Such
a transition makes no sense in 1-safe nets, because usually it destroys the
1-safeness, but for general nets there is no harm in allowing such a strange
type. A transition tp is always enabled, but the effect of firing it is the identity,
hence the pp−1 = 1 is satisfied. We also need an additional new place p0 with
m(p0) = 1 for every marking m and f(t, p0) = p−1

0 p0 for every transition
t. (This ensures m0 occurs as the first item and then never again in any
factorization of a marking m as defined below.)

For a moment, let M = FIM(S, I)/ { pp−1 = 1 | p ∈ S }. Note that there is
a simple representation for the elements of M . The effect of the equations
pp−1 = 1 is simply that the upper bounds of the intervals [k, ℓ] no longer
matter. For a single component, we have prp−r = ([0, r], 0) and

([k1, ℓ1], g1) · ([0, r], 0) · ([k2, ℓ2], g2) =

([min{k1, g1, g1 + k2},max{ℓ1, g1 + r, g1 + ℓ2}], g1 + g2).

So, by inserting a factor prp−r the upper bound can be increased by an arbi-
trary number, but since k1 ≤ g1, nothing else will change. Thus, we can view
the elements of M as pairs (k, g) ∈ ZS × ZS. Again, the reader is invited to
check that now, a marking m is reachable if and only if

m ∈ {m0, f(t) | t ∈ T }∗ ⊆M.

Thus, a tempting generalization of the reachability problem for Petri nets
would be to prove that the submonoid membership problem for FIM(S, I)/P
is decidable, if P is a finite idempotent presentation.

References

[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in
Logic and the Foundations of Mathematics. North-Holland, 2001.

[2] H. Bekic. Definable operation in general algebras, and the theory of automata
and flowcharts. In C. B. Jones, editor, Programming Languages and Their
Definition, number 177 in Lecture Notes in Computer Science, pages 30–55.
Springer, 1984.

[3] J.-C. Birget and J. Rhodes. Almost finite expansions of arbitrary semigroups.
Journal of Pure and Applied Algebra, 32(3):239–287, 1984.

[4] R. V. Book. Confluent and other types of Thue systems. Journal of the
Association for Computing Machinery, 29(1):171–182, 1982.

[5] S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and
canonization. In Kurt Gödel Colloquium 97, pages 18–33, 1997.

32

[6] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets.
Theoretical Computer Science, 147(1–2):117–136, 1995.

[7] V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg, 1990.

[8] V. Diekert, M. Lohrey, and A. Miller. Partially commutative inverse monoids.
In R. Kralovic and P. Urzyczyn, editors, Proceedings of the 31th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2006),
Bratislave (Slovakia), number 4162 in Lecture Notes in Computer Science, pages
292–304. Springer-Verlag, 2006.

[9] V. Diekert, M. Lohrey, and N. Ondrusch. Algorithmic problems on inverse
monoids over virtually-free groups. submitted for publication, 2006.

[10] V. Diekert and A. Muscholl. Solvability of equations in free partially
commutative groups is decidable. International Journal of Algebra and
Computation, 16(6):1047–1069, 2006.

[11] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[12] C. Droms. Graph groups, coherence and three-manifolds. Journal of Algebra,
106(2):484–489, 1985.

[13] C. Droms. Subgroup of graph groups. Journal of Algebra, 110:519–522, 1987.

[14] E. Fredkin. Trie memory. Communications of the Association for Computing
Machinery, 3(9):490–499, 1960.

[15] B. Jenner, P. McKenzie, and J. Torán. A note on the hardness of tree
isomorphism. In Proceedings of the 13th Annual IEEE Conference on
Computational Complexity, pages 101–105. IEEE Computer Society Press, 1998.

[16] M. Kambites, P. V. Silva, and B. Steinberg. On the rational subset problem for
groups. Journal of Algebra, 309(2):622–639, 2007.

[17] S. R. Kosaraju. Decidability of reachability in vector addition systems. In
Proceedings of the 14th annual ACM symposium on Theory of computing
(STOC), pages 267–281, 1982.

[18] O. Kupferman and M. Y. Vardi. An automata-theoretic approach to
reasoning about infinite-state systems. In E. A. Emerson and A. P. Sistla,
editors, Proceedings of the 12th International Conference on Computer Aided
Verification (CAV 2000), Chiacago (USA), number 1855 in Lecture Notes in
Computer Science, pages 36–52. Springer-Verlag, 2000.

[19] R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of
the Association for Computing Machinery, 24(3):522–526, 1977.

[20] M. Lohrey. On the parallel complexity of tree automata. In A. Middeldorp,
editor, Proceedings of the 12th International Conference on Rewrite Techniques
and Applications (RTA 2001), Utrecht (The Netherlands), number 2051 in
Lecture Notes in Computer Science, pages 201–215. Springer-Verlag, 2001.

33

[21] M. Lohrey and N. Ondrusch. Inverse monoids: decidability and complexity
of algebraic questions. to appear in Information and Computation, short
version appeared in Proceedings of MFCS 2005, number 3618 in Lecture Notes
in Computer Science, pages 664–675. Springer, 2005.

[22] S. Margolis and J. Meakin. E-unitary inverse monoids and the Cayley graph of
a group presentation. Journal of Pure and Applied Algebra, 58(1):45–76, 1989.

[23] S. Margolis and J. Meakin. Inverse monoids, trees, and context-free languages.
Transactions of the American Mathematical Society, 335(1):259–276, 1993.

[24] S. Margolis, J. Meakin, and M. Sapir. Algorithmic problems in groups,
semigroups and inverse semigroups. In J. Fountain, editor, Semigroups, Formal
Languages and Groups, pages 147–214. Kluwer, 1995.

[25] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM
Journal on Computing, 13:441–460, 1984.

[26] J. Meakin and M. Sapir. The word problem in the variety of inverse semigroups
with abelian covers. Journal of the London Mathematical Society, II. Series,
53(1):79–98, 1996.

[27] K. A. Mihailova. The occurrence problem for direct products of groups. Math.
USSR Sbornik, 70:241–251, 1966. English translation.

[28] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37(1):51–75, 1985.

[29] W. Munn. Free inverse semigroups. Proc. London Math. Soc., 30:385–404, 1974.

[30] M. Petrich. Inverse semigroups. Wiley, 1984.

[31] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1–35, 1969.

[32] W. Reisig. Petri Nets (an Introduction). Number 4 in EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg, 1985.

[33] J. Stephen. Presentations of inverse monoids. Journal of Pure and Applied
Algebra, 63:81–112, 1990.

[34] A. A. Veloso da Costa. Γ-Produtos de Monóides e Semigrupos. PhD thesis,
Universidade do Porto, Faculdade de Ciências, 2003.

[35] I. Walukiewicz. Pushdown Processes: Games and Model-Checking. Information
and Computation, 164(2):234–263, 2001.

[36] C. Wrathall. The word problem for free partially commutative groups. Journal
of Symbolic Computation, 6(1):99–104, 1988.

34

