
Efficient computation in groups via compression

Markus Lohrey1 and Saul Schleimer2

1 Universiẗat Stuttgart, FMI, Germany
2 School of Mathematics and Statistics, Rutgers University, Mathematics Department, New

Brunswick, New Jersey, USA
lohrey@informatik.uni-stuttgart.de, saulsch@math.rutgers.edu

Abstract. A compressed variant of the word problem for finitely generated groups,
where the input word is given by a context-free grammar that generates exactly
one string (also called a straight-line program), is studied. It is shown thatfinite
extensions and free products preserve the complexity of the compressed word
problem and that the compressed word problem for a graph group canbe solved
in polynomial time. Using these results together with connections between the
compressed word problem and the (classical) word problem allows to obtain new
upper complexity bounds for certain automorphism groups and group extensions.

1 Introduction

Theword problem for finitely generated groupsis a fundamental computational prob-
lem linking group theory, topology, mathematical logic, and computer science. For a
groupG, finitely generated byΣ, it is asked whether a word overΣ and the inverses
of Σ represents the1 of G. The word problem was introduced in the pioneering work
of Dehn from 1910 [10] in relation with topological questions. It took about 45 years
until Novikov [32] and later independently Boone [5] provedthe existence of a finitely
presented group with an undecidable word problem. Despite this negative result, many
natural classes of groups with decidable word problems werefound. Prominent exam-
ples are for instance finitely generated linear groups, automatic groups [17], and one-
relator groups. With the advent of computational complexity theory, also the complexity
of word problems became an active research area. For instance, it was shown that for
a finitely generated linear group the word problem can be solved in logarithmic space
[27, 40], that automatic groups have polynomial time solvable (in fact quadratic) word
problems [17], and that the word problem for a one-relator group is primitive recursive
[7].

Group theoretic operations, which preserve (or moderatelyincrease) the complexity
of the word problem, are useful in order to get a building set for constructing groups
with efficiently solvable word problems. An example of such aconstruction is the free
product: it is not hard to see that the word problem for a free productG ∗ H can be
reduced in polynomial time to the word problem forG andH. In this paper, we will
increase the building set of such group operations by introducing a new technique for
obtaining upper complexity bounds for word problems. This technique is based on data
compression. More precisely, we use a compressed representation of strings — so called

straight-line programs, briefly SLPs — which is able to achieve exponential compres-
sion rates for strings with repeated subpatterns. Formally, an SLPG is a context-free
grammar, which generates exactly one stringeval(G). Recently, SLPs turned out to be
a very flexible compressed representation of strings, whichis well-suited for studying
algorithms on compressed data. For instance, several polynomial time algorithms for
the pattern matching problem on SLP-compressed input strings were developed [18,
26, 31, 37]. In [28], the first author started to investigate the compressed word prob-
lem for a finitely generated groupG with finite generating setΣ. For a given SLPG
that generates a string overΣ and the inverses ofΣ it is asked whethereval(G) repre-
sents the1 of G (actually, in [28] the compressed word problem for finitely generated
monoids was studied). This problem is equivalent to the well-known circuit evaluation
problem, where we ask whether a circuit over a finitely generated groupG (i.e., an
acyclic directed graph with leafs labeled by generators ofG and internal nodes labeled
by the group multiplication) evaluates to the1 of G. In [3], this problem was investi-
gated for finite groups, and it was shown that there exist finite groups, for which the
circuit evaluation problem is complete for P (deterministic polynomial time).

In [3, 28], the main motivation for studying the compressed word problem came
from computational complexity theory. Since the input in the compressed word problem
is given in a more compact form than in the ordinary word problem, it can be expected
that in general the compressed word problem for a groupG is more difficult than the
ordinary word problem. For instance, whereas the word problem for a finitely generated
free group belongs to the class L (deterministic logspace) [27], the compressed word
problem for a finitely generated free group of rank at least two is P-complete [28].1

In [38], the second author used the polynomial time algorithm for the compressed
word problem for a free group in order to present a polynomialtime algorithm for the
ordinary word problem for the automorphism group of a free group, which answered
a question from [24]. Hence, the compressed word problem is used in order to obtain
better algorithms for the ordinary word problem. In this paper, we will continue this
idea and thereby obtain efficient algorithms for a variety ofword problems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we show connections between the compressed word
problem for a groupG and the word problem for some group derived fromG. We
prove three results of this kind:

– If H is a finitely generated subgroup of the automorphism group ofa groupG, then
the word problem forH is logspace reducible to the compressed word problem for
G (Proposition 2). This result is a straight-forward extension of Theorem 5.2 from
[38].

– The word problem for the semidirect productK ⋊ϕ Q of two finitely generated
groupsK andQ is logspace reducible to (i) the word problem forQ and (ii) the
compressed word problem forK (Proposition 3).

– If K is a finitely generated normal subgroup ofG such that the quotientG/K is an
automatic group, then the word problem forG is polynomial time reducible to the
compressed word problem forK (Proposition 4).

1 It is believed, although not proven, that L is a proper subclass of P.

2

In the second step (Section 4) we concentrate on the compressed word problem. We
prove the following results:

– If K is a finitely generated subgroup ofG such that the index[G : K] is finite, then
the compressed word problem forG is polynomial time reducible to the compressed
word problem forK (Theorem 1).

– The compressed word problem for a free productG1 ∗ G2 is polynomial time re-
ducible (under Turing reductions) to the compressed word problem forG1 andG2

(Theorem 2). This result even holds for the more general graph product construc-
tion [20] (Theorem 4).

– The compressed word problem for a graph group [15] can be solved in polynomial
time (Theorem 3). In a graph group, every defining relation isof the formab = ba
for generatorsa andb.

– The compressed word problem for a finitely generated linear group belongs to the
complexity class coRP (Theorem 5), which is the complementary class of random-
ized polynomial time, see Section 4.4 for the definition.

We end this paper with a few direct applications of the above results. Let us mention
one of them concerning topology, see [41] for definitions: Crisp and Wiest [9] have
shown shown that the fundamental group of any orientable surface (and of most non-
orientable surfaces) embeds in a graph group. It follows that for most fundamental
groups of surfaces, the word problem for the corresponding automorphism group can
be solved in polynomial time. These automorphism groups play a very important role
in algebraic topology.

2 Preliminaries

LetΣ be a finite alphabet. WithΣ+ = Σ∗ \ {ε} we denote the set of non-empty words
overΣ. We useΣ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy ofΣ. LetΣ±1 =
Σ ∪ Σ−1. Define(a−1)−1 = a; this defines an involution−1 : Σ±1 → Σ±1, which
can be extended to an involution on(Σ±1)∗ by setting(a1 · · · an)−1 = a−1

n · · · a−1
1 .

ForΓ ⊆ Σ, we denote byπΓ (w) the projection of the wordw to the alphabetΓ , i.e.,
we erase inw all symbols fromΣ \ Γ .

For a words = a1 · · · am (ai ∈ Σ) let

– |s| = m, alph(s) = {a1, . . . , am},
– s[i] = ai for 1 ≤ i ≤ m
– s[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ m ands[i : j] = ε for i > j,
– s[: i] = s[1 : i] = a1 · · · ai for 0 ≤ i ≤ m, and
– s[i :] = s[i : m] = ai · · · am for 1 ≤ i ≤ m+ 1.

For c ∈ N letΣ≤c = {w ∈ Σ∗ | |w| ≤ c} denote the set of all words of length at most
c.

For background in complexity theory see [33]. For languagesK,L we writeK ≤P
m

L (resp.K ≤log
m L) if there exists a polynomial time (resp. logspace) many-one reduc-

tion fromK toL. We writeK ≤P
T L if there exists a polynomial time Turing reduction

from K to L, which means thatK can be solved in deterministic polynomial time on

3

a Turing machine with oracle access to the languageL. Let � ∈ {≤P
m,≤

log
m ,≤P

T }. In
caseK � L1 × · · ·×Ln we writeK � (L1, . . . , Ln). Clearly, ifL1, . . . , Ln belong to
the class P (deterministic polynomial time) andK ≤P

T (L1, . . . , Ln), thenK belongs
to P as well.

2.1 Groups

For background in combinatorial group theory see [30]. LetG be afinitely generated
groupand letΣ be a finitegroup generating setfor G. Hence,Σ±1 is a finitemonoid
generating setforG and there exists a canonical monoid homomorphismh : (Σ±1)∗ →
G, which maps a wordw ∈ (Σ±1)∗ to the group element represented byw. Foru, v ∈
(Σ±1)∗ we will also say thatu = v in G in caseh(u) = h(v).

Theword problemfor G with respect toΣ is the following decision problem:

INPUT: A wordw ∈ (Σ±1)∗.
QUESTION:w = 1 in G, i.e.,h(w) = 1?

It is well known and easy to see that ifΓ is another finite generating set forG, then
the word problem forG with respect toΣ is logspace many-one reducible to the word
problem forG with respect toΓ . This justifies to speak just of the word problem for
the groupG. The word problem forG is also denoted byWP(G). Theautomorphism
groupof a groupG is denoted byAut(G).

Thefree groupF (Σ) generated byΣ can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.

As usual, thefree productof two groupsG1 andG2 is denoted byG1 ∗ G2. Assume
thatΣi is a finite generating set forGi (i ∈ {1, 2}), whereΣ1 ∩ Σ2 = ∅. Then, every
element of the free productG1 ∗G2 can be represented by a wordu ∈ (Σ±1

1 ∪Σ±2
2)∗,

where

– u = u1 · · ·un for somen ≥ 0 andu1, . . . , un ∈ (Σ±1
1)+ ∪ (Σ±1

2)+,
– for all 1 ≤ i < n: ui ∈ (Σ±1

1)+ ⇔ ui+1 ∈ (Σ±1
2)+, and

– for all 1 ≤ i ≤ n: ui 6= 1 in G1 if ui ∈ (Σ±1
1)+ andui 6= 1 in G2 if ui ∈ (Σ±1

2)+.

We call such a wordirreducible inG1∗G2. If v = v1 · · · vm is another word, irreducible
inG1∗G2 (with v1, . . . , vm ∈ (Σ±1

1)+∪(Σ±1
2)+ andvi ∈ (Σ±1

1)+ ⇔ vi+1 ∈ (Σ±1
2)+

for all 1 ≤ i < m), thenu andv represent the same group element ofG1 ∗ G2 if and
only if n = m and for all1 ≤ i ≤ n, ui andvi represent the same group element ofG1

(if ui, vi ∈ (Σ±1
1)+) or ofG2 (if ui, vi ∈ (Σ±1

2)+).
For the standard definition ofautomatic groups, see [17]. Every automatic groupG

is finitely presented and its word problem can be solved in timeO(n2). We will need
the following important properties of automatic groups, see [17]. LetG be automatic
and letΣ be a finite generating set forG. Then there exists a normal form mapping
NF : (Σ±1)∗ → (Σ±1)∗ and constantsα, β ∈ N with the following properties, where
u, v ∈ (Σ±1)∗, anda ∈ Σ ∪Σ−1:

– NF(u) = NF(v) if and only if u = v in G, NF(u) = u in G, andNF(ε) = ε

4

– The set of normal formsNF((Σ±1)∗) is regular.
– The normal formNF(u) can be computed in timeO(|u|2) (hence the word problem

of G can be solved in quadratic time).
– ||NF(u)| − |NF(ua)|| ≤ α, i.e., the length of the normal form only changes by a

constant amount when appending a generator to a word.
– If NF(u) = a1 · · · am andNF(ua) = b1 · · · bn (with a1, . . . , am, b1, . . . bn ∈ Σ ∪
Σ−1), then there exists wordsr0, r1, . . . , rmax(m,n) ∈ (Σ∪Σ−1)≤β such thatr0 =
ε, rmax(m,n) = a, and(a1 · · · ai)ri = (b1 · · · bi) in G for all 1 ≤ i ≤ max(m,n)
(here we setai = ε for m < i ≤ max(m,n) andbi = ε for n < i ≤ max(m,n)).

The last property is also called thesynchronous fellow traveller property.

2.2 Trace monoids and graph groups

In the following we introduce some notions from trace theory, see [11, 14] for more
details. This material will be only needed in Section 4.3. Anindependence alphabetis
just a finite undirected graph(Σ, I) without loops. Hence,I ⊆ Σ ×Σ is an irreflexive
and symmetric relation. The complementary graph(Σ,D) with D = (Σ × Σ) \ I is
called adependence alphabet. Thetrace monoidM(Σ, I) is defined as the quotient

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

It is a cancellative monoid. Elements ofM(Σ, I) are calledtraces. The trace represented
by the words ∈ Σ∗ is also denoted by[s]I . Fora ∈ Σ let I(a) = {b ∈ Σ | (a, b) ∈ I}
andD(a) = {b ∈ Σ | (a, b) ∈ D}.

Traces can be represented conveniently bydependence graphs, which are node-
labelled directed acyclic graphs. Lets = a1 · · · an be a word, whereai ∈ Σ. The
vertex set of the dependence graphDs of s is {1, . . . , n} and vertexi is labeled with
ai ∈ Σ. There is an edge from vertexi to j in Ds if and only if i < j and(ai, aj) 6∈ I.
Then, for two wordss, t ∈ Σ∗ we have[s]I = [t]I if and only if Ds andDt are
isomorphic. In particular, we can speak of the dependence graph of a traceu. Clearly,
by taking the transitive and reflexive closure of the edge relation of a dependence graph
Ds, one obtains a partial order.

A traceu is a prefix of a tracev if there exists a tracew such thatv = uw in
M(Σ, I). The prefixes of a tracev correspond to the downward-closed node sets of the
dependence graph ofu. For two tracesu, v ∈ M(Σ, I), the infimum with respect to the
prefix order is denoted byu ⊓ v. That is,u ⊓ v is a prefix ofu andv and every other
common prefix ofu andv is a prefix ofu ⊓ v. With u \ v we denote the unique tracet
such thatu = (u ⊓ v)t; uniqueness follows from the fact thatM(Σ, I) is cancellative.
Note thatu \ v = u \ (u ⊓ v). For wordss, t ∈ Σ∗ we writes �I t if the trace[s]I is a
prefix of the trace[t]I .

Example 1.Let (Σ, I) be the following independence alphabet:

b d a c

The corresponding dependence alphabet looks as follows, where the self loop at every
node is omitted:

5

a b c d

Let s = dabcd andt = abaadcdb. The (Hasse diagram of the reflexive and transitive
closure of the) dependence graph ofs andt, respectively, looks as follows. For a node
i ∈ {1, . . . , 8} we only show its label from{a, b, c, d}.

a b

d c d

a b a a b

d c d
Ds Dt

Since we only show Hasse diagrams, we omit for instance the edge from the firstd to
the secondd in Ds.

We haves �I t. Foru = dabcbdc the dependence graph is

a b b

d c d c
Du

We see that[t]I ⊓ [u]I = [s]I , [t]I \ [s]I = [t]I \ [u]I = [aab]I , and [u]I \ [s]I =
[u]I \ [t]I = [bc]I .

A clique covering of the dependence alphabet(Σ,D) is a tuple of subsets(Σi)1≤i≤n

such thatΣ =
⋃

1≤i≤nΣi andD =
⋃

1≤i≤n(Σi × Σi). It is well-known that for a
clique covering(Σi)1≤i≤n and two wordss, t ∈ Σ∗ on has[s]I = [t]I if and only if
πΣi

(s) = πΣi
(t) for all 1 ≤ i ≤ n. This fact is also known as the projection lemma

[14]. We also need the following simple fact:

Lemma 1. Let(Σi)1≤i≤n be a clique covering of the dependence alphabet(Σ,D) and
let s, t ∈ Σ∗. Thens �I t if and only ifπΣi

(s) is a prefix ofπΣi
(t) for all 1 ≤ i ≤ n.

Proof. The “only if”-direction is trivial. For the “if”-directionassume that there exist
wordsui ∈ Σ∗

i (1 ≤ i ≤ n) such thatπΣi
(t) = πΣi

(s)ui. From [16, Prop. 1.6] it
follows that there exists a wordu ∈ Σ∗ such thatπΣi

(u) = ui for all 1 ≤ i ≤ n. Hence
πΣi

(t) = πΣi
(s)πΣi

(u) = πΣi
(su). By the projection lemma we have[t]I = [su]I ,

i.e.,s �I t. ⊓⊔

Example 2.A clique covering of the dependence alphabet from Example 1 is

({a, b}, {b, c}, {c, d}).

The tuple of projections for the words (resp.t) from Example 1 is(ab, bc, dcd) (resp.
(abaab, bcb, dcd)). Every component of the tuple(ab, bc, dcd) is a prefix of the corre-
sponding component of the tuple(abaab, bcb, dcd). Hence, we have indeeds �I t.

A trace rewriting systemR over M(Σ, I) is just a finite subset ofM(Σ, I) ×
M(Σ, I) [11]. We can define theone-step rewrite relation→R ⊆ M(Σ, I) × M(Σ, I)
by: x →R y if and only if there areu, v ∈ M(Σ, I) and(ℓ, r) ∈ R such thatx = uℓv
andy = urv. The notion of aconfluentandterminatingtrace rewriting system is de-
fined as for other types of rewriting systems [4]. A tracet is irreducible with respect
to R if there does not exist a traceu with t →R u. The set of all traces that are irre-
ducible with respect toR is denoted withIRR(R). If R is terminating and confluent,

6

then for every traceu, there exists a uniquenormal formNFR(u) ∈ IRR(R) such that
u

∗
→R NFR(u).

The graph groupG(Σ, I) is defined as the quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

Note that(a, b) ∈ I impliesa−1b = ba−1 in G(Σ, I). Thus, the graph groupG(Σ, I)
can be also defined as the quotient

G(Σ, I) = M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}.

Here, we implicitly extendI ⊆ Σ × Σ to I ⊆ Σ±1 × Σ±1 by setting(aα, bβ) ∈ I if
and only if(a, b) ∈ I for a, b ∈ Σ andα, β ∈ {1,−1}. We can also lift the involution
−1 : (Σ±1)∗ → (Σ±1)∗ to an involution−1 : M(Σ±1, I) → M(Σ±1, I) by setting
[s]−1

I = [s−1]I (well-definedness is easily seen).
Free groups and free abelian groups arise as special cases ofgraph groups; note that

G(Σ, ∅) = F (Σ) andG(Σ, (Σ × Σ) \ idΣ) = Z|Σ|. Graph groups were studied e.g.
in [15]; they are also known asfree partially commutative groups[12, 42],right-angled
Artin groups[6, 9], andsemifree groups[1].

2.3 Grammar based compression

In this section we introduce straight-line programs, whichare used as a compressed
representation of strings with reoccuring subpatterns. Following [35], a straight-line
program (SLP) over the alphabetΓ is a context-free grammarA = (V, Γ, S, P), where
V is the set ofnonterminals, Γ is the set ofterminals, S ∈ V is theinitial nonterminal,
andP ⊆ V × (V ∪ Γ)∗ is the set ofproductions, such that (i) for everyX ∈ V
there is exactly oneα ∈ (V ∪ Γ)∗ with (X,α) ∈ P and (ii) there is no cycle in the
relation{(X,Y) ∈ V × V | ∃α : (X,α) ∈ P, Y ∈ alph(α)}. A production(X,α)
is also written asX → α. The language generated by the SLPA contains exactly one
word that is denoted byeval(A). More generally, every nonterminalX ∈ V produces
exactly one word that is denoted byevalA(X). We omit the indexA if the underlying
SLP is clear from the context. The size ofA is |A| =

∑
(X,α)∈P |α|. Every SLP can be

transformed in polynomial time into an equivalent SLP that is inChomsky normal form
(as a context-free grammar). This means that all productions have the formA → BC
or A → a for nonterminalsA,B, andC and a terminala. The following tasks can be
solved in polynomial time (the first two problems can be reduced to simple arithmetic,
whereas the third problem requires more subtle techniques):

– Given an SLPA, calculate|eval(A)|.
– Given an SLPA and a numberi ∈ {0, . . . , |eval(A)| − 1}, calculateeval(G)[i].
– Given SLPsA andB decide whethereval(A) = eval(B) [34].

Let G be a finitely generated group and letΣ be a finite generating set forG. The
compressed word problemfor G with respect toΣ is the following decision problem:

INPUT: An SLPA over the terminal alphabetΣ±1.
QUESTION: Doeseval(A) = 1 hold inG?

7

Here, the input size is|A|. It is easy to see that also for the compressed word problem
the complexity does not depend on the chosen generating set,which allows to speak of
the compressed word problem for the groupG. The compressed word problem forG is
also denoted byCWP(G). The following fact is trivial:

Proposition 1. Assume thatH is a finitely generated subgroup of the finitely generated
groupG. ThenCWP(H) ≤log

m CWP(G).

The next lemma is crucial for our applications of compressedword problems.

Lemma 2. For a given sequenceϕ1, . . . , ϕn of homomorphismsϕi : Γ ∗ → Γ ∗ (1 ≤
i ≤ n) and a symbola ∈ Γ we can compute in logarithmic space an SLPA such
that eval(A) = ϕ1 · · ·ϕn(a). Moreover,|A| = O(

∑
a∈Γ

∑n
i=1 |ϕi(a)|). In particular,

if Γ is fixed and everyϕi is taken from some fixed finite set of homomorphisms, then
|A| = O(n).

Proof. Let us take nonterminalsAi,b, where0 ≤ i ≤ n andb ∈ Γ , and define the
productions as follows:

A0,b → b

Ai,b → Ai−1,a1
· · ·Ai−1,am

, whereϕi(b) = a1 · · · am

By induction oni one can easily show thateval(Ai,b) = ϕ1 · · ·ϕi(b). ⊓⊔

A composition systemA = (V, Γ, S, P) is defined analogously to an SLP, but in
addition to productions of the formA → α (A ∈ V , α ∈ (V ∪ Γ)∗) it may also
contain productions of the formA → B[i : j] for B ∈ V and i, j ∈ N [18]. For
such a production we defineevalA(A) = evalA(B)[i : j].2 As for SLPs we define
eval(A) = evalA(S). In [21], Hagenah presented a polynomial time algorithm, which
transforms a given composition systemA into an SLPB such thateval(A) = eval(B).
We will also allow more general kinds of productions, where right-hand sides are arbi-
trary words, built up from terminals, nonterminals and symbolsB[: i], B[i :], B[i : j]
for a nonterminalB and i, j ∈ N. The semantics of such productions is the obvious
one.

In Section 4.3 we will need the following generalization of composition systems:
An extended composition systemover the terminal alphabetΓ may contain in addition
to productions of the formA → α (A ∈ V , α ∈ (V ∪ Γ)∗) andA → B[i : j] (B ∈ V
andi, j ∈ N) also productions of the formA → πΣ(B) for B ∈ V andΣ ⊆ Γ . For
such a production we defineevalA(A) = πΣ(evalA(B)).

Lemma 3. LetΓ be a fixed terminal alphabet. There is a polynomial time algorithm,
which transforms a given extended composition systemA over the terminal alphabetΓ
into an SLPB such thateval(A) = eval(B).

2 In [18], a slightly more restricted formalism, where all productions havethe formA → a ∈ Γ

or A → B[j :]C[: i], was introduced. But this definition is easily seen to be equivalent to our
formalism.

8

Proof. Let A be a given extended composition system. By the Hagenah’s result from
[21] it suffices to construct in polynomial time an equivalent composition system. For
this, we construct in polynomial time a composition systemB, which contains for every
nonterminalX of A and every subsetΣ of the fixed terminal alphabetΓ a nonterminal
XΣ such thateval(XΣ) = πΣ(eval(X)). For this we introduce in a bottom-up way new
productions: For a productionX → a with a ∈ Γ we introduce the productionsXΣ →
πΣ(a). For a productionX → Y Z, we introduce the productionsXΣ → YΣZΣ . For a
productionX → πΘ(Y) letXΣ → YΣ∩Θ. Finally, consider a productionX → Y [i :
j]. We introduce the productionsXΣ → YΣ [k : ℓ], wherek = |πΣ(eval(Y)[: i−1])|+1
and ℓ = |πΣ(eval(Y)[: j])|. These lengths can be computed in polynomial time as
follows: Implicitly, when processing the productionX → Y [i : j] we have already
constructed a composition system which generates the string eval(Y) = eval(YΓ).
Hence, by adding a single production, we can write down a composition system for
the stringeval(Y)[: i − 1]. Using Hagenah’s algorithm [21] we can transform this
composition system in polynomial time into an equivalent SLP. From this SLP, the
length|πΣ(eval(Y)[: i− 1])| can be easily computed bottom-up (the SLP for the string
eval(Y)[: i− 1] is then not used anymore). ⊓⊔

It should be remarked that in the previous proof it is crucialthat the alphabetΓ is
fixed, i.e., not part of the input. Otherwise the construction would lead to an exponential
blow-up. It is not clear whether Lemma 3 remains true, when the terminal alphabetΓ
is part of the input.

3 Connections between the word problem and the compressed
word problem

Our main motivation for studying the compressed word problem for a group are the
following results:

Proposition 2 (cf [38]). Let G be a finitely generated group and letH be a finitely
generated subgroup ofAut(G). ThenWP(H) ≤log

m CWP(G).

Proposition 3. LetK andQ be finitely generated groups and letϕ : Q→ Aut(K) be
a homomorphism. Then, for the semidirect productK⋊ϕQwe haveWP(K⋊ϕQ) ≤log

m

(WP(Q),CWP(K)).

Proof. Elements of the semidirect productK ⋊ϕ Q can be written as pairs(k, q) ∈
K × Q and the multiplication is defined as(k, q)(ℓ, p) = (k ◦ ϕ(q)(ℓ), qp) (here
◦ is the multiplication inK; note thatϕ(q) ∈ Aut(K)). Let us consider a word
(k1, q1)(k2, q2) · · · (kn, qn), whereki (resp.qi) is a generator ofK (resp.Q). InK ⋊ϕ

Q, this word equals(θ1(k1) ◦ θ2(k2) ◦ · · · ◦ θn(kn), q1q2 · · · qn), whereθi ∈ Aut(K)
is the automorphism defined byθi = ϕ(q1 · · · qi−1) = ϕ(q1) · · ·ϕ(qi−1) for 1 ≤ i ≤ n
(note thatθ1 = idK). By Lemma 2, we can compute in logarithmic space an SLPA

over the generators ofK, which produces the stringθ1(k1)θ2(k2) · · · θn(kn). We have
(k1, q1)(k2, q2) · · · (kn, qn) = 1 in K ⋊ϕ Q if and only if q1q2 · · · qn = 1 in Q and
eval(A) = 1 in K. This proves the proposition. ⊓⊔

9

The semidirect productG = K⋊ϕQ is a an extension ofK byQ, i.e.,K is a normal
subgroup ofG with quotientG/K ≃ Q. A reasonable generalization of Proposition 3
would beWP(G) ≤log

m (WP(G/K),CWP(K)). But this cannot be true: there exist
finitely generated groupsG,Q,K such that (i)Q = G/K, (ii) Q andK have decidable
word problems, and (iii)G has an undecidable word problem [2]. On the other hand,
if we require additionally, thatQ is finitely presented (in fact,Q recursively presented
suffices), thenG must have a decidable word problem [8]. For the special case that
the quotientQ = G/K is automatic (and hence finitely presented), we can prove the
following:

Proposition 4. LetK be a finitely generated normal subgroup ofG such that the quo-
tientQ = G/K is an automatic group. ThenWP(G) ≤P

m CWP(K).

Proof. Let Σ be a finite generating set forK and letΓ be a finite generating set of
the automatic groupQ = G/K (recall that automatic groups are finitely presented).
Let ϕ : G → Q be the canonical morphism and choose a mappingh : Q → G with
h(1) = 1 andϕ(h(a)) = a for a ∈ Q. The setΣ ∪ h(Γ) generatesG and there exists
a so called factor setf : Q×Q→ K such thath(a)h(b) = f(a, b)h(ab) for a, b ∈ Q.

Let us first prove the following claim (recall from Section 2.2 the existence of nor-
mal form mappings for automatic groups):

Claim 1.For a given wordw = a1 · · · an (ai ∈ Γ±1) with NF(w) = b1 · · · bm (bj ∈
Γ±1) we can compute in polynomial time an SLPA(w) over the terminal alphabetΣ±1

such that|A(w)| ∈ O(n3) and inG we have

h(a1)h(a2) · · ·h(an) = eval(A(w))h(b1) · · ·h(bm).

Proof of Claim 1.Let us take a wordw = a1 · · · an (ai ∈ Γ±1). If n = 0, then we take
for A(w) an SLP generating the empty string. Now assume thatn > 0 and let

v = a1 · · · an−1,

NF(v) = c1 · · · ck, and

NF(w) = b1 · · · bm.

There is a constantα (only depending onQ) such thatk ≤ α ·(n−1) andm ≤ k+α ≤
α · n.

By induction, we can assume that we have already calculated an SLPA(v) over the
terminal alphabetΣ±1 such that

h(a1)h(a2) · · ·h(an−1) = eval(A(v))h(c1) · · ·h(ck)

in G and|A(v)| ≤ δ · (n− 1)3, whereδ is a constant, which can be fixed later. Hence

h(a1)h(a2) · · ·h(an) = eval(A(v))h(c1) · · ·h(ck)h(an)

in G. For the rest of the proof, we have to distinguish the casesk ≤ m andk > m. We
only consider the casek ≤ m, the casek > m can be dealt similarly. So, assume that
k ≤ m. Since the automatic groupQ satisfies the synchronous fellow traveller property,
there exist a constantβ ∈ N (depending only onQ) and wordsr0, . . . , rm ∈ (Γ±1)≤β

such that:

10

(1) r0 = ε, rm = an,
(2) ri−1bi = ciri, i.e.,ci = ri−1bir

−1
i in Q for 1 ≤ i ≤ k, and

(3) ri−1bi = ri, i.e.,1 = ri−1bir
−1
i in Q for k < i ≤ m.

In the groupK the identities in (2) and (3) correspond to identities of thefollowing
form (when writingh(ri), we identifyri with the element ofQ it represents):

(1’) h(ci) = pih(ri−1)h(bi)h(ri)
−1 (1 ≤ i ≤ k)

(2’) 1 = pih(ri−1)h(bi)h(ri)
−1 (k < i ≤ m).

wherep1, . . . , pk ∈ (Σ±1)∗. Since in (1’) and (2’) there is only a finite number (de-
pending only onQ) of different possibilities forbi, ci ∈ Γ±1, andri ∈ (Γ±1)≤β , we
can write down a finite list of all possible candidates for thewordspi. In particular,
there is a constantγ (depending only onQ andK) such thatp1, . . . , pk ∈ (Σ±1)≤γ .
Sinceh(r0) = h(1) = 1 andh(rm) = h(an), we obtain

h(c1) · · ·h(ck)h(an) = p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · ·

pmh(rm−1)h(bm)h(rm)−1h(an)

= p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · · pmh(rm−1)h(bm)

in G. We now shift the elementsh(bi) andh(ri)−1 to the right (thereby, theh(ri)
andh(ri)−1 cancel out each other) by applying the automorphisms ofK defined by
conjugation with these elements to thepi ∈ K. Note that since the length of any word
ri is bounded by the fixed constantβ, all applied automorphisms are taken from some
fixed finite subset ofAut(K). By Lemma 2, we can compute an SLPB of sizeO(m2) ≤
O(n2) such that

p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · · pmh(rm−1)h(bm) =

eval(B)h(b1)h(b2) · · ·h(bm) in G.

The size bound forB holds, sincep1 · · · pm has lengthO(m) and to each symbol in
p1 · · · pm we applyO(m) many automorphisms. We obtain

h(a1) · · ·h(an) = eval(A(v))eval(B)h(b1) · · ·h(bm) in G.

Hence, we can take forA(w) an SLP which computes the concatenation ofeval(A(v))
andeval(B). It follows that

|A(w)| = |A(v)| + |B| + 1 ≤ δ · (n− 1)3 +O(n2).

By choosing the constantδ large enough (depending on the constant hidden in the
O(n2) term), we obtain|A(w)| ≤ δ · n3. This completes the proof of Claim 1.

Let us continue the proof of Proposition 4. Assume thatw is a word over the gener-
ating setΣ±1 ∪ h(Γ±1) of G. Let

w = w0h(a1)w1h(a2) · · ·wn−1h(an)wn

11

with wi ∈ (Σ±1)∗ (0 ≤ i ≤ n) andai ∈ Γ±1 (1 ≤ i ≤ n). Let ψi ∈ Aut(K)
(1 ≤ i ≤ n) be the automorphism ofK defined byψi(k) = h(ai)kh(ai)

−1 and let
χi = ψ1 · · ·ψi for 0 ≤ i ≤ n. Thus,χ0 = idK and we have

w = w0h(a1)w1h(a2) · · ·wn−1h(an)wn

= χ0(w0)χ1(w1) · · ·χn(wn)h(a1)h(a2) · · ·h(an)

in G. In the automatic quotientQ we haveϕ(w) = a1 · · · an. Hence, we first calculate
in polynomial time the normal formv = NF(a1 · · · an). If v 6= ε, then we know that
w 6= 1 inG. Hence assume thatv = ε. By Claim 1, we can compute in polynomial time
an SLPA over the terminal alphabetΣ±1 such thath(a1)h(a2) · · ·h(an) = eval(A)
in G. Hence,w = 1 in G if and only if χ0(w0)χ1(w1) · · ·χn(wn)eval(A) = 1 in
G, which (by Lemma 2) can be transfered in polynomial time intoan instance of the
compressed word problem forK. ⊓⊔

4 Upper bounds for compressed word problems

4.1 Finite extensions

Since every finite group is automatic, Proposition 4 appliesto the case that the quo-
tientQ is finite. In this situation, we even obtain a polynomial timereduction from the
compressedword problem ofG to the compressed word problem ofK:

Theorem 1. Assume thatK is a finitely generated subgroup of the groupG such that
the index[G : K] is finite. ThenCWP(G) ≤P

m CWP(K).

Proof. Let Γ be a finite generating set forK and letΣ be a finite generating set forG.
Let h : (Σ±1)∗ → G be the canonical morphism. LetKg1, . . . ,Kgn be a list of the
cosets ofK, where w.l.o.g.g1 = 1. LetA be the coset automaton ofK. This is a finite
automaton over the alphabetΣ±1 and with state set{Kg1, . . . ,Kgn}. The initial and
final state isK = Kg1 and there is a transitionKgi

a
→ Kgj (a ∈ Σ±1) if and only

if Kgia = Kgj . Note that this automaton accepts a wordw ∈ (Σ±1)∗ if and only if
h(w) ∈ K. Since it can be checked in polynomial time whether the word generated
by a given SLP is accepted by a given finite automaton (here, weeven have a fixed
automatonA), we can check in polynomial time whetherh(eval(A)) ∈ K for a given
SLPA.

Now let A be an SLP in Chomsky normal form over the alphabetΣ±1. We want
to check whethereval(A) = 1 in G. First, we check in polynomial time, whether
h(eval(A)) ∈ K. If not, we reject immediately. Otherwise, we will construct an SLPB

over the generating setΓ±1 of K, which computes the same group element asA. Then
we can apply an algorithm forCWP(K).

Let V be the set of nonterminals ofA and letS be the start nonterminal ofA. The
set of nonterminals ofB is the set of triples

W = {[gi, A, g
−1
j] | A ∈ V, 1 ≤ i, j ≤ n, gih(eval(A))g−1

j ∈ K}.

By the above observation, this set can be computed in polynomial time. Now, let us
introduce the production for the nonterminal[gi, A, g

−1
j] ∈ W . First, assume that the

12

production forA is A → a, wherea ∈ Σ±1. Hence,giag
−1
j ∈ K, and we introduce

the production[gi, A, g
−1
j] → w, wherew ∈ (Γ±1)∗ is such thath(w) = giag

−1
j . Now

assume that the production forA is of the formA → BC. Assume thatgih(eval(B))
belongs to the cosetKgk. Thus,gih(eval(B))g−1

k ∈ K, i.e., [gi, B, g
−1
k] ∈ W . We

introduce the production

[gi, A, g
−1
j] → [gi, B, g

−1
k][gk, C, g

−1
j].

Note that
gih(eval(A))g−1

j = gih(eval(B))g−1
k gkh(eval(C))g−1

j .

Hence, sincegih(eval(A))g−1
j andgih(eval(B))g−1

k both belong to the subgroupK,
we also havegkh(eval(C))g−1

j ∈ K, i.e., [gk, C, g
−1
j] ∈ W . Finally, let [g1, S, g

−1
1] =

[1, S, 1] be the start nonterminal ofB. It is easy to prove that for every nonterminal
[gi, A, g

−1
j] ∈W , evalB([gi, A, g

−1
j]) represents the group elementgih(evalA(A))g−1

j .
Thus,eval(A) = 1 in G if and only if eval(B) = 1 in K, which is an instance of
CWP(K). This proves the theorem. ⊓⊔

The reducibility relation≤P
m in Theorem 1 cannot be replaced by the stronger re-

lation ≤log
m (unless P= L) because there exists a finite groupG with a P-complete

compressed word problem [3] (takeK = 1 in Theorem 1).

4.2 Free products

The aim of this section is to prove the following theorem:

Theorem 2. Assume thatG = G1∗G2. ThenCWP(G) ≤P
T (CWP(G1),CWP(G2)).

Proof. For the proof of the theorem, it is useful, to introduce a special kind of composi-
tion systems, which we call2-level composition systems. A 2-level composition system
over the terminal alphabetΓ is a tupleA = (B, Vu, Vℓ), whereB = (V, Γ, S, P) is a
composition system andV = Vu∪Vℓ (Vu∩Vℓ = ∅) is a partition of the set of nontermi-
nals into the set of upper-level nonterminalsVu and the set of lower-level nonterminals
Vℓ such that:S ∈ Vu and for every production(A→ w) ∈ P we have either (i)A ∈ Vℓ

andw ∈ (Vℓ ∪ Γ)∗ or (ii) A ∈ Vu and (w ∈ V ∗ or w = B[i : j] for someB ∈ Vu

andi, j ∈ N). ForA ∈ V we setevalA(A) = evalB(A) andeval(A) = eval(B). De-
fine the composition systemAu = (Vu, Vℓ, {(A → w) ∈ P | A ∈ Vu}, S) and let
ueval(A) = eval(Au) ∈ V ∗

ℓ . Using Hagenah’s result [21], every 2-level composition
system can be transformed in polynomial time into an equivalent SLP.

LetΣi be a finite generating set forGi (i ∈ {1, 2}), whereΣ1 ∩Σ2 = ∅. Let A be
an SLP over the terminal alphabetΣ±1

1 ∪Σ±1
2 . Our goal is to construct in polynomial

time a 2-level composition systemA′ such thateval(A) andeval(A′) represent the same
group element ofG1 ∗G2 buteval(A′) is irreducible inG1 ∗G2. Then,eval(A) = 1 in
G1 ∗G2 if and only if eval(A′) = ε.

The construction ofA′ follows the strategy for free groups from [28]. In a first
step we check for every nonterminalA of A whether eithereval(A) ∈ (Σ±1

1)∗ and
eval(A) = 1 in G1 or eval(A) ∈ (Σ±1

2)∗ andeval(A) = 1 in G2 (for this, we have

13

to solve instances ofCWP(G1) andCWP(G2)). If this is true, then we eliminate the
nonterminalA fromA by replacingA in all right-hand sides byε. We iterate this process
as long as we can eliminate nonterminals. Let us denote the resulting SLP again byA.
W.l.o.g. we can assume thatA is in Chomsky normal form.

Let V be the set of nonterminals ofA. We define a partitionV = Vu ∪ Vℓ of
V as follows:Vℓ = {A ∈ V | eval(A) ∈ (Σ±1

1)∗ ∪ (Σ±1
2)∗} andVu = V \ Vℓ.

This defines a 2-level composition system(A, Vu, Vℓ). In the rest of the proof we will
manipulate this 2-level composition system such that at theend we obtain a 2-level
composition systemA′ with the property that (i) it generates the same group element
of G1 ∗ G2 and (ii) every nonterminal ofA′ generates a word which is irreducible in
G1∗G2. In the following, the notionseval, ueval, Vu, Vℓ will refer to the current 2-level
composition system. Note that initially, forA ∈ Vℓ we have:eval(A) 6= 1 in G1 in case
eval(A) ∈ (Σ±1

1)∗ andeval(A) 6= 1 in G2 in caseeval(A) ∈ (Σ±1
2)∗. In particular,

eval(A) ∈ (Σ±1
1)+ ∪ (Σ±1

2)+. This property will be preserved during the construction
of A′.

A word u = A1 · · ·An (Ai ∈ Vℓ for 1 ≤ i ≤ n) is calledirreducible, if for all
1 ≤ i < n: eval(Ai) ∈ (Σ±1

1)+ ⇔ eval(Ai+1) ∈ (Σ±1
2)+. Since every wordeval(Ai)

(1 ≤ i ≤ n) neither represents the1 of G1 (if eval(A1) ∈ (Σ±1
1)+) nor of G2 (if

eval(A1) ∈ (Σ±1
1)+), this means thateval(A1) · · · eval(An) is irreducible inG1 ∗G2.

For wordsu, v ∈ V ∗
ℓ we write cancel(u, v) if u = An · · ·A1, v = B1 · · ·Bn for

somen ≥ 0 andA1, . . . , An, B1, . . . , Bn ∈ Vℓ and for every1 ≤ i ≤ n there is
j ∈ {1, 2} such thateval(Ai), eval(Bi) ∈ (Σ±1

j)+ andeval(Ai)eval(Bi) = 1 in Gj .

Claim: On a Turing machine with oracle access toCWP(G1) andCWP(G2) we can
check in polynomial time whethercancel(eval(C), eval(D)) for given composition sys-
temsC andD over the terminal alphabetVℓ.

Proof of the Claim:By Hagenah’s result [21] we may assume thatC andD are SLPs.
FromD we can easily compute an SLPD′ such thateval(D′) is the string that results
from reversingeval(D). Define a mappingf1 : Vℓ → Vℓ as follows: Fix an order�
on Vℓ. Then, forA ∈ Vℓ, f1(A) is the smallestB ∈ Vℓ such thateval(A) = eval(B)
in eitherG1 or G2. Moreover, define a second mappingf2 : Vℓ → Vℓ as follows: For
A ∈ Vℓ, f2(A) is the smallestB ∈ Vℓ such thateval(A) = eval(B)−1 in eitherG1

or G2. Note that the mappingsf1 andf2 can be computed in polynomial time on a
Turing machine with oracle access toCWP(G1) andCWP(G2). We extendf1 andf2
to morphisms onV ∗

ℓ . Now we can easily compute SLPsC′ andD′′ such thateval(C′) =
f1(eval(C)) andeval(D′′) = f2(eval(D′)). Then,cancel(eval(C), eval(D)) if and only
if C′ andD′′ generate the same strings over the alphabetVℓ. This can be checked in
polynomial time [34].

Let us now construct the 2-level composition systemA′. In a bottom-up process, simi-
larly to [28], we will process every upper-level nonterminal from Vu. Thereby, we will
enforce that for everyA ∈ Vu, ueval(A) ∈ V ∗

ℓ is irreducible and henceeval(A) is
irreducible inG1 ∗ G2. So, assume thatA → BC is a production ofA with A ∈ Vu

and thatB andC are either fromVℓ or were already processed. There are four possi-
ble cases: (i)B,C ∈ Vℓ, (ii) B,C ∈ Vu, (iii) B ∈ Vu, C ∈ Vℓ, and (iv)B ∈ Vℓ,
C ∈ Vu. In case (i), we must have eithereval(B) ∈ (Σ±1

1)+ andeval(C) ∈ (Σ±1
2)+

14

or eval(B) ∈ (Σ±1
2)+ andeval(C) ∈ (Σ±1

1)+, because otherwiseA would belong to
Vℓ. Hence,ueval(A) = BC is irreducible and we do not have to modify the production
A → BC for A. From the cases (ii)–(iv) we will only consider case (ii), the other two
cases are simpler to deal with.

The wordsu = ueval(B) ∈ V ∗
ℓ and v = ueval(C) ∈ V ∗

ℓ are already irre-
ducible. We now determine the maximal amount of cancellation betweenu and v,
when interpreting the symbols in these words as elements fromG1 ∪G2. Assume that
u = Bn · · ·B1 andv = C1 · · ·Cm for B1, . . . , Bn, C1, . . . , Cm ∈ Vℓ. We first deter-
mine in polynomial time the symbolsB1, C1 ∈ Vℓ . If eithereval(B1) ∈ (Σ±1

1)+ and
eval(C1) ∈ (Σ±1

2)+ or eval(B1) ∈ (Σ±1
2)+ andeval(C1) ∈ (Σ±1

1)+ thenueval(A) is
already irreducible and we do not have to modify the productionA→ BC. Otherwise,
using binary search over the range{1, . . . ,min(n,m)} we find the largest numberi
such thatcancel(Bi · · ·B1, C1 · · ·Ci). Note that we can write down composition sys-
tems of polynomial size generating the wordsBi · · ·B1 andC1 · · ·Ci. Hence, by the
above claim, the numberi can be found in polynomial time on a Turing machine with
oracle access toCWP(G1) andCWP(G2). Next, we have to distinguish the following
cases:

– i = n = m: We replace the productionA→ BC byA→ ε.
– i = n < m: We replace the productionA→ BC byA→ C[i+ 1 :].
– i = m < n: symmetric to the previous case.
– i < n, i < m: we add a new lower-level nonterminalD to Vℓ together with

the productionD → Bi+1Ci+1. Note thateval(Bi+1)eval(Ci+1) 6= 1 (either
in G1 or in G2) because otherwisei would not be the largest number such that
cancel(Bi · · ·B1, C1 · · ·Ci). Moreover, the productionA → BC is replaced by
A→ B[: n− i− 1]DC[i+ 2 :].

This concludes the construction of the 2-level compositionsystemA′. ⊓⊔

Again, the reducibility relation≤P
T in Theorem 2 cannot be replaced by the stronger

relation≤log
m (unless P= NC)3 because the compressed word problem forZ ∗ Z is P-

complete [28], whereas the compressed word problem forZ is easily seen to be in NC.

4.3 Graph groups and graph products

For this section, we need the material from Section 2.2. Let us fix an independence
alphabet(Σ, I). Define a trace rewriting systemR overM(Σ±1, I) as follows:

R = {([aa−1]I , [ε]I) | a ∈ Σ±1}. (1)

One can show thatR is terminating and confluent and that for allu ∈ M(Σ±1, I):
u = 1 in G(Σ, I) if and only if NFR(u) = [ε]I , i.e.,u

∗
→R [ε]I [12]. This leads to a

linear time solution for the word problem ofG(Σ, I) [12, 42].

Example 3.Let (Σ, I) be the following independence alphabet:

3 NC denotes Nick’s class — the class of all problems that can be solved with polynomially
many processors in polylogarithmic time.

15

b d a c

An example for a derivation using the trace rewriting systemR is:

[b−1adc−1a−1cbd−1]I =

[b−1ada−1c−1cbd−1]I →R

[b−1ada−1bd−1]I =

[b−1aa−1dbd−1]I →R

[b−1dbd−1]I =

[b−1bdd−1]I →2
R [ε]I

The fact that[b−1adc−1a−1cbd−1]I
∗
→R [ε]I becomes quite obvious, when looking at

the dependence graph of the trace[b−1adc−1a−1cbd−1]I :

b−1 a a−1 b

d c−1 c d−1

This graph can be reduced to the empty graph by successively canceling nodes with
inverse labels, which are moreover connected by an edge.

In this section, we will show that the compressed word problem for G(Σ, I) can
be solved in polynomial time. We follow our strategy for freegroups [28]. For a given
SLPA over the terminal alphabetΣ±1 we construct an extended composition system
(see Section 2.3)B such that[eval(B)]I = NFR([eval(A)]I). For this we will accu-
mulate the productions ofB in the same way as in the free group case. We start with
all productions fromA of the formA → a. Now assume thatA contains a production
A → BC and thatB already contains enough productions such that[evalB(B)]I =
NFR([evalA(B)]I) and [evalB(C)]I = NFR([evalA(C)]I). We have to add a rule for
the nonterminalA such that

[evalB(A)]I = NFR([evalB(B)evalB(C)]I). (2)

Intuitively, R-reduction steps in the trace[evalB(B)evalB(C)]I can only occur at the
border between the prefix[evalB(B)]I and the suffix[evalB(C)]I , because both these
traces are irreducible w.r.t.R. In other words, some suffix of[evalB(B)]I will cancel
against some prefix of[evalB(C)]I . We have to determine and cut away on the level of
extended composition systems this suffix and prefix, respectively. At this point, the con-
struction becomes more involved than for the free groups case. We need two lemmas:

Lemma 4. For two given extended composition systemsA andB it can be checked in
polynomial time whethereval(A) �I eval(B).

Proof. By Lemma 3 we can assume thatA andB are SLPs. Let(Σi)1≤i≤n be a clique
covering for the dependence alphabet(Σ,D). We compute in polynomial time SLPsAi

andBi (1 ≤ i ≤ n) such thateval(Ai) = πΣi
(eval(A)) andeval(Bi) = πΣi

(eval(B)).
By Lemma 1 it suffices to check whethereval(Ai) is a prefix ofeval(Bi) for all 1 ≤ i ≤
n. But this can be easily reduced to an equivalence check: Computeni = |eval(Ai)| and
an SLPCi with eval(Ci) = eval(Bi)[: ni]. Finally check whethereval(Ci) = eval(Ai)
for all 1 ≤ i ≤ n. ⊓⊔

16

Lemma 5. Letp, q ∈ M(Σ±1, I). If p, q ∈ IRR(R), then

NFR(pq) = (p−1 \ q)−1(q \ p−1).

Proof. Let p, q ∈ IRR(R). By [13, Lemma 13], in the trace monoidM(Σ±1, I) there
exist factorizationsp = xr andq = r−1y such thatNFR(pq) = xy. Moreover,r is the
trace with maximal length such thatp andq can be written asp = xr andq = r−1y. It
follows thatr = (p−1 ⊓ q)−1, x = (p−1 \ q)−1, andy = q \ p−1. ⊓⊔

Example 4.Let (Σ, I) be the independence alphabet from Example 3. Let

p = [cbdcd−1b−1a]I ∈ IRR(R) and

q = [da−1baac−1bd−1]I = [da−1bc−1d−1aab]I ∈ IRR(R).

Hence,
p−1 = [a−1bdc−1d−1b−1c−1]I = [da−1bc−1d−1b−1c−1]I

and we see that

p−1 ⊓ q = [da−1bc−1d−1]I ,

p−1 \ q = [b−1c−1]I , (p−1 \ q)−1 = [cb]I , and

q \ p−1 = [aab]I .

Hence,NFR(pq) = (p−1 \ q)−1(q \ p−1) = [cb]I [aab]I = [cbaab]I . This fact can be
also visualized in the dependence graph of the tracepq, which looks as follows:

b b−1 a a−1 b a a b

c d c d−1 d c−1 d−1

(p−1 \ q)−1 (p−1 ⊓ q)−1 p−1 ⊓ q q \ p−1

From Lemma 5, it follows that in order to compute a productionfor the nonterminal
A such that (2) holds, we basically have to solve the followingproblem: For a given
extended composition systemB with nonterminalsB andC, construct a production for
a new nonterminalA such that

[evalB(A)]I = [evalB(B)]I \ [evalB(C)]I .

Then, productions for([evalB(B)]−1
I \ [evalB(C)]I)

−1 and[evalB(C)]I \ [evalB(B)]−1
I

can be calculated in the same way.
We first need some concepts concerning dependence graphs. Inthe following, it

is not relevant that the alphabet is of the formΣ±1. Hence, let us fix a dependence
alphabet(Σ,D) for the further consideration. Fora ∈ Σ let Pa be the set all simple
paths in the dependence alphabet(Σ,D) (viewed as an undirected graph) that start in
the nodea (a path is simple, if it does not visit a node twice). The path,which only
consists of the nodea belongs toPa. Note thatPa is finite and its size only depends on
the dependence alphabet(Σ,D).

17

Take a strings ∈ Σ∗ and a set of positionJ ⊆ {1, . . . , |s|} in s. We are looking
for a compact representation of the set of all positionsk such that there exists a directed
path in the dependence graphDs from some positionj ∈ J to positionk. Let us define
the setCP(J) ⊆ {1, . . . , |s|} of critical positionsas follows: Letj ∈ J anda = s[j]
For each pathp ∈ Pa, define the positionpos(j, p) inductively as follows: Ifp = a,
thenpos(j, p) = j. If p = a, q, whereq is a simple path starting in some nodeb ∈ D(a),
thenpos(j, p) = pos(j′, q), wherej′ is the smallest positionj′ > j such thats[j′] = b.
If such aj′ does not exist, thenpos(j, p) is undefined. Finally, let us set

CP(J) = {pos(j, p) | j ∈ J, p ∈ Ps[j],pos(j, p) is defined}

and for everyk ∈ CP(J) set

ΓJ,k = {s[ℓ] | ℓ ∈ CP(J), ℓ ≤ k}.

The setCP(J) contains positions, which are redundant in order to fulfill the crucial
Lemma 6 below. We therefore define a reduced set of critical positions:

RCP(J) = {k ∈ CP(J) | ¬∃ℓ ∈ CP(J) : ℓ < k, ΓJ,ℓ = ΓJ,k}.

Note thatΓJ,ℓ (ΓJ,k for all ℓ, k ∈ RCP(J) with ℓ < k. This implies|RCP(J)| ≤ |Σ|.
In caseJ contains only a single positionj, we write CP(j) andΓj,ℓ instead of

CP(J) andΓJ,ℓ, respectively.

Lemma 6. Let s ∈ Σ∗ andJ ⊆ {1, . . . , |s|}. Then for every positionk the following
two properties are equivalent:

(1) There exists a directed path in the dependence graphDs from some positionj ∈ J
to positionk.

(2) There existsℓ ∈ RCP(J) such thatℓ ≤ k ands[k] ∈ ΓJ,ℓ.

Proof. First assume that there existsℓ ∈ RCP(J) such thatℓ ≤ k ands[k] ∈ ΓJ,ℓ.
The latter implies thats[k] = s[ℓ′] for someℓ′ ∈ CP(J) with ℓ′ ≤ ℓ ≤ k. Since
ℓ′ ∈ CP(J), we haveℓ′ = pos(j, p) for somej ∈ J and some pathp in (Σ,D). But
this implies that there exists a directed path inDs from positionj to positionℓ′ in Ds.
Finally, sinces[k] = s[ℓ′] andℓ′ ≤ k, eitherk = ℓ′ or there exists an edge fromℓ′ to k
in Ds. Thus, there exists a directed path in the dependence graphDs from j to k.

Now assume that there exists a directed path in the dependence graphDs from some
positionj ∈ J to positionk. If s[j] 6= s[k], then we can assume that this directed path
corresponds to a simple pathp in (Σ,D). It follows that k ≥ pos(j, p) ands[k] =
s[pos(j, p)] (if s[j] = s[k], then we choose forp the path, which only consists ofs[j]).
Hence, there existsℓ′ ∈ CP(J) such thatℓ′ ≤ k ands[k] ∈ ΓJ,ℓ′ (takeℓ′ = pos(j, p)).
But then there existsℓ ∈ RCP(J) such thatℓ ≤ ℓ′ ≤ k ands[k] ∈ ΓJ,ℓ. ⊓⊔

Note that condition (2) in Lemma 6 can be replaced by: Forℓ = max(RCP(J) ∩
{1, . . . k}) it holdss[k] ∈ ΓJ,ℓ. This is true, becauseΓJ,ℓ (ΓJ,k for all ℓ, k ∈ RCP(J)
with ℓ < k.

Let us now come back to the problem of constructing an extended composition
system for[evalB(B)]I \ [evalB(C)]I . Let us first solve this problem for uncompressed

18

i := 1; (stores a position from{1, . . . , |s|})
u := ε; (stores a string)
v := ε; (stores a string)
RCP := {|s| + 1}; (stores a subset of{1, . . . , |s|})
Γ := ∅; (stores a subset ofΣ)
while i ≤ |s| do

j := max{j ≤ min(RCP) − 1 | u πΣ\Γ (s[i, j]) �I t}; (*)
u := u πΣ\Γ (s[i, j]);
v := v πΓ (s[i : j]) s[j + 1]; (let us set heres[|s| + 1] = ε)
if j < min(RCP) − 1 then (we obtain new critical points)

for all k ∈ CP(j + 1) do Γ (k) := Γ ∪ Γj+1,k endfor
RCP := RCP ∪ CP(j + 1);
for all k ∈ RCP do Γ (k) :=

S

{Γ (ℓ) | ℓ ∈ RCP, ℓ ≤ k} endfor
RCP := {k ∈ RCP | ¬∃ℓ ∈ RCP : ℓ < k, Γ (ℓ) = Γ (k)};

endif
Γ := Γ (j + 1); (**)
i := j + 2;
RCP := RCP \ {j + 1};

endwhile

Fig. 1.An algorithm for computing[s]I ⊓ [t]I and[s]I \ [t]I

strings. Then we will argue that our algorithm leads to a polynomial time algorithm for
compressed input strings.

How can we compute for two given wordss, t ∈ Σ∗ wordsu, v ∈ Σ∗ such that

[u]I = [s]I ⊓ [t]I and[v]I = [s]I \ [t]I?

In the algorithm in Figure 1 we accumulate the stringsu andv by determining for every
position from{1, . . . , |s|} (viewed as a node of the dependence graphDs) whether it
belongs to[u]I or [v]I . For this, we will store a current positioni in the strings, which
will increase during the computation. Initially, we seti := 1 andu := ε, v := ε.

For a set of positionsK ⊆ {1, . . . , |s|} let us define the strings↾K = s[i1] · · · s[ik],
wherei1 < i2 < · · · < ik andK = {i1, . . . , ik}. Consider a specific iteration of
the while-loop in Figure 1 and leti denote the value of the corresponding program
variable at the beginning of the iteration. Assume thatJ ⊆ {1, . . . , i− 1} is the set all
positions from{1, . . . , i − 1}, which belong to the difference[s]I \ [t]I , i.e., they do
not belong to the common prefix[s]I ⊓ [t]I . Thus,[s↾({1, . . . , i − 1} \ J)]I is a trace
prefix of [s]I ⊓ [t]I . If i, u, v,RCP, Γ , andΓ (k) denote the values of the corresponding
program variables at the beginning of the iteration, then the algorithm will maintain the
following relationships as invariants (the setJ is defined as above, it is not stored by
the algorithm):

– u = s↾({1, . . . , i− 1} \ J), v = s↾J ,
– RCP = ({i, . . . , |s|} ∩ RCP(J)) ∪ {|s| + 1}
– Γ = ∅ if {0, . . . , i − 1} ∩ RCP(J) = ∅, otherwiseΓ = ΓJ,ℓ, whereℓ is the

maximum of{0, . . . , i− 1} ∩ RCP(J),
– for everyk ∈ {i, . . . , |s|} ∩ RCP(J), Γ (k) = ΓJ,k.

19

We put the imaginary position|s|+1 in the setRCP In order to save some if-branchings
in the algorithm.

In each iteration of the while-loop, we investigate the subword of s from position
i to the next critical position from the setRCP, and we determine for each position
from some initial segment of this interval, whether it belongs to [s]I ⊓ [t]I or [s]I \
[t]I . More precisely, we search for the largest positionj ≤ min(RCP) − 1 such that
uπΣ\Γ (s[i, j]) �I t. Recall thatu = s↾({1, . . . , i − 1} \ J) is the already collected
part of the common trace prefix. We updateu andv by u := uπΣ\Γ (s[i, j]) andv :=
vπΓ (s[i : j])s[j + 1]. The correctness of this step is expressed in the following lemma:

Lemma 7. Assume that the following is given:

– i ∈ {1, . . . , |s|}
– J ⊆ {1, . . . , i − 1} is the set of all positions from{1, . . . , i − 1}, which belong to

the trace difference[s]I \ [t]I (thus,{1, . . . , i − 1} \ J is downward-closed inDs

and[s↾({1, . . . , i− 1} \ J)]I is a trace prefix of[s]I ⊓ [t]I).
– Γ = ∅ if {0, . . . , i − 1} ∩ RCP(J) = ∅ (this is equivalent toJ = ∅), otherwise
Γ = ΓJ,ℓ, whereℓ = max({0, . . . , i− 1} ∩ RCP(J)).

– j is the maximal position such thatj ≤ min(({i, . . . , |s|}∩RCP(J))∪{|s|+1})−1
ands↾({1, . . . , i− 1} \ J)πΣ\Γ (s[i, j]) �I t.

Then a positionp ∈ {i, . . . , j} belongs to the common trace prefix[s]I ⊓ [t]I if and only
if s[p] 6∈ Γ .

Proof. If s[p] ∈ Γ , then by Lemma 6 there exists a path inDs from some position in
J to positionp. Since positions inJ do not belong to[s]I ⊓ [t]I , p cannot belong to
[s]I ⊓ [t]I as well. Now consider the set of positionsA = {p ∈ {i, . . . , j} | s[p] 6∈ Γ}.
We claim that({1, . . . , i − 1} \ J) ∪ A is a downward-closed subset ofDs. Since
s↾(({1, . . . , i− 1} \ J) ∪A) = s↾({1, . . . , i− 1} \ J)πΣ\Γ (s[i, j]) �I t, this implies
that all positions fromA indeed belong to[s]I ⊓ [t]I . First, recall that{1, . . . , i−1}\J
is downward-closed. Moreover, by Lemma 6 there does not exist a path from a node
in J to a node fromA. But also a path from a node in{i, . . . , j} \ A to node ofA
cannot exist, because by Lemma 6 every node from{i, . . . , j} \ A can be reached via
a path starting in a node fromJ . This shows that({1, . . . , i − 1} \ J) ∪ A is indeed
downward-closed inDs. ⊓⊔

The remaining assignments in Figure 1 update the variablesRCP, Γ , andΓ (k) (for
k ∈ RCP) in the correct way.

Lemma 8. The number of iterations of the while-loop in Figure 1 is bounded by|Σ|.

Proof. We claim that in each iteration of the while-loop, the set-variable Γ strictly
grows, which proves the lemma. Let us consider an iteration of the while-loop. Since
Γ (j + 1) will be the next value forΓ (see line (**)), we have to showΓ (Γ (j + 1).
There are two cases to distinguish. Ifj < min(RCP) − 1, then the symbols[j + 1] ∈
Γj+1,j+1 will belong the setΓ (j + 1). But s[j + 1] cannot belong toΓ , because this
contradicts the choice ofj in line (*) . If j = min(RCP)− 1, thenj + 1 is the smallest
critical position from the setRCP, hence for the currentΓ one hasΓ (Γ (j + 1). ⊓⊔

20

i := 1;
α := ε;
β := ε;
RCP := {|s| + 1};
Γ := ∅;
while i ≤ |eval(B)| do

j := max{j ≤ min(RCP) − 1 | eval(α ◦ πΣ\Γ (B[i, j])) �I eval(C)}; (*)
α := α ◦ πΣ\Γ (B[i, j]);
β := β ◦ πΓ (B[i : j]) ◦ B[j + 1]; (let us set hereB[|eval(B)| + 1] = ε)
if j < min(RCP) − 1 then (we obtain new critical points)

for all k ∈ CP(j + 1) do Γ (k) := Γ ∪ Γj+1,k endfor (**)
RCP := RCP ∪ CP(j + 1);
for all k ∈ RCP do Γ (k) :=

S

{Γ (ℓ) | ℓ ∈ RCP, ℓ ≤ k} endfor
RCP := {k ∈ RCP | ¬∃ℓ ∈ RCP : ℓ < k, Γ (ℓ) = Γ (k)};

endif
Γ := Γ (j + 1);
i := j + 2;
RCP := RCP \ {j + 1};

endwhile

Fig. 2.An algorithm for computing[eval(B)]I ⊓ [eval(C)]I and[eval(B)]I \ [eval(C)]I

The above algorithm for computing[s]I \ [t]I leads to a polynomial time algorithm,
which adds to a given extended composition systemB with nonterminalsB andC a
new productionA→ α such that[evalB(A)]I = [evalB(B)]I \ [evalB(C)]I , see Figure
2. 4 The idea is to consider the statements for updatingu andv in Figure 1 as statements
for computing right-hand sidesα andβ of an extended composition system.

It remains to argue that the algorithm in Figure 2 is indeed a polynomial time al-
gorithm. By Lemma 8, the number of iterations of the while-loop is bounded by|Σ|.
Hence, it suffices to show that a single iteration only needs polynomial time. The con-
dition eval(α ◦ πΣ\Γ (B[i : j])) �I eval(C) in line (*) can be checked in polyno-
mial time by Lemma 4. Hence, the numberj in line (*) can be computed in poly-
nomial time via binary search. In line (**) we have to computethe set of positions
CP(j + 1) ⊆ {1, . . . , eval(B)}. Recall that this set contains for every simple pathp in
the dependence graph(Σ,D) that starts ineval(B)[j + 1] the positionpos(j + 1, p).
The number of such paths only depends on(Σ,D) and is therefore bounded by a fixed
constant. Finally, for a certain pathp, we can compute the positionpos(j + 1, p) easily
in polynomial time. We obtain the main result of this section:

Theorem 3. If G is a graph group, then the compressed word problem forG belongs
to the classP .

Let us end this section with a generalization of both Theorem2 and 3. Agraph
productis given by a triple(Σ, I, (Gv)v∈Σ), where(Σ, I) is an independence alphabet

4 In the algorithm we use the notationeval(α) andeval(β) whereα andβ are right-hand sides
of an extended composition system; the meaning is the obvious one. Moreover, concatenation
of strings is denoted by◦ for better readability.

21

andGv is a group, which is associated with the nodev ∈ Σ. W.l.o.g. assume that
Σ = {1, . . . , n}. The groupG(Σ, I, (Gv)v∈Σ) defined by this triple is the quotient

G(Σ, I, (Gv)v∈Σ) = (G1 ∗G2 ∗ · · · ∗Gn)/{xy = yx | x ∈ Gu, y ∈ Gv, (u, v) ∈ I},

i.e., we take the free product(G1 ∗G2 ∗· · ·∗Gn), but let elements from adjacent groups
commute. Note thatG(Σ, I, (Gv)v∈Σ) is the graph groupG(Σ, I) in case everyGv is
isomorphic toZ. Moreover, free products and direct products appear as special cases
of the graph product construction. Graph products were firststudied by Green [20]. By
combining the ideas from Section 4.2 with our algorithm for graph groups, one can
prove:

Theorem 4. Assume thatG is a graph product of finitely generated groupsG1, . . . , Gn.
ThenCWP(G) ≤P

T (CWP(G1), . . . ,CWP(Gn)).

4.4 Linear groups

Recall that a languageL belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithm5 A such that:

– if x 6∈ L then Prob[A acceptsx] = 0
– if x ∈ L then Prob[A acceptsx] ≥ 1/2

The choice of the failure probability1/2 in casex ∈ L is arbitrary: By repeating the
algorithmc times (wherec is some constant), we can reduce the failure probability to
(1/2)c and still have a randomized polynomial time algorithm. A languageL belongs
to the class coRP, if the complement ofL belongs to RP. This means that there exists a
randomized polynomial time algorithmA such that:

– if x 6∈ L then Prob[A acceptsx] ≤ 1/2
– if x ∈ L then Prob[A acceptsx] = 1

Theorem 5. If G is a finitely generated linear group, then the compressed word prob-
lem forG belongs to coRP.

Proof. Let G be linear over the fieldK. For the case thatK has characteristic0, it is
shown in [27] thatG is isomorphic to a group of matrices over the ringZ[x1, . . . , xn]
(for somen). If K has prime characteristicp > 0, thenG is isomorphic to a group
of matrices overFp[x1, . . . , xn] [40] (hereFp ≃ Z/pZ is the field of cardinalityp).
Hence, we can reduce the compressed word problem forG to the following problem:

INPUT: A circuit C over the polynomial ringZ[x1, . . . , xn] (in caseK has character-
istic 0) or Fp[x1, . . . , xn] (in caseK has characteristicp > 0).
QUESTION: Is the polynomial, to which the circuitC evaluates, the zero-polynomial?

This problem belongs to coRP by [23]. ⊓⊔

Let us mention that graph groups are finitely generated linear [22].

5 A randomized algorithmA may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomialp(n) such that for every input of lengthn and every
possible outcome of the coin flips,A runs in time at mostp(n), thenA is a randomized
polynomial time algorithm.

22

5 Applications

In this section, we present some immediate corollaries to the results from Section 3 and
4. We concentrate on automorphism groups.

It was shown in [25] (based on previous work from [39]) that the automorphism
group of a graph group is finitely generated. Proposition 2 and Theorem 4 imply:

Corollary 1. For a graph groupG, the word problem forAut(G) can be solved in
polynomial time.

Crisp and Wiest [9] have shown that the fundamental group of any orientable sur-
face and of every non-orientable surfaces of genus at least 4(see [41] for definitions)
can be embedded in a graph group. Hence, by Proposition 1 and Theorem 4, the com-
pressed word problems for these fundamental groups can be solved in polynomial time.
The fundamental group of the non-orientable surface of genus 1 (the projective plane)
is Z/2Z, hence its compressed word problem can be also solved in polynomial time.
Finally, the fundamental group of the non-orientable surface of genus 2 (the Klein bot-
tle) has the presentation〈x, y | x2 = y2〉, i.e., it is an amalgamated free product of
two copies ofZ, amalgamating2Z. Using techniques similar to those from Section 4.2
for free groups, one can show that for this group the compressed word problem can be
solved in polynomial time as well. Hence, with Proposition 2we obtain:

Corollary 2. Let G be either the fundamental group of an orientable surface or the
fundamental group of a non-orientable surface with genus different from3. Then the
word problem forAut(G) can be solved in polynomial time.

The case of the non-orientable surface of genus3 remains open. Its fundamental
group has the presentation〈x, y, z | x2y2 = z2〉. Automorphism groups of fundamental
groups of surfaces play an important role in algebraic topology; they are closely related
to mapping class groups.

Another class of fundamental groups, which embed into graphgroups are funda-
mental groups of finite state complexes [19]. Hence, by the above arguments, also the
automorphism groups of these fundamental groups can be solved in polynomial time.

6 Open problems

Many open problems remain concerning compressed word problems. Let us mention
some of them.

1. Is the compressed word problem for a hyperbolic group solvable in polynomial
time? For torsion-free hyperbolic groups one might try to attack this question using
the canonical representatives of Rips and Sela [36].

2. What about the compressed word problem for automatic groups? Is it possible to
proof a non-trivial lower bound (e.g. NP-hardness or coNP-hardness) for the com-
pressed word problem of some specific automatic group?

23

3. Is the uniform compressed word problem for graph groups solvable in polynomial
time? In this problem, the independence alphabet(Σ, I), which defines the un-
derlying graph group, is also part of the input. This question depends on whether
Lemma 3 also holds for a variable terminal alphabetΓ .

4. Can Theorem 2 be generalized from free products to (suitably restricted) amalga-
mated free products and HNN-extensions?

5. Is it possible to relax the restriction to an automatic quotient groupQ in Proposi-
tion 4?

6. Thecompressed generalized word problemfor a finitely generated groupG (with
finite generating setΣ) asks, whether for given SLPsA,B1, . . . ,Bn (overΣ±1),
the wordeval(A) represents a group element from the subgroup ofG generated by
eval(B1), . . . , eval(Bn). Is the compressed generalized word problem for a finitely
generated free group decidable in polynomial time? We are only aware of an expo-
nential time algorithm for this problem.

References

1. A. Baudisch. Subgroups of semifree groups.Acta Mathematica Academiae Scientiarum
Hungaricae, 38:19–28, 1981.

2. G. Baumslag, F. B. Cannonito, and C. F. Miller, III. Infinitely generated subgroups of finitely
presented groups. I.Mathematische Zeitschrift, 153(2):117–134, 1977.

3. M. Beaudry, P. McKenzie, P. Péladeau, and D. Th́erien. Finite monoids: From word to circuit
evaluation.SIAM Journal on Computing, 26(1):138–152, 1997.

4. R. V. Book and F. Otto.String–Rewriting Systems. Springer, 1993.
5. W. W. Boone. The word problem.Annals of Mathematics (2), 70:207–265, 1959.
6. N. Brady and J. Meier. Connectivity at infinity for right angled Artin groups. Transactions

of the American Mathematical Society, 353:117–132, 2001.
7. F. B. Cannonito and R. W. Gatterdam. The word problem and power problem in1-relator

groups are primitive recursive.Pacific Journal of Mathematics, 61(2):351–359, 1975.
8. W. H. Cockcroft. The word problem in a group extension.The Quarterly Journal of Mathe-

matics. Oxford. Second Series, 2:123–134, 1951.
9. J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-angled Artin

groups and braid groups.Algebraic & Geometric Topology, 4:439–472, 2004.
10. M. Dehn. Über die Toplogie des dreidimensionalen Raumes.Mathematische Annalen,

69:137–168, 1910. In German.
11. V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science.

Springer, 1990.
12. V. Diekert. Word problems over traces which are solvable in linear time. Theoretical Com-

puter Science, 74:3–18, 1990.
13. V. Diekert and M. Lohrey. Existential and positive theories of equations in graph products.

Theory of Computing Systems, 37(1):133–156, 2004.
14. V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, 1995.
15. C. Droms. Graph groups, coherence and three-manifolds.Journal of Algebra, 106(2):484–

489, 1985.
16. C. Duboc. On some equations in free partially commutative monoids.Theoretical Computer

Science, 46:159–174, 1986.
17. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston.

Word processing in groups. Jones and Bartlett, Boston, 1992.

24

18. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficientalgorithms for Lempel-
Ziv encoding (extended abstract). In R. G. Karlsson and A. Lingas, editors, Proceedings
of the 5th Scandinavian Workshop on Algorithm Theory (SWAT 1996), Reykjav́ık (Iceland),
number 1097 in Lecture Notes in Computer Science, pages 392–403. Springer, 1996.

19. R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in
Applied Mathematics, 38:302–323, 2007.

20. E. R. Green.Graph Products of Groups. PhD thesis, The University of Leeds, 1990.
21. C. Hagenah.Gleichungen mit regulären Randbedingungen̈uber freien Gruppen. PhD thesis,

University of Stuttgart, 2000.
22. S. P. Humphries. On representations of Artin groups and the Tits conjecture. Journal of

Algebra, 169(3):847–862, 1994.
23. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-line

programs.Journal of the Association for Computing Machinery, 30(1):217–228, 1983.
24. I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity, decision

problems in group theory, and random walks.Journal of Algebra, 264(2):665–694, 2003.
25. M. R. Laurence. A generating set for the automorphism group of agraph group.Journal of

the London Mathematical Society. Second Series, 52(2):318–334, 1995.
26. Y. Lifshits. Solving classical string problems on compressed texts. Technical report,

arXiv.org, 2006.http://arxiv.org/abs/cs.DS/0604058.
27. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace.Journal of the Association

for Computing Machinery, 24(3):522–526, 1977.
28. M. Lohrey. Word problems and membership problems on compressed words.SIAM Journal

on Computing, 35(5):1210 – 1240, 2006.
29. M. Lothaire.Combinatorics on Words, volume 17 ofEncyclopedia of Mathematics and its

Applications. Addison-Wesley, Reading, MA, 1983.
30. R. C. Lyndon and P. E. Schupp.Combinatorial Group Theory. Springer, 1977.
31. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for

strings in terms of straight-line programs. In A. Apostolico and J. Hein, editors, Proceed-
ings of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM 97), Aarhus
(Denmark), Lecture Notes in Computer Science, pages 1–11. Springer, 1997.

32. P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory.Amer-
ican Mathematical Society, Translations, II. Series, 9:1–122, 1958.

33. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
34. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. In J. van

Leeuwen, editor,Second Annual European Symposium on Algorithms (ESA’94), Utrecht
(The Netherlands), number 855 in Lecture Notes in Computer Science, pages 460–470.
Springer, 1994.

35. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed
words. In J. Karhum̈aki, H. A. Maurer, G. Paun, and G. Rozenberg, editors,Jewels are
Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
262–272. Springer, 1999.

36. E. Rips and Z. Sela. Canonical representatives and equations in hyperbolic groups.Inven-
tiones Mathematicae, 120:489–512, 1995.

37. W. Rytter. Compressed and fully compressed pattern matching in oneand two dimensions.
Proceedings of the IEEE, 88(11):1769–1778, 2000.

38. S. Schleimer. Polynomial-time word problems. Technical report, arXiv.org, 2006.
http://arxiv.org/abs/math.GR/0608563.

39. H. Servatius. Automorphisms of graph groups.Journal of Algebra, 126(1):34–60, 1989.
40. H.-U. Simon. Word problems for groups and contextfree recognition. In Proceedings of

Fundamentals of Computation Theory (FCT’79), Berlin/Wendisch-Rietz (GDR), pages 417–
422. Akademie-Verlag, 1979.

25

41. J. Stillwell. Classical Topology and Combinatorial Group Theory (2nd edition). Springer,
1995.

42. C. Wrathall. The word problem for free partially commutative groups. Journal of Symbolic
Computation, 6(1):99–104, 1988.

26

