
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS

DIETRICH KUSKE AND MARKUS LOHREY

Abstract. For automatic and recursive graphs, we investigate the following problems:

(A) existence of a Hamiltonian path and existence of an infinite path in a tree

(B) existence of an Euler path, bounding the number of ends, and bounding the number

of infinite branches in a tree

(C) existence of an infinite clique and an infinite version of set cover

The complexity of these problems is determined for automatic graphs and, supplementing

results from the literature, for recursive graphs. Our results show that these problems

(A) are equally complex for automatic and for recursive graphs (Σ1
1-complete),

(B) are moderately less complex for automatic than for recursive graphs (complete for

different levels of the arithmetic hierarchy),

(C) are much simpler for automatic than for recursive graphs (decidable and Σ1
1-complete,

resp.).

§1. Introduction. The theory of recursive structures has its origins in com-
putability theory. A structure is recursive, if its domain is a recursive set of
naturals, and every relation is again recursive. Starting with the work of Man-
aster and Rosenstein [32] and Bean [2, 3], infinite variants of classical graph
problems for finite graphs were studied for recursive graphs. It is not surprising
that these problems are mostly undecidable for recursive graphs. This motivates
the search for the precise level of undecidability. It turned out that some of
the problems reside on low levels of the arithmetic hierarchy (e.g., existence of
an Euler path belongs to Σ0

4 [14]), whereas others are complete for Σ1
1 (e.g.,

existence of a Hamiltonian path [18]) – the first level of the analytic hierarchy.
In computer science, in particular in the area of automatic verification, focus

has shifted in recent years from arbitrary recursive graphs to subclasses that
have more amenable algorithmic properties. An important example for this is
the class of automatic graphs [7, 8, 21]. A graph is called automatic if its sets of
nodes and edges can be accepted by finite automata (with synchronously mov-
ing heads). One of the main motivations for investigating automatic graphs is
the fact that every automatic graph has a decidable first-order theory [21], this
result extends to first-order logic with infinity and modulo quantifiers [8, 24].
Hence, in some sense, automatic structures are “simple”. On the other hand,

1991 Mathematics Subject Classification. This is not required.
Key words and phrases. This is not required.

The second author acknowledges support from the DFG-project GELO.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 DIETRICH KUSKE AND MARKUS LOHREY

Khoussainov, Nies, and Rubin have shown that the isomorphism problem for
automatic graphs is Σ1

1-complete [22], i.e., this problem has the maximal pos-
sible complexity. For locally finite automatic graphs, the isomorphism problem
becomes Π3

0-complete [35]. Khoussainov and Minnes proved that also model
theoretically, automatic structures can be rather complex [20].

In this paper, we are interested in the question whether natural graph prob-
lems are simpler for automatic graphs than for recursive graphs, or whether the
complexity is the same? From our results it will become clear that there is no
general answer to this question. We will encounter three different scenarios:

(A) Section 3 exhibits two natural problems that are known to be Σ1
1-complete

for recursive graphs, and that remain so for automatic graphs. These prob-
lems are the existence of a Hamiltonian path and existence of an infinite
branch in a successor tree. In these cases, we strengthen known Σ1

1-lower
bounds from recursive to automatic graphs.

(B) Section 4 presents problems that are moderately less complex for automatic
than for recursive graphs. More specifically, we show that existence of an
Euler path is D0

3-complete (D0
3 is the class of all set differences of two Σ0

3-
sets) for recursive graphs, but only Π0

2-complete for automatic graphs. For
recursive graphs, upper and lower bounds of Σ0

4 and Π0
3 were stated in [14].

A similar situation occurs when we ask for the number of ends, an im-
portant concept in combinatorial group theory, see e.g. [9]. The number
of ends of a graph is the supremum of the number of infinite connected
components that remain after removing an arbitrary finite set of edges. We
prove that existence of at most k ends is Π0

3-complete for recursive graphs
and only Π0

2-complete for automatic graphs (the undecidability for k = 1
and automatic graphs was shown in [31]).

Finally, also estimating the number of infinite branches in a finitely branch-
ing tree follows the same pattern of becoming moderately simpler: for any
k > 0, existence of at most k infinite branches drops from Π0

3-completeness
(for recursive trees) to Π0

2-completeness (for automatic trees), and exis-
tence of infinitely many infinite branches drops from Π0

4-completeness to
Π0

3-completeness.
(C) Finally, Section 5 demonstrates how natural problems that are Σ1

1-complete
for recursive graphs become decidable for automatic graphs. This is known
to be the case for the existence of an infinite branch in an order tree [26, 23]
and, more generally, for the infinite clique problem [19, 34]. We present one
more problem with this status, which is an infinitary version from [19] of
the classical set cover problem. For this decidability result, we present a
fragment FSO of second order logic that is decidable for automatic graphs.
The idea of this fragment is that second order quantification ∃X : α is only
allowed if α requires X to be infinite and contains membership statements
y ∈ X only negatively. Although this is quite restrictive, it suffices to handle
the three problems mentioned above.

Most of the results in this paper were announced in the extended abstracts [30,
28].

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 3

REC = ∆0
1

Σ0
1

Π0
1

D0
1 ∆0

2

Σ0
2

Π0
2

D0
2 ∆0

3

Σ0
3

Π0
3

D0
3 ∆0

4
. . . Σ1

1

Figure 1.

§2. Preliminaries.

2.1. Recursion theory. Details on the arithmetical and analytical hierarchy
can be found for instance in [26, 27, 33]. With Σ0

n we denote the nth (existential)
level of the arithmetical hierarchy; it is the class of all subsets A ⊆ N such that
there exists a decidable predicate P ⊆ N

n+1 with

A = {a ∈ N | ∃x1∀x2 · · ·Qxn : (a, x1, . . . , xn) ∈ P},

where Q = ∃ (Q = ∀) for n odd (even). The set of complements of Σ0
n-sets is

denoted by Π0
n. Moreover, the class D0

n consists of all sets K \L for K,L ∈ Σ0
n,

i.e., it is the class of all intersections of a Σ0
n-set and a Π0

n-set.
Recall that Σ1

1 is the first level of the analytical hierarchy. More precisely,
it is the class of all subsets of N of the form {n ∈ N | ∃A ⊆ N : ϕ(A,n)},
where ϕ(A,n) is a formula of first-order arithmetic, which may use A as a unary
predicate.

The inclusion between the above classes are depicted in Fig. 1, where REC
denotes the class of recursive sets and ∆0

n = Σ0
n ∩ Π0

n. All inclusions are known
to be strict and also the union of all arithmetical classes is properly contained
in Σ1

1.
If not otherwise stated, a Turing machine is always a deterministic Turing

machine M that accepts by halting; its language is denoted by L(M). We
identify a Turing machine with its Gödel-index with respect to some fixed Gödel
numbering of Turing machines. We use the following classes of Turing machines;
cf. [27] for the completeness results:

1. TOTAL denotes the class of Turing machines that halt on every input. This
set TOTAL is Π0

2-complete.
2. FIN denotes the class of Turing machines that halt for only finitely many

inputs. This set FIN is Σ0
2-complete.

3. COF denotes the class of Turing machines that halt for almost all inputs
(i.e., diverge for only finitely many inputs). This set COF is Σ0

3-complete.
4. COF denotes the class of Turing machines that diverge for infinitely many

inputs. Since COF is the complement of COF, this set COF is Π0
3-complete.

2.2. Infinite graphs. For details on graph theory see [10]. A directed graph
is a pair (V,E) where V is the possibly infinite set of nodes and E ⊆ V × V is
the set of edges with u 6= v for all edges (u, v) ∈ E. An undirected graph is a

pair G = (V,E), where V is the (possibly infinite) set of nodes and E ⊆
(

V
2

)

is the set of edges. In the following, when just speaking of a graph, we always
mean an undirected graph. For a directed graph G = (V,E), we denote by G its
undirected version (V, {{u, v} | (u, v) ∈ E}).

4 DIETRICH KUSKE AND MARKUS LOHREY

Let G = (V,E) be a graph. If {u, v} ∈ E, then we say that u and v are
neighbors. The order of a vertex v ∈ V is the number of its neighbors. The degree
of a graph G is the supremum of the orders of its vertices; if this supremum is
finite, we say the graph has bounded degree. If it is only required that every
node has finite order, then G is called locally finite. The graph G is planar if
it can be embedded in the Euclidean plane without crossing edges and without
accumulation points.

A finite path in a directed (resp. undirected) graph G = (V,E) is a sequence
[v1, v2, . . . , vn] of nodes such that (vi, vi+1) ∈ E (resp. {vi, vi+1} ∈ E) for all
1 ≤ i < n; it is simple if the nodes v1, . . . , vn are mutually distinct. The nodes
v1 and vn are the end points of this path. An infinite (simple) path in G is an
infinite sequence [v1, v2, . . .] such that every initial segment is a finite (simple)
path.

A graph G = (V,E) is connected if for all u, v ∈ V distinct there exists a
finite path with end points u and v. A directed graph G is connected if G is
connected. For a set of edges H ⊆ E of G = (V,E), let f(H) be the number
of infinite connected components of (V,E \ H). The number of ends of G is
the maximum of all f(H) for H ⊆ E finite (if this maximum exists) and ∞
otherwise.

An Euler path of an infinite undirected graph G is an infinite path [v1, v2, . . .]
in G that passes every edge of G exactly once, i.e., the mapping i 7→ {vi, vi+1}
is a bijection from N onto the set of edges E. A graph with an Euler path is
called Eulerian.1 Euler’s well-known characterization of Eulerian finite graphs
[12] was extended by Erdős, Grünwald, and Vazsonyi as follows:

Theorem 2.1 ([11]). An infinite countable graph G = (V,E) without isolated
nodes is Eulerian if and only if it satisfies the following conditions:

(1) G is connected.
(2) G has a vertex of odd or infinite order.
(3) G has at most one vertex of odd order.
(4) G has only one end.

The restriction on graphs without isolated vertices can easily be lifted:

Corollary 2.2. An infinite countable graph G = (V,E) is Eulerian if and
only if it satisfies the following conditions:

(E1) G is edge-connected (i.e., for any two edges {u, v}, {u′, v′} ∈ E, there exists
a path with end points u and u′).

(E2) G has a vertex of odd or infinite order.
(E3) G has at most one vertex of odd order.
(E4) G has only one end.

Proof. First let P be an Euler path in G and let V ′ ⊆ V denote the set of
non-isolated vertices of G. Since P is an Euler path, the set V ′ is infinite and
P is an Euler path in the graph G′ = (V ′, E) that therefore satisfies (1-4) from
Theorem 2.1. Now (E1-4) follow immediately from (1-4).

1Note that every Eulerian path has infinitely many edges.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 5

. . .

.

.

.

Figure 2. A comb with one infinite tooth, the only spine is
the horizontal ray.

Conversely suppose G satisfies (E1-4) and let V ′, as before, be the set of non-
isolated vertices. If G has a vertex of infinite order, then V ′ is infinite. If G is
locally finite, it has (by (E2) and (E3)) a unique node of odd degree. But then
G has infinitely many edges implying that V ′ is infinite. Since G satisfies (E1-4),
the infinite graph (V ′, E) satisfies (1-4) from Theorem 2.1 and has therefore an
Euler path P which is also an Euler path of G. ⊣

A successor tree is a directed graph T = (V,E) such that there exists a root
node r ∈ V with the following properties:

• There does not exist v ∈ V with (v, r) ∈ E.
• For every v ∈ V there exists a unique path with end points r and v.

T is n-branching (n ∈ N) if |{w ∈ V | (v, w) ∈ E}| ≤ n for all v ∈ V ; it is finitely
branching if {w ∈ V | (v, w) ∈ E} is finite for all v ∈ V . An infinite branch in
T is an infinite path [v0, v1, v2, . . .] in T , where v0 is the root node of T . If T
is a finitely branching successor tree, then the number of infinite branches of T
equals the number of ends of the undirected graph T .2 A comb is a 2-branching
successor tree that has an infinite branch containing all the branching points
(i.e., all those vertices u with two distinct vertices v, w with (u, v), (u,w) ∈ E);
any such infinite branch is called a spine, the complement of a (fixed) spine is
formed of the teeth. Note that a comb may have at most two spines. Fig. 2
shows a comb.

An order tree is a partial order (A,�) such that there exists a least element
r ∈ A and the set {a ∈ A | a � b} is finite and linearly ordered for every b ∈ A.
Alternatively, an order tree can be defined as the reflexive transitive closure of
a successor tree. In the following, when we just speak of a tree, we always mean
a successor tree.

Recall that a Hamiltonian path in a finite graph G is a finite path in G that
visits every node of G exactly once. A Hamiltonian path of an infinite graph
G is an infinite path in G that visits every node of G exactly once. In other
words, it is an infinite path [v1, v2, . . .] such that the mapping i 7→ vi (i ∈ N) is
a bijection from N onto the set of nodes. Some authors call a Hamiltonian path

2This is false for arbitrary trees. A tree T may have infinitely many ends but not a single
infinite branch.

6 DIETRICH KUSKE AND MARKUS LOHREY

of an infinite graph G a spanning ray of G. References on some graph theoretic
results on Hamiltonian paths in infinite graphs can be found in [10].

2.3. Recursive graphs and automatic graphs. A recursive (directed)
graph is a (directed) graph G = (V,E) such that V and E are recursive subsets

of N and
(

N

2

)

or N
2, respectively. In case G is infinite, one can w.l.o.g. assume

that V = N. A recursive graph is highly recursive if it is locally finite and for
every node v one can compute a list of v’s finitely many neighbours. We will also
consider a class of graphs in-between recursive and highly recursive graphs: A
graph (V,E) is very recursive if (i) it is recursive and (ii) one can compute, from
a node v, its order (which may be ∞). Note that G is highly recursive if and
only if it is very recursive and locally finite (it does not suffice to require G to
be recursive and locally finite). A recursive directed graph G is highly recursive
if the graph G is highly recursive.

Next we introduce automatic graphs, more details can be found in [21, 8]. Let
us fix n ∈ N and a finite alphabet Γ. Let # 6∈ Γ be an additional padding symbol.
For words w1, w2, . . . , wn ∈ Γ∗ we define the convolution w1 ⊗ w2 ⊗ · · · ⊗ wn,
which is a word over the alphabet (Γ∪{#})n, as follows: Let wi = ai,1ai,2 · · · ai,ki

with ai,j ∈ Γ and k = max{k1, . . . , kn}. For ki < j ≤ k define ai,j = #.
Then w1 ⊗ · · · ⊗ wn = (a1,1, . . . , an,1) · · · (a1,k, . . . , an,k). Thus, for instance
aba ⊗ bbabb = (a, b)(b, b)(a, a)(#, b)(#, b). An n-ary relation R ⊆ (Γ∗)n is called
automatic if the language {w1 ⊗ · · · ⊗ wn | (w1, . . . , wn) ∈ R} is a regular
language.

Now let A = (A, (Ri)i∈J) be a relational structure with finitely many relations,
where Ri ⊆ Ani . A tuple (Γ, L, h) is called an automatic presentation for A if

• Γ is a finite alphabet,
• L ⊆ Γ∗ is a regular language,
• h : L → A is a surjective function,
• the relation {(u, v) ∈ L × L | h(u) = h(v)} is automatic, and
• the relation {(u1, . . . , uni

) ∈ Lni | (h(u1), . . . , h(uni
)) ∈ Ri} is automatic

for every i ∈ J .

This presentation is called injective, if h is injective (and hence bijective). We
say that A is automatic if there exists an automatic presentation for A. It
is known that every automatic structure has an injective automatic presenta-
tion [21]. Since directed graphs are relational structures (with one binary rela-
tion), this defines the notion of an automatic directed graph. A graph (V,E) is
automatic if the directed graph (V, {(u, v) ∈ V 2 | {u, v} ∈ E}) is automatic.

In contrast to recursive graphs, automatic graphs have some nice algorithmic
properties. In [21] it was shown that every first-order definable relation in an
automatic structure is effectively automatic (this result extends to first-order
logic with infinity and modulo quantifiers [8, 24]). Hence, the first-order theory
of every automatic structure is decidable. If (V,E) is an automatic graph, then
for a given node v ∈ V one can effectively compute a finite automaton that
accepts the set of neighbours of v. Thus, an automatic graph is very recursive.
In contrast to these positive results, several strong undecidability results (see
e.g. [22, 35]) show that algorithmic methods for automatic structures are still
quite limited.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 7

A notational remark. A recursive (directed) graph G is determined by a pair
of (Gödel indices of) Turing machines that decide the set of nodes and the set of
edges, respectively, of G. A highly recursive (directed) graph G is given by (the
Gödel index of) a Turing machine M that, on input of n ∈ N, decides whether
n is a node of G and in the positive case computes a tuple of the neighbors of n
in G. Finally, an automatic directed graph is given by (a natural number that
encodes) two finite automata that accept the set of nodes and edges, respectively.

In the following, we will often make statements like “For graphs from X,
property Y belongs to C” or “ . . . is C-hard” where X is a class of graphs and
C is some class from the arithmetical/analytical hierarchy. Formally, the first
means “There is a set L ∈ C such that for every input M that describes a graph
G ∈ X, we have M ∈ L iff G has property Y ”. Similarly, the second means “For
all L ∈ C, there exists a computable function f such that, for all inputs w, f(w)
describes a graph G ∈ X, and w ∈ L iff G has property Y ”.

Finally, we will always identify a finitary object (like words, tuples of words,
Turing machines etc) with its Gödel number.

§3. Σ1
1-complete problems. In this section we will concentrate on auto-

matic graphs. For two classical problems, which are known to be Σ1
1-complete

for recursive graphs, we will prove Σ1
1-completeness also for automatic graphs.

In Section 3.1 we show that the existence of a Hamiltonian path in an automatic
graph (which can even be assumed to be planar and of bounded degree) is Σ1

1-
complete. Finally, in Section 3.2 we prove Σ1

1-completeness for the existence of
an infinite path in an automatic (successor) tree.

3.1. Hamiltonicity for planar automatic graphs of bounded degree.

For recursive graphs, the following is known

Theorem 3.1. The existence of a Hamiltonian path is Σ1
1-complete for the

following classes of graphs:

• highly recursive graphs of bounded degree (Harel [18])
• planar recursive graphs (Hirst and Harel [19])

The aim of this section is to extend the results from [18, 19] to the class of
planar automatic graphs of bounded degree. More precisely, we will prove:

Theorem 3.2. For planar automatic graphs of bounded degree, the existence
of a Hamiltonian path is Σ1

1-complete.

Since every automatic graph of bounded degree is highly recursive, this will
imply that the problem is still Σ1

1-complete for the intersection of the two classes
in Theorem 3.1.

Note that the upper bound Σ1
1 in Theorem 3.2 follows immediately from the

corresponding result for general recursive graphs (Theorem 3.1). For the lower
bound we will use a special variant of the tiling problem [5, 37] that was intro-
duced by Harel.

3.1.1. Tilings. Our main tool for proving Σ1
1-hardness of the existence of a

Hamiltonian path in planar automatic graphs of bounded degree is the recurring
tiling problem [16, 17]:

8 DIETRICH KUSKE AND MARKUS LOHREY

tN

tW

tS

tE

Figure 3. A tile

An instance of the recurring tiling problem consists of (i) a finite set of colors
C = {c0, c1, . . . , cn}, (ii) a distinguished color c0, and (iii) a set T ⊆ C4 of tile
types. For a tile type t ∈ T we write t = (tW , tN , tE , tS) (“W” for west, “S” for
south, “N” for north, “E” for east), see Fig. 3 for a visualization.

A mapping f : N
2 → T is an admissible tiling if, for every (i, j) ∈ N

2, we
have f(i, j)N = f(i + 1, j)S and f(i, j)E = f(i, j + 1)W . A recurring tiling is an
admissible tiling f such that for infinitely many j ∈ N, we have f(0, j)S = c0.
Now the recurring tiling problem asks whether a given problem instance has a
recurring tiling. Harel has shown the following result:

Theorem 3.3 ([16]). The recurring tiling problem is Σ1
1-complete.

The recurring tiling problem turned out be very useful for proving certain
satisfiability problems in logic to be hard for Σ1

1 [15].
In the rest of Section 3.1, we will reduce the recurring tiling problem to the

existence of a Hamiltonian path in a planar automatic graph of bounded degree.
This proves Theorem 3.2 by Theorem 3.3.

3.1.2. Building blocks. Let us first introduce several building blocks (gad-
gets) from which we will assemble our final planar automatic graph of bounded
degree. These building blocks are variants of graphs taken from the NP-hardness
proof for the Hamiltonian path problem in finite planar graphs [13].
Exclusive or. Consider the finite plane graph X in Fig. 4 (first picture). It
has a Hamiltonian path from u1 to u2 (and similarly from v1 to v2) indicated
in the second picture. Now suppose G′ is some graph containing the edges u′

and v′. Then we build a graph G as follows: in the disjoint union of G′ and X,
delete the edges u′ and v′ and connect their endpoints to u1 and u2 (to v1 and
v2, resp., see Fig. 4, third picture). Now suppose H is a Hamiltonian path in G
with no endpoint in X. Suppose u1 is the first vertex from X in H. Then the
restriction of H to X has to coincide with the Hamiltonian path from u1 to u2.
Hence H gives rise to a Hamiltonian path H ′ in G′ that coincides with H on G
but passes through the edge u′ instead of taking the detour through X. Note
that H ′ cannot contain the edge v′. Conversely, every Hamiltonian path H ′ of
G′ that contains the edge u′ but not the edge v′ induces a Hamiltonian path H
of G in a similar way. Joining X to the graph G′ in this manner restricts the
Hamiltonian paths to those that either contain the edge u′ or the edge v′, but
not both. This also explains the name X: this graph acts as an “exclusive-or”.
Note that, if G′ is planar and the two edges u′ and v′ belong to the same face,

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 9

u1 u2

v1 v2

u1 u2

v1 v2

u1 u2

v1 v2

u′
1 u′

2

v′
1 v′

2

u′

v′

u′
1 u′

2

v′
1 v′

2

u′

v′

×

Figure 4. The graph X, its use and abbreviation

then also G is planar. Since we will make repeated use of this construction, we
abbreviate it as in Fig. 4, fourth picture.
Boolean functions. In the following, we abbreviate the interval {1, . . . , n}
with [n]. Let f : {0, 1}n → {0, 1} be a Boolean function. Then [13] constructs
a planar graph (V,E) together with distinguished edges e1, . . . en ∈ E such that
f(b1, . . . , bn) = 1 iff (V,E) has a Hamiltonian cycle H with {i ∈ [n] | bi = 1} =
{i ∈ [n] | ei ∈ H}. Since the graph can be constructed in polynomial time from
a Boolean formula in 3CNF, NP-completeness of the existence of a Hamiltonian
path follows. Here, we modify the construction from [13] slightly in order to
place the edges ei and two vertices u and v in a specified order at the boundary
of the outer face of (V,E).

Theorem 3.4. There exists a constant c such that for given k, ℓ, n ∈ N and
F ⊆ 2[k+ℓ+n], a finite plane graph GF of degree at most c with the following
properties can be constructed:

(1) At the boundary of the outer face, we find (in this counter-clockwise or-
der) edges e1, . . . ek, a vertex u, edges ek+1, . . . , ek+ℓ, a vertex v, and edges
ek+ℓ+1, . . . , ek+ℓ+n.

(2) For every M ⊆ [k + ℓ + n], M ∈ F iff there is a Hamiltonian path H from
u to v in GF such that M = {i | ei belongs to H}.

Proof. First, the lemma is shown for k = n = 0. To achieve this, build a
propositional formula ϕ with variables x1, . . . , xℓ that describes the set F (i.e.,
ϕ(b1, . . . , bℓ) = 1 iff {i | bi = 1} ∈ F). To this formula, apply the construction
from [13] whose result G is depicted at [13, page 711]. We simplify this graph
as follows: for each variable xi, the graph G contains the left graph from Fig. 5.
Replace this occurrence by the right graph from Fig. 5. The resulting graph

10 DIETRICH KUSKE AND MARKUS LOHREY

vi1

vi4

xi

xi

×

×

×

vi1

ui

vi4

xi

xi

×

×

Figure 5. Simplification of the graph from [13]

is GF . Then the proof from [13] yields for all M ⊆ [ℓ]: M ∈ F iff GF has a
Hamiltonian cycle C such that M = {i | C passes through the edge labeled xi}.

Let ei denote the edge labeled xi, let v = v11 and u = u1. From [13, page 711]
one observes that G has a face whose boundary contains all the edges ei and
the vertices vi1 and we can assume that they appear in counter-clockwise order
e1, e2, . . . , eℓ. Considering this face as the outer face, we obtain the picture from
Fig. 6 (for ℓ = 6) where the boundary of the outer face is indicated.

Now consider the general case k, ℓ, n ≥ 0. Then the above construction yields a
graph G0 satisfying (2) for the tuple (0, k+ℓ+n, 0) (see Fig. 6 for k = ℓ = n = 2).
The construction of GF from this graph is indicated in Fig. 7. Note that in the
graph GF , along the boundary of the outer face, we find in counter-clockwise
order the edges and nodes

e′1, e
′
2, . . . , e

′
k, u′, e′k+1, e

′
k+2, . . . , e

′
k+ℓ, v

′, e′k+ℓ+1, e
′
k+ℓ+2, . . . , e

′
k+ℓ+n .

First, let H be a Hamiltonian path from u′ to v′ in GF . Consider some i with
1 ≤ i ≤ k or k + ℓ < i ≤ k + ℓ + n. Then the path H contains the edge e′i iff
it contains the edge ei (more precisely, iff it enters and leaves the corresponding
copy of the XOR-graph X from the endpoints of the edge ei). In addition, the
restriction H0 of H to G0 is a Hamiltonian path from u to v in G0. Hence
we have {i | e′i belongs to H} = {i | ei belongs to H0} ∈ F . Conversely let
M ∈ F . Then there exists a Hamiltonian path H0 from u to v in G0 such
that M = {i | ei belongs to H0}. This path can be extended uniquely to a
Hamiltonian path H from u′ to v′ in GF such that e′i belongs to H iff ei belongs
to H0. Hence we get M = {i | e′i belongs to H}. ⊣

Infinity checking. Next consider Fig. 8 – it depicts a graph A that is connected
to some context via the edges a, b, ℓ, ℓ′, r, and r′. If the complete graph has a
Hamiltonian path, then locally, it has to be of one of the four forms depicted in
Fig. 9.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 11

u

e1

e2

e3 e4

e5

e6

v

Figure 6. Graph G0 from the proof of Thm. 3.4

u

e1

e2

e3

e′3

e4

e′4

e5

e6

v

e′1

e′2

u′

×

×

e′6

e′5

v′

×

×

Figure 7. Graph G from the proof of Thm. 3.4

ℓ r

a b

ℓ′ r′
A

ℓ r

ℓ′ r′

a b

Figure 8. The graph A and its abbreviation

Now consider Fig. 10, where we define a planar graph L that consists of in-
finitely many copies of the graph A arranged in a line. Suppose L is part of a
graph G such that only the a-edges and b-edges of the copies of A connect L and
its infinite complement in G. Suppose furthermore that G has a Hamiltonian
path H. Then H has to enter and leave L infinitely often. Since the possibilities
to pass A are restricted as shown in Fig. 9, any such visit has to look as described
in Fig. 11, i.e., the path enters from a into some copy of A, moves left to some
copy of A (possibly without doing any step), moves all the way back until it
leaves the initial A-copy via its b-edge.

12 DIETRICH KUSKE AND MARKUS LOHREY

ℓ r

a b

ℓ′ r′

ℓ r

a b

ℓ′ r′

ℓ r

a b

ℓ′ r′

ℓ r

a b

ℓ′ r′

Figure 9. Paths through the graph A

A A A A

Figure 10. The infinite graph L

A A A A

Figure 11. A visit of a Hamiltonian path to the graph L

3.1.3. Assembling. From an instance of the recurring tiling problem, we
construct in this section a planar graph G of bounded degree that has a Hamil-
tonian path iff the instance of the recurring tiling problem admits a solution. In
the next section, we will argue that G is automatic.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 13

G1

v

u

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn

G2

u v

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn

G3

u

v

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn

G4

v

u

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn

Figure 12. The graphs Gx

So, we fix a finite set C = {c0, c1, . . . , cn} of colors, a distinguished color c0,
and a set T ⊆ C4 of tile types.

Next let

V = {W0,W1, . . . ,Wn, S0, S1, . . . , Sn, N0, N1, . . . , Nn, E0, E1, . . . , En}.

We will describe tile types by certain subsets of V where Wi expresses that the
left color is ci, and Ni denotes that the top color is not ci (Si and Ei refer to
the bottom and right color and are to be understood similarly). More precisely,
the tile d = (ci, cj , ck, cℓ) is denoted by the set

Sd = {Wi} ∪ {Nm | m 6= j} ∪ {Em | m 6= k} ∪ {Sℓ} .

Now let F = {Sd | d ∈ T } be the descriptions of all the tile types d in T . Then,
by Theorem 3.4, there are finite plane graphs G1, G2, G3, and G4 with the
following properties:

1. at the outer face, we find edges e for e ∈ V and nodes u and v in the order
indicated in Fig. 12

2. M ∈ F iff there exists a Hamiltonian path H of Gx from u to v such that
M = {v ∈ V | v belongs to H} (for all 1 ≤ x ≤ 4 and M ⊆ V).

Next we choose mutually disjoint graphs G(k, ℓ) (for k, ℓ ∈ N) such that

G(k, ℓ) ∼=

G1 if k + ℓ is even and k > 0

G2 if k + ℓ is odd and ℓ = 0

G3 if k + ℓ is odd and ℓ > 0

G4 if k + ℓ is even and k = 0 ,

14 DIETRICH KUSKE AND MARKUS LOHREY

G4

G2

G1

G2

G1

G3

G1

G3

G1

G3

G4

G3

G1

G3

G1

G3

G1

G3

G1

G3

G4

G3

G1

G3

G1

Figure 13. First step in global construction - the graph G1

see Fig. 13 where the square that is reached by going k steps up and ℓ steps to
the right represents G(k, ℓ).

Then u(k, ℓ) and v(k, ℓ) refer to the nodes u and v of the graph G(k, ℓ); sim-
ilarly, e(k, ℓ) for e ∈ V refers to the edge e of the graph G(k, ℓ). In the disjoint
union of these graphs G(k, ℓ), we connect the node v(k, ℓ) by a new edge with
the following node:

u(k + 1, ℓ) for k + ℓ even and ℓ = 0

u(k + 1, ℓ − 1) for k + ℓ even and ℓ > 0

u(k − 1, ℓ + 1) for k + ℓ odd and k > 0

u(k, ℓ + 1) for k + ℓ odd and k = 0

The result G1 of this construction is visualized in Fig. 13 where the vertices
u(k, ℓ) are denoted by empty nodes and v(k, ℓ) by filled nodes.

Next, for all k, ℓ ∈ N and 0 ≤ i ≤ n, we replace the edges Ei(k, ℓ) and Wi(k, ℓ+
1) by a copy of the exclusive-or graph X. Similarly, the edges Ni(k, ℓ) and
Si(k+1, ℓ) are replaced by a copy of the graph X, see Fig. 14 for a visualization.
We denote the resulting graph with G2.

In a third step, we add to G2 the graph L from Fig. 10. To connect it to the
graph constructed so far, the start node of the edge a of the ith copy of A in L
is the left node of the edge S0(0, i); analogously, the start node of b is the right
node of S0(0, i). The resulting graph is referred to as G3.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 15

S0 S1

E0

E1

W0

W1

N0 N1

S0 S1

E0

E1

W0

W1

N0 N1

S0 S1

E0

E1

W0

W1

N0 N1

S0 S1

E0

E1

W0

W1

N0 N1

S0 S1

E0

E1

W0

W1

N0 N1

× ×

× ×

×

×

×

×

Figure 14. Second step in global construction – the graph G2

(for two colors c0 and c1)

Finally, we add to G3 a new node ⊥ together with an edge between ⊥ and
u(0, 0). Since this is really the final graph, we call it G.

We now claim that the constructed graph G has a Hamiltonian path if and
only if the set of tile types T admits a recurring tiling. First suppose there is
a recurring tiling f : N × N → T . Let k, ℓ ∈ N and f(k, ℓ) = (cW , cN , cE , cS).
Then the graph G(k, ℓ) ∈ {Gx | 1 ≤ i ≤ 4} has a Hamiltonian path H(k, ℓ) from
u(k, ℓ) to v(k, ℓ) such that for all 1 ≤ i ≤ n

1. the edge Si belongs to H(k, ℓ) iff cS = ci,
2. the edge Wi belongs to H(k, ℓ) iff cW = ci,
3. the edge Ni belongs to H(k, ℓ) iff cN 6= ci, and
4. the edge Ei belongs to H(k, ℓ) iff cE 6= ci.

Then we find a Hamiltonian path H1 of the infinite graph G1 in Fig. 13 by
concatenating these Hamiltonian paths suitably:

H1 = H(0, 0),H(1, 0),H(0, 1),H(0, 2),H(1, 1),H(2, 0) . . .

16 DIETRICH KUSKE AND MARKUS LOHREY

Since the tiling f is admissible, we get

Ei(k, ℓ) /∈ H1 ⇐⇒ f(k, ℓ)E = ci

⇐⇒ f(k, ℓ + 1)W = ci

⇐⇒ Wi(k, ℓ + 1) ∈ H1

and similarly Ni(k, ℓ) /∈ H1 iff Si(k + 1, ℓ) ∈ H1. Hence the Hamiltonian path
H1 can be extended to a Hamiltonian path H2 of the graph G2 obtained from
G1 by adding all the copies of the exclusive-or graph X. Observe also that f
is recurring, i.e., there are infinitely many ℓ ∈ N with f(0, ℓ)S = c0. For every
such ℓ, the path H1 passes through the edge S0(0, ℓ). Instead of passing through
this edge, we now enter the graph L (Fig. 10) via the edge a of the ℓth copy of
A and leave it via its edge b. We can ensure that after this visit, all nodes of
L to the left of the ℓth copy of A have been visited (cf. Fig. 11). This results
in a Hamiltonian path H3 of the graph G3 starting in u(0, 0). Prepending the
node ⊥ gives a Hamiltonian path H of the final graph G.

Conversely, let H be a Hamiltonian path of the final graph G. Since ⊥ has
degree 1, it has to start in ⊥ – deleting ⊥ from H gives a Hamiltonian path H3 of
G3 that starts in u(0, 0). Since G3 contains infinitely many nodes outside of L,
this path has to enter and leave L infinitely often. Any such visit has to enter
via the edge a of some copy of A and leave via the edge b of the same copy of A
(or vice versa, see Fig. 11). Hence, deleting all the vertices of L from the path H,
we obtain a Hamiltonian path H2 of the graph G2 that contains infinitely many
edges of the form S0(0, ℓ). Recall that G2 is obtained from G1 by replacing some
pairs of edges by the exclusive-or graph X. Hence, the restriction of H2 to the
nodes of G1 gives rise to a Hamiltonian path H1 of G1 that

(a) contains infinitely many edges of the form S0(0, ℓ),
(b) contains the edge Wi(k, ℓ + 1) iff it does not contain the edge Ei(k, ℓ), and
(c) contains the edge Si(k + 1, ℓ) iff it does not contain the edge Ni(k, ℓ)

for all 0 ≤ i ≤ n and k, ℓ ∈ N. Since H1 has to pass through all the graphs
G(k, ℓ), it has to be of the form

H(0, 0),H(1, 0),H(0, 1),H(0, 2),H(1, 1),H(2, 0) . . .

where H(k, ℓ) is a Hamiltonian path of the graph G(k, ℓ) from u(k, ℓ) to v(k, ℓ).
Now we are ready to define the mapping f : N

2 → C4: set

(1) f(k, ℓ)W = ci iff H(k, ℓ) contains the edge Wi(k, ℓ),
(2) f(k, ℓ)N = ci iff H(k, ℓ) does not contain the edge Ni(k, ℓ),
(3) f(k, ℓ)E = ci iff H(k, ℓ) does not contain the edge Ei(k, ℓ), and
(4) f(k, ℓ)S = ci iff H(k, ℓ) contains the edge Si(k, ℓ).

Since H(k, ℓ) is a Hamiltonian path of G(k, ℓ) from u(k, ℓ) to v(k, ℓ), we get
f(k, ℓ) ∈ T from the construction of the graphs G1, G2, G3, G4. We get

f(k, ℓ)E = ci

(3)
⇐⇒ Ei(k, ℓ) does not belong to H(k, ℓ)

(b)
⇐⇒ Wi(k, ℓ + 1) belongs to H(k, ℓ + 1)

(1)
⇐⇒ f(k, ℓ + 1)W = ci

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 17

and similarly f(k, ℓ)N = f(k + 1, ℓ)S follows from (2), (c), and (4). Thus, f
is an admissible tiling. Since H1 contains infinitely many edges of the form
S0(0, ℓ), there are infinitely many ℓ ∈ N such that S0(0, ℓ) belongs to H(0, ℓ),
i.e., f(0, ℓ)S = c0.

Thus, we showed that indeed the graph G contains a Hamiltonian path iff the
set of tiles T admits a recurring tiling.

Remark 3.5. There also exists the variant of two-way Hamiltonian paths in
infinite graphs. A two-way Hamiltonian path in G = (V,E) is a two-way in-
finite sequence p = [. . . , v−1, v0, v1, . . .] such that (vi, vi+1) ∈ E for all i ∈ Z

and for every node v ∈ V there exists exactly one i ∈ Z such that v = vi.
From the previous construction, it follows that also the question whether a given
planar automatic graph of bounded degree has a two-way Hamiltonian path is
Σ1

1-complete. Take the disjoint union of two copies of our main graph G and
connect the two ⊥-nodes with an edge. The resulting graph G′ has a two-way
Hamiltonian path if and only if G has a (one-way) Hamiltonian path. Moreover,
since G is automatic (see next Section), and the class of automatic graphs is
closed under disjoint unions and finite distortion, G′ is automatic as well.

3.1.4. G is automatic. Clearly, the graph G constructed in the previous
section is planar and has bounded degree. So, it remains to prove that it is
automatic.

Note that the graph G has a highly regular structure. It results from the
infinite grid N×N by replacing each grid point by a finite graph and connecting
these finite graphs in a regular pattern. It is not surprising that such a graph
is automatic, in particular since the grid is automatic. In this section, we will
provide some more formal arguments for the automaticity of G.

Recall that G can be obtained from N × N by replacing every grid point
(k, ℓ) ∈ N × N by a finite graph G′(k, ℓ). This graph is one of the graphs
G1, G2, G3, G4 together with copies of the XOR-graph X that connect G(k, ℓ)
with G(k + 1, ℓ) and G(k, ℓ + 1). For k = 0, we moreover have to add a copy of
the graph A from Fig. 8. Whether and how G′(k, ℓ) is obtained from Gi only
depends on the parity of k + ℓ (i.e., the parity of k and ℓ) and whether k and ℓ
are zero or non-zero, respectively.

The alphabet of our presentation consists of the letters ⊲, ⊳, a, b, and the
nodes of the graphs G1, G2, G3, and G4 (extended by the XOR-graphs and the
graph A). Then, the node set of G can be represented by the regular language

L = {⊲[ab]kv([ab]ℓ)
rev⊳ | k, ℓ ≥ 0, v is a node of G′(k, ℓ)}

where [w]k is the prefix of length k of the infinite word wω and wrev is the
word w reversed. Then k is odd iff [ab]k ends with a, k = 0 iff ⊲[ab]k = ⊲ and
similarly parity and zeroness of ℓ can be described. Hence L is regular. Now let
V = ⊲[ab]kv([ab]ℓ)

rev⊳ and W = ⊲[ab]mw([ab]n)rev⊳ be two such words from L. If
|k−m| > 1 or |ℓ−n| > 1, then {V,W} is no edge of our graph. Otherwise, it only
depends on the letters v and w and their neighboring letters in V and W , resp.,
whether {V,W} ∈ E. Hence, one can define a finite (symmetric) semi-Thue
system R such that

• V ↔R W iff {V,W} is an edge of G, for all V,W ∈ L, and

18 DIETRICH KUSKE AND MARKUS LOHREY

• if V ↔R W ∈ L, then V ∈ L for all words V and W (i.e., L is a regular
connected component of the rewrite graph associated with R).

This semi-Thue system can be translated into a synchronous automaton that
recognizes the edge set of G.

Hence we reduced the recurring tiling problem to the existence of a Hamilton-
ian path in a planar automatic graph of bounded degree. Because of Theorem 3.3,
this proves Theorem 3.2.

3.2. Infinite paths in automatic trees. The fundamental Σ1
1-complete

problem in recursion theory is the existence of an infinite branch in a recur-
sive tree where it does not make a difference whether the tree is an order or
a successor tree [33, Thm. 16.XX]. Surprisingly, existence of an infinite branch
is decidable for automatic order trees [25]. Here, we show that the problem is
Σ1

1-complete for automatic successor trees. The proof idea is to transform a
recursive successor tree into an automatic one by adding the computation (i.e.,
sequence of transitions) that verifies the edge (u, v) as a path between the nodes
u and v; a similar idea was used in [20, 25].

Theorem 3.6. For automatic successor trees, existence of an infinite branch
is Σ1

1-complete.

Proof. Membership in Σ1
1 is easy to see. We prove the lower bound in three

steps. We start with the following well known Σ1
1-complete problem P1 [17]:

INPUT: A nondeterministic Turing machine M with a distinguished state qr.
QUESTION: Does M have an infinite computation starting with a blank tape
and the initial state that visits the state qr infinitely often?

In a first step we reduce this problem to the following problem P2:

INPUT: A nondeterministic Turing machine M with a distinguished state qr.
QUESTION: Does there exist a configuration c such that M has an infinite
computation starting in c that visits the state qr infinitely often?

Let M be a nondeterministic Turing machine with a distinguished state qr. We
construct a nondeterministic Turing machine M ′ by modifying M as follows:
The machine M ′ has an additional tape T , where a sequence of transitions of M
is stored. This sequence of M -transitions is simulated by M ′ step by step (this
phase is deterministic). For this, a pointer to the additional tape T is moved one
cell to the right after every step. After the last transition from T is simulated, the
machine M ′ continues to simulate M nondeterministically until a configuration
with control state qr is reached (in this phase, the new transitions are added
to the content of T). Once the control state qr is assumed, the pointer to T is
set back to the left end of T and the tape, where the current M -configuration
is stored, is set back to the initial blank configuration of M . This modification
ensures that when starting M ′ in an arbitrary configuration, it either blocks
after finitely many steps or it will finally start simulating nondeterministically
a computation of M that starts with the initial blank configuration. Hence, M ′

allows a computation starting from some configuration that visits the state qr

infinitely many times if and only if M allows a computation starting from the
initial blank configuration that visits qr infinitely often. Hence the problem P2

is Σ1
1-hard.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 19

In the second step, we reduce P2 to the following problem P3:

INPUT: An automatic structure T = (V,E,U), where (V,E) is a successor tree
and U ⊆ V is a unary relation.
QUESTION: Does (V,E) contain an infinite branch that visits infinitely many
nodes from U?

Let M be a nondeterministic Turing machine with state set Q, tape alphabet
Γ, and set of instructions δ ⊆ Q × Γ × Q × Γ × {L,R}. We will construct an
automatic structure T = (L,E,U), which has the above properties if and only if
M has an infinite computation starting from some configuration that visits the
state qr ∈ Q infinitely often.

As usual, configurations of M are encoded by words from the regular language
C = Γ∗QΓ+.3 Let Pref(C) be the set of all prefixes of words from C. For
configurations c, d ∈ C and an instruction t ∈ δ we write c ⊢t d if c evolves to
d by executing instruction t; this is an automatic relation. Let Σ = Q ∪ Γ (we
assume that Q ∩ Γ = ∅) and let Σ′ = {a′ | a ∈ Σ} be a disjoint copy of Σ. For a
configuration c ∈ C and 1 ≤ i ≤ ℓ = |c| let c[i] be the ith symbol in c and let

c(i) = c[1] · · · c[i − 1]c[i]′c[i + 1] · · · c[ℓ],

i.e., c(i) results from c by replacing the ith symbol in c by its primed copy. Finally,
every instruction t ∈ δ becomes an additional symbol.

We will define an automatic presentation for a tree, which is basically a
“stretched” version of the computation tree of M , where every edge of the com-
putation tree is replaced by a finite branch.4 Let

L = (C · δ)+(C ∪ {ε})

∪ (C · δ)∗ · {c(i) t d | c ∈ C, 1 ≤ i ≤ |c|, t ∈ δ, d ∈ Pref(C)},

which is regular. On L we define an automatic relation → as the smallest relation
such that the following holds, where n ≥ 1, c, c1, . . . , cn ∈ C, t, t1, . . . , tn ∈ δ,
1 ≤ i ≤ ℓ = |cn|, and d ∈ Pref(C):

c1t1 · · · cn−1tn−1cntn → c1t1 · · · cn−1tn−1c
(1)
n tn (1)

c1t1 · · · cn−1tn−1c
(i)
n tnd → c1t1 · · · cn−1tn−1c

(i+1)
n tndcn[i] if i < ℓ (2)

c1t1 · · · cn−1tn−1c
(ℓ)
n tnd → c1t1 · · · cn−1tn−1cntndcn[ℓ] (3)

c1t1 · · · cn−1tn−1cntnd → c1t1 · · · cn−1tn−1cntnc t if d ⊢tn
c (4)

The relation → is automatic, basically because every relation ⊢t is an automatic
relation. With (1), (2), and (3) we copy the last configuration cn, whereas (4)
executes the last instruction tn and guesses a new instruction t. Let U = {w ∈
L | qr appears in the last configuration of w}. The graph (L,→) is easily seen to
be a forest such that M has a computation, where the state qr appears infinitely
often if and only if (L,→) has an infinite branch that contains infinitely many
nodes from U . Finally, consider the successor tree (L ∪ {ε}, E) where

E = {(ε, u) | u ∈ L,¬∃v : v → u}∪ →,

3Here and in the following, A+ denotes the set of all non-empty words over the set A.
4Similar ideas were used in [22, 20] to encode complex behaviour in automatic graphs.

20 DIETRICH KUSKE AND MARKUS LOHREY

i.e., ε becomes a new root together with edges to all nodes from L that do
not have incoming →-edges. Then M has a computation, where the state qr

appears infinitely often if and only if (L ∪ {ε}, E) has an infinite branch that
contains infinitely many nodes from U . The relation E is again automatic since
{u ∈ L | ¬∃v : v → u} is regular.

In the final step, we reduce P3 to the following problem P4, i.e., to the problem
whose Σ1

1-hardness we want to prove:

INPUT: An automatic successor tree (V,E)
QUESTION: Does (V,E) contain an infinite branch?

Let us fix an automatic successor tree (L,E) and a regular subset U ⊆ L of
nodes. W.l.o.g. assume that the root node of the tree is ε (this is the case in the
tree constructed in the previous paragraph) and that ε ∈ U . Let

L′ = L ⊗ a∗

for some new symbol a. The number n in a word w ⊗ an ∈ L ⊗ a∗ serves as a
counter that gives the remaining steps until the set U is visited next. Let

E′ = {(u ⊗ an, v ⊗ an−1) | n ≥ 1, (u, v) ∈ E} ∪

{(u ⊗ ε, v ⊗ an) | u ∈ U, (u, v) ∈ E,n ≥ 0} .

This relation is automatic and (L′, E′) is a tree with root node ε⊗ ε. Moreover,
we claim that there exists an infinite E-branch that visits infinitely many times
the set U if and only if there exists an infinite E′-branch. First assume that
[w1, w2, w3, . . .] (w1 = ε) is an infinite E-branch such that there exist i1 < i2 <
i3 < · · · with wik

∈ U for all k ≥ 1. Since ε ∈ U we can choose i1 = 1.
Let pk be the finite E′-path [wik

⊗ ε, wik+1 ⊗aik+1−ik−1, . . . , wik+1−1 ⊗a]. Then

p1, p2, p3, . . . is an infinite E′-branch. On the other hand, if [w1⊗ai1 , w2⊗ai2 , . . .]
is an infinite E′-branch, then there exist k1 < k2 < · · · such that ikj

= 0 for
all j ≥ 1. Hence, wkj

∈ U for all j ≥ 1. Moreover, [w1, w2, . . .] is an infinite
E-branch. ⊣

§4. Problems in the arithmetic hierarchy. In this section, we will con-
sider several graph problems, which turn out to be complete for certain levels
of the arithmetic hierarchy, both for recursive and automatic graphs. More pre-
cisely, we will consider the following problems:

• Does a given graph have an Euler path?
• Does a given graph have at most k ends (for some number k)?
• Does a given finitely branching tree have at most k infinite branches (for

some number k)?
• Does a given finitely branching tree have infinitely many infinite branches?

We will study the complexity of these questions for both recursive and automatic
graphs. While these problems are still undecidable for automatic graphs, they
will turn out to be easier for automatic graphs than for recursive graphs (w.r.t.
the level in the arithmetic hierarchy).

4.1. Upper bounds in the arithmetic hierarchy. Recall the definition
of very recursive graphs from Section 2.3. The following proposition gives upper
bounds for testing whether a given (very) recursive graph has at most k ends.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 21

These upper bounds (for k = 1) will be crucial for our upper bounds concerning
Euler paths.

Proposition 4.1. Let k > 0.

(1) For recursive graphs, the existence of at most k ends belongs to Π0
3.

(2) For very recursive graphs, the existence of at most k ends belongs to Π0
2.

Proof. (1) Consider the following Π0
3-formula

∀H ⊆ E finite ∀x0, x1, . . . , xk ∈ V :
∨

0≤i<j≤k

∃ path from xi to xj in (V,E \ H) ∨

∃Z ⊆ V finite : (
∨

0≤i≤k

xi ∈ Z) ∧ ∀{z1, z2} ∈ E \ H(z1 ∈ Z ↔ z2 ∈ Z),

expressing that of every k+1 vertices x0, . . . xk, two belong to the same connected
component or one belongs to some finite connected component of (V,E \ H).
Hence, this formula expresses that there are at most k ends.

(2) Now assume (V,E) to be very recursive and let H ⊆ E and Z ⊆ V be
finite. If Z contains a vertex of infinite order, it cannot be a union of connected
components of (V,E \ H). Otherwise, for each z ∈ Z, one can compute a list
of its neighbours in (V,E). Then, one can check effectively, whether there exist
z1 ∈ Z and {z1, z2} ∈ E \ H with z2 ∈ V \ Z. Thus, the property to have at
most k ends is in Π0

2. ⊣

The characterization of Eulerian infinite graphs from Cor. 2.2 together with
Prop. 4.1 gives the following upper bounds:

Proposition 4.2. The following holds:

(1) For recursive graphs, existence of an Euler path is in D0
3.

(2) For locally finite recursive graphs, existence of an Euler path is in Π0
3.

(3) For very recursive graphs, existence of an Euler path is in Π0
2.

Proof. (1) It is an easy exercise to express (E1) from Cor. 2.2 in Π0
2. The

existence of a vertex of odd order is expressible in Σ0
2 and the existence of a

vertex of infinite order in Σ0
3. Hence (E2) is in Σ0

3 and (E3) in Π0
2. By Prop. 4.1,

(E4) is expressible in Π0
3. Hence the existence of an Euler path is a conjunction

of Σ0
3- and Π0

3-properties and therefore in D0
3.

(2) This holds since all the properties in the previous paragraph except the
existence of a vertex of infinite order are in Π0

3.
(3) Assume (V,E) to be very recursive. Then the number of neighbors of a

node x is computable from x. Hence (E2) is expressible in Σ0
1 and (E3) in Π0

1.
Again, by Prop. 4.1, (E4) is expressible in Π0

2. ⊣

4.2. Lower bounds in the arithmetic hierarchy. In this section we will
establish lower complexity bounds. We will present two constructions (Lemma 4.3
and 4.10), from which all but one of the lower bounds will be deduced.

4.2.1. Recursive graphs. Our first main construction concerns recursive
graphs. Recall that G is the undirected version of the directed graph G.

Lemma 4.3. From two Turing machines M1 and M2, one can compute a con-
nected recursive directed graph G(M1,M2) such that

22 DIETRICH KUSKE AND MARKUS LOHREY

(a) M1 ∈ COF if and only if G(M1,M2) has more than one end.

(b) M2 ∈ COF if and only if G(M1,M2) has a vertex of infinite order.
(c) If M2 does not halt for any input, then G(M1,M2) is a comb with a recursive

spine.

Proof. An example of the following construction can be found following the
proof. Let B denote the set of nonempty words #c0#c1 . . . #cn where each ci is
the halting computation (if it exists) of the machine M1 with input m + i (for
some m ∈ N). Then the set of vertices V of G(M1,M2) is given by V = N ∪ B.
We also fix a computable bijection f : N

3 → N. The set of edges of G(M1,M2)
is given by:

(1) (n, n + 1) ∈ E, (n,#c) ∈ E for all n ∈ N and c the halting computation of
M1 on input n (if this halting computation exists).

(2) (w,w#c) ∈ E for all w,w#c ∈ B.
(3) (n, f(k, ℓ,m)) ∈ E iff the following hold:

(3.1) m = n,
(3.2) M2 halts for each of the inputs n, n + 1, . . . , n + k after at most ℓ

computation steps, and
(3.3) there exists 0 ≤ j ≤ k such that M2 halts for the input n + j after

precisely ℓ computation steps.

This graph is recursive since also the bijection f−1 : N → N
3 is computable

and since condition (3) requires finitely many checks.
Note that the vertices of the form N together with the edges from (1) between

them form an infinite path. The node #c0#c1 . . . #cn ∈ B is connected to this
ray via a path (formed by the prefixes of the form #c0#c1 . . . #ci of this word)

to the vertex m, the input of the halting computation c0. Hence G(M1,M2) is
connected.

(a) First suppose that M1 ∈ COF, i.e., M1 halts for almost all inputs. Then
there exists m ∈ N such that M1 halts for all inputs m,m+1,m+2, . . . , i.e.,
there are halting computations ck for k ≥ m on input k. But then the set
of words #cm#cm+1 . . . #ck for k ≥ m forms an infinite path. Deleting the
edge between m and #cm therefore leaves two infinite connected components,
i.e., G(M1,M2) has at least two ends (it actually has infinitely many ends).

Conversely suppose G(M1,M2) has more than one end. Since the nodes

from N are connected by a ray-like structure, the graph G(M1,M2) has to
have an infinite path formed by nodes from B. But this implies that there are
infinitely many consecutive inputs m,m + 1,m + 2, . . . that allow a halting
computation of M1, i.e., M1 ∈ COF.

(b) Suppose M2 ∈ COF halts for all inputs m ≥ n. Let, for m ≥ n, ℓm be
the maximal length of a halting computation with input between n and m.
Then (n, f(m − n, ℓm, n)) ∈ E, i.e., n has infinite order.

Conversely, suppose G(M1,M2) contains a vertex of infinite order. By
the very construction, every node from B has at most two neighbors in
G(M1,M2). Hence there exists a vertex n ∈ N of infinite order. Note that
the neighbors of n are n − 1 (if n > 0), n + 1, the halting computation of
M1 with input n (if it exists), possibly the node n′ with f−1(n) = (k′, ℓ′, n′),

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 23

1 2 3 4 5 6 7 8 . . .

#c1

#c1#c2

#c2 #c4

#c4#c5

#c5 #c7

#c7#c8

#c8

Figure 15. A graph G(M1,M2) with M1 6∈ COF

1 2 3 4 5 6 7 8 . . .

.

.

.

#c1

#c1#c2

#c1#c2#c3

#c2

#c2#c3

#c3 #c5

#c5#c6

#c6 #c8

#c8#c9

#c8#c9#c10

f(1, 22, 1)

f(2, 23, 1) f(1, 23, 2)
f(1, 26, 5)

f(1, 29, 8)

f(2, 210, 8)
. . .

Figure 16. A graph G(M1,M2) with M1 ∈ COF

and some nodes of the form f(k, ℓ, n) with k, ℓ ∈ N. Since n has infinitely
many neighbors, there are therefore mutually distinct pairs (ki, ℓi) ∈ N

2

for i ∈ N with (n, f(ki, ℓi, n)) ∈ E. By condition (3.2) and (3.3), ki = kj

implies ℓi = ℓj . Hence, for every m ≥ n there exists k ≥ m − n and ℓ such
that (n, f(k, ℓ, n)) ∈ E ensuring that M2 halts for all inputs n, n + 1, n +
2, . . . , n+(m−n), . . . , n+ k. Thus, M2 halts for all inputs m ≥ n, implying
M2 ∈ COF.

(c) If M2 never stops, then condition (3) does never hold. Hence G(M1,M2) is
a comb, the set N of nodes forms a recursive spine.

⊣

Example 4.4. Let us assume that M2 is a Turing machine that never halts,
hence condition (3) does not add any edges. Now let M1 6∈ COF be a Turing
machine that diverges on all inputs of the form 3n for n ≥ 1 and halts on all
other inputs. Then (a finite part) of G(M1,M2) is shown in Fig. 15. All teeth
of this comb are finite.

Now assume that M1 = M2 ∈ COF are Turing machines that do not halt on
input 4 and 7 and halt on all other inputs n in 2n steps. Then (a finite part) of

G(M1,M2) is shown in Fig. 16 where the nodes and edges on top of the spine N

24 DIETRICH KUSKE AND MARKUS LOHREY

are justified by (1) and (2). The arrows beneath the spine indicate edges that
end in another node of the spine.

Since M1 halts on all inputs n ≥ 8, every tooth that starts in a node n ≥ 8
is infinite. Hence, G(M1,M2) has more than one end. Since also M2 halts on
all inputs n ≥ 8 in 2n steps, the node 8 is connected to all nodes of the form
f(k, 2k+8, 8), i.e., it has infinite order.

Proposition 4.5. For recursive graphs, existence of an Euler path is D0
3-hard.

Proof. Let L ∈ D0
3. Then there exist languages L1 ∈ Π0

3 and L2 ∈ Σ0
3

with L = L1 ∩ L2. Since COF and COF are complete for Π0
3 and Σ0

3, resp. (see
Section 2.1), there are reductions fi from Li to COF and COF, resp. Even more,
(f1(w), f2(w)) ∈ COF × COF iff w ∈ L, i.e., COF × COF is hard for D0

3 and it
suffices for our result to reduce this direct product to the set of recursive graphs
with an Euler path.

To this end, let M1 and M2 be Turing machines and consider G(M1,M2)
from Lemma 4.3. In this graph, replace every edge e = {a, b} by four edges
{a, xe}, {xe, b}, {a, ye}, and {ye, b}. Then the resulting graph G is recursive,
connected, and without nodes of odd order. Therefore, G satisfies (E1) and (E3).
In addition, it satisfies (E2) iff it has a vertex of infinite degree iff M2 ∈ COF by
Lemma 4.3. Finally, G satisfies (E4) iff it has at most one end iff M1 /∈ COF by
Lemma 4.3 iff M1 ∈ COF. ⊣

Proposition 4.6. For planar recursive graphs of degree 4, existence of an
Euler path is Π0

3-hard.

Proof. First, fix a Turing machine M2 that never halts. Now let M be a
Turing machine. Then the comb G(M,M2) contains a recursive spine S. Let G

be obtained from G(M,M2) by replacing every edge e = {a, b} that is not in the
spine S by four edges {a, xe}, {xe, b}, {a, ye}, and {ye, b}. Then G is recursive
(since the spine S is recursive) and connected, i.e., satisfies (E1). Since M2 never
halts, G(M,M2) is a comb implying that G has degree 4. Note that the root is

the only node of G(M,M2) that is adjacent to an odd number of edges from the
spine. Hence, in G, the root of G(M,M2) is the only vertex of odd degree. This
shows that G satisfies (E2) and (E3). By Lemma 4.3, it satisfies (E4) if and only
if M ∈ COF. Since COF is Π0

3-complete, the result follows. ⊣

Proposition 4.7. For recursive combs, existence of only one infinite branch
is Π0

3-hard.

Proof. Again, fix a Turing machine M2 that never halts. Now let M be a
Turing machine. Then G(M,M2) is a comb. Furthermore, the tree G(M,M2)

has only one infinite branch iff G(M,M2) has at most one end iff M /∈ COF (by
Lemma 4.3) iff M ∈ COF. Since COF is Π0

3-hard, the result follows. ⊣

The following lemma prepares the proof that the existence of infinitely many
infinite branches is Π0

4-complete. Recall that in Section 2.1 we agreed that, if not
otherwise stated, a Turing machine accepts by halting. In the following lemma,
we use always halting Turing machines. Such a machine terminates on every
input, but it may reject the input by entering a rejecting state. Thus, a set is
recursive if and only if it is accepted by an always halting Turing machine.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 25

Lemma 4.8. There is an algorithm that, from an always halting Turing ma-
chine N , computes a Turing machine N ′ (that accepts by halting) such that the
following are equivalent:

(1) ∀k ∃ℓ∀m∃n : N accepts (k, ℓ,m, n)
(2) ∃∞ℓ∀m : N ′ halts on input (ℓ,m)

Proof. From k ∈ N, one can construct an always halting Turing machine N(k)
with L(N(k)) = {(ℓ,m, n) | N accepts (k, ℓ,m, n)}. Using the proof that COF
is Σ0

3-complete from [27, Lect. 36], the machine N(k) can be transformed into a
Turing machine A(N(k)) (which accepts by halting) such that statement (1) is
equivalent to ∀k ∈ N : A(N(k)) ∈ COF, i.e., to

∀k ∃ℓ∀m > ℓ : A(N(k)) halts on input m .

Choosing ℓ minimal, we obtain the equivalent statement

∀k ∃ℓ∀m > ℓ : A(N(k)) halts on m ∧ (ℓ = 0 ∨ A(N(k)) does not halt on ℓ)

that, for every k ∈ N, allows exactly one ℓ = ℓk. By taking the infinitely many
words ℓ1 · · · ℓk ∈ N

+ (k ≥ 1) we obtain the equivalent statement

∃∞ℓ ∈ N
+ ∀m :

∧

1≤i≤|ℓ|

(

m > ℓ[i] → A(N(i)) halts on m ∧
ℓ[i] = 0 ∨ A(N(i)) does not halt on ℓ[i]

)

(recall that ℓ[i] denotes the ith symbol of the word ℓ ∈ N
+). Note that, given

N and i, the Turing machine A(N(i)) can be computed. Hence the matrix of
this formula is the conjunction of a Σ0

1- and a Π0
1-formula. Starting with ∀m, we

therefore get a formula from Π0
2 that can be formulated as

∀m : N ′′ halts on input (ℓ,m)

for some effectively computable Turing machine N ′′. Since the word ℓ can be
encoded as a single number ℓ, we obtain the Turing machine N ′ from the theorem
as desired. ⊣

Proposition 4.9. For recursive combs, existence of infinitely many infinite
branches is Π0

4-hard.

Proof. Let L ∈ Π0
4 be arbitrary. Then there exists an always halting Turing

machine M such that

L = {j | ∀k ∃ℓ∀m∃n : M accepts (j, k, ℓ,m, n)} .

We will reduce the set L to the set of recursive combs with infinitely many
infinite branches. To this end, let j ∈ N. From j, we can construct an always
halting Turing machine N with L(N) = {(k, ℓ,m, n) | M accepts (j, k, ℓ,m, n)}.
By Lemma 4.8, we can transform N into a machine N ′ such that j ∈ L if and
only if

∃∞ℓ∀m : N ′ halts on input (ℓ,m) . (5)

Define R ⊆ N
2 by (ℓ,m) ∈ R if and only if N ′ halts on input (ℓ,m). For

(ℓ,m) ∈ R, let cℓ,m be the halting computation of N ′ with input (ℓ,m). Then
let V denote the computable set

N ∪ {#cℓ,0#cℓ,1# · · · cℓ,m | ℓ,m ∈ N, (ℓ, 0), (ℓ, 1), . . . , (ℓ,m) ∈ R} .

26 DIETRICH KUSKE AND MARKUS LOHREY

Furthermore, we have the following edges:

(1) (ℓ, ℓ + 1) ∈ E for all ℓ ∈ N

(2) (ℓ,#cℓ,0) ∈ E for all (ℓ, 0) ∈ R
(3) (#cℓ,0#cℓ,1# · · · cℓ,m,#cℓ,0#cℓ,1# · · · cℓ,m+1) ∈ E if (ℓ, 0), . . . , (ℓ,m+1) ∈ R

Then (V,E) is a comb with spine the natural numbers. Attached to the natural
number ℓ, we have an infinite tooth if and only if, for all m ∈ N, we have
(ℓ,m) ∈ R. Hence, (V,E) has infinitely many branches iff (5) holds, i.e., iff
j ∈ L. ⊣

4.2.2. Automatic graphs. As in Section 3.2, the construction of the fol-
lowing lemma on automatic graphs uses again configuration graphs of Turing
machines.

Lemma 4.10. From a Turing machine M , one can compute an automatic
comb T (M) with regular spine such that the number of infinite teeth of T (M)
equals |N \ L(M)|.

Proof. Let M1 be a Turing machine that simulates M and recalls the tran-
sitions of its computation. Then, two different configurations of M1 cannot have
the same successor configuration and the configuration graph of M1 cannot have
cycles. Moreover, also backward infinite paths cannot exist. Hence, the config-
uration graph of M1 is a disjoint union of finite and infinite paths that start in
a node without predecessor. Furthermore, L(M1) = L(M). The machine M1 is
a reversible version of M [4].

There is still a problem with the configuration graph of M1: There may be
infinite paths, where the first configuration is not a legal initial configuration
of the machine M1

5 (so called garbage computations). In order to avoid this
problem, we next construct a self-stabilizing version M2 of M1 (see also [31]) as
follows. The machine M2 is obtained from M1 by adding two counters. Initially,
the first counter is set to 0 and the second counter is set to 1. Incrementing the
first counter in every step, the machine then simulates M1 until the first counter
equals the second one. At this point, the machine simulates M1 backwards
(which is possible since M1 is reversible) until the first counter is 0 or it cannot
simulate a backward step. If, at this point, the machine is not in an initial
configuration of M1, it stops. Otherwise, it increments the second counter and
proceeds as before.

The configuration graph of M2 is, again, a disjoint union of finite and infinite
paths. Moreover, there is a bijection between N \ L(M1) = N \ L(M) and the
set of infinite paths of the configuration graph of M2. Let

S = {c | c is a configuration of M2,¬∃c′ : c′ ⊢M2
c}

be the set of all source configurations, where as usual c′ ⊢M2
c means that M2

can transform configuration c′ in one step into configuration c. Clearly, every
initial configuration of M2 belongs to S.

Now consider the following graph T (M) = (V,E) whose vertices are the con-
figurations of M2. For two configurations c, c′, we have (c, c′) ∈ E iff c ⊢M2

c′

or

5The set of initial configurations of M1 is q0Σ+, where q0 is the initial state of M1 and Σ
is the input alphabet.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 27

• c, c′ ∈ S and
• c′ is the length-lexicographically minimal source configuration length-lexico-

graphically larger than c.

The graph T (M) is thus obtained from the configuration graph of M2 by
placing the source configurations in an ω-chain, i.e., it is a comb. The infinite
teeth of this comb are the infinite paths of the configuration graph of M2. Thus,
the number of infinite teeth of T (M) equals |N \ L(M)|.

Recall that the relation ⊢M2
as well as the length-lexicographic order on the

configurations of M2 are automatic. Moreover, since S is a regular language, it
follows that the edge relation E is automatic. Hence the comb T (M) is auto-
matic [8]. ⊣

By Lemma 4.10, the comb T (M) has only one infinite path if and only if
M ∈ TOTAL. As an immediate consequence of the Π0

2-hardness of TOTAL (see
Section 2.1), we obtain:

Proposition 4.11. For automatic combs, existence of only one infinite branch
is Π0

2-hard.

Proposition 4.12. For planar automatic graphs of degree 4, existence of an
Euler path is Π0

2-hard.

Proof. Let M be a Turing machine. In the graph T (M) (where T (M) is the
comb from Lemma 4.10), replace every edge e = {a, b} that does not belong to
the spine by four edges {a, xe}, {xe, b}, {a, ye}, and {ye, b}. Then the resulting
graph G is connected, planar, automatic (since the spine of T (M) is regular),
and of degree 4. All its nodes except the root of T (M) have even degree and the
degree of the root is 1 or 3. Hence, G satisfies (E1), (E2), and (E3). It therefore

has an Euler path iff it satisfies (E4) iff T (M) has only one end iff M halts for
all inputs, i.e., iff M ∈ TOTAL. Since the set TOTAL is Π0

2-hard, the result
follows. ⊣

4.3. Completeness in the arithmetic hierarchy. We summarize our main
results from Section 4.

Theorem 4.13. Existence of an Euler path is

1. D0
3-complete for recursive graphs,

2. Π0
3-complete for (planar) locally finite recursive graphs (of degree 4),

3. Π0
2-complete for (planar) very recursive graphs (of degree 4), and

4. Π0
2-complete for (planar) automatic graphs (of degree 4).

Proof. The first statement follows immediately from Prop. 4.2(1) and 4.5,
the second from Prop. 4.2(2) and 4.6, and the third from Prop. 4.2(3) and
Prop. 4.12 since every automatic graph is very recursive. The last statement
follows again from Prop. 4.2(3) and Prop. 4.12. ⊣

Concerning Theorem 4.13(1) and (3), [14] mentions upper (Σ0
4 and Π0

2, resp.)
and lower bounds (Π0

3 and both Σ0
1 and Π0

1, resp.) and asks for the exact com-
plexities that we provide here. Actually, (3) is stated without proof in [18], where
unpublished work of Beigel and Gasarch is cited. In [18], it is also spuriously
stated (without proof) that the existence of an Euler path in a recursive graph

28 DIETRICH KUSKE AND MARKUS LOHREY

is Π0
3-complete which is (by (1) and (2)) only true for locally finite recursive

graphs. To our knowledge, (2) and (4) have not been considered before.
Recall that the existence of an infinite branch in a recursive tree is Σ1

1-complete
and the same holds for automatic trees by Theorem 3.6. On the other hand, by
König’s lemma, every infinite finitely branching tree contains an infinite branch.
Since infinity of an automatic structure is decidable [8], it follows that the ex-
istence of at least one infinite branch in an automatic finitely branching tree is
decidable. The following shows that bounding the number of infinite branches
is difficult for both, recursive and automatic trees.

Theorem 4.14. Let k > 0. Existence of at most k infinite branches is

1. Π0
3-complete for recursive finitely branching trees and

2. Π0
2-complete for automatic and for very recursive finitely branching trees.

In both cases, hardness holds even for combs.

Proof. Containment in Π0
3 and Π0

2, respectively, follow from Prop. 4.1 since,
for a finitely branching tree T , the number of ends of T equals the number of
infinite branches of T . Hardness for k = 1 is shown in Prop. 4.7 and Prop. 4.11,
respectively. To reduce the case k = 1 to the general case, just add k − 1 many
infinite branches to a recursive or automatic comb. ⊣

Theorem 4.15. Let k > 0. Existence of at most k ends is

1. Π0
3-complete for (planar) recursive graphs (of degree 3).

2. Π0
2-complete for automatic and for very recursive planar graphs (of de-

gree 3).

Proof. Containment was shown in Prop. 4.1, hardness follows immediately
from Theorem 4.14 and the fact that the number of ends of T and of infinite
branches of T coincide for every finitely branching tree T . ⊣

For the property of having infinitely many infinite branches, we obtain:

Theorem 4.16. Existence of infinitely many infinite branches is

1. Π0
4-complete for recursive finitely branching trees.

2. Π0
3-complete for automatic and for very recursive finitely branching trees.

In both cases, hardness holds even for combs.

Proof. The upper bounds follow from Theorem 4.14, since T has infinitely
many infinite branches if and only if for every k > 0, T does not have at most k
many infinite branches. The lower bound in (1) was shown in Prop. 4.9.

For the lower bound in (2), note that for the comb T (M) from Lemma 4.10 we
have: T (M) has infinitely many infinite branches if and only if N\L(M) is infinite
if and only if M ∈ COF. Since COF is Π0

3-complete, the result follows. ⊣

§5. Decidable problems for automatic graphs. Every first-order defin-
able relation in an automatic structure has a regular set of representatives [21].
This holds even for the extension FO[∞,mod] of first-order logic by the infinity
quantifier and modulo quantifiers. Next, formalizing ideas from [25] (cf. also
[34]), we introduce a further extension FSO of FO[∞,mod] with this nice behav-
ior. The logic FSO is a fragment of second order logic, therefore the notation

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 29

FSO. At the end of this section, FSO will be used to prove some graph problems
decidable for automatic graphs that are Σ1

1-complete for recursive graphs.
First, recall that the set of FO[∞,mod]-formulas (over a certain signature of

relation symbols) is the least set M satisfying:

(i) Every atomic first-order formula over the signature belongs to M .
(ii) M is closed under boolean combinations.
(iii) If ϕ ∈ M , x is a first-order variable, and 0 ≤ r < n, then ∃x : ϕ, ∃∞x : ϕ,

and ∃(r,n)x : ϕ belong to M .

Here, ∃∞x : ϕ expresses that there are infinitely many x with the property ϕ,
whereas ∃(r,n)x : ϕ expresses that the number of x satisfying ϕ is finite and
congruent r modulo n.

Finally, the set of FSO-formulas (over a certain signature of relation symbols)
is the least set M satisfying in addition

(iv) Every formula (x1, . . . , xn) ∈ X belongs to M (where xi are elementary
variables and X is an n-ary relation variable)

(v) If ϕ ∈ M and X is an n-ary second-order variable such that ∀X,Y : X ⊆
Y ∧ ϕ[X/Y] → ϕ is a tautology6, then ∃X infinite : ϕ belongs to M .

In the last case, ∃X infinite : ϕ means that there exists an infinite n-ary relation
satisfying ϕ. The fact that ∀X,Y : X ⊆ Y ∧ϕ[X/Y] → ϕ is a tautology implies
that if ϕ is satisfied for some relation Y then it is also satisfied for every smaller
(w.r.t. inclusion) relation.

It should be noted that the way we defined FSO-formulas, implies that the set
of all FSO-formulas is not decidable. To make the set of FSO-formulas decidable,
we could, in the addition formation rule, also require that ϕ does not contain
an occurrence of a formula (x1, . . . , xn) ∈ X such that X is free in ϕ and this
occurrence lies within an even number of negations.

Our treatment of the logic FSO uses the concept of a word comb that was
first used in the proof of [23, Lemma 8.6]: a word comb is a set of words
{s0s1s2 · · · si−1ti | i ∈ N} where si, ti ∈ Γ+ and |ti| < |si| for all i ∈ N.7

Then we have:

Lemma 5.1. Let Γ be finite and X ⊆ Γ+ be infinite. Then there exists a word
comb Y ⊆ X.

Proof. Let t0 ∈ X be arbitrary. Now suppose we defined s0, . . . , sj−1 and
t0, . . . , tj such that

(1) s0s1 · · · si−1ti ∈ X for all 0 ≤ i ≤ j
(2) |si| > |ti| for all 0 ≤ i < j
(3) X ∩ s0s1 · · · sj−1Γ

+ is infinite.

Since there are only finitely many words of length |tj |+1, (3) implies the existence
of a word sj ∈ Γ+ with |sj | = |tj | + 1 such that X ∩ s0s1 · · · sjΓ

+ is infinite
ensuring (2) and (3) for j + 1. Choose tj+1 ∈ Γ+ with s0s1 · · · sjtj+1 ∈ X

6Here, ϕ[X/Y] is the formula that results from ϕ by replacing every free occurrence of X

by Y . Morever, that ∀X, Y : X ⊆ Y ∧ ϕ[X/Y] → ϕ is a tautology means that this formula is
true in every structure and for every interpretation of free variables.

7Such a set of words looks like a comb when equipped with the prefix order.

30 DIETRICH KUSKE AND MARKUS LOHREY

arbitrary. Since this ensures (1), we can proceed by induction. Then the set of
words s0s1 · · · si−1ti is a word comb Y ⊆ X. ⊣

This lemma allows to prove the following result.

Theorem 5.2. From a given automatic presentation (Γ, L, h) of an automatic
structure A and an FSO-formula ϕ(x1, . . . , xn), we can effectively construct an
automaton for the convolution of the relation

{(u1, . . . , un) ∈ Ln | A |= ϕ(h(u1), . . . , h(un))}.

Proof. Suppose k is an upper bound for the arity of all the relation variables
used in ϕ. Consider the extension of the structure A by the set of all ℓ-tuples for
ℓ ≤ k and the relations “x is an ℓ-tuple” and “a is the ith entry in the ℓ-tuple x”.
Note that an automatic presentation of this extension can be easily computed.
Hence, in the following, we can assume that the formula ϕ uses only second-order
quantification over unary relations X.

Since every automatic structure has an injective presentation (see Section 2.3),
we can identify the representing words with the elements of the structure, i.e., the
language L of the presentation (Γ, L, h) is the underlying set of the structure A
and h is the identity mapping. Then word combs that are contained in L are
special subsets of the automatic structure A. Let A = (L, (Ri)i∈I), thus, every
Ri is an automatic relation over the alphabet Γ.

Next consider the structure AC = (L ∪ C, (Ri)i∈I , C, el) where C is the set of
all word combs that are contained in L and el is the set of pairs (w, c) ∈ L × C
with w ∈ c.

We provide an injective ω-automatic presentation8 (∆, Lω, hω) for AC : The
alphabet of this presentation is ∆ = Γ∪ {#} ∪ (Γ× (Γ∪ {#})). The underlying
language is

Lω = L#ω ∪ LC ,

where L#ω represents the elements of A and LC ⊆ (Γ× (Γ∪ {#}))ω represents
all word combs contained in L. We define LC as the set of all ω-words

⊗(s0, t0)⊗(s1, t1)⊗(s2, t2) · · ·

over Γ × (Γ ∪ {#}) with si, ti ∈ Γ+, |ti| < |si|, and s0s1 · · · si−1ti ∈ L for all
i ∈ N. The mapping hω : Lω → L∪C is defined by hω(w#ω) = w for w ∈ L and

hω(⊗(s0, t0)⊗(s1, t1)⊗(s2, t2) · · ·) = {s0s1 · · · si−1ti | i ∈ N}

for ω-words from LC (note that this is well-defined since the ti-blocks are sep-
arated by at least one occurrence of # because |ti| < |si|). From a deter-
ministic finite automaton accepting the language L with set of states Q, it is
not hard to build deterministic Büchi-automata with state sets Q ∪ {⊤} and
Q × (Q ∪ {⊤}), respectively, that accept L#ω and LC , respectively. Hence Lω

as well as LC = {w ∈ Lω | hω(w) ∈ C} are ω-regular. Similarly, one finds a
Büchi-automaton for the hω-preimage of the automatic relation Ri from a finite
automaton for Ri. Finally, note that hω(w#ω) ∈ hω(c) for w ∈ L and c =
⊗(s0, t0)⊗(s1, t1)⊗(s2, t2) · · · ∈ LC iff there exists i ∈ N with w = s0s1 · · · si−1ti

8ω-automatic presentations and ω-automatic structures [8] are defined analogously to their
automatic counterparts. Finite words are replaced by ω-words (the convolution of ω-words is
defined in the obvious way). Ordinary finite automata are replaced by Büchi-automata.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 31

which can be checked by a nondeterministic Büchi-automaton with two tracks.
This concludes the description of an ω-automatic presentation (∆, Lω, hω) for
the structure AC .

Now let ϕ(x1, . . . , xn) be an FSO-formula in the language of the automatic
structure A. Let the FO[∞,mod]-formula ϕC(x1, . . . , xn) be obtained from
ϕ(x1, . . . , xn) by replacing every

• set quantification ∃X infinite : α by ∃x : (x ∈ C ∧ α), every
• first-order quantification ∃x : α by ∃x : (x 6∈ C ∧ α) (and similarly for
∃∞x : α and ∃(r,n)x : α), and every

• atomic subformula y ∈ X (for X a unary relation variable) by (y, x) ∈ el.

Then ϕC(x1, . . . , xn) is an FO[∞,mod]-formula in the language of the ω-automa-
tic structure AC .

Now let H be the set of all tuples (u1, . . . , un) ∈ (L#ω)n of ω-words over Γ
such that

AC |= ϕC(u1, . . . , un) .

Then, by [29, 1], the relation H is effectively ω-automatic. Since H ⊆ (L#ω)n

is ω-automatic, the set

H ′ = {(v1, . . . , vn) ∈ Ln | (v1#
ω, . . . , vn#ω) ∈ H}

is automatic. Note that H ′ is the set of tuples (v1, . . . , vn) ∈ Ln satisfying
ϕ(x1, . . . , xn) in A under the restriction that second-order quantification is re-
stricted to word combs. But this is equivalent to saying A |= ϕ(v1, . . . , vn).
For this, note that ∀X,Y : X ⊆ Y ∧ α[X/Y] → α is a tautology whenever
∃X infinite : α is a subformula of ϕ. Lemma 5.1 implies that there exists an
infinite set A ⊆ L satisfying α if and only if there is a word comb satisfying
α. ⊣

Since the emptiness of an effectively regular language is decidable, we obtain
the following as an immediate consequence.

Corollary 5.3. There exists an algorithm that, on input of an automatic
presentation of an automatic structure A and an FSO-sentence ϕ, determines
whether A |= ϕ.

A variation of the proof of Theorem 5.2 yields the following result.

Theorem 5.4. From a given automatic presentation (Γ, L, h) of an automatic
structure A and an FSO-formula α(X) with X an n-ary relation variable such
that (i) ∀X,Y : X ⊆ Y ∧α[X/Y] → α is a tautology and (ii) A |= ∃X infinite : α,
one can effectively construct an automatic relation H ⊆ Ln such that h(H) is
infinite and A |= α(h(H)).

Proof. We use the notations from the proof of Theorem 5.2. In particular,
we consider the ω-automatic presentation (∆, Lω, hω) of the structure AC . From
A |= ∃X infinite : α, we obtain AC |= ∃x(x ∈ C ∧ αC) (where αC is obtained
from α in the same way that ϕC resulted from ϕ in the proof of Theorem 5.2).
Now it follows from [29, 1] that {u ∈ K | AC |= αC(hω(u))} is effectively ω-
regular and nonempty. Hence one can effectively find words v ∈ ∆∗ and w ∈ ∆+

32 DIETRICH KUSKE AND MARKUS LOHREY

such that vwω ∈ K and AC |= αC(hω(vwω)). Since vwω ∈ K, there exist words
si, ti ∈ Γ+ such that

vwω = ⊗(s0, t0)⊗(s1, t1)⊗(s2, t2) · · · ,

|ti| < |si|, and s0s1 · · · si−1ti ∈ L for all i ∈ N. From the words v and w, one
can construct a finite automaton for the language H = {s0s1 · · · si−1ti | i ∈ N}.
Then, from AC |= αC(hω(vwω)), we get A |= α(H). ⊣

We use the above Corollary 5.3 and Theorem 5.4 to show that two problems
are decidable for automatic structures. In the more general setting of recursive
structures, they are Σ1

1-complete as shown by Hirst and Harel [19].

Corollary 5.5 (cf. [34, Theorem 3.20]). It is decidable whether an automatic
graph contains an infinite clique. If an infinite clique exists, a regular set of rep-
resentatives of an infinite clique can be computed effectively.

Proof. Consider the formula ∃X infinite ∀x, y : (x, y ∈ X ⇒ (x, y) ∈ E). ⊣

The second problem is the infinite version of maximal set cover considered
by Hirst and Harel. It asks whether, given a set X = {Xi | i ∈ N} of sets
Xi ⊆ N, there exists A ⊆ N with

⋃

a∈A Xa = N and N \ A infinite. Note
that the collection X can be represented as a set of pairs E with (i, j) ∈ E iff
j ∈ Xi. Then there exists A as required iff the directed graph (N, E) satisfies
∃B infinite ∀j∃i : i /∈ B ∧ (i, j) ∈ E (then A is the complement of B). Hence we
get:

Corollary 5.6. The infinite version of maximal set cover is decidable if the
collection X is given as an automatic set of pairs. In case a set cover as required
exists, one can compute a set cover.

§6. Further graph classes. Let us finally consider two other classes of in-
finite graphs:
Recursively enumerable graphs. A graph (V,E) is recursively enumerable if

V ⊆ N and E ⊆
(

N

2

)

are recursively enumerable. The existence of a Hamiltonian

path in a recursively enumerable graph is again in Σ1
1 which, since every recursive

graph is recursively enumerable, implies Σ1
1-completeness. Hence the problem

does not become more complicated in this case. In order to show the analogous
statement for the statements in Section 4, we need the following construction:
Let (V,E) be a recursively enumerable graph. Let MV (resp. ME) be a Turing-
machine that halts on input n (resp. n#m with n < m) if and only if n ∈ V (resp.
{n,m} ∈ E). Now let V ′ be the union of the set of accepting computations of MV

and the set of accepting computations of ME . Moreover, let E′ ⊆
(

V ′

2

)

be the set
of all {c1, c2} such that for some n ∈ N: (i) c1 is an accepting computation on
input n and (ii) for some m ∈ N, either n < m and c2 is an accepting computation
on input n#m or m < n and c2 is an accepting computation on input m#n. Then
(V ′, E′) is a recursive graph that is obtained from (V,E) by replacing every edge
by a path of length 2. This construction shows that Theorem 4.13(1), 4.14(1),
4.15(1), and 4.16(1) hold verbatim for recursively enumerable graphs.

SOME NATURAL DECISION PROBLEMS IN AUTOMATIC GRAPHS 33

Highly recursive, rational, and tree-automatic graphs. Note that for all
graph theoretic properties considered in Sections 3 and 4, very recursive and
automatic graphs are complete for the same classes of the analytical and arith-
metical hierarchy. Hence the same holds for all classes of graphs in between these
two classes. The most prominent examples are highly recursive, rational, and
tree-automatic graphs (cf. [36, 6]).

REFERENCES

[1] V. Bárány, L. Kaiser, and S. Rubin, Cardinality and counting quantifiers on omega-
automatic structures, STACS 2008, IFIB Schloss Dagstuhl, 2008, pp. 385–396.

[2] D. R. Bean, Effective coloration, this Journal, vol. 41 (1976), no. 2, pp. 469–480.
[3] , Recursive Euler and Hamilton paths, Proceedings of the American Mathe-

matical Society, vol. 55 (1976), no. 2, pp. 385–394.

[4] C. H. Bennett, Logical reversibility of computation, IBM Journal of Research and

Development, vol. 17 (1973), pp. 525–532.
[5] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. No.,

vol. 66 (1966), p. 72.
[6] A. Blumensath, Automatic structures, Technical report, RWTH Aachen, 1999.
[7] A. Blumensath and E. Grädel, Automatic structures, LICS 2000, IEEE Computer

Society Press, 2000, pp. 51–62.

[8] , Finite presentations of infinite structures: Automata and interpretations, The-

ory of Computing Systems, vol. 37 (2004), no. 6, pp. 641–674.
[9] W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge University

Press, 1989.

[10] R. Diestel, Graph theory, third edition, Springer, 2006.

[11] P. Erdös, T. Grünwald, and E. Vazsonyi, Über Euler-Linien unendlicher Graphen,
Journal of Mathematics and Physics, vol. 17 (1938), no. 2, pp. 59–75.

[12] L. Euler, Solutii problematis ad geometriam situs pertinentis, Commentarii

Academiae Scientiarum Petropolitanae, vol. 8 (1736), pp. 128–140.
[13] M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit

problem is NP-complete, SIAM Journal on Computing, vol. 5 (1976), no. 4, pp. 704–714.
[14] W. Gasarch, A survey of recursive combinatorics, Handbook of recursive mathe-

matics, volume 2 (Yu. L. Ershov, S. S. Goncharov, V. W. Marek, A. Nerode, and J. Rem-
mel, editors), Studies in Logic and the Foundations of Mathematics, no. 139, Elsevier, 1998,
pp. 1041–1176.

[15] D. Harel, Recurring dominoes: making the highly undecidable highly understandable,

Annals of Discrete Mathematics, vol. 24 (1985), pp. 51–72.
[16] D. Harel, A simple undecidable domino problem (or, a lemma on infinite trees, with

applications), Proc. Logic and Computation Conference, Clayton, 1984.

[17] D. Harel, Effective transformations on infinite trees, with applications to high unde-
cidability, dominoes, and fairness, Journal of the Association for Computing Machinery,
vol. 33 (1986), no. 1, pp. 224–248.

[18] , Hamiltonian paths in infinite graphs, Israel Journal of Mathematics, vol. 76

(1991), no. 3, pp. 317–336.
[19] T. Hirst and D. Harel, Taking it to the limit: on infinite variants of NP-complete

problems, Journal of Computer and System Sciences, vol. 53 (1996), pp. 180–193.

[20] B. Khoussainov and M. Minnes, Model theoretic complexity of automatic structures,
TAMC 2008, Lecture Notes in Computer Science, no. 4978, Springer, 2008, pp. 514–525.

[21] B. Khoussainov and A. Nerode, Automatic presentations of structures, LCC: Inter-

national Workshop on Logic and Computational Complexity, Lecture Notes in Computer

Science, no. 960, 1995, pp. 367–392.
[22] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan, Automatic structures: richness

and limitations, Logical Methods in Computer Science, vol. 3 (2007), no. 2, pp. 2:2, 18 pp.

34 DIETRICH KUSKE AND MARKUS LOHREY

(electronic).

[23] B. Khoussainov, S. Rubin, and F. Stephan, Automatic partial orders, LICS 2003,
IEEE Computer Society Press, 2003, pp. 168–177.

[24] , Definability and regularity in automatic structures, STACS 2004, Lecture
Notes in Computer Science, no. 2996, Springer, 2004, pp. 440–451.

[25] B. Khoussainov, S. Rubin, and F. Stephan, Automatic linear orders and trees, ACM

Transactions on Computational Logic, vol. 6 (2005), no. 4, pp. 675–700.
[26] S.C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc., vol. 53

(1943), pp. 41–73.

[27] D. Kozen, Theory of Computation, Springer, 2006.
[28] D. Kuske and M. Lohrey, Euler paths and ends in automatic and recursive graphs,

AFL 2008, Hungarian Academy of Sciences, 2008, pp. 245–256.

[29] , First-order and counting theories of ω-automatic structures, this Journal,
vol. 73 (2008), pp. 129–150.

[30] , Hamiltonicity of automatic graphs, IFIP-TCS 2008, Springer, 2008, pp. 445–
459.

[31] O. Ly, Automatic graphs and D0L-sequences of finite graphs, Journal of Computer

and System Sciences, vol. 67 (2003), no. 3, pp. 497–545.
[32] A. B. Manaster and J. G. Rosenstein, Effective matchmaking (recursion theoretic

aspects of a theorem of Philip Hall), Proceedings of the London Mathematical Society.

Third Series, vol. 25 (1972), pp. 615–654.
[33] H. Rogers, Theory of recursive functions and effective computability, McGraw-

Hill, 1968.

[34] S. Rubin, Automata presenting structures: A survey of the finite string case, The

Bulletin of Symbolic Logic, vol. 14 (2008), pp. 169–209.
[35] S. Rubin, Automatic structures, Ph.D. thesis, University of Auckland, 2004.
[36] W. Thomas, A Short Introduction to Infinite Automata, DLT 2001 , Lecture Notes

in Computer Science, no. 2295, Springer, 2001, pp. 130–144.
[37] H. Wang, Proving theorems by pattern recognition, Bell Syst. Tech. J., vol. 40 (1961),

pp. 1–41.

UNIVERSITÄT LEIPZIG

INSTITUT FÜR INFORMATIK

POSTFACH 100920

D-04009 LEIPZIG

GERMANY

E-mail : {kuske,lohrey}@informatik.uni-stuttgart.de

