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Abstract

It is shown that the existence of an Euler path in a recursive graph is complete
for the classDΣ0

3
of all set differences of twoΣ0

3
sets. The same problem for highly

recursive graphs as well as automatic graphs is shown to beΠ0

2
-complete. Moreover,

the arithmetic level for bounding the number of ends in an automatic/recursive graph
as well as computing the number of infinite paths in an automatic/recursive finitely
branching tree is determined.

1 Introduction

The theory ofrecursive structureshas its origins in computability theory. A structure is
recursive, if its domain is a recursive set of naturals, and every relation is again recursive.
Starting with the work of Manaster and Rosenstein [21] and Bean [1, 2], infinite variants
of classical graph problems for finite graphs were studied for recursive graphs. It is not
surprising that these problems are mostly undecidable for recursive graphs. This motivates
the search for the precise level of undecidability. It turned out that someof the problems
reside on low levels of the arithmetic hierarchy (e.g.3-colorability), whereas others are
complete forΣ1

1 — the first level of the analytic hierarchy [17]. An example for the latter
situation is the question whether a given recursive graph has aHamiltonian path, i.e., a one-
way infinite path that visits every node exactly once [10]. This result evenholds for highly
recursive graphs, which are locally finite recursive graphs, wherea list of the finitely many
neighbours of a node can be computed effectively.

For finite graphs, deciding the existence of an Euler path (i.e., a path that visits every
edge exactly once) can be decided in polynomial time, and is therefore much easier than the
existence of a Hamiltonian path (NP-complete for finite graphs). The same situation arises
for infinite graphs. From a characterization of infinite graphs with an Eulerpath [7], see
Theorem 2.1, it follows easily that the existence of an Euler path is an arithmeticproperty
for recursive graphs. More precisely, membership inΣ0

4 and hardness forΠ0
3 is stated in

[9], but the precise complexity remained open. In this paper, we close this gap: we prove
that the existence of an Euler path in a recursive graph is complete for the classDΣ0

3, which
is the class of all set differences of twoΣ0

3 sets. Moreover, we show that the existence of
an Euler path isΠ0

3-complete for locally finite recursive graphs andΠ0
2-complete for highly

recursive graphs; the latter result is also stated in [10] without proof.
In computer science, in particular in the area of automatic verification, focushas shifted

in recent years from arbitrary recursive graphs to subclasses thathave more amenable algo-
rithmic properties. An important example for this is the class ofautomatic graphs[4, 15].
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A graph is called automatic if it has anautomatic presentation, which consists of a finite
automaton that accepts the set of nodes and a two-tape automaton with synchronously mov-
ing heads, which accepts the set of edges (if one allows the heads to move independently,
then one obtainsrational graphs). One of the main motivations for investigating automatic
graphs is the fact that every automatic graph has a decidable first-ordertheory [15], this
result extends to first-order logic with infinity and modulo quantifiers [4, 18]as well as
a restricted form of second-order quantification [12]. In contrast to these positive results,
Khoussainov, Nies, and Rubin have shown that the isomorphism problem for automatic
graphs isΣ1

1-complete [16]. Results on the model theoretic complexity of automatic struc-
tures can be found in [14]. In [12], we proved that already for planar automatic graphs
of bounded degree, the existence of a Hamiltonian path isΣ1

1-complete, and hence has
the same complexity as for general recursive graphs. On the other hand, several other graph
problems that areΣ1

1-complete for recursive graphs turned out to be decidable for automatic
graphs (e.g. the existence of an infinite clique). Therefore, we raised in[12] the question
for a natural graph problem that becomes easier when moving from recursive to automatic
graphs, but nevertheless stays undecidable. Here, we present such an example: we prove
that for automatic graphs, the complexity of testing the existence of an Euler path goes
down fromDΣ0

3-completeness (recursive graphs) toΠ0
2-completeness (automatic graphs).

Moreover, theΠ0
2 lower bound already holds for planar automatic graphs of bounded de-

gree.

As already mentioned, our upper complexity bounds for the existence of anEuler path
are heavily based on the characterization of [7]. One of the conditions in this characteriza-
tion requires that the graphG has only oneinfiniteconnected component after removing an
arbitrary finite set of edges (it is easy to see that this condition is necessary for the existence
of an Euler path). This condition is closely related to thenumber of endsof a graph, which
is usually only defined for locally finite graphs. For a locally finite graphG the number
of ends is the supremum of the number ofinfinite connected components that remain after
removing an arbitrary finite set of edges. We use this definition also for graphs that are
not locally finite.1 The number of ends turned out to be an important concept in combi-
natorial group theory, see e.g. [5]. In [20] it was shown that it is undecidable whether a
given automatic graph has only one end. Here we precisely characterizethe complexity of
the question, whether a given automatic/recursive graph has at mostk ends (for some fixed
k > 0): For recursive graphs (of bounded degree) this question turns out to beΠ0

3-complete,
whereas for automatic and highly recursive graphs we obtainΠ0

2-completeness. In fact, the
lower bounds already hold for a more restricted problem. IfT is a finitely branching tree,
then the number of ends ofT equals the number of infinite branches inT . We prove that
the property of having at mostk infinite branches isΠ0

3-complete for finitely branching re-
cursive trees andΠ0

2-complete for finitely branching highly recursive/automatic trees. Note
that by König’s lemma every finitely branching infinite tree has at least one infinite path.
Moreover, for recursive trees with infinite branching, the existence ofan infinite path is
Σ1

1-complete, this result already holds for automatic graphs [12].

1For locally finite graphs the number of ends can be defined alternatively via certain equivalence classes of
infinite rays. This alternative definition is no longer equivalent to our definition if graphs are not necessarily
locally finite.
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2 Preliminaries

Infinite graphs, Euler paths, and ends For details on graph theory see [6]. Adirected
graph is a pair(V, E) whereV is the possibly infinite set of nodes andE ⊆ V × V is the
set of edges withu 6= v for all edges(u, v) ∈ E. An undirected graphis a pairG = (V, E),
whereV is the (possibly infinite) set of nodes andE ⊆

(

V
2

)

is the set of edges. In the
following, when just speaking of a graph, we always mean an undirectedgraph. For a
directed graphG = (V, E), we denote byG its undirected version(V, {{u, v} | (u, v) ∈
E}).

Let G = (V, E) be a graph. If{u, v} ∈ E, then we say thatu andv areneighbors.
The order of a vertexv ∈ V is the number of its neighbors. Thedegreeof a graphG
is the supremum of the orders of its vertices; if this supremum is finite, we say the graph
hasbounded degree. If it is only required that every node has finite order, thenG is called
locally finite. The graphG is planar if it can be embedded in the Euclidean plane without
crossing edges and without accumulation points.

A finite pathin the directed (resp. undirected) graphG = (V, E) is a sequence[v1, v2,
. . . , vn] of nodes such that(vi, vi+1) ∈ E (resp. {vi, vi+1} ∈ E) for all 1 ≤ i ≤ n; it is
simpleif the nodesv1, . . . , vn are mutually distinct. The nodesv1 andvn are the end points
of this path. A graphG = (V, E) is connected if for allu, v ∈ V distinct there exists a
finite path with end pointsu andv. A directed graphG is connectedif G is connected. An
infinite (simple) pathin G is an infinite sequence[v1, v2, . . .] such that every initial segment
is a finite (simple) path. For a finite set of edgesH ⊆ E of G = (V, E), let f(H) be the
number of infinite connected components of(V, E \ H). Thenumber of ends ofG is the
maximum of allf(H) for H ⊆ E finite (if this maximum exists) and∞ otherwise.

An Euler pathof an infinite undirected graphG is an infinite path[v1, v2, . . .] in G that
passes every edge ofG exactly once, i.e., the mappingi 7→ {vi, vi+1} is a bijection from
N onto the set of edgesE, a graph with an Euler path is calledEulerian. Euler’s well-
known characterisation of Eulerian finite graphs [8] was extended by Erdős, Gr̈unwald, and
Vazsonyi as follows:

Theorem 2.1 ([7]) An infinite countable graphG = (V, E) is Eulerian if and only if it
satisfies the following conditions:
(E1) G is connected.
(E2) G has a vertex of odd or infinite order.
(E3) G has at most one vertex of odd order.
(E4) G has only one end.

A tree is a directed graphT = (V, E) such that there exists a root noder ∈ V with the
following properties:
• There does not existv ∈ V with (v, r) ∈ E.
• For everyv ∈ V \ {r} there exists exactly oneu ∈ V with (u, v) ∈ E.
• (r, v) ∈ E∗ for everyv ∈ V .

A tree isn-branching(n ∈ N) if |{w ∈ V | (v, w) ∈ E}| ≤ n for all v ∈ V ; it is
finitely branchingif {w ∈ V | (v, w) ∈ E} is finite for all v ∈ V . An infinite branchin
a tree(V, E) is an infinite path[v0, v1, v2, . . .] in T , wherev0 is the root node ofT . If T
is a finitely branching tree, then the number of infinite branches ofT equals the number of
ends of the undirected graphT . A combis a 2-branching tree that has an infinite branch
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...

Figure 1: A comb: The spine is the horizontal ray, the forth tooth is infinite

containing all the branching points (i.e., all those verticesu with two verticesv, w with
(u, v), (u, w) ∈ E); any such infinite branch is called aspine, the complement of a (fixed)
spine is formed of theteeth. Note that a comb may have at most two spines. Fig. 1 shows a
comb.

Recursive graphs and automatic graphs A recursive (directed) graphis a (directed)
graphG = (V, E) such thatV andE are recursive subsets ofN and

(

N

2

)

or N
2, respectively.

In caseG is infinite, one can w.l.o.g. assume thatV = N. A recursive graph(V, E) is
very recursiveif one can compute, from a nodev its order (which may be∞). A locally
finite and very recursive graph ishighly recursive. A recursivedirectedgraphG is highly
recursiveif the graphG is highly recursive.

Next we introduce automatic graphs, see [15, 4] for more details. Let us fix n ∈ N and a
finite alphabetΓ. Let # 6∈ Γ be an additional padding symbol. For wordsw1, . . . , wn ∈ Γ∗

we define theconvolutionw1⊗w2⊗· · ·⊗wn, which is a word over the alphabet(Γ∪{#})n,
as follows: Letwi = ai,1ai,2 · · · ai,ki

with ai,j ∈ Γ andk = max{k1, . . . , kn}. For ki <
j ≤ k defineai,j = #. Thenw1 ⊗ · · · ⊗ wn = (a1,1, . . . , an,1) · · · (a1,k, . . . , an,k). Thus,
for instanceaba ⊗ bbabb = (a, b)(b, b)(a, a)(#, b)(#, b). An n-ary relationR ⊆ (Γ∗)n is
calledautomaticif the language{w1⊗· · ·⊗wn | (w1, . . . , wn) ∈ R} is a regular language.

Now letA = (A, (Ri)i∈J) be a relational structure with finitely many relations, where
Ri ⊆ Ani . A tuple (Γ, L, h) is called anautomatic presentationfor A if (i) Γ is a fi-
nite alphabet,L ⊆ Γ∗ a regular language, andh : L → A a surjection, (ii) the relation
{(u, v) ∈ L × L | h(u) = h(v)} is automatic, and (iii) the relation{(u1, . . . , uni

) ∈ Lni |
(h(u1), . . . , h(uni

)) ∈ Ri} is automatic for everyi ∈ J . We say thatA is automaticif
there exists an automatic presentation forA. Since directed graphs are relational structures
(with one binary relation), this defines what anautomatic directed graphis. A graph(V, E)
is automaticif the directed graph(V, {(u, v) ∈ V 2 | {u, v} ∈ E}) is automatic.

In contrast to recursive graphs, automatic graphs have some nice algorithmic proper-
ties. In [15] it was shown that every first-order definable relation in an automatic structure
is effectively automatic (this result extends to first-order logic with infinity andmodulo
quantifiers [4, 18] as well as restricted second-order quantification [12]). Hence, the first-
order theory of every automatic structure is decidable. If(V, E) is an automatic graph, then
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for a given nodev ∈ V one can effectively compute a finite automaton that accepts the set
of neighbours ofv. Thus, an automatic graph is very recursive.

In contrast to these positive results, several strong undecidability results show that al-
gorithmic methods for automatic structures are quite limited. Since the configurationgraph
of a Turing machine is automatic, it follows easily that reachability in automatic graphs
is undecidable. Khoussainov, Nies, and Rubin have shown that the isomorphism problem
for automatic graphs isΣ1

1-complete [16], whereas isomorphism of locally finite automatic
graphs isΠ0

3-complete [22]. In [12], we proved that Hamiltonicity of planar automatic
graphs of bounded degree isΣ1

1-complete (which improves the corresponding result of Hirst
and Harel on highly recursive graphs [11]) and that the same holds for the existence of an
infinite branch in an automatic tree (for automatic order trees, the existence ofan infinite
branch was shown decidable [19]).

A notational remark The difficulty of graph problems will be measured in the arithmeti-
cal hierarchy [13]. In addition to the usual classesΣ0

n andΠ0
n for n ≥ 0, we will encounter

the classDΣ0
3 that consists of all the setsK \ L for K, L ∈ Σ0

3, i.e., it is the class of
differences of recursively enumerable sets relativized toΠ0

2.
By Turing machine, we always mean a deterministic Turing machineM with one tape

that is infinite in one direction and accepts by halting; its language is denotedL(M). We
will also use the following classes of Turing machines (cf. [17] for the completeness results):

1. TOTAL denotes the class of Turing machines that halt on every input. This set
TOTAL is Π0

2-complete.

2. FIN denotes the class of Turing machines that halt for only finitely many inputs. This
setFIN is Σ0

2-complete.

3. COF denotes the class of Turing machines that halt for almost all inputs. This set
COF is Σ0

3-complete.

4. COF denotes the class of Turing machines that diverge for infinitely many inputs.
SinceCOF is the complement ofCOF, this setCOF is Π0

3-complete.

A recursive (directed) graphG is determined by a Turing machineM that decides the set
of edges ofG. A very recursive (directed) graph needs, in addition, a Turing machine M ′

that computes the number of neighbors of every node. A highly recursive (directed) graph
is given by a Turing machineM that, on input ofn ∈ N, computes a tuple of the neighbors
of n in G. Finally, an automatic directed graph is given by two finite automata that accept
the set of nodes and edges, resp.

In the following, we will often make statements like “For graphs fromX, propertyY
belongs toC” or “. . . is C-hard” whereX is a class of graphs andC is some class from the
arithmetical hierarchy. Formally, the first means “There is a setL ∈ C such that for every
inputM that describes a graphG ∈ X, we haveM ∈ L iff G has propertyY ”. Similarly,
the second means “For allL ∈ C, there exists a computable functionf such that, for all
inputsw, f(w) describes a graphG ∈ X, andw ∈ L iff G has propertyY ”.

Finally, we will always identify a finitary object (like words, tuples of words, Turing
machines etc) with its G̈odel number.
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3 Upper bounds

The following proposition gives upper bounds for testing whether a given (very) recursive
graph has at mostk ends. These upper bounds (fork = 1) will be crucial for our upper
bounds concerning Euler paths.

Proposition 3.1 Letk > 0.
(1) For recursive graphs, the property to have at mostk ends belongs toΠ0

3.
(2) For very recursive graphs, the property to have at mostk ends belongs toΠ0

2.

Proof. (1) Consider the followingΠ0
3-formula

∀H ⊆ E finite ∀x0, x1, . . . , xk ∈ V :
∨

0≤i<j≤k

∃ path fromxi to xj in (V, E \ H) ∨

∃Z ⊆ V finite : (
∨

0≤i≤k

xi ∈ Z) ∧ ∀{z1, z2} ∈ E \ H(z1 ∈ Z ↔ z2 ∈ Z),

expressing that of everyk + 1 verticesx0, . . . xk, two belong to the same connected com-
ponent or one belongs to some finite connected component of(V, E \ H).

(2) Now assume(V, E) to be very recursive and letH ⊆ E andZ ⊆ V be finite.
If Z contains a vertex of infinite order, it cannot be a union of connected components of
(V, E \ H). Otherwise, for eachz ∈ Z, one can decide whether it is adjacent to any of
the edges inH. Hence it is decidable whetherZ is a union of connected components of
(V, E \ H). Thus, the property to have at mostk ends is inΠ0

2.

The characterisation of Eulerian infinite graphs from Theorem 2.1 as wellas Prop. 3.1
gives the following upper bounds:

Proposition 3.2 The following holds:
(1) For recursive graphs, existence of an Euler path is inDΣ0

3.
(2) For locally finite recursive graphs, existence of an Euler path is inΠ0

3.
(3) For very recursive graphs, existence of an Euler path is inΠ0

2.

Proof. (1) It is an easy exercise to express (E1) inΠ0
2. The existence of a vertex of odd

order is expressible inΣ0
2 and the existence of a vertex of infinite order inΣ0

3. Hence (E2)
is in Σ0

3 and (E3) inΠ0
2. By Prop. 3.1, (E4) is expressible inΠ0

3. Hence the existence of an
Euler path is a conjunction ofΣ0

3- andΠ0
3-properties and therefore inDΣ0

3.
(2) This holds since all the properties in the previous paragraph exceptthe existence of

a vertex of infinite order are inΠ0
3.

(3) Assume(V, E) to be very recursive. Then the number of neighbors of a nodex is
computable fromx. Hence (E2) is expressible inΣ0

1 and (E3) inΠ0
1. Again, by Prop. 3.1,

(E4) is expressible inΠ0
2.

4 Lower bounds

In this section we will establish lower complexity bounds. We will present two constructions
(Lemma 4.1 and 4.5), from which all lower bounds will be deduced.
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4.1 Recursive graphs

Our first main construction concerns recursive graphs. Recall thatG is the undirected ver-
sion of the directed graphG.

Lemma 4.1 From two Turing machinesM1 andM2, one can compute a connected recur-
sive directed graphG(M1, M2) such that
(a) M1 ∈ COF if and only ifG(M1, M2) has more than one end.
(b) M2 ∈ COF if and only ifG(M1, M2) has a vertex of infinite order.
(c) If M2 diverges for every input, thenG(M1, M2) is a comb with a recursive spine.

Proof. Let B denote the set of nonempty words#c0#c1 . . .#cn where eachci is the
halting computation of the machineM1 with input m + i (for somem ∈ N). Then the set
of verticesV of G(M1, M2) is given byV = N ∪ B. We also fix a computable bijection
f : N

3 → N. The set of edges ofG(M1, M2) is given by:

(1) (n, n + 1), (n, #c) ∈ E for all n ∈ N andc the halting computation ofM1 on inputn
(if this halting computation exists).

(2) (w, w#c) ∈ E for all w, w#c ∈ B.

(3) (n, f(k, ℓ, m)) ∈ E iff the following hold

(3.1) m = n,

(3.2) M2 halts for each of the inputsn, n + 1, . . . , n + k after at mostℓ computation
steps, and

(3.3) there exists0 ≤ j ≤ k such thatM2 halts for the inputn + j after preciselyℓ
computation steps

This graph is recursive since also the bijectionf−1 : N → N
3 is computable and since

condition (3) requires finitely many checks.
Note that the vertices of the formN together with the edges from (1) between them form

an infinite path. The node#c0#c1 . . .#cn ∈ B is connected to this ray via a path (formed
by the prefixes of the form#c0#c1 . . .#ci of this word) to the vertexm, the input of the
halting computationc0. HenceG(M1, M2) is connected.

(a) First suppose thatM1 ∈ COF, i.e., M1 halts for almost all inputs. Then there
existsm ∈ N such thatM1 halts for all inputsm, m + 1, m + 2, . . . , i.e., there are halting
computationsck for k ≥ m on inputk. But then the set of words#cm#cm+1 . . .#ck for
k ≥ m forms an infinite path. Deleting the edge betweenm and#cm therefore leaves two
infinite connected components, i.e.,G(M1, M2) has at least two ends.

Conversely supposeG(M1, M2) has more than one end. Since the nodes fromN are
connected by a ray-like structure, the graphG(M1, M2) has to have an infinite path formed
by nodes fromB. But this implies that there are infinitely many consecutive inputsm, m +
1, m + 2 . . . that allow a halting computation ofM1, i.e.,M1 ∈ COF.

(b) SupposeM2 ∈ COF stops for all inputsm ≥ n. Let, form ≥ n, ℓm be the maximal
length of a halting computation with input betweenn andm. Then(n, f(m− n, ℓm, n)) ∈
E, i.e.,n has infinite order.
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Conversely, supposeG(M1, M2) contains a vertex of infinite order. By the very con-
struction, every node fromB has at most two neighbors inG(M1, M2). Hence there exists
a vertexn ∈ N of infinite order. Note that the neighbors ofn are n − 1 (if n > 0),
n + 1, the halting computation ofM1 with input n (if it exists), possibly the noden′

with f−1(n) = (k′, ℓ′, n′), and some nodes of the formf(k, ℓ, n) with k, ℓ ∈ N. Since
n has infinitely many neighbors, there are therefore pairs(ki, ℓi) ∈ N

2 for i ∈ N with
(n, f(ki, ℓi, n)) ∈ E. By condition (3.3),ki = kj impliesℓi = ℓj . Hence, for everym ≥ n
there existsk ≥ m − n andℓ such that(n, f(k, ℓ, n)) ∈ E ensuring thatM2 halts for all
inputsn, n+1, . . . , n+(m−n), . . . , n+k. Thus,M2 halts for all inputsm ≥ n, implying
M2 ∈ COF.

(c) If M2 never stops, then condition (3) does never hold. HenceG(M1, M2) is a comb,
the setN of nodes forms a recursive spine.

Proposition 4.2 For recursive graphs, the existence of an Euler path isDΣ0
3-hard.

Proof. SinceCOF andCOF are complete forΠ0
3 andΣ0

3, resp.,COF × COF is hard
for DΣ0

3 and it suffices for our result to reduce this direct product to the set ofrecursive
graphs with an Euler path. To this end, letM1 andM2 be Turing machines and consider
G(M1, M2) from Lemma 4.1. In this graph, replace every edgee = {a, b} by four edges
{a, xe}, {xe, b}, {a, ye}, and{ye, b}. Then the resulting graphG is recursive, connected,
without node of odd order and therefore satisfies (E1) and (E3). In addition, it satisfies (E2)
iff it has a vertex of infinite degree iffM2 ∈ COF by Lemma 4.1. Finally,G satisfies (E4)
iff it has at most one end iffM1 /∈ COF by Lemma 4.1 iffM1 ∈ COF.

Proposition 4.3 For planar recursive graphs of degree4, the existence of an Euler path is
Π0

3-hard.

Proof. First, fix a Turing machineM2 that never halts. Then the combG(M, M2) contains
a recursive spineS. LetG be obtained fromG(M, M2) by replacing every edgee = {a, b}
that is not in the spineS by four edges{a, xe}, {xe, b}, {a, ye}, and{ye, b}. ThenG is
connected, i.e., satisfies (E1). SinceM2 never halts,G(M, M2) is a comb implying thatG
has degree4. Note that the root is the only node ofG(M, M2) that is adjacent to an odd
number of edges from the spine. Hence, inG, the root ofG(M, M2) is the only vertex of
odd degree. This shows thatG satisfies (E2) and (E3). By Lemma 4.1, it satisfies (E4) if
and only ifM ∈ COF. SinceCOF is Π0

3-complete, the result follows.

Proposition 4.4 For recursive combs, the existence of only one infinite branch isΠ0
3-hard.

Proof. Again, fix a Turing machineM2 that never halts. Now letM be a Turing machine.
ThenG(M, M2) is a comb. Furthermore, the treeG(M, M2) has only one infinite branch
iff G(M, M2) has at most one end iffM /∈ COF (by Lemma 4.1) iffM ∈ COF. Since
COF is Π0

3-hard, the result follows.

4.2 Automatic graphs

The configuration graph of a Turing machineM is a typical example of an automatic graph.
The set of nodes is the setΓ∗QΓ∗ of all configurations ofM , whereΓ (resp.Q) is the tape
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alphabet (state set) ofM , and there is an edge between configurationsc andc′ if c ⊢M c′,
i.e.,M can go in one step fromc to c′. Since we consider Turing machines with a one-sided
tape, the relation⊢M is automatic. This automaticity was used in several papers [12, 14, 16]
as a tool to encode complex behaviour in automatic graphs. In the proof of the following
theorem, we use configuration graphs as well.

Lemma 4.5 From a Turing machineM , one can compute an automatic combT (M) with
regular spine such that the number of infinite teeth ofT (M) equals|N \ L(M)|.

Proof. Let M1 be a Turing machine that behaves likeM but recalls the transitions of the
M -computation. Then the configuration graph ofM1 is a disjoint union of finite and infinite
paths. Furthermore,L(M1) = L(M). The machineM1 is a reversible version ofM [3].

We next construct a self-stabilizing versionM2 of M1 (see also [20]) as follows. The
machineM2 is obtained fromM1 by adding two counters. Initially, the first counter is set
to 0 and the second counter is set to1. Incrementing the first counter in every step, the
machine then simulatesM1 until the first counter equals the second one. At this point, the
machine simulatesM1 backwards (which is possible sinceM1 is reversible) until the first
counter is0 or it cannot simulate a backward step. If, at this point, the machine is not in
an initial configuration ofM1,2 it stops. Otherwise, it increments the second counter and
proceeds as before.

The configuration graph ofM2 is, again, a disjoint union of finite and infinite paths.
Moreover, there is a bijection betweenN \L(M1) = N \L(M) and the set of infinite paths
of the configuration graph ofM2. Let

S = {c | c is a configuration ofM2,¬∃c′ : c′ ⊢M2
c}

be the set of allsource configurations. Then every initial configuration ofM2 belongs toS.
Now consider the following graphT (M) = (V, E) whose vertices are the configura-

tions of M2. For two configurationsc, c′, we have(c, c′) ∈ E iff c ⊢M2
c′ or c′ is the

length-lexicographically minimal source configuration length-lexicographically larger than
the source configurationc.

The graphT (M) is thus obtained from the configuration graph ofM2 by placing the
source configurations in anω-chain, i.e., it is a comb. The infinite teeth of this comb are
the infinite paths of the configuration graph ofM2. Thus, the number of infinite teeths of
T (M) equals|N \ L(M)|.

Recall that the relation⊢M2
as well as the length-lexicographic order on the configura-

tions ofM2 are automatic. Moreover, sinceS is a regular language, it follows that the edge
relationE is automatic. Hence the combT (M) is automatic [4].

By Lemma 4.5, the combT (M) has only one infinite path if and onlyM ∈ TOTAL.
As an immediate consequence of theΠ0

2-hardness ofTOTAL, we obtain:

Proposition 4.6 For automatic combs, the existence of only one infinite branch isΠ0
2-hard.

Proposition 4.7 For planar automatic graphs of degree4, the existence of an Euler path is
Π0

2-hard.

2The set of initial configurations ofM1 is q0Σ
∗, whereq0 is the initial state ofM1 andΣ is the input

alphabet.
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Proof. Let M be a Turing machine. In the graphT (M) (whereT (M) is the graph from
Lemma 4.5), replace every edgee = {a, b} in a tooth by four edges{a, xe}, {xe, b},
{a, ye}, and{ye, b}. Then the resulting graphG is connected, planar, automatic (since the
spine ofT (M) is regular), of degree4. All its nodes except the root ofT (M) have even
degree and the degree of the root is1 or 3. Hence,G satisfies (E1), (E2), and (E3). It
therefore has an Euler path iff it satisfies (E4) iffT (M) has only one end iffM halts for all
inputs, i.e., iffM ∈ TOTAL. Since the setTOTAL is Π0

2-hard, the result follows.

5 Completeness

We summarize our main results.

Theorem 5.1 The existence of an Euler path is
1. DΣ0

3-complete for recursive graphs,
2. Π0

3-complete for (planar) locally finite recursive graphs (of degree4),
3. Π0

2-complete for (planar) very recursive graphs (of degree 4), and
4. Π0

2-complete for (planar) automatic graphs (of degree4).

Proof. The first statement follows immediately from Prop. 3.2(1) and 4.2, the secondfrom
Prop. 3.2(2) and 4.3, and the third from Prop. 3.2(3) and Prop. 4.7 since every automatic
graph is very recursive. The last statement follows again from Prop. 3.2(3) and Prop. 4.7.

Concerning Theorem 5.1(1) and (3), [9] mentions upper (Σ0
4 andΠ0

2, resp.) and lower
bounds (Π0

3 and bothΣ0
1 andΠ0

1, resp.) and asks for the exact complexities that we provide
here. Actually, (3) is stated without proof in [10], where unpublished work of Beigel and
Gasarch is cited. In [10], it is also spuriously stated (without proof) thatthe existence of an
Euler path in a recursive graph isΠ0

3-complete which is (by (1) and (2)) only true for locally
finite recursive graphs. To our knowledge, (2) and (4) have not been considered before.

Recall that the existence of an infinite branch in a recursive tree isΣ1
1-complete and the

same holds for automatic trees [12]. On the other hand, by König’s lemma, every infinite
finitely branching tree contains an infinite branch. Since infinity of an automaticstructure
is decidable [4], it follows that the existence of at least one infinite branchin a automatic
finitely branching tree is decidable. The following shows that bounding the number of
infinite branches is difficult for both, recursive and automatic trees.

Theorem 5.2 Letk > 0. The existence of at mostk infinite branches is
1. Π0

3-complete for recursive finitely branching trees.
2. Π0

2-complete for automatic and for very recursive finitely branching trees.
In both cases, hardness holds even for combs.

Proof. Containment inΠ0
3 andΠ0

2 follow from Prop. 3.1 since, for a finitely branching
treeT , the number of ends ofT equals the number of infinite branches ofT . Hardness for
k = 1 is shown in Prop. 4.4 and Prop. 4.6, resp. To reduce the casek = 1 to the general
case, just addk − 1 many infinite branches to a recursive or automatic comb.

Theorem 5.3 Letk > 0. The existence of at mostk ends is
1. Π0

3-complete for (planar) recursive graphs (of degree3).
2. Π0

2-complete for automatic and for very recursive planar graphs (of degree3).

10



Proof. Containment was shown in Prop. 3.1, hardness follows immediately from Theo-
rem 5.2 and the fact that the number of ends ofT and of infinite branches ofT coincide for
every finitely branching treeT .

Let us finally consider the property of having infinitely many finite branches:

Theorem 5.4 The existence of infinitely many infinite branches is
1. in Π0

4 for recursive finitely branching trees.
2. Π0

3-complete for automatic and for very recursive finitely branching trees.
Hardness in the second point holds even for combs.

Proof. The upper bounds follow from Theorem 5.2, sinceT has infinitely many infinite
branches if and only if for everyk > 0, T does not have at mostk many infinite branches.

For the lower bound in (2), note that for the combT (M) from Lemma 4.5 we have:
T (M) has infinitely many infinite paths if and only ifN \ L(M) is infinite if and only if
M ∈ COF. SinceCOF is Π0

3-complete, the result follows.

Highly recursive and rational graphs Note that for all graph theoretic properties consid-
ered in this paper, very recursive and automatic graphs are complete forthe same classes of
the arithmetical hierarchy. Hence the same holds for all classes of graphsin between these
two classes. The two most prominent examples are highly recursive and rational graphs
(cf. [23]).
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