
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp -

Leaf languages and string compression∗

Markus Lohrey
Universität Leipzig, Institut für Informatik, Germany

lohrey@informatik.uni-leipzig.de

ABSTRACT. Tight connections between leafs languages and strings compressed via straight-line
programs (SLPs) are established. It is shown that the compressed membership problem for a lan-
guage L is complete for the leaf language class defined by L via logspace machines. A more difficult
variant of the compressed membership problem for L is shown to be complete for the leaf language
class defined by L via polynomial time machines. As a corollary, a fixed linear visibly pushdown lan-
guage with a PSPACE-complete compressed membership problem is obtained. For XML languages,
the compressed membership problem is shown to be coNP-complete.

1 Introduction

Leaf languages were introduced in [7, 25] and became an important concept in complexity

theory. Let us consider a nondeterministic Turing machine M. For a given input x, one con-

siders the yield string of the computation tree (i.e. the string obtained by listing all leafs from

left to right), where accepting (resp. rejecting) leaf configurations yield the letter 1 (resp.

0). This string is called the leaf string corresponding to the input x. For a given language

K ⊆ {0, 1}∗ let LEAF(M, K) denote the set of all inputs for M such that the corresponding

leaf string belongs to K. By fixing K and taking for M all nondeterministic polynomial time

machines, one obtains the polynomial time leaf language class LEAFP
a (K). The index a in-

dicates that we allow Turing machines with arbitrary (non-balanced) computation trees. If

we restrict to machines with balanced computation trees, we obtain the class LEAFP
b (K), see

[13, 16] for a discussion of the different shapes for computation trees.

Many complexity classes can be defined in a uniform way with this construction. For

instance, NP = LEAFP
x (0∗1{0, 1}∗) and coNP = LEAFP

x (1∗) for both x = a and x = b.

In [14], it was shown that PSPACE = LEAFP
b (K) for a fixed regular language K. In [16],

logspace leaf language classes LEAFL
a (K) and LEAFL

b (K), where M varies over all (resp.

all balanced) nondeterministic logspace machines, were investigated. Among other results,

a fixed deterministic context-free language K with PSPACE = LEAFL
a (K) was presented.

In [8], it was shown that in fact a fixed deterministic one-counter language K as well as a

fixed linear deterministic context-free language [15] suffices in order to obtain PSPACE. Here

“linear” means that the pushdown automaton makes only one turn.

In [6, 24], a tight connection between leaf languages and computational problems for

succinct input representations was established. More precisely, it was shown that the mem-

bership problem for a language K ⊆ {0, 1}∗ is complete (w.r.t. polynomial time reductions

in [6] and projection reductions in [24]) for the leaf language class LEAFP
b (K), if the input

string x is represented by a Boolean circuit. A Boolean circuit C(x1, . . . , xn) with n inputs

represents a string x of length 2n in the natural way: the i-th position in x carries a 1 if

∗This work is supported by the DFG research project ALKODA.

c© Lohrey; licensed under Creative Commons License-NC-ND

2 LEAF LANGUAGES AND STRING COMPRESSION

and only if C(a1, . . . , an) = 1, where a1 · · · an is the n-bit binary representation of i. In this

paper we consider another more practical compressed representation for strings, namely

straight-line programs (SLPs) [23]. A straight-line program is a context-free grammar A that

generates exactly one string val(A). In an SLP, repeated subpatterns in a string have to be

represented only once by introducing a nonterminal for the pattern. An SLP with n produc-

tions can generate a string of length 2n by repeated doubling. Hence, an SLP can be seen

indeed as a compressed representation of the string it generates. Several other dictionary-

based compressed representations, like for instance Lempel-Ziv (LZ) factorizations, can be

converted in polynomial time into SLPs and vice versa [23]. This implies that complexity

results can be transfered from SLP-encoded input strings to LZ-encoded input strings.

Algorithmic problems for SLP-compressed strings were studied e.g. in [5, 18, 19, 20, 22,

23]. A central problem in this context is the compressed membership problem for a language

K: it is asked whether val(A) ∈ K for a given SLP A. In [19] it was shown that there ex-

ists a fixed linear deterministic context-free language with a PSPACE-complete compressed

membership problem. A straightforward argument shows that for every language K, the

compressed membership problem for K is complete for the logspace leaf language class

LEAFL
a (K) (Prop. 2). As a consequence, the existence of a linear deterministic context-free

language with a PSPACE-complete compressed membership problem [19] can be deduced

from the above mentioned LEAFL
a -characterization of PSPACE from [8], and vice versa. For

polynomial time leaf languages, we reveal a more subtle relationship to SLPs. Recall that

the convolution u⊗ v of two strings u, v ∈ Σ∗ is the string over the paired alphabet Σ×Σ that

is obtained from gluing u and v in the natural way (we cut off the longer string to the length

of the shorter one). We define a fixed projection homomorphism ρ : {0, 1} × {0, 1} → {0, 1}
such that for every language K, the problem of checking ρ(val(A) ⊗ val(B)) ∈ K for two

given SLPs A, B is complete for the class LEAFP
b (K) (Cor. 4). By combining Cor. 4 with the

main result from [14] (PSPACE = LEAFP
b (K) for a certain regular language K), we obtain

a regular language L for which it is PSPACE-complete to check whether the convolution

of two SLP-compressed strings belongs to L (Cor. 6). Recently, the convolution of SLP-

compressed strings was also studied in [5], where for every n ≥ 0, SLPs An, Bn of size nO(1)

were constructed such that every SLP for val(An) ⊗ val(Bn) has size Ω(2n/2).

From Cor. 6 we obtain a strengthening of one of the above mentioned results from [8]

(PSPACE = LEAFL
a (K) for a linear deterministic context-free language K as well as a deter-

ministic one-counter language K) to visibly pushdown languages [1]. The latter constitute a

subclass of the deterministic context-free languages which received a lot of attention in re-

cent years due to its nice closure and decidability properties. Visibly pushdown languages

can be recognized by deterministic pushdown automata, where it depends only on the input

symbol whether the automaton pushes or pops. Visibly pushdown languages were already

introduced in [27] as input-driven languages. In [9] it was shown that every visibly push-

down language can be recognized in NC1; thus the complexity is the same as for regular

languages [2]. In contrast to this, there exist linear deterministic context-free languages as

well as deterministic one-counter languages with an L-complete membership problem [15].

We show that there exists a linear visibly pushdown language with a PSPACE-complete

compressed membership problem (Thm. 7). Together with Prop. 2, it follows that PSPACE

= LEAFL
a (K) for a linear visibly pushdown language K (Cor. 8).

LOHREY FSTTCS 2008 3

In [21], nondeterministic finite automata (instead of polynomial time (resp. logspace)

Turing-machines) were used as a device for generating leaf strings. This leads to the def-

inition of the leaf language class LEAFFA(K). It was shown that CFL (LEAFFA(CFL) ⊆
DSPACE(n2) ∩ DTIME(2O(n)), and the question for sharper upper and lower bounds was

posed. Here we give a partial answer to this question. For the linear visibly pushdown

language mentioned in the previous paragraph, the class LEAFFA(K) contains a PSPACE-

complete language (Thm. 9).

Finally, in Sec. 5 we consider XML-languages [4], which constitute a subclass of the vis-

ibly pushdown languages. XML-languages are generated by a special kind of context-free

grammars (XML-grammars), where every right-hand side of a production is enclosed by a

matching pair of brackets. XML-grammars capture the syntactic features of XML document

type definitions (DTDs), see [4]. We prove that, unlike for visibly pushdown languages, for

every XML-language the compressed membership problem is in coNP and that there are

coNP-complete instances.

Proofs that are omitted due to space restriction will appear in a long version.

2 Preliminaries

Let Γ be a finite alphabet. The empty word is denoted by ε. Let s = a1 · · · an ∈ Γ∗ be a

word over Γ (n ≥ 0, a1, . . . , an ∈ Γ). The length of s is |s| = n. For 1 ≤ i ≤ n let s[i] = ai

and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj. If i > j we set s[i, j] = ε. We denote with

Γ = {a | a ∈ Γ} a disjoint copy of Γ. For a ∈ Γ let a = a. For w = a1 · · · an ∈ (Γ ∪ Γ)∗ let

w = an · · · a1. For two strings u, v ∈ Γ∗ we define the convolution u ⊗ v ∈ (Γ × Γ)∗ as the

string of length ℓ = min{|u|, |v|} with (u ⊗ v)[i] = (u[i], v[i]) for all 1 ≤ i ≤ ℓ.

A sequence (u1, . . . , un) of natural numbers is superdecreasing if ui > ui+1 + · · · + un

for all 1 ≤ i ≤ n. An instance of the subsetsum problem is a tuple (w1, . . . , wk, t) of binary

coded natural numbers. It is a positive instance if there are x1, . . . , xk ∈ {0, 1} such that t =
x1w1 + · · · + xkwk. Subsetsum is a classical NP-complete problem. The superdecreasing sub-

setsum problem is the restriction of subsetsum to instances (w1, . . . , wk, t), where (w1, . . . , wk)
is superdecreasing. In [17] it was shown that superdecreasing subsetsum is P-complete

([17] deals with the superincreasing subsetsum problem; but the results from [17] can be eas-

ily transfered to superdecreasing subsetsum). In fact, something more general is shown

in [17]: Let C(x1, . . . , xm) be a Boolean circuit with variable input gates x1, . . . , xm (and

some additional input gates that are set to fixed Boolean values). Then from C(x1, . . . , xm)
an instance (t(x1, . . . , xm), w1, . . . , wk) of superdecreasing subsetsum is constructed. Here,

t(x1, . . . , xm) = t0 + x1t1 + · · · + xmtm is a linear expression such that:

• t1 > t2 > · · · > tm and the ti are pairwise distinct powers of 4. Hence also the sequence

(t1, . . . , tm) is superdecreasing.

• For all a1, . . . , am ∈ {0, 1}: C(a1, . . . , am) evaluates to true if and only if ∃b1, . . . , bk ∈
{0, 1} : t0 + a1t1 + · · · + amtm = b1w1 + · · · + bkwk.

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk

We encode a superdecreasing sequence (w1, . . . , wk) by the string S(w1, . . . , wk) ∈ {0, 1}∗ of

4 LEAF LANGUAGES AND STRING COMPRESSION

length w1 + · · · + wk + 1 such that for all 0 ≤ p ≤ w1 + · · · + wk:

S(w1, . . . , wk)[p + 1] =

{
1 if ∃x1, . . . , xk ∈ {0, 1} : p = x1w1 + · · · + xkwk

0 otherwise
(1)

Since (w1, . . . , wk) is superdecreasing, the number of 1’s in S(w1, . . . , wk) is 2k.

The lexicographic order on N∗ is denoted by �, i.e. u � v if either u is a prefix of v or

there exist w, x, y ∈ N∗ and i, j ∈ N such that u = wix, v = wjy, and i < j. A finite ordered

tree is a finite set T ⊆ N∗ such that for all w ∈ N∗, i ∈ N: if wi ∈ T then w, wj ∈ T for every

0 ≤ j < i. The set of children of u ∈ T is uN ∩ T. A node u ∈ T is a leaf of T if it has no

children. We say that T is a full binary tree if (i) every node has at most two children, and (ii)

every maximal path in T has the same number of branching nodes (i.e., nodes with exactly

two children). A left initial segment of a full binary tree is a tree T such that there exists a full

binary tree T′ and a leaf v ∈ T′ such that T = {u ∈ T′ | u � v}.

2.1 Leaf languages

A nondeterministic Turing-machine (NTM) M is adequate, if (i) for every input w ∈ Σ∗, M

does not have an infinite computation on input w and (ii) the set of finitely many transition

tuples of M is linearly ordered. For an input w for M, we define the computation tree

by unfolding the configuration graph of M from the initial configuration. By condition (i)

and (ii), the computation tree can be identified with a finite ordered tree T(w) ⊆ N∗. For

u ∈ T(w) let q(u) be the M-state of the configuration that is associated with the tree node

u. Then, the leaf string leaf(M, w) is the string α(q(v1)) · · · α(q(vk)), where v1, . . . , vk are all

leafs of T(w) listed in lexicographic order, and α(q) = 1 (resp. α(q) = 0) if q is an accepting

(resp. rejecting) state.

An adequate NTM M is balanced, if for every input w ∈ Σ∗, T(w) is a left initial segment

of a full binary tree. With a language K ⊆ {0, 1}∗ we associate the language LEAF(M, K) =
{w ∈ Σ∗ | leaf(M, w) ∈ K} and the following four complexity classes:

LEAFP
a (K) = {LEAF(M, K) | M is an adequate polynomial time NTM}

LEAFP
b (K) = {LEAF(M, K) | M is a balanced polynomial time NTM}

LEAFL
a (K) = {LEAF(M, K) | M is an adequate logarithmic space NTM}

LEAFL
b (K) = {LEAF(M, K) | M is a balanced logarithmic space NTM}

The first two (resp. last two) classes are closed under polynomial time (resp. logspace)

reductions. More details on leaf languages can be found in [7, 13, 14, 16].

2.2 Straight-line programs

Following [23], a straight-line program (SLP) over the terminal alphabet Γ is a context-free

grammar A = (V, Γ, S, P) (V is the set of variables, Γ is the set of terminals, S ∈ V is the

initial variable, and P ⊆ V × (V ∪ Γ)∗ is the finite set of productions) such that: (i) for

every A ∈ V there exists exactly one production of the form (A, α) ∈ P for α ∈ (V ∪ Γ)∗,

and (ii) the relation {(A, B) ∈ V × V | (A, α) ∈ P, B occurs in α} is acyclic. Clearly, the

LOHREY FSTTCS 2008 5

language generated by the SLP A consists of exactly one word that is denoted by val(A).

The size of A is |A| = ∑(A,α)∈P |α|. Every SLP can be transformed in polynomial time into

an equivalent SLP in Chomsky normal form, i.e. all productions have the form (A, a) with

a ∈ Γ or (A, BC) with B, C ∈ V.

As an example, consider the SLP A (in Chomsky normal form) that consists of the

productions A1 → b, A2 → a, and Ai → Ai−1 Ai−2 for 3 ≤ i ≤ 7. The start variable is A7.

Then val(A) = abaababaabaab, which is the 7-th Fibonacci word. We have |A| = 12.

One may also allow exponential expressions of the form Ai for A ∈ V and i ∈ N in

right-hand sides of productions. Here the number i is coded binary. Such an expression can

be replaced by a sequence of ⌈log(i)⌉ many ordinary productions.

Let us state some simple algorithmic problems that can be easily solved in polynomial

time (but not in deterministic logspace under reasonable complexity theoretic assumptions:

problem (a) is #L-complete, problems (b) and (c) are complete for functional P [18]):

(a) Given an SLP A, calculate |val(A)|.
(b) Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, calculate val(A)[i].
(c) Given an SLP A and two positions 1 ≤ i ≤ j ≤ |val(A)|, calculate an SLP for the

string val(A)[i, j].

In [22], Plandowski presented a polynomial time algorithm for testing whether val(A) =
val(B) for two given SLPs A and B. For a language L ⊆ Σ∗, we denote with CMP(L)
(compressed membership problem for L) the following computational problem:

INPUT: An SLP A over the terminal alphabet Σ

QUESTION: val(A) ∈ L?

The following result was shown in [3, 16, 20]:

THEOREM 1. For every regular language L, CMP(L) can be decided in polynomial time.
Moreover, there exists a fixed regular language L such that CMP(L) is P-complete.

In [18], we constructed in logspace from a given superdecreasing sequence (w1, . . . , wk)
an SLP A over {0, 1} such that val(A) = S(w1, . . . , wk), where S(w1, . . . , wk) is the string-

encoding from (1). This construction was used in order to prove P-hardness of the problem

(b) above. Let us briefly repeat the construction. For 1 ≤ i ≤ k let

di =

{
wk − 1 if i = k

wi − (wi+1 + · · · + wk) − 1 if 1 ≤ i ≤ k − 1
(2)

Moreover define strings S1, . . . , Sk ∈ {0, 1}∗ by the recursion

Sk = 10dk 1 Si = Si+10di Si+1 (1 ≤ i ≤ k − 1). (3)

Then S(w1, . . . , wk) = S1. Note that the SLP that implements the recursion (3) can be con-

structed in logspace from the binary encoded sequence (w1, . . . , wk) (in [18] only the exis-

tence of an NC-construction is claimed). The only nontrivial step is the calculation of all

suffix sums wi+1 + · · · + wk for 1 ≤ i ≤ k − 1 in (2), see e.g. [26].

6 LEAF LANGUAGES AND STRING COMPRESSION

3 Straight-line programs versus leaf languages

In [6, 24], it was shown that the membership problem for a language K ⊆ {0, 1}∗ is com-

plete (w.r.t. polynomial time reductions in [6] and projection reductions in [24]) for the leaf

language class LEAFP
b (K), if the input string is represented by a Boolean circuit. For SLP-

compressed strings, we obtain a similar result:

PROPOSITION 2. For every language K ⊆ {0, 1}∗, the problem CMP(K) is complete w.r.t.
logspace reductions for the class LEAFL

a (K).

The proposition can be easily shown by translating configuration graphs of logspace

machines into SLPs and vice versa. We now prove a more subtle relationship between SLP-

compressed strings and polynomial time leaf languages. Let ρ : ({0, 1} × {0, 1})∗ → {0, 1}∗

be the morphism defined by

ρ(0, 0) = ρ(0, 1) = ε, ρ(1, 0) = 0, ρ(1, 1) = 1. (4)

THEOREM 3. Let M be a balanced polynomial time NTM. From a given input w ∈ Σ∗ for M

we can construct in polynomial time two SLPs A and B such that |val(A)| = |val(B)| and
leaf(M, w) = ρ(val(A) ⊗ val(B)).

PROOF. Let w be an input for M. Our construction consists of five steps:

Step 1. By simulating M e.g. along the right-most computation path, we can compute in

polynomial time the number m of branching nodes along every maximal path in the com-

putation tree T(w). Thus, maximal paths in T(w) can be represented by strings from {0, 1}m.

Step 2. Using the classical Cook-Levin construction, we compute in logspace a Boolean

circuit Cw(x1, . . . , xm) from w such that for all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates

to true if and only if the machine M accepts on the computation path that is specified by the

bit string a1 · · · am. The circuit Cw(x1, . . . , xm) has input gates x1, . . . , xm together with some

additional input gates that carry fixed input bits.

Step 3. The construction from [17] (see Sec. 2) allows us to compute from Cw(x1, . . . , xm) in

logspace a superdecreasing subsetsum instance (t(x1, . . . , xm), w1, . . . , wk) with w1, . . . , wk ∈
N and t(x1, . . . , xm) = t0 + x1t1 + · · · + xmtm such that

• t1 > t2 > · · · > tm and the sequence (t1, . . . , tm) is superdecreasing,

• for all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates to true if and only if ∃b1, . . . , bk ∈
{0, 1} : t0 + a1t1 + · · · + amtm = b1w1 + · · · + bkwk,

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk.

Step 4. By [18] (see the end of Sec. 2.2), we can construct in logspace from the two superde-

creasing sequences (t1, . . . , tm), (w1, . . . , wk) SLPs A′ and B over {0, 1} such that val(A′) =
S(t1, . . . , tm) and val(B) = S(w1, . . . , wk) (see (1)). Note that |val(A′)| = t1 + · · ·+ tm + 1 ≤
w1 + · · · + wk + 1 = |val(B)|.

Step 5. Now, we compute in polynomial time the right-most path of the computation tree

T(w). Assume that this path is represented by the bit string r = r1 · · · rm ∈ {0, 1}m. Let

p = r1t1 + · · · + rmtm. Thus, if r is the lexicographically n-th string in {0, 1}m, then p + 1 is

the position of the n-th 1 in val(A′). From the SLP A′ we can finally compute in polynomial

LOHREY FSTTCS 2008 7

time an SLP A with val(A) = 0t0 S(t1, . . . , tm)[1, p + 1] 0w1+···+wk−t0−p. Then |val(A)| =
|val(B)| and for all positions q ∈ {0, . . . , |val(A)| − 1}:

• val(A)[q + 1] = 1 if and only if ∃a1, . . . , am ∈ {0, 1} : q = t0 + a1t1 + · · · + amtm

• val(B)[q + 1] = 1 if and only if ∃b1, . . . , bk ∈ {0, 1} : q = b1w1 + · · · + bkwk.

Due to the definition of the projection ρ in (4), we finally have

ρ(val(A) ⊗ val(B)) = ∏
x∈{0,1}m, x�r

α(x),

where α(x) ∈ {0, 1} and α(x1 · · · xm) = 1 if and only if there exist b1, . . . , bk ∈ {0, 1} such that

t0 + x1t1 + · · · xmtm = b1w1 + · · ·+ bkwk. Hence, α(x1 · · · xm) = 1 if and only if M accepts on

the computation path specified by x1 · · · xm � r. Thus, leaf(M, w) = ρ(val(A)⊗ val(B)).

Thm. 3 implies the hardness part in the following corollary. The proof of the upper

bound is not difficult and left to the reader.

COROLLARY 4. For every language K ⊆ {0, 1}∗, the following problem is complete for the
class LEAFP

b (K) w.r.t. polynomial time reductions:
INPUT: Two SLPs A and B over {0, 1}
QUESTION: ρ(val(A) ⊗ val(B)) ∈ K?

In order to get completeness results w.r.t. logspace reductions in the next section, we

need a variant of Thm. 3. We say that an NTM is fully balanced, if for every input w, T(w) is

a full binary tree (and not just a left initial segment of a full binary tree).

THEOREM 5. Let M be a fully balanced polynomial time NTM such that for some polyno-
mial p(n), every maximal path in a computation tree T(w) has exactly p(|w|) many branch-
ing nodes. From a given input w ∈ Σ∗ for M we can construct in logspace two SLPs A and
B such that leaf(M, w) = ρ(val(A) ⊗ val(B)) and |val(A)| = |val(B)|.

PROOF. Only step 1 and 5 in the proof of Thm. 3 cannot be done in logspace, unless L = P.

Under the additional assumptions of Thm. 5, we have to compute in step 1 only m = p(|w|),

which is possible in logspace, since p(n) is a fixed polynomial. In step 5, we just have to

compute in logspace an SLP A with val(A) = 0t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm).

4 Applications

COROLLARY 6. There exists a fixed regular language L ⊆ ({0, 1} × {0, 1})∗ such that the
following problem is PSPACE-complete w.r.t. logspace reductions:

INPUT: Two SLPs A and B over {0, 1}
QUESTION: val(A) ⊗ val(B) ∈ L?

PROOF. Membership in PSPACE is obvious. Let us prove the lower bound. By [14], there

exists a regular language K ⊆ {0, 1}∗ and a balanced polynomial time NTM M such that

the language LEAF(M, K) is PSPACE-complete. Using the padding technique from [16,

Prop. 2.3], we can even assume that M is fully balanced and that the number of branching

nodes along every maximal path of T(w) is exactly p(|w|) for a polynomial p(n). Let L =
ρ−1(K), which is a fixed regular language, since ρ from (4) is a fixed morphism. Let w

8 LEAF LANGUAGES AND STRING COMPRESSION

be an input for M. By Thm. 5, we can construct in logspace two SLPs A and B such that

ρ(val(A)⊗ val(B)) = leaf(M, w). Hence, the corollary follows from w ∈ LEAF(M, K) ⇐⇒

leaf(M, w) = ρ(val(A) ⊗ val(B)) ∈ K ⇐⇒ val(A) ⊗ val(B) ∈ L.

From Thm. 5 it follows that that even the set of all SLP-pairs 〈A, B〉 with val(A) ⊗
val(B) ∈ L and |val(A)| = |val(B)| (or |val(A)| ≤ |val(B)|) is PSPACE-complete w.r.t.

logspace reductions. We need this detail in the proof of the next theorem.

In [19] we constructed a linear deterministic context-free language with a PSPACE-

complete compressed membership problem. As noted in the introduction, this result fol-

lows also from PSPACE = LEAFL
a (K) for a linear deterministic context-free language K [8]

together with Prop. 2. We now sharpen this result to linear visibly pushdown languages.

Let Σc and Σr be two disjoint finite alphabets (call symbols and return symbols) and

let Σ = Σc ∪ Σr. A visibly pushdown automaton (VPA) [1] over (Σc, Σr) is a tuple V =
(Q, q0, Γ,⊥, ∆, F), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set

of final states, Γ is the finite set of stack symbols, ⊥ ∈ Γ is the initial stack symbol, and

∆ ⊆ (Q × Σc × Q × (Γ \ {⊥})) ∪ (Q × Σr × Γ × Q)

is the set of transitions. In [1], the input alphabet may also contain internal symbols, on

which the automaton does not touch the stack at all. For our lower bound, we will not need

internal symbols. A configuration of V is a triple from Q × Σ∗ × Γ∗. For two configurations

(p, au, v) and (q, u, w) (with a ∈ Σ, u ∈ Σ∗) we write (p, au, v) ⇒V (q, u, w) if

• a ∈ Σc and w = γv for some γ ∈ Γ with (p, a, q, γ) ∈ ∆, or

• a ∈ Σr and v = γw for some γ ∈ Γ with (p, a, γ, q) ∈ ∆, or

• a ∈ Σr, u = v = ⊥, and (p, a,⊥, q) ∈ ∆.

The language L(V) is defined as L(V) = {w ∈ Σ∗ | ∃ f ∈ F, u ∈ Γ∗ : (q0, w,⊥) ⇒∗
V (f , ε, u)}.

The VPA V is deterministic if for every p ∈ Q and a ∈ Σ the following hold:

• If a ∈ Σc, then there is at most one pair (q, γ) ∈ Q × Γ with (p, a, q, γ) ∈ ∆.

• If a ∈ Σr, then for every γ ∈ Γ there is at most one q ∈ Q with (p, a, γ, q) ∈ ∆.

For every VPA V there exists a deterministic VPA V ′ with L(V) = L(V ′) [1]. A 1-turn VPA

is a VPA V with L(V) ⊆ Σ∗
c Σ∗

r . In this case L(V) is called a linear visibly pushdown language.

By a classical result from [11], there exists a context-free language with a LOGCFL-

complete membership problem. For visibly pushdown languages the complexity of the

membership problem decreases to the circuit complexity class NC1 [9] and is therefore of the

same complexity as for regular languages [2]. In contrast to this, by the following theorem,

compressed membership is in general PSPACE-complete even for linear visibly pushdown

languages, whereas it is P-complete for regular languages (Thm. 1):

THEOREM 7. There exists a linear visibly pushdown language K such that CMP(K) is
PSPACE-complete w.r.t. logspace reductions.

PROOF. Membership in PSPACE holds even for an arbitrary context-free language K [23].

For the lower bound, we reduce the problem from Cor. 6 to CMP(K) for some linear visibly

pushdown language K. Let L ⊆ ({0, 1} × {0, 1})∗ be the regular language from Cor. 6

and let A = (Q, {0, 1} × {0, 1}, δ, q0, F) be a deterministic finite automaton with L(A) = L.

W.l.o.g. assume that the initial state q0 has no incoming transitions.

LOHREY FSTTCS 2008 9

From two given SLPs A and B over {0, 1} we can easily construct in logspace an SLP

C over Σ = {0, 1, 0, 1} with val(C) = val(B) val(A). Let V = (Q, q0, {⊥, 0, 1},⊥, ∆, F) be

the 1-turn VPA over ({0, 1}, {0, 1}) with the following transitions:

∆ = {(q0, x, q0, x) | x ∈ {0, 1}} ∪ {(q, x, y, p) | x, y ∈ {0, 1}, δ(q, (x, y)) = p}.

Thus, V can only read words of the form vu with u, v ∈ {0, 1}∗ and |v| ≥ |u| (recall that

q0 has no incoming transitions). When reading such a word vu, V first pushes the word v

(reversed) on the stack and then simulates the automaton A on the string u ⊗ v and thereby

pops from the stack. From the construction of V, we obtain

val(C) = val(B) val(A) ∈ L(V) ⇐⇒ val(A)⊗ val(B) ∈ L(A) ∧ |val(A)| ≤ |val(B)|.

By Cor. 6 (and the remark after the proof), this concludes the proof.

Prop. 2 and Thm. 7 imply:

COROLLARY 8. PSPACE = LEAFL
a (K) for some linear visibly pushdown language K.

In [21], a suitable variant of nondeterministic finite automata were used as leaf string

generating devices. A finite leaf automaton (FLA) is a tuple A = (Q, Σ, Γ, δ, ρ, q0), where

Q is a finite set of states, Σ and Γ are finite alphabets, δ : Q × Σ → Q+ is the transition

mapping, ρ : Q → Γ is the output mapping, and q0 ∈ Q is the initial state. For every

state q ∈ Q and every input word w ∈ Σ∗, we define by induction the string δ̂(q, w) as

follows: δ̂(q, ε) = q and δ̂(q, au) = δ̂(q1, u) · · · δ̂(qn, u) if a ∈ Σ and δ(q, a) = q1 · · · qn. Let

leaf(A, w) = ρ(δ̂(q0, w)), where ρ : Q → Γ is extended to a morphism on Q∗. For K ⊆ Γ∗ let

LEAF(A, K) = {w ∈ Σ∗ | leaf(A, w) ∈ K} and LEAF(K) = {LEAF(A, K) | A is an FLA }.

THEOREM 9. There exists a fixed linear visibly pushdown language K and an FLA A such
that LEAF(A, K) is PSPACE-complete w.r.t. logspace reductions.

PROOF. We use the linear visibly pushdown language K from the proof of Thm. 7. Notice

that the question whether val(C) ∈ K is already PSPACE-complete for a quite restricted

class of SLPs. By tracing the construction of the SLP C (starting from the proof of Thm. 5),

we see that it is already PSPACE-complete to check for a number t0 and two superdecreasing

sequences (t1, . . . , tm), (w1, . . . , wk) (all numbers are encoded binary) whether

S(w1, . . . , wk) 0t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm) ∈ K. (5)

Here we use again the encoding of superdecreasing sequences from (1). So, it remains to find

an FLA A with the following property: from given input data t0, (t1, . . . , tm), (w1, . . . , wk) as

above we can construct in logspace a string w such that leaf(A, w) is exactly the string in (5).

We only present an FLA A and a logspace construction of a string w from a superdecreasing

sequence (w1, . . . , wk) such that leaf(A, w) = S(w1, . . . , wk). From this FLA, an FLA for pro-

ducing the leaf string (5) can be easily derived. We use the following logspace-computable

exponent-encoding of a natural number d = 2e1 + 2e2 + · · · + 2em (e1 < e2 < · · · < em):

e(d) = ae1 $ae2 $ · · · aem−1 $aem $̃ ∈ {a, $}∗$̃.

10 LEAF LANGUAGES AND STRING COMPRESSION

Next, we derive in logspace from the superdecreasing sequence (w1, . . . , wk) the sequence

(d1, . . . , dk) of differences as defined in (2) and encode it by the string

e(d1, . . . , dk) =

(k−1

∏
i=1

#e(di)

)
#̃e(dk) ∈ {a, $, $̃, #, #̃}∗

Our fixed FLA is A = ({q0, pr, pℓ, r0, r1}, {a, $, $̃, #, #̃}, {0, 1}, δ, ρ, q0), where the transition

function δ is defined as follows:

δ(q0, #) = q0 prq0 δ(pr, a) = pℓpr δ(pℓ, a) = pℓpℓ

δ(q0, x) = q0 for x ∈ {a, $, $̃} δ(pr, $) = r0 pr δ(pℓ, x) = r0 for x ∈ {$, $̃}

δ(q0, #̃) = r1 prr1 δ(pr, $̃) = r0 δ(ri, x) = ri for x ∈ Σ, i ∈ {0, 1}

The δ-values that are not explicitly defined can be set arbitrarily. Finally, let ρ(r0) = 0 and

ρ(r1) = 1; all other ρ-values can be defined arbitrarily. We claim that leaf(A, e(d1, . . . , dk)) =
S(w1, . . . , wk). First note that δ̂(pr, ae$) = r2e

0 pr and δ̂(pr, ae$̃) = r2e

0 . Since δ(r0, x) = r0 for all

input symbols x, we have δ̂(pr, e(d)) = rd
0 for every number d and therefore:

δ̂(q0, #e(d)) = δ̂(q0, e(d)) δ̂(pr, e(d)) δ̂(q0, e(d)) = q0rd
0q0

δ̂(q0, #̃e(d)) = δ̂(r1, e(d)) δ̂(pr, e(d)) δ̂(r1, e(d)) = r1rd
0r1

Hence, the FLA A realizes the recurrence (3) when reading the input e(d1, . . . , dk).

5 Compressed membership in XML languages

In this section, we consider a subclass of the visibly pushdown languages, which is moti-

vated in connection with XML. Let B be a finite set of opening brackets and let B be the set of

corresponding closing brackets. An XML-grammar [4] is a tuple G = (B, (Rb)b∈B, a) where

a ∈ B (the axiom) and Rb is a regular language over the alphabet {Xc | c ∈ B}. We identify

G with the context-free grammar, where (i) {Xb | b ∈ B} is the set of variables, (ii) B ∪ B

is the set of terminals, (iii) Xa is the start variable, and (iv) the (infinite) set of productions

is {Xb → b w b | b ∈ B, w ∈ Rb}. Since Rb is regular, this set is equivalent to a finite set of

productions. One can show that L(G) is a visibly pushdown language [1]. XML-grammars

capture the syntactic features of XML document type definitions (DTDs), see [4] for details.

THEOREM 10. For every XML-grammar G, CMP(L(G)) belongs to coNP. Moreover, there
is an XML-grammar G such that CMP(L(G)) is coNP-complete w.r.t. logspace reductions.

For the proof of the upper bound in Thm. 10 we need a few definitions. Let us fix an

XML-grammar G = (B, (Rb)b∈B, a) for the further considerations. The set DB ⊆ (B ∪ B)+

of all Dyck primes over B is the set of all well-formed strings over B ∪ B that do not have a

non-empty proper prefix, which is well-formed as well. Formally, DB is the smallest set such

that w1, . . . , wn ∈ DB (n ≥ 0) implies bw1 · · ·wnb ∈ DB. For b ∈ B let Db = DB ∩ b(B ∪ B)∗b.

The set of all Dyck words over B ∪ B is D∗
B. Note that L(G) ⊆ Da.

Let w ∈ D∗
B, and let 1 ≤ i ≤ |w| be a position with w[i] ∈ B, i.e. the i-th symbol in w is an

opening bracket. Since w ∈ D∗
B, there exists a unique position γ(w, i) > i with w[i, γ(w, i)] ∈

LOHREY FSTTCS 2008 11

DB. The string w[i + 1, γ(w, i) − 1] belongs to D∗
B. Since DB is a code, there exists a unique

factorization w[i + 1, γ(w, i) − 1] = w1 · · ·wn with n ≥ 0 and w1, . . . , wn ∈ DB. Moreover,

for every 1 ≤ i ≤ n let bi be the unique opening bracket such that wi ∈ Dbi
. Finally, define

surface(w, i) = Xb1
Xb2

· · · Xbn
. The term “surface” is motivated by the surface of b ∈ B from

[4]. A straightforward induction shows:

LEMMA 11. Let w ∈ (B∪B)∗. Then w ∈ L(G) if and only if (i) w ∈ Da and (ii) surface(w, j) ∈
Rb for every position 1 ≤ j ≤ |w| such that w[j] = b ∈ B.

The next lemma was shown in [19, Lemma 5.6]:

LEMMA 12. CMP(D∗
B) can be solved in polynomial time. Moreover, for a given SLP A such

that w := val(A) ∈ D∗
B and a given (binary coded) position 1 ≤ i ≤ |w| with w[i] ∈ B one

can compute the position γ(w, i) in polynomial time.

Lemma 12 and the fact w ∈ DB ⇐⇒ (w ∈ D∗
B and γ(w, 1) = |w|) implies:

PROPOSITION 13. CMP(DB) can be solved in polynomial time.

For the proof of Thm. 10 we need one more technical lemma, whose proof has to be

omitted in this short version:

LEMMA 14. For a given SLP A such that w := val(A) ∈ D∗
B and a given (binary coded)

position 1 ≤ i ≤ |w| with w[i] ∈ B one can compute an SLP for the string surface(w, i) in
polynomial time.

Now we can prove Thm. 10: For the coNP upper bound, let G = (B, (Rb)b∈B, a) be an

XML grammar and let A be an SLP over the terminal alphabet B ∪ B with w = val(A). By

Lemma 11 we have to check that (i) w ∈ Da = DB ∩ a(B∪ B)∗a and (ii) surface(w, j) ∈ Rb for

all 1 ≤ j ≤ |w| with w[j] = b ∈ B. Condition (i) can be checked in deterministic polynomial

time by Prop. 13; condition (ii) belongs to coNP by Lemma 14 and Thm. 1. The proof of the

coNP lower bound is similar to the proof of [19, Thm. 5.2] and therefore omitted.

References

[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. STOC 2004, 202–

211. ACM Press, 2004.

[2] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize

exactly those languages in NC1. J. Comput. System Sci., 38:150–164, 1989.

[3] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to

circuit evaluation. SIAM J. Comput., 26(1):138–152, 1997.

[4] J. Berstel and L. Boasson. Formal properties of XML grammars and languages. Acta

Inform., 38(9):649–671, 2002.

[5] A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In Proc.

IFIP TCS 2008, 87–100. Springer, 2008.

[6] B. Borchert and A. Lozano. Succinct circuit representations and leaf language classes

are basically the same concept. Inform. Process. Lett., 59(4):211–215, 1996.

[7] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity

classes. Theoret. Comput. Sci., 104(2):263–283, 1992.

12 LEAF LANGUAGES AND STRING COMPRESSION

[8] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 com-

putation. J. Comput. System Sci., 57(2):200–212, 1998.

[9] P. W. Dymond. Input-driven languages are in log n depth. Inform. Process. Lett.,

26(5):247–250, 1988.

[10] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for

Lempel-Ziv encoding. In Proc. SWAT 1996, LNCS 1097, 392–403. Springer, 1996.

[11] S. Greibach. The hardest context-free language. SIAM J. Comput., 2(4):304–310, 1973.

[12] C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis,

University of Stuttgart, Institut für Informatik, 2000.

[13] U. Hertrampf. The shapes of trees. In Proc. COCOON 1997, LNCS 1276, 412–421.

Springer, 1997.

[14] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the

power of polynomial time bit-reductions. In Proc. Eighth Annual Structure in Complexity

Theory Conference, 200–207. IEEE Computer Society Press, 1993.

[15] M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) grammars.

In Proc. FCT 1993, LNCS 710, 299–308. Springer, 1993.

[16] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages. In-

form. and Comput., 129(1):21–33, 1996.

[17] H. J. Karloff and W. L. Ruzzo. The iterated mod problem. Inform. and Comput.,

80(3):193–204, 1989.

[18] Y. Lifshits and M. Lohrey. Querying and embedding compressed texts. In Proc. MFCS

2006, LNCS 4162, 681–692. Springer, 2006.

[19] M. Lohrey. Word problems and membership problems on compressed words. SIAM

J. Comput., 35(5):1210 – 1240, 2006.

[20] N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLP-

compressed words. Inform. Process. Lett., 90(1):3–6, 2004.

[21] T. Peichl and H. Vollmer. Finite automata with generalized acceptance criteria. Discrete

Math. Theor. Comput. Sci., 4(2):179–192 (electronic), 2001.

[22] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, LNCS 855, 460–470. Springer, 1994.

[23] W. Plandowski and W. Rytter. Complexity of language recognition problems for com-

pressed words. In J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg, editors,

Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa,

262–272. Springer, 1999.

[24] H. Veith. Succinct representation, leaf languages, and projection reductions. Inform. and

Comput., 142(2):207–236, 1998.

[25] N. K. Vereshchagin. Relativizable and nonrelativizable theorems in the polynomial

theory of algorithms. Izv. Ross. Akad. Nauk Ser. Mat., 57(2):51–90, 1993.

[26] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[27] B. von Braunmühl and R. Verbeek. Input-driven languages are recognized in log n

space. In Proc. FCT 1983, LNCS 158, 40–51. Springer, 1983.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

