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Abstract. A compressed variant of the word problem for finitely generated group
where the input word is given by a context-free grammar that gerseeatectly

one string (also called a straight-line program), is studied. It is showrfittitet
extensions and free products preserve the complexity of the coredressd
problem and that the compressed word problem for a graph groupecaolved

in polynomial time. Using these results together with connections between the
compressed word problem and the (classical) word problem allows tmotea
upper complexity bounds for certain automorphism groups and gedepsons.

1 Introduction

The word problem for finitely generated groupsa fundamental computational prob-
lem linking group theory, topology, mathematical logicdasomputer science. For a
group@, finitely generated by, it is asked whether a word oveér and the inverses
of X represents thé of G. The word problem was introduced in the pioneering work
of Dehn from 1910 [10] in relation with topological questiont took about 45 years
until Novikov [32] and later independently Boone [5] prowhe existence of a finitely
presented group with an undecidable word problem. Dedpigenegative result, many
natural classes of groups with decidable word problems feened. Prominent exam-
ples are for instance finitely generated linear groups,raati¢ groups [17], and one-
relator groups. With the advent of computational compietkieory, also the complexity
of word problems became an active research area. For imstiinveas shown that for
a finitely generated linear group the word problem can beesbin logarithmic space
[27, 40], that automatic groups have polynomial time sdkdim fact quadratic) word
problems [17], and that the word problem for a one-relatougris primitive recursive
[7].

Group theoretic operations, which preserve (or moderatehgase) the complexity
of the word problem, are useful in order to get a building setcbnstructing groups
with efficiently solvable word problems. An example of suctoastruction is the free
product: it is not hard to see that the word problem for a frexlpctG « H can be
reduced in polynomial time to the word problem fGrand H. In this paper, we will
increase the building set of such group operations by intiod) a new technique for
obtaining upper complexity bounds for word problems. Ta@hhique is based on data
compression. More precisely, we use a compressed repagisardf strings — so called



straight-line programsbriefly SLPs — which is able to achieve exponential compres-
sion rates for strings with repeated subpatterns. FormathSLPG is a context-free
grammar, which generates exactly one stiingl(G). Recently, SLPs turned out to be
a very flexible compressed representation of strings, wisietell-suited for studying
algorithms on compressed data. For instance, several goigh time algorithms for
the pattern matching problem on SLP-compressed inputgstrivere developed [18,
26,31, 37]. In [28], the first author started to investigdte compressed word prob-
lemfor a finitely generated grou@ with finite generating set'. For a given SLR&
that generates a string ov&rand the inverses oY’ it is asked whethesval(G) repre-
sents thel of G (actually, in [28] the compressed word problem for finitegngrated
monoids was studied). This problem is equivalent to the-lmiwn circuit evaluation
problem, where we ask whether a circuit over a finitely getegrgroupG (i.e., an
acyclic directed graph with leafs labeled by generator§ aind internal nodes labeled
by the group multiplication) evaluates to theof G. In [3], this problem was investi-
gated for finite groups, and it was shown that there existefigibups, for which the
circuit evaluation problem is complete for P (determimigtblynomial time).

In [3, 28], the main motivation for studying the compresseatdvproblem came
from computational complexity theory. Since the input ia tompressed word problem
is given in a more compact form than in the ordinary word peablit can be expected
that in general the compressed word problem for a gi@up more difficult than the
ordinary word problem. For instance, whereas the word pralibr a finitely generated
free group belongs to the class L (deterministic logspa2é), the compressed word
problem for a finitely generated free group of rank at leastisP-complete [28}.

In [38], the second author used the polynomial time algoritbr the compressed
word problem for a free group in order to present a polynottiiaé algorithm for the
ordinary word problem for the automorphism group of a freeugr, which answered
a question from [24]. Hence, the compressed word problernsés in order to obtain
better algorithms for the ordinary word problem. In this @gmve will continue this
idea and thereby obtain efficient algorithms for a varietyvofd problems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we show connections between dhepressed word
problem for a group& and the word problem for some group derived frém We
prove three results of this kind:

— If H is afinitely generated subgroup of the automorphism growpgrbupG, then
the word problem fot{ is logspace reducible to the compressed word problem for
G (Proposition 2). This result is a straight-forward extensof Theorem 5.2 from
[38].

— The word problem for the semidirect produgt x,, @ of two finitely generated
groupsK and( is logspace reducible to (i) the word problem f@rand (ii) the
compressed word problem féf (Proposition 3).

— If K is afinitely generated normal subgroup®such that the quotiert¥/ K is an
automatic group, then the word problem fgris polynomial time reducible to the
compressed word problem féf (Proposition 4).

! Itis believed, although not proven, that L is a proper subclass of P.



In the second step (Section 4) we concentrate on the conapregsrd problem. We
prove the following results:

— If K is afinitely generated subgroup@fsuch that the inde}G : K] is finite, then
the compressed word problem 1@ris polynomial time reducible to the compressed
word problem forK (Theorem 1).

— The compressed word problem for a free prodd¢t« G is polynomial time re-
ducible (under Turing reductions) to the compressed woobllpm forG; andG,
(Theorem 2). This result even holds for the more generallgppduct construc-
tion [20] (Theorem 4).

— The compressed word problem for a graph group [15] can bedatvpolynomial
time (Theorem 3). In a graph group, every defining relatioof ithe formab = ba
for generators andb.

— The compressed word problem for a finitely generated lineaumbelongs to the
complexity class coRP (Theorem 5), which is the complemgmiass of random-
ized polynomial time, see Section 4.4 for the definition.

We end this paper with a few direct applications of the ab@gilts. Let us mention
one of them concerning topology, see [41] for definitionsis@rand Wiest [9] have
shown shown that the fundamental group of any orientablasaand of most non-
orientable surfaces) embeds in a graph group. It follows fimamost fundamental
groups of surfaces, the word problem for the correspondirigracrphism group can
be solved in polynomial time. These automorphism groupg alaery important role
in algebraic topology.

2 Preliminaries

Let X be a finite alphabet. With'+ = X* \ {¢} we denote the set of non-empty words
over¥. We useX~! = {a~! | a € ¥} to denote a disjoint copy af. Let U*! =
Y u Xt Define(a=!)~! = q; this defines an involutionm! : X+ — X+ which
can be extended to an involution 6&*')* by setting(a; - --a,) "' = a;---a]'.
For " C ¥, we denote byr(w) the projection of the wora to the alphabef”, i.e.,
we erase inv all symbols fromX'\ I".

Forawords = ay -« - a,, (a; € X) let

- |S| =m, alph(s):{ala"'aam}’

—sli]=a;for1 <i<m

i:jl=a;---a;forl <i<j<mands[i:j]=efori>j,
cil=s[l:i =ay---a;for0<i<m,and
il=sli:ml=a;--apforl <i<m+1.

Forc € Nlet ¥=¢ = {w € X* | |w| < ¢} denote the set of all words of length at most
C.

|
)

I
)

[
— 8
[

For background in complexity theory see [33]. For langudges we write K <!
L (resp.K <!°¢ L) if there exists a polynomial time (resp. logspace) mang-@uuc-
tion from K to L. We write K <% L if there exists a polynomial time Turing reduction
from K to L, which means thai’ can be solved in deterministic polynomial time on



a Turing machine with oracle access to the languageet < € {<F <los <I} in
caseK < Ly x---x L, wewrite K < (Ly,...,L,).Clearly, ifL,,..., L, belong to
the class P (deterministic polynomial time) akd<% (L4, ..., L,), thenK belongs
to P as well.

2.1 Groups

For background in combinatorial group theory see [30]. Gdbe afinitely generated
groupand letX be a finitegroup generating seor G. Hence, X *! is a finitemonoid
generating sefor G and there exists a canonical monoid homomorphismX+!)* —
G, which maps a worady € (X*1)* to the group element representedibyForu, v €
(X*1)* we will also say that: = v in G in caseh(u) = h(v).

Theword problemfor G with respect ta¥ is the following decision problem:

INPUT: Awordw € (I%1)*,
QUESTION:w = 1in G, i.e.,h(w) = 1?

It is well known and easy to see thatlif is another finite generating set f6f, then
the word problem folz with respect ta¥ is logspace many-one reducible to the word
problem forG with respect tal". This justifies to speak just of the word problem for
the groupG. The word problem fo(7 is also denoted byWP(G). Theautomorphism
groupof a groupG is denoted byAut(G).

Thefree groupF'(X') generated by~ can be defined as the quotient monoid

F(X) = () /{aa™ = ¢ |a € ZF}.

As usual, thdree productof two groupsG; andGs is denoted byGy x Go. Assume
that ¥; is a finite generating set f@#; (i € {1,2}), whereX; N Xy = . Then, every
element of the free product; * G- can be represented by a ward: (Zfﬂ U Ezﬂ)*,
where

— u=uy ---uy, forsomen > 0anduy,...,u, € (X))t U (ZFHT,
—foralll <i<niu € (Tt o uyy € (25T, and
—foralll <i<mniu; #1inGyifu; € (Tt andu; # 1in Gy if u; € (251,

We call such a wordtreducible inG; *Gs. If v = vy - - - v,, is another word, irreducible
inG1xGy (Withvy, ..., v, € (ZEHTU(ZEY T andy; € (ZEN) T e vy € (Z5H)T
forall 1 < i < m), thenu andv represent the same group elementGaf+ G if and
only if n = m and for alll < i < n, u; andv; represent the same group elementef
(if us, v € (ZEH)T) or of Gy (if w, v; € (ZFH)T).

For the standard definition afutomatic groupssee [17]. Every automatic grodp
is finitely presented and its word problem can be solved i tinin?). We will need
the following important properties of automatic groupss §&7]. LetG be automatic
and letX be a finite generating set f@r. Then there exists a normal form mapping
NF : (D%1)* — (X*1)* and constants, 8 € N with the following properties, where
u,v € (X*)*, anda € Y U XL

— NF(u) = NF(v) ifand only ifu = v in G, NF(u) = uin G, andNF(e) = ¢



— The set of normal formdF ((X+1)*) is regular.

— The normal fornNF () can be computed in tim@(|u|?) (hence the word problem
of G can be solved in quadratic time).

— |INF(u)| — INF(ua)|| < «, i.e., the length of the normal form only changes by a
constant amount when appending a generator to a word.

— If NF(u) = a; - - - ayp, @ndNF (ua) = by - - - by, (With aq, ..., am,b1,...0, € XU
Y1), then there exists words, 1, . . . , Pmax(m,n) € (XUX™1)SF suchthaty =
€ Tmax(m,n) = @ and(ay ---a;)r; = (by---b;) in G forall 1 < < max(m,n)
(here we seti; = ¢ for m < i < max(m,n) andb; = € for n < ¢ < max(m,n)).

The last property is also called tBgnchronous fellow traveller property

2.2 Trace monoids and graph groups

In the following we introduce some notions from trace thesse [11, 14] for more
details. This material will be only needed in Section 4.3.iAgdependence alphabist
just a finite undirected grapf¥’, I) without loops. Hence] C X' x X' is an irreflexive
and symmetric relation. The complementary grgph D) with D = (X x X)\ I is
called adependence alphabéthetrace monoidMI(X, I) is defined as the quotient

M(Z,1) = 5*/{ab = ba | (a,b) € I}.

Itis a cancellative monoid. Elementsidf( X, ) are calledraces The trace represented
by the words € X* is also denoted bis|;. Fora € X'letI(a) ={b € X' | (a,b) € I'}
andD(a) = {b€ X' | (a,b) € D}.

Traces can be represented convenientlydbpendence graphsvhich are node-
labelled directed acyclic graphs. Let= a; ---a, be a word, where;; € X. The
vertex set of the dependence graph of s is {1,...,n} and vertex is labeled with
a; € X. There is an edge from vertéxo j in D if and only ifi < j and(a;, a;) & I.
Then, for two wordss,t € X* we have[s]; = [t]; if and only if D, and D, are
isomorphic. In particular, we can speak of the dependenraehgof a trace:. Clearly,
by taking the transitive and reflexive closure of the edgatiah of a dependence graph
D, one obtains a partial order.

A tracew is a prefix of a trace if there exists a tracev such thatv = uw in
M(X, I). The prefixes of a trace correspond to the downward-closed node sets of the
dependence graph af For two traces:, v € M(X, I), the infimum with respect to the
prefix order is denoted by M v. That is,u M v is a prefix ofu andv and every other
common prefix ofu andv is a prefix ofu M v. With u \ v we denote the unique tra¢e
such that: = (u M v)t; uniqueness follows from the fact thist( X, I) is cancellative.
Note thatu \ v = u \ (uMv). For wordss, t € X* we writes <; t if the trace[s]; is a
prefix of the tracét];.

Example 1.Let (X, I) be the following independence alphabet:
b—d—a—c

The corresponding dependence alphabet looks as followexenthe self loop at every
node is omitted:



a—p—cCc—d

Let s = dabed andt = abaadcdb. The (Hasse diagram of the reflexive and transitive
closure of the) dependence graphsaindt, respectively, looks as follows. For a hode
i€ {1,...,8} we only show its label froda, b, ¢, d}.

a—-p a—h—a—=a—=pH

e N N

d ——c——d

c—(

Since we only show Hasse diagrams, we omit for instance the &dm the first] to
the second! in D,.
We haves <; t. Foru = dabcbdc the dependence graph is
TN
v d—>C—d—cC
We see thatt]] M [U]] = [Sh, [t]] \ [S]] = [f,]] \ [U;}[ = [aab]f, and[u]; \ [S}[ =
[ul1 \ [t]r = [be]s-

A clique covering of the dependence alphafBt D) is a tuple of subset&;)1<;<x
such thaty = (J;«;«, 25 andD = (J,<;,, (X x X). Itis well-known that for a
clique covering(X;)1<i<, and two wordss,t € X* on has[s|; = [t]; if and only if
s, (s) = mx,(t) forall 1 < ¢ < n. This fact is also known as the projection lemma
[14]. We also need the following simple fact:

Lemma 1. Let(X;)1<i<, be aclique covering of the dependence alph&BgtD) and
lets,t € X*. Thens < tif and only ifry, (s) is a prefix ofry, (¢) forall 1 <i <n.

Proof. The “only if"-direction is trivial. For the “if"-directionassume that there exist
wordswu; € X (1 < i < n)such thatry, (t) = 7y, (s)u;. From [16, Prop. 1.6] it
follows that there exists aword € X* such thatry, (u) = u; forall 1 < i < n.Hence
7y, (t) = 7y, (s)7y, (u) = 7y, (su). By the projection lemma we hayg; = [su],
i.e.,s <y t. O

Example 2.A clique covering of the dependence alphabet from Exampde 1 i

({a, b}, {b, ¢}, {c, d}).

The tuple of projections for the word(resp.t) from Example 1 igab, be, ded) (resp.
(abaab, beb, ded)). Every component of the tuplgb, be, ded) is a prefix of the corre-
sponding component of the tuplebaab, beb, ded). Hence, we have indeed=<; t.

A trace rewriting systemR over M((X,]) is just a finite subset oM(X, ) x
M(X, I') [11]. We can define thene-step rewrite relatior>p C M(X, I) x M(X, 1)
by: x — g yif and only if there are:,v € M(X,I) and(¢,r) € R such thatr = ufv
andy = wurv. The notion of aconfluentandterminatingtrace rewriting system is de-
fined as for other types of rewriting systems [4]. A trads irreducible with respect
to R if there does not exist a traeewith ¢t —r u. The set of all traces that are irre-
ducible with respect t& is denoted witHRR(R). If R is terminating and confluent,



then for every trace, there exists a unigueormal formNF g (u) € IRR(R) such that
u =5 NFp(u).
The graph groufiz(X, I) is defined as the quotient group

G(2,1) = F()/{ab = ba | (a,b) € I}.

Note that(a,b) € I impliesa='b = ba~! in G(X, I). Thus, the graph grou@ (X, I)
can be also defined as the quotient

GZ, 1) =MZ*, )/{aa =¢ | a c ZF'}.

Here, we implicitly extend C ¥ x Y toI C X*! x L*! by setting(a®, b?) € I if
and only if(a,b) € I fora,b € ¥ andea, 8 € {1, —1}. We can also lift the involution
—L (Xt — (ZFH* to an involution™! @ M(X* 1) — M(X*!, 1) by setting
[s];! = [s71]1 (well-definedness is easily seen).

Free groups and free abelian groups arise as special cagepbfgroups; note that
G(X,0) = F(X) andG(X, (X x X) \ idx) = Z!*!. Graph groups were studied e.g.
in [15]; they are also known deee partially commutative groug42, 42],right-angled
Artin groups|6, 9], andsemifree groupfl].

2.3 Grammar based compression

In this section we introduce straight-line programs, which used as a compressed
representation of strings with reoccuring subpatternowing [35], a straight-line
program (SLP) over the alphabétis a context-free grammax = (V, I, S, P), where
V is the set ohonterminalsI” is the set oterminals S € V is theinitial nonterminal
andP C V x (V UTI)* is the set ofproductions such that (i) for everyX € V
there is exactly onex € (V U I')* with (X, «) € P and (i) there is no cycle in the
relation{(X,Y) € V.xV | 3a : (X,a) € P,Y € alph(«)}. A production(X, a)
is also written asX’ — «. The language generated by the SARontains exactly one
word that is denoted byval(A). More generally, every nonterminal € V' produces
exactly one word that is denoted byal, (X). We omit the indexA if the underlying
SLP is clear from the context. The sizefs |A| =} v ,)cp |o|. Every SLP can be
transformed in polynomial time into an equivalent SLP teahiChomsky normal form
(as a context-free grammar). This means that all produsti@ve the fornrd — BC
or A — a for nonterminals4, B, andC' and a terminak. The following tasks can be
solved in polynomial time (the first two problems can be redlim simple arithmetic,
whereas the third problem requires more subtle techniques)

— Given an SLPA, calculatgeval(A)].
— Given an SLPA and a numbei € {0, ..., Jeval(A)| — 1}, calculatesval(G)][i].
— Given SLPsA andB decide whethesval(A) = eval(B) [34].

Let G be a finitely generated group and IEtbe a finite generating set f@r. The
compressed word problefar G with respect ta¥ is the following decision problem:

INPUT: An SLPA over the terminal alphabet*!.
QUESTION: Does:val(A) = 1 hold inG?



Here, the input size iE\|. It is easy to see that also for the compressed word problem
the complexity does not depend on the chosen generatinglset) allows to speak of
the compressed word problem for the grakpThe compressed word problem 1Gris

also denoted b WP(G). The following fact is trivial:

Proposition 1. Assume thatf is a finitely generated subgroup of the finitely generated
groupG. ThenCWP(H) <los CWP(G).

The next lemma is crucial for our applications of compressert problems.

Lemma 2. For a given sequence, . .., ¢, of homomorphismg, : I'* — I'* (1 <

1+ < n) and a symbok € I" we can compute in logarithmic space an SAPsuch
thateval(A) = ¢1 - @, (a). Moreover|A| = O3 . 21", |¢i(a)]). In particular,

if I"is fixed and every; is taken from some fixed finite set of homomorphisms, then
|A] = O(n).

Proof. Let us take nonterminald, ,, where0 < ¢ < n andb € I', and define the
productions as follows:

Aop — b
Aip = Aiciay - Aic1,a,,, Wherep; (b)) = a1 - - - an,

By induction oni one can easily show thatal(A; ;) = ¢1 - - - i (D). O

A composition systeth = (V, I, S, P) is defined analogously to an SLP, but in
addition to productions of the formlk — « (A € V, a € (V U I')*) it may also
contain productions of the ford — BJi : j] for B € V andi,j € N [18]. For
such a production we defineraly(A) = evaly(B)[i : j].? As for SLPs we define
eval(A) = evaly(S). In [21], Hagenah presented a polynomial time algorithmicivh
transforms a given composition systeminto an SLPB such thaeval(A) = eval(B).
We will also allow more general kinds of productions, wheght-hand sides are arbi-
trary words, built up from terminals, nonterminals and s@islB|: i], B[i ], B[i : j]
for a nonterminalB andi, j € N. The semantics of such productions is the obvious
one.

In Section 4.3 we will need the following generalization ohtposition systems:
An extended composition systewer the terminal alphabdt may contain in addition
to productions of the forml — o« (A€ V,a e (VUT)*)andA — Bfi: j](BeV
andi, j € N) also productions of the forrd — =x(B) for B € VandX C I'. For
such a production we defirgaly (4) = w5 (evaly (B)).

Lemma 3. Let I" be a fixed terminal alphabet. There is a polynomial time atgar,
which transforms a given extended composition sygtewer the terminal alphabef
into an SLPB such thakval(A) = eval(B).

21n [18], a slightly more restricted formalism, where all productions thedormA — a € I’
or A — B[j :]C[: 1], was introduced. But this definition is easily seen to be equivalent to our
formalism.



Proof. Let A be a given extended composition system. By the Hagenahi#t fesm

[21] it suffices to construct in polynomial time an equivaleomposition system. For
this, we construct in polynomial time a composition sysi&mwhich contains for every
nonterminalX of A and every subsef of the fixed terminal alphabdt a nonterminal
X suchthatval(Xs) = mx(eval(X)). For this we introduce in a bottom-up way new
productions: For a productio — a with ¢ € I" we introduce the productionsy, —

75 (a). For a productionX — Y Z, we introduce the productionss, — Y5 Zx. For a
productionX — mo(Y) let Xy — Yxne. Finally, consider a productioX’ — Y7i :

j]. We introduce the production§y, — Y[k : ¢], wherek = |rx(eval(Y)[: i—1])|+1
and? = |rx(eval(Y)[: j])|. These lengths can be computed in polynomial time as
follows: Implicitly, when processing the producticti — Y[i : j] we have already
constructed a composition system which generates thegystrl(Y) = eval(Yy).
Hence, by adding a single production, we can write down a asitipn system for
the stringeval(Y)[: ¢ — 1]. Using Hagenah's algorithm [21] we can transform this
composition system in polynomial time into an equivalenfPSErom this SLP, the
length|m s (eval(Y)[: i — 1])| can be easily computed bottom-up (the SLP for the string
eval(Y)[: ¢ — 1] is then not used anymore). O

It should be remarked that in the previous proof it is cruthal the alphabef’ is
fixed, i.e., not part of the input. Otherwise the construttimuld lead to an exponential
blow-up. It is not clear whether Lemma 3 remains true, whenténminal alphabef’
is part of the input.

3 Connections between the word problem and the compressed
word problem

Our main motivation for studying the compressed word pnobfer a group are the
following results:

Proposition 2 (cf [38]). Let G be a finitely generated group and |&f be a finitely
generated subgroup dfut(G). ThenWP(H) <l°8 CWP(G).

Proposition 3. Let K and @ be finitely generated groups and let @ — Aut(K) be
a homomorphism. Then, for the semidirect prodiict, @ we haveéWP (K x,Q) <l°8
(WP(Q), CWP(K)).

Proof. Elements of the semidirect produkt x, @) can be written as pairsk, q) €
K x @ and the multiplication is defined g%, q)(¢,p) = (k o ¢(q)(¢),qp) (here
o is the multiplication inK’; note thaty(q) € Aut(K)). Let us consider a word
(k1,q1)(k2,q2) - - - (kn, qn), Wherek; (resp.g;) is a generator o (resp.Q). In K x,
@, this word equal$6; (k1) o O2(ks) o -+ - 0 0, (kpn),q1q2 - - - qn), Whered; € Aut(K)

is the automorphism defined By = ©(q1 - - - ¢i—1) = ¢(q1) - - - p(gi—1) for1 <i<mn
(note that?; = idg). By Lemma 2, we can compute in logarithmic space an 8LP
over the generators df, which produces the striny (k1 )62 (k2) - - - 0., (k»). We have
(k1,q1)(k2,q2) - -+ (knygn) = 1in K %, Q ifand only if g1g2--- ¢, = 1in Q and
eval(A) = 1in K. This proves the proposition. O



The semidirect produdt = K <, Q is aan extension ok by @, i.e.,K is anormal
subgroup ofG with quotientG/K ~ Q. A reasonable generalization of Proposition 3
would beWP(G) <l (WP(G/K), CWP(K)). But this cannot be true: there exist
finitely generated groups, @, K such that (i}Q = G/ K, (ii) Q andK have decidable
word problems, and (i} has an undecidable word problem [2]. On the other hand,
if we require additionally, thaf) is finitely presented (in fact) recursively presented
suffices), thenG must have a decidable word problem [8]. For the special daese t
the quotient) = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. Let K be a finitely generated normal subgroup@®fuch that the quo-
tientQ = G/K is an automatic group. TheWP(G) </ CWP(K).

—m

Proof. Let X be a finite generating set fdf and letI” be a finite generating set of
the automatic groud) = G/K (recall that automatic groups are finitely presented).
Lety : G — @ be the canonical morphism and choose a mapping) — G with
h(1) = 1 andy(h(a)) = afora € Q. The sety’ U h(I") generatess and there exists
a so called factor set: @ x Q@ — K such thati(a)h(b) = f(a,b)h(ad) fora,b € Q.

Let us first prove the following claim (recall from Sectior22he existence of nor-
mal form mappings for automatic groups):

Claim 1.For a given wordw = aj - - - a,, (a; € I'*t) with NF(w) = by -+ by, (b; €
I'*1) we can compute in polynomial time an SKPw) over the terminal alphabgi®!
such thatA(w)| € O(n?®) and inG we have

h(ar)h(az) - h(a,) = eval(A(w)) h(by) - - - h(by,).

Proof of Claim 1.Let us take aword = a; - - - a,, (a; € I'*1). If n = 0, then we take
for A(w) an SLP generating the empty string. Now assumerthat0 and let
V=41 Gn-1,

NF(v) =¢;--- ¢, and

NF(w) = by -« by
There is a constant (only depending o)) suchthak < «-(n—1) andm < k+a <
- N.

By induction, we can assume that we have already calculat&lLBRA (v) over the
terminal alphabef*! such that
h(ai)h(az2) - h(an—1) = eval(A(v))h(c1) - - h(ck)
in G and|A(v)| < §-(n—1)3, whered is a constant, which can be fixed later. Hence
h(ar)h(az) - h(a,) = eval(A(v))h(cr) - - - h(ck)h(ay)

in G. For the rest of the proof, we have to distinguish the cas€sm andk > m. We
only consider the case < m, the casé& > m can be dealt similarly. So, assume that
k < m. Since the automatic group satisfies the synchronous fellow traveller property,
there exist a constamt € N (depending only o)) and wordsrg, . . ., 7, € (I'T1)<8
such that:
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(1) TO = 51 rm - anv
(2) Ti—lbi = C;Ti, i.e.,Ci = T‘i_lbﬂ“i_l in Q for1 <<k, and
(3) ri_1b; =i, i.e, 1= ’I“i_lbiTi_l in Qfor kE<i<m.

In the groupK the identities in (2) and (3) correspond to identities of fbkkowing
form (when writingh(r;), we identifyr; with the element of) it represents):

(L) hlei) = pih(ri—)h(b)h(r) =t (1 < i < k)
(2’) 1= pzh(n,l)h(bl)h(n)*l (k <1< m)

wherep;,...,p, € (2FH)*. Since in (1') and (2’) there is only a finite number (de-
pending only oY) of different possibilities fob;, c; € I't!, andr; € (I'*1)<f, we
can write down a finite list of all possible candidates for #hards p;. In particular,
there is a constant (depending only o) and K) such thatpy, ..., px € (217,
Sinceh(rg) = h(1) = 1 andh(r,,) = h(a,), we obtain
h(er) -~ hlcr)h(an) = prh(bi)h(r1) ™ p2h(r1)h(b2)h(rs) -

Pmh(rm—1)h(bm h( ) 1h(an)
= prh(b1)h(r1) " p2h(r1)h(b2)h(r2) ™" -+ P h(rim—1) 1 (bm)

in G. We now shift the elements(b;) and h(r;)~* to the right (thereby, thé(r;)
andh(r;)~! cancel out each other) by applying the automorphism& afefined by
conjugation with these elements to thec K. Note that since the length of any word
r; is bounded by the fixed constafit all applied automorphisms are taken from some
fixed finite subset oA ut(K ). By Lemma 2, we can compute an SBRf sizeO(m?) <
O(n?) such that

p1h(b1)h(r1)  poh(r1)h(b2)h(r2) " -+ P h(rp—1)h(bm) =
eval(B)h(b1)h(bs) - - - h(by) in G.

The size bound foB holds, sincep; - - - p,,, has lengthO(m) and to each symbol in
p1 -+ pm We applyO(m) many automorphisms. We obtain

h(ay)---h(a,) = eval(A(v))eval(B)h(by) - - - h(by,) In G.

Hence, we can take fax(w) an SLP which computes the concatenatiosefl (A (v))
andeval(B). It follows that

JA(w)| = [A@)] +B|+1<6-(n—1)% 4+ 0(n?).

By choosing the constarit large enough (depending on the constant hidden in the
O(n?) term), we obtaifA(w)| < & - n®. This completes the proof of Claim 1.

Let us continue the proof of Proposition 4. Assume thas a word over the gener-
ating seto*! U h(I'*!) of G. Let

w = woh(ay)wih(az) - - wp_1h(an)wy,
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Lety; € Aut(K)

with w; € (ZFH)* (0 < i < n)anda; € I'*' (1 < i < n).
= h(a;)kh(a;)~* and let

(1 < i < n) be the automorphism ok defined by, (k)
Xi = 1 -+ -; for 0 < i < m. Thus,xo = idx and we have

w = woh(ar)wih(az) - wp_1h(an)w,
= Xo(wo)x1(w1) -+ - xn(wn)h(a1)h(az) - - - h(an)

in G. In the automatic quotie® we havep(w) = a; - - - a,. Hence, we first calculate
in polynomial time the normal formm = NF(a; ---a,). If v # ¢, then we know that
w # 1in G. Hence assume that= ¢. By Claim 1, we can compute in polynomial time
an SLPA over the terminal alphabef*! such thath(a;)h(as) - - - h(a,) = eval(A)

in G. Hence,w = 1 in G if and only if xo(wo)x1(w1) - - - Xn(wp)eval(A) = 1 in
G, which (by Lemma 2) can be transfered in polynomial time iatoinstance of the
compressed word problem féf. O

4 Upper bounds for compressed word problems

4.1 Finite extensions

Since every finite group is automatic, Proposition 4 appiethe case that the quo-
tient @ is finite. In this situation, we even obtain a polynomial tireeluction from the
compressedvord problem ofG to the compressed word problem &t

Theorem 1. Assume thaf( is a finitely generated subgroup of the groGpsuch that
the indexXG : K] is finite. TherlCWP(G) <! CWP(K).

Proof. Let I" be a finite generating set féf and letX’ be a finite generating set fof.
Leth : (2*1)* — G be the canonical morphism. Léfg, ..., Kg, be a list of the
cosets of(, where w.l.o.gg; = 1. Let A be the coset automaton &f. This is a finite
automaton over the alphab&t! and with state sefKg;, ..., Kg,}. The initial and
final state isk = Kg;, and there is a transitioi'g; % Kg; (a € X*1) if and only
if Kg;a = Kg;. Note that this automaton accepts a wards (X=!)* if and only if
h(w) € K. Since it can be checked in polynomial time whether the wandegated
by a given SLP is accepted by a given finite automaton (heregwega have a fixed
automatonA), we can check in polynomial time whethiefeval(A)) € K for a given
SLPA.

Now let A be an SLP in Chomsky normal form over the alphabét'. We want
to check whetheeval(A) = 1 in G. First, we check in polynomial time, whether
h(eval(A)) € K. If not, we reject immediately. Otherwise, we will constrao SLPB
over the generating sét™! of K, which computes the same group elementafhen
we can apply an algorithm fatWP (K).

Let V' be the set of nonterminals @f and letS be the start nonterminal @f. The
set of nonterminals dB is the set of triples

W ={lgi,A,g; 1| A€ V,1 <i,j <n,gih(eval(A))g; ' € K}.
By the above observation, this set can be computed in poliaidime. Now, let us
introduce the production for the nontermirig, A,gj_l] € W. First, assume that the
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production ford is A — a, wherea € X+, Hence,giagj‘1 € K, and we introduce
the productiorig;, 4, g; '] — w, wherew € (I'*!)* is such thah(w) = g;ag; *. Now
assume that the production fdris of the formA — BC. Assume thay;h(eval(B))
belongs to the coset g;.. Thus,g;h(eval(B))g, ' € K, i.e., (g, B,g;'] € W. We
introduce the production

[gi,A,gj_l] - [gzaBagk_l][gkangj_l]

Note that

gib(eval(A))g; ' = gih(eval(B))g; *grh(eval(C))g; .

Hence, sincgy;h(eval(A))g; ' andgih(eval(B))g; ' both belong to the subgroufs,
we also havey,h(eval(C))g; ! € K, i.e.,[gr,C,g; '] € W.Finally, let[gy, 5, g, '] =
[1,5,1] be the start nonterminal d@. It is easy to prove that for every nonterminal
[9:, A, g; '] € W, evalg([g;, A, g; ']) represents the group elemenk(evaly (A))g; '
Thus,eval(A) = 1in G if and only if eval(B) = 1 in K, which is an instance of
CWP(K). This proves the theorem. O

The reducibility relation<? in Theorem 1 cannot be replaced by the stronger re-
lation <!°% (unless P= L) because there exists a finite groGpwith a P-complete
compressed word problem [3] (také = 1 in Theorem 1).

4.2 Free products
The aim of this section is to prove the following theorem:
Theorem 2. Assume thaty = G *G». ThenCWP(G) <L (CWP(G1), CWP(Gy)).

Proof. For the proof of the theorem, it is useful, to introduce a sdédnd of composi-
tion systems, which we call-level composition system’ 2-level composition system
over the terminal alphabdt is a tupleA = (B, V,, V;), whereB = (V, I, S, P) is a
composition system arid = V,, UV, (V,,NV, = 0) is a partition of the set of nontermi-
nals into the set of upper-level nontermin&lsand the set of lower-level nonterminals
Ve such thatsS € V,, and for every productiofd — w) € P we have either (il € V,
andw € (V, UI')* or (i) A € V,, and w € V* orw = BJi : j] for someB € V,,
andi,j € N). ForA € V we setevaly (A) = evalg(A) andeval(A) = eval(B). De-
fine the composition systeth,, = (V,,,V;, {(A — w) € P | A € V,,},5) and let
ueval(A) = eval(A,) € V. Using Hagenah's result [21], every 2-level composition
system can be transformed in polynomial time into an eqeivebLP.

Let X; be a finite generating set f6¥; (: € {1,2}), whereX; N X, = (. Let A be
an SLP over the terminal alphabBf™! U £5!. Our goal is to construct in polynomial
time a 2-level composition systefd such thatval(A) andeval(A’) represent the same
group element of7; * G5 buteval(A’) is irreducible inG; * G5. Then,eval(A) = 1in
G1 * Gy ifand only ifeval(A’) = e.

The construction ofd’ follows the strategy for free groups from [28]. In a first
step we check for every nontermindl of A whether eitheeval(4) € (2:)* and
eval(A) = 1in Gy oreval(4) € (£51)* andeval(4) = 1 in G, (for this, we have
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to solve instances AEWP(G1) andCWP(G5»)). If this is true, then we eliminate the
nonterminald from A by replacingA in all right-hand sides by. We iterate this process
as long as we can eliminate nonterminals. Let us denote sudtirgg SLP again by.
W.l.0.g. we can assume thatis in Chomsky normal form.

Let V' be the set of nonterminals &. We define a partitiod” = V,, U V, of
V as follows:V; = {A € V | eval(A) € (ZE)* U (5} andV, = V \ V.
This defines a 2-level composition systéfa V,,, V;). In the rest of the proof we will
manipulate this 2-level composition system such that ateti we obtain a 2-level
composition systend\” with the property that (i) it generates the same group elémen
of G; * G5 and (ii) every nonterminal oA’ generates a word which is irreducible in
G1xGs. Inthe following, the notionsval, ueval, V,,, V; will refer to the current 2-level
composition system. Note that initially, faf € V, we haveeval(A) # 1in G, in case
eval(A) € (XF1)* andeval(A) # 1in Gy in caseeval(A) € (X3F1)*. In particular,
eval(A) € (51T U (ZF1) . This property will be preserved during the construction
of A,

Awordu = A;--- A, (A4; € V,for 1 < i < n)is calledirreducible, if for all
1<i<mneval(4;) € (T T o eval(4;11) € (251)T. Since every wordval(A4,)
(I < i < n) neither represents theof G (if eval(A;) € (Elﬂ)ﬂ nor of Gy (if
eval(4;) € (XF1)T), this means thatval(A,) - - - eval(A,,) is irreducible inG; * Gs.

For wordsu, v € V,* we write cancel(u, v) if u = A, --- Ay, v = By --- B, for
somen > 0andA,,...,A,,B,...,B, € V, and for everyl < i < n there is
J € {1,2} such thatval(A4;),eval(B;) € (E;—Ll)+ andeval(A4;)eval(B;) = 1in Gj.

Claim: On a Turing machine with oracle accessdWP(G;) andCWP(G;) we can
check in polynomial time whetheancel(eval(C), eval(ID)) for given composition sys-
temsC andD over the terminal alphabéf,.

Proof of the Claim:By Hagenah'’s result [21] we may assume tGaandDD are SLPs.
FromD we can easily compute an SIIIP such thakeval(D’) is the string that results
from reversingeval(D). Define a mapping; : V» — V; as follows: Fix an order<
onV,. Then, forA € V;, fi(A) is the smallesB € V; such thatval(A) = eval(B)
in eitherG; or G5. Moreover, define a second mappifig: V, — V; as follows: For
A €V, f2(A) is the smallestB € V, such thateval(A) = eval(B)~! in eitherG,
or G,. Note that the mapping$, and f» can be computed in polynomial time on a
Turing machine with oracle access@VP (G;) andCWP(Gs). We extendf; and f
to morphisms ofv;*. Now we can easily compute SLESandD” such thatval(C') =
f1(eval(C)) andeval(D”) = fo(eval(D’)). Then,cancel(eval(C), eval(D)) if and only
if C' andD” generate the same strings over the alphapefhis can be checked in
polynomial time [34].

Let us now construct the 2-level composition syst&min a bottom-up process, simi-
larly to [28], we will process every upper-level nonternlifram V,,. Thereby, we will
enforce that for everyl € V,,, ueval(4) € V;* is irreducible and henceval(A) is
irreducible inG; * Gs. So, assume that — BC' is a production ofA with A € V,

and thatB andC are either froml; or were already processed. There are four possi-
ble cases: ()B,C € V,, (i) B,C € V,, (ii) B € V,,C € V,,and (iv) B € V,

C € V,. In case (i), we must have eitheval(B) € (XF!)T andeval(C) € (X51)*
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oreval(B) € (X5 andeval(C) € (X£1)T, because otherwis¢ would belong to
Ve. Hencepueval(A) = BC'is irreducible and we do not have to modify the production
A — BC for A. From the cases (ii)—(iv) we will only consider case (ii)e thther two
cases are simpler to deal with.

The wordsu = ueval(B) € V;* andv = ueval(C') € V; are already irre-
ducible. We now determine the maximal amount of cancellabetweenu and v,
when interpreting the symbols in these words as elememsfoU G,. Assume that
w=DB,--Byandv = C:---C,, for By,...,B,,C1,...,Cp, € V,. We first deter-
mine in polynomial time the symbolB,, C; € V, . If eithereval(B;) € (Zfﬂ)+ and
eval(Cy) € (XF1)t oreval(By) € (XF') T andeval(C)) € ()T thenueval(A) is
already irreducible and we do not have to modify the producti — BC'. Otherwise,
using binary search over the ran@g, ..., min(n,m)} we find the largest number
such thatancel(B; - - - By, C; - - - C;). Note that we can write down composition sys-
tems of polynomial size generating the wors- - - B; and( - - - C;. Hence, by the
above claim, the numbércan be found in polynomial time on a Turing machine with
oracle access t6WP(G;) andCWP(G5). Next, we have to distinguish the following
cases:

— i =n = m: We replace the productioA — BC by A — ¢.

— i =n < m: We replace the productioA — BC by A — C[i +1 :].

— i =m < n: symmetric to the previous case.

—i < n,i < m:we add a new lower-level nontermina} to V, together with
the productionD — B;;1C;4+1. Note thateval(B;1)eval(C;+1) # 1 (either
in Gy or in G3) because otherwisewould not be the largest number such that
cancel(B; - -- B1,Cy - - - C;). Moreover, the productiodd — BC' is replaced by
A— B:n—i—1]DC[i+2].

This concludes the construction of the 2-level composisigstemA’. ad

Again, the reducibility relatiorcZ. in Theorem 2 cannot be replaced by the stronger
relation<!°¢ (unless P= NC)? because the compressed word problemZerZ is P-
complete [28], whereas the compressed word problerf isreasily seen to be in NC.

4.3 Graph groups and graph products

For this section, we need the material from Section 2.2. Isefixuan independence
alphabet X, I). Define a trace rewriting systemoverM(X*!, ) as follows:

R ={(laa”"]1,[e]1) | a € ZF'}. (1)

One can show thaR is terminating and confluent and that for alle M(X*! I):
u = 1in G(X, 1) if and only if NFg(u) = [¢]r, i.e.,u =g []7 [12]. This leads to a
linear time solution for the word problem 6f( X, ') [12, 42].

Example 3.Let (X, I) be the following independence alphabet:
3 NC denotes Nick’s class — the class of all problems that can be solved walighgmially

many processors in polylogarithmic time.
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b—d—a—c
An example for a derivation using the trace rewriting sysfeiis:
b tadc a " tebd ™t
b tada e tebd ™!
b tada™ bd !
b taa"'dbd!

The fact thafb—'adc'a~'cbd']; = r [¢]; becomes quite obvious, when looking at
the dependence graph of the trake' adc=ta=tcbd1];:

b l—a—>q1—3b
d—= ¢ 1—>cZ> g1

This graph can be reduced to the empty graph by successiaatieting nodes with
inverse labels, which are moreover connected by an edge.

In this section, we will show that the compressed word pnobler G(X, I') can
be solved in polynomial time. We follow our strategy for frg@ups [28]. For a given
SLP A over the terminal alphabef*! we construct an extended composition system
(see Section 2.3p such thatleval(B)]; = NFp([eval(A)];). For this we will accu-
mulate the productions d in the same way as in the free group case. We start with
all productions fromA of the form A — a. Now assume that contains a production
A — BC and thatB already contains enough productions such {hetls(B)]; =
NF r([evaly(B)]r) and[evalg(C)]; = NFg([evalsy(C)]r). We have to add a rule for
the nonterminald such that

[evalB(A)]I = NFR([eval]E(B)evalB(C)]I). (2)

Intuitively, R-reduction steps in the tradevalg(B)evalg(C)]; can only occur at the
border between the prefjgvalg(B)]; and the suffifevalg(C)];, because both these
traces are irreducible w.r.2. In other words, some suffix dévalg(B)]; will cancel
against some prefix dévalg(C)];. We have to determine and cut away on the level of
extended composition systems this suffix and prefix, res@dgtAt this point, the con-
struction becomes more involved than for the free groups.d&s need two lemmas:

Lemma 4. For two given extended composition systekandB it can be checked in
polynomial time whethetval(A) <; eval(B).

Proof. By Lemma 3 we can assume thatandB are SLPs. Le{X;)1<i<,, be a clique
covering for the dependence alphapBt D). We compute in polynomial time SLRs
andB; (1 < i < n) such thatval(A;) = 7z, (eval(A)) andeval(B;) = 7y, (eval(B)).
By Lemma 1 it suffices to check whetherl(A;) is a prefix ofeval(B;) forall 1 < i <
n. But this can be easily reduced to an equivalence check: Gmp= |eval(A;)| and
an SLPC; with eval(C;) = eval(B;)[: n;]. Finally check whethegval(C;) = eval(A;)
foralll <i<mn. O
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Lemma5. Letp, g € M(Z*! ). If p,¢ € IRR(R), then

NFr(pg) = (p~" \ @) " (g \p ")

Proof. Let p, ¢ € IRR(R). By [13, Lemma 13], in the trace monol (X*!, ) there
exist factorizationg = zr andg = r~ 'y such thalNF z(pq) = zy. Moreover,r is the
trace with maximal length such thatandq can be written ap = zr andg = r~ly. It
follows thatr = (p~1Mq)~ Y, o= (p~*\¢) "', andy =q\p~'. O

Example 4.Let (X, I) be the independence alphabet from Example 3. Let

p = [cbded b~ a]; € IRR(R) and
q = [da" baac™*bd " )1 = [da”'be™ d " aab)r € IRR(R).

Hence,
p—l — [a—lbdc—ld—lb—lc—l]l — [da_lbc_ld_lb_lc_l][

and we see that

ping= [dailbcfldfl]l,
p " \g=0p"c", 0"\ ¢ = [cb];, and
q\p ' = [aab);.

Hence NFr(pg) = (p7' \ q) (¢ \ p~') = [cb];[aab]; = [cbaab];. This fact can be
also visualized in the dependence graph of the tpgcavhich looks as follows:

e\ T ng T ipT g g \pT

AT

C—/—»d—»c—»d—l—ibd—bc—l —»d—li

From Lemma 5, it follows that in order to compute a productionthe nonterminal
A such that (2) holds, we basically have to solve the followpngblem: For a given
extended composition systdiwith nonterminalsB andC, construct a production for
a new nonterminal such that

[eval]B(A)]I = [evalB(B)]I \ [evalB(C)h.

Then, productions foflevalg (B)]; ! \ [evalg(C)];)~! and[evalg(C)]r \ [evalg(B)]; !
can be calculated in the same way.

We first need some concepts concerning dependence graptie fallowing, it
is not relevant that the alphabet is of the fofiF!. Hence, let us fix a dependence
alphabet(X, D) for the further consideration. Far € X' let P, be the set all simple
paths in the dependence alphab®t D) (viewed as an undirected graph) that start in
the nodea (a path is simple, if it does not visit a node twice). The pathijch only
consists of the node belongs tdP,. Note thatP, is finite and its size only depends on
the dependence alphakiet, D).
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Take a strings € X* and a set of positiod C {1,...,]|s|} in s. We are looking
for a compact representation of the set of all positiossich that there exists a directed
path in the dependence graph from some positiory € J to positionk. Let us define
the setCP(J) C {1,...,|s|} of critical positionsas follows: Letj € J anda = s[j]
For each path € P,, define the positiomos(j, p) inductively as follows: Ifp = q,
thenpos(j,p) = j. If p = a, q, whereg is a simple path starting in some ndde D(a),
thenpos(j,p) = pos(j’, ¢), wherej’ is the smallest positioff > j such that[;'] = b.

If such aj’ does not exist, thepos(j, p) is undefined. Finally, let us set

CP(J) = {pos(jvp) | .7 € J,p € Ps[j]apos(jap) is defineq
and for everyk € CP(J) set
Ly ={s[l]| £ € CP(J),¢ <k}

The setCP(J) contains positions, which are redundant in order to fulfi#t trucial
Lemma 6 below. We therefore define a reduced set of criticsitipas:

RCP(J) = {k € CP(J) | -3 € CP(J) : £ < k, Ty = T4}

Note thatl;, C I’y forall ¢,k € RCP(J) with £ < k. This implies RCP(J)| < | X].
In caseJ contains only a single positiof, we write CP(j) and I’; , instead of
CP(J) andl; ., respectively.

Lemma6. Lets € X* andJ C {1,...,|s|}. Then for every positiok the following
two properties are equivalent:

(1) There exists a directed path in the dependence gfapfrom some position € J
to positionk.
(2) There existé € RCP(J) such that! < k ands(k] € I'y,.

Proof. First assume that there exigtss RCP(J) such that? < k ands[k] € I'j,.
The latter implies thas[k] = s[¢'] for somel’ € CP(J) with ¢/ < ¢ < k. Since
¢ € CP(J), we have!’ = pos(j,p) for somej € J and some patp in (¥, D). But
this implies that there exists a directed pattinfrom position; to position¢’ in D;.
Finally, sinces[k] = s[¢'] and¢’ < K, eitherk = ¢’ or there exists an edge frothto k
in D,. Thus, there exists a directed path in the dependence draftom j to k.

Now assume that there exists a directed path in the depeadesghD, from some
position;j € J to positionk. If s[j] # s[k], then we can assume that this directed path
corresponds to a simple pathin (X, D). It follows thatk > pos(j,p) ands[k] =
s[pos(4, p)] (if s[j] = s[k], then we choose fas the path, which only consists efj]
Hence, there exis®® € CP(J) such that’ < k ands[k] € 'y, (takel’ = pos(j,p)
But then there existé € RCP(J) such that < ¢/ < k ands[k] € I';,.

O O

Note that condition (2) in Lemma 6 can be replaced by: For max(RCP(J)
{1,...k})itholdss[k] € I'y,. Thisis true, becausg;, C I'; forall ¢,k € RCP(J
with ¢ < k.

Let us now come back to the problem of constructing an exetrdenposition
system forfevalg (B)]; \ [evalg(C)];. Let us first solve this problem for uncompressed

~—
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i:=1; (stores a position fron1, ..., |s|})

u:=¢; (stores a string)
v =g, (stores a string)
RCP := {|s| + 1}; (stores a subset @fl, . .., |s|})
=0 (stores a subset df)
while i < |s| do
j = max{j < min(RCP) — 1 | uns\pr (s[4, j]) 21 t}; *
u = ums\ r(sfi, 5]);
vi=wvwp(sfi:j]) sl + 1]; (let us set herg||s| + 1] =€)
if j < min(RCP) — 1 then (we obtain new critical points)

forall k € CP(j + 1) do I'(k) := I' U I'j41,, endfor
RCP := RCPUCP(j + 1);
forall k € RCP do I'(k) := J{I'(¢) | £ € RCP, ¢ < k} endfor
RCP:={keRCP|-H € RCP: L <k, T'({) =T'(k)};
endif
I'=r(+1), (**)
=742
RCP:=RCP\ {j +1};
endwhile

Fig. 1. An algorithm for computings]; M [¢]r and[s]7 \ [¢]r

strings. Then we will argue that our algorithm leads to a poiwial time algorithm for
compressed input strings.
How can we compute for two given wordst € X* wordsu, v € X* such that

[ulr = [s]: T [t]r and[v]r = [s]r \ [¢]:?

In the algorithm in Figure 1 we accumulate the stringadv by determining for every
position from{1, ..., |s|} (viewed as a node of the dependence graphwhether it
belongs tqu|; or [v];. For this, we will store a current positiarn the strings, which
will increase during the computation. Initially, we get= 1 andu := ¢, v := €.

For a set of position& C {1,...,]s|} let us define the stringl K’ = s[i1] - - - s[ix],
whereiy; < ip < -+ < iy and K = {iy,...,4,}. Consider a specific iteration of
the while-loop in Figure 1 and let denote the value of the corresponding program
variable at the beginning of the iteration. Assume that {1,...,i — 1} is the set all
positions from{1,...,7 — 1}, which belong to the differencg]; \ [t];, i.e., they do
not belong to the common prefjx]; M [t];. Thus,[s[({1,...,7 — 1} \ J)]; is a trace
prefix of [s]; M [t];. If 4, u, v, RCP, I', andI'(k) denote the values of the corresponding
program variables at the beginning of the iteration, theretigorithm will maintain the
following relationships as invariants (the skis defined as above, it is not stored by
the algorithm):

—u=s[({1,...,i =1} \ J), v = s|J,

— RCP = ({i,...,[s|} NRCP(J)) U{|s| + 1}

- I =0if {0,...,i — 1} N RCP(J) = 0, otherwisel" = I';,, where/ is the
maximum of{0,...,i — 1} NRCP(J),

— foreveryk € {i,...,|s|} NRCP(J), I'(k) = L.
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We put the imaginary positios|+1 in the seRCP In order to save some if-branchings
in the algorithm.

In each iteration of the while-loop, we investigate the sakovof s from position
i to the next critical position from the s&CP, and we determine for each position
from some initial segment of this interval, whether it bejerto [s]; M [¢]; or [s]r \
[t];. More precisely, we search for the largest positjod min(RCP) — 1 such that
ursn r(sli, j]) =r t. Recall thatu = s[({1,...,i — 1} \ J) is the already collected
part of the common trace prefix. We updatandv by u := ums p(si, j]) andv :=
vrp(sfi : j])s[j + 1]. The correctness of this step is expressed in the follovenga:

Lemma 7. Assume that the following is given:

—ie{l,...,]s|}

- J C{1,...,i— 1} is the set of all positions frorfil, . .., ¢ — 1}, which belong to
the trace differencés]; \ [t]; (thus,{1,...,i — 1} \ J is downward-closed itD,
and[s[({1,...,4— 1} \ J)]; is atrace prefix ofs]; M [¢]1).

- I'=0if{0,...,i— 1} N RCP(J) = 0 (this is equivalent to/ = (), otherwise
I' = I'y 4, wherel = max({0,...,i — 1} NRCP(J)).

— jisthe maximal position such that< min(({s, .. ., |s|JNRCP(J))U{|s|+1})—1
ands[({1,...,i =1} \ J) 7wy p(s[i, j]) =1 t.

Then a position € {i,...,j} belongs to the common trace preffék; M [¢]; if and only

if slp] & I".

Proof. If s[p] € I', then by Lemma 6 there exists a pathIiy from some position in
J to positionp. Since positions i/ do not belong tds]; M [t];, p cannot belong to
[s]r M [t]; as well. Now consider the set of positiods= {p € {3,...,j} | s[p] € I'}.
We claim that({1,...,7 — 1} \ J) U A is a downward-closed subset &f,. Since
sI(({1,...,i =1} \J)UA) =s[({1,...,i =1} \ J) ms\p(s[i, j]) =1 t, this implies
that all positions fromd indeed belong tds|; M [¢];. First, recall thaf1,...,i—1}\ J
is downward-closed. Moreover, by Lemma 6 there does not exmth from a node
in J to a node fromA. But also a path from a node ify,...,j} \ A to node ofA
cannot exist, because by Lemma 6 every node ffom. ., j} \ A can be reached via
a path starting in a node fromh. This shows that{1,...,7 — 1} \ J) U A is indeed
downward-closed iD;. |

The remaining assignments in Figure 1 update the varid8s, I, andI"(k) (for
k € RCP) in the correct way.

Lemma 8. The number of iterations of the while-loop in Figure 1 is bded by| X|.

Proof. We claim that in each iteration of the while-loop, the setialsle I" strictly
grows, which proves the lemma. Let us consider an iteratidhewhile-loop. Since
I'(j + 1) will be the next value fod” (see line (**)), we have to show C I'(j + 1).
There are two cases to distinguishj Ik min(RCP) — 1, then the symbad[j + 1] €
I'j+1,j+1 will belong the set’(j + 1). But s[j + 1] cannot belong td", because this
contradicts the choice gfin line (*) . If j = min(RCP) — 1, thenj + 1 is the smallest
critical position from the seRCP, hence for the curreff onehad” C I'(j + 1). O
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1 :=1;
o= g,
B :=¢;
RCP :={|s| + 1};

while i < |eval(B)| do

j = max{j < min(RCP) — 1 | eval(a o mx\r(B[i, j])) =1 eval(C)}; *

a = aoms\r(B[i, ]);

B:=pfomnr(Bli:j])oBlj+1] (let us set her@[|eval(B)| + 1] = ¢)

if 7 < min(RCP) — 1 then (we obtain new critical points)
forall k € CP(j + 1) do I'(k) := " U I'j11, endfor (**)

RCP := RCP U CP(j + 1);
forall k € RCP do I'(k) := U{I'(¢) | £ € RCP, ¢ < k} endfor
RCP := {k € RCP | -3 € RCP: £ < k, ['(¢) = ['(k)};

endif

I:=T@G+1);

1:=j+2

RCP :=RCP\ {j +1};

endwhile

Fig. 2. An algorithm for computindeval(B)]; M [eval(C)]; and[eval(B)]; \ [eval(C)]:

The above algorithm for computirig]; \ [¢]; leads to a polynomial time algorithm,
which adds to a given extended composition sysiemith nonterminalsB andC a
new productiord — « such thafevalg(A)]; = [evalg(B)]s \ [evalg(C)];, see Figure
2.4 The idea is to consider the statements for updatiagdv in Figure 1 as statements
for computing right-hand sides andg of an extended composition system.

It remains to argue that the algorithm in Figure 2 is indeealgrpmial time al-
gorithm. By Lemma 8, the number of iterations of the whilegds bounded byX’|.
Hence, it suffices to show that a single iteration only needgnomial time. The con-
dition eval(a o wx\ p(B[i : j])) =1 eval(C) in line (*) can be checked in polyno-
mial time by Lemma 4. Hence, the numhgin line (*) can be computed in poly-
nomial time via binary search. In line (**) we have to comptite set of positions
CP(j+1) C{1,...,eval(B)}. Recall that this set contains for every simple path
the dependence graglt, D) that starts ireval(B)[j + 1] the positionpos(j + 1,p).
The number of such paths only dependg&h D) and is therefore bounded by a fixed
constant. Finally, for a certain pathwe can compute the positigrs(j + 1, p) easily
in polynomial time. We obtain the main result of this section

Theorem 3. If G is a graph group, then the compressed word problent¥dyelongs
to the classP.

Let us end this section with a generalization of both TheoZeand 3. Agraph
productis given by a triple X, I, (G, )ve5), where(X, I) is an independence alphabet

* In the algorithm we use the notatiemal () andeval(3) wherea andg are right-hand sides
of an extended composition system; the meaning is the obvious one. Woreoncatenation
of strings is denoted by for better readability.
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and G, is a group, which is associated with the nade= X'. W.l.0.g. assume that
Y ={1,...,n}. The grougG(X, I, (G,)vcx) defined by this triple is the quotient

G(Eafa(Gv)UEE) = (Gl*GQ*"'*Gn)/{xy:yx|x€Gwy€va(uav) GI}a

i.e., we take the free produ@t; «Go x- - - xG,,), but let elements from adjacent groups
commute. Note tha& (X, I, (G,),ex) is the graph groufz(X, I) in case everys, is
isomorphic toZ. Moreover, free products and direct products appear asadpses
of the graph product construction. Graph products wereditstied by Green [20]. By
combining the ideas from Section 4.2 with our algorithm foagh groups, one can
prove:

Theorem 4. Assume that is a graph product of finitely generated grou@s, . . ., G.,.
ThenCWP(G) <% (CWP(G,),...,CWP(G,)).

4.4 Linear groups

Recall that a languagg belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algarith4 such that:

— if © ¢ L then ProhA acceptst] = 0
— if z € L then ProlpA acceptse] > 1/2

The choice of the failure probability/2 in casex € L is arbitrary: By repeating the
algorithmc times (wherez is some constant), we can reduce the failure probability to
(1/2)¢ and still have a randomized polynomial time algorithm. AdaageL belongs

to the class coRP, if the complementlobelongs to RP. This means that there exists a
randomized polynomial time algoriths such that:

— if x ¢ L then ProlA acceptse] < 1/2
— if z € L then ProfA acceptse] = 1

Theorem 5. If G is a finitely generated linear group, then the compressediypoob-
lem for G belongs to coRP.

Proof. Let G be linear over the field(. For the case thak” has characteristig, it is
shown in [27] thatG is isomorphic to a group of matrices over the ridg, . . ., z,)
(for somen). If K has prime characteristie > 0, thenG is isomorphic to a group
of matrices ovetf,[z1,...,x,] [40] (hereF, ~ Z/pZ is the field of cardinalityp).
Hence, we can reduce the compressed word probleid torthe following problem:

INPUT: A circuit C over the polynomial rindZ[z1, . .., z,] (in caseK has character-
istic 0) or F,,[z1, . .., z,] (in caseK has characteristig > 0).
QUESTION: Is the polynomial, to which the circuit evaluates, the zero-polynomial?

This problem belongs to coRP by [23]. ad
Let us mention that graph groups are finitely generatedifg2].

5 A randomized algorithmd may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomialn) such that for every input of length and every
possible outcome of the coin flipg} runs in time at mosp(n), then A is a randomized
polynomial time algorithm.

22



5 Applications

In this section, we present some immediate corollariesd@abults from Section 3 and
4. We concentrate on automorphism groups.

It was shown in [25] (based on previous work from [39]) tha¢ #utomorphism
group of a graph group is finitely generated. Proposition@Emeorem 4 imply:

Corollary 1. For a graph groupG, the word problem forAut(G) can be solved in
polynomial time.

Crisp and Wiest [9] have shown that the fundamental groumgfaientable sur-
face and of every non-orientable surfaces of genus at le@ssed[41] for definitions)
can be embedded in a graph group. Hence, by Proposition 1 lzewdm 4, the com-
pressed word problems for these fundamental groups car\malso polynomial time.
The fundamental group of the non-orientable surface of gdnfthe projective plane)
is Z/27, hence its compressed word problem can be also solved imqmolial time.
Finally, the fundamental group of the non-orientable stefaf genus 2 (the Klein bot-
tle) has the presentatiofx,y | 22 = y?), i.e., it is an amalgamated free product of
two copies ofZ, amalgamatin@Z. Using techniques similar to those from Section 4.2
for free groups, one can show that for this group the compress®rd problem can be
solved in polynomial time as well. Hence, with Propositiowe obtain:

Corollary 2. Let G be either the fundamental group of an orientable surfaceher t
fundamental group of a non-orientable surface with gendifeint from3. Then the
word problem forAut(G) can be solved in polynomial time.

The case of the non-orientable surface of gehiwusmains open. Its fundamental
group has the presentatién, y, z | z%y? = 22). Automorphism groups of fundamental
groups of surfaces play an important role in algebraic togyl they are closely related
to mapping class groups.

Another class of fundamental groups, which embed into ggaplps are funda-
mental groups of finite state complexes [19]. Hence, by tlwalarguments, also the
automorphism groups of these fundamental groups can bedslhpolynomial time.

6 Open problems

Many open problems remain concerning compressed word grablLet us mention
some of them.

1. Is the compressed word problem for a hyperbolic groupaddévin polynomial
time? For torsion-free hyperbolic groups one might try taek this question using
the canonical representatives of Rips and Sela [36].

2. What about the compressed word problem for automatic gfoigit possible to
proof a non-trivial lower bound (e.g. NP-hardness or coldR#hess) for the com-
pressed word problem of some specific automatic group?
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3.

Is the uniform compressed word problem for graph groupsbte in polynomial
time? In this problem, the independence alphglietl), which defines the un-
derlying graph group, is also part of the input. This questiepends on whether
Lemma 3 also holds for a variable terminal alphabet

. Can Theorem 2 be generalized from free products to (dyitabtricted) amalga-

mated free products and HNN-extensions?

. Is it possible to relax the restriction to an automatictam group( in Proposi-

tion 4?

. Thecompressed generalized word problém a finitely generated grou@' (with

finite generating sel’) asks, whether for given SLRS, B, ..., B, (over X+1),

the wordeval(A) represents a group element from the subgrou@ génerated by
eval(By),...,eval(B,). Is the compressed generalized word problem for a finitely
generated free group decidable in polynomial time? We alseaware of an expo-
nential time algorithm for this problem.
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