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Abstract It is shown that the existence of a Hamiltonian path in a planar automatic
graph of bounded degree is complete forΣ1

1 , the first level of the analytical hier-
archy. This sharpens a corresponding result of Hirst and Harel for highly recursive
graphs. Furthermore, we also show: (i) The Hamiltonian pathproblem for finite pla-
nar graphs that are succinctly encoded by an automatic presentation is NEXPTIME-
complete. (ii) The existence of an infinite path in an automatic successor tree isΣ1

1-
complete. (iii) An infinite version of the set cover problem is decidable for automatic
graphs (it isΣ1

1-complete for recursive graphs).

1 Introduction

The theory ofrecursive structureshas its origins in computability theory. A structure
is recursive, if its domain is a recursive set of naturals, and every relation is again
recursive. Starting with the work of Manaster and Rosenstein [23] and Bean [1,
2], infinite variants of classical graph problems for finite graphs were studied for
recursive graphs. It is not surprising that these problems are mostly undecidable for
recursive graphs. This motivates the search for the preciselevel of undecidability. It
turned out that some of the problems reside on low levels of the arithmetic hierarchy
(e.g. the question whether a given recursive graph has an Eulerian path [3]), whereas
others are complete forΣ1

1 — the first level of the analytic hierarchy [21]. A classical
example for the latter situation is the question whether a given recursive tree has an
infinite path. With a technically quite subtle reduction from the latter problem, Harel
proved in [13] that also the existence of aHamiltonian path(i.e., a one-way infinite
path that visits every node exactly once) in a recursive graph is Σ1

1-complete.Σ1
1-
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hardness holds already for highly recursive graphs, where alist of the neighbors of
a nodev can be computed effectively fromv.

Hamiltonian paths in infinite graphs were also studied undera purely graph the-
oretic view. An important result of Dean, Thomas, and Yu [6] states that an infinite
undirected graphG has an Hamiltonian path if it is (i) planar, (ii) 4-connected, and
(iii) has only one end (see [7] for definitions). This extendsa result of Tutte [27] for
finite graphs.

In computer science, in particular in the area of automatic verification, focus
has shifted in recent years from arbitrary recursive graphsto subclasses that have
more amenable algorithmic properties. An important example for this is the class
of automatic graphs[5, 16]. A graph is called automatic if it has anautomatic
presentation, which consists of a finite automaton that generates the set of nodes
and a two-tape automaton with synchronously moving heads, which accepts the set
of edges. One of the main motivations for investigating automatic graphs is the fact
that every automatic graph has a decidable first-order theory [16], this result extends
to first-order logic with infinity and modulo quantifiers [5, 19]. In contrast to these
positive results, Khoussainov, Nies, and Rubin have shown that the isomorphism
problem for automatic graphs isΣ1

1-complete [17]. Results on the model theoretic
complexity of automatic structures can be found in [15].

The main result of this paper states that the existence of a Hamiltonian path
becomesΣ1

1-complete already for a quite restricted subclass of recursive graphs,
namely for automatic graphs, which are planar and of boundeddegree. The latter
means that there exists a constantc such that every node has at mostc many neigh-
bors. The proof of theΣ1

1 lower bound (the non-trivial part) in Section 3 is based on
a reduction from therecurring tiling problem[10, 12]. This is a variant of the clas-
sical tiling problem [29, 4] that asks whether a given finite set of tiles allows a tiling
of the infinite quarter plane such that a distinguished coloroccurs infinitely often
at the lower border. Harel proved that the recurring tiling problem isΣ1

1-complete
[10, 12]. In our reduction we use as building blocks some of the graph gadgets from
the NP-hardness proof of the Hamiltonian path problem in finite planar graphs [9].
These gadgets have to be combined in a non-trivial way for thewhole reduction.

The main purpose of automatic presentations is the finite representation of infi-
nite structures. But automatic presentations can be also used as a tool for the succinct
representation of large finite structures. An automatic presentation of sizen may
generate a finite graph of size 2O(n). A straightforward adaptation of our proof for
infinite automatic graphs shows that it is NEXPTIME-complete to check whether a
finite planar graph given by an automatic presentation has a Hamiltonian path, see
Section 4. Without the restriction to planar graphs, this result was already shown by
Veith [28] in the slightly different context of graphs represented by ordered binary
decision diagrams (OBDDs). The special OBDDs considered byVeith in [28] can
be seen as automatic presentations of finite graphs.

Finally, in Section 5 we investigate some other graph problems in the automatic
setting. Using a proof technique from [20, 15], we prove thatthe fundamentalΣ1

1-
complete problem in recursion theory, namely the existenceof an infinite path in a
recursive tree remainsΣ1

1-complete if the input tree is automatic. For this result it
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is crucial that the tree is asuccessor tree, which means that it is an acyclic graph,
where every node is reachable from a root node and every node except the root
has exactly one incoming edge. If trees are given as particular partially ordered sets
(order trees), then the existence of an infinite path is decidable for automatic trees
[20].

From the above results, one might get the feeling that graph problems always
have the same degree of undecidability in the recursive and in the automatic world.
To the contrary, there are problems that areΣ1

1-complete for recursive graphs [14]
but decidable for automatic graphs. This applies to the existence of an infinite branch
in an automaticorder tree(i.e., the reflexive and transitive closure of a successor
tree, Khoussainov, Rubin, and Stephan [20]) as well as to theexistence of an infinite
clique in an automatic graph (Rubin [25]). We show that also an infinite version of
the set cover problem is decidable for automatic graphs. This result is achieved by
providing a decision procedure for a fragment of second-order logic that allows to
express the set cover problem as well as the two other decidable problems mentioned
before.

Proofs, which are not included in this extended abstract will appear in the long
version of this paper.

2 Preliminaries

Infinite graphs and Hamiltonian paths

For details on graph theory see [7]. Agraph is a pairG = (V,E), whereV is the
(possibly infinite) set of nodes andE ⊆ V ×V is the set of edges. It isundirected
if (u,v) ∈ E implies (v,u) ∈ E. The graphG hasdegree at most c, wherec ∈ N,
if every node is contained in at mostc many edges. IfG has degree at mostc for
some constantc, thenG hasbounded degree. If it is only required that every node
is contained in only finitely many edges thenG is calledlocally finite. The graphG
is planar if it can be embedded in the Euclidean plane without crossingedges and
without accumulation points; any such embedding is aplane graph. A finite pathin
G is a sequence[v1,v2, . . . ,vn] of nodes such that(vi ,vi+1)∈ E for all 1≤ i ≤ n. The
nodesv1 andvn are the end points of this path. The graphG = (V,E) is connected
if for all u,v ∈ V there exists a finite path in the undirected graph(V,E∪{(x,y) |
(y,x) ∈ E} with end pointsu andv. An infinite pathin G is an infinite sequence
[v1,v2, . . .] such that every initial segment is a finite path. AHamiltonian path(or
spanning ray) of an infinite graphG is an infinite path[v1,v2, . . .] in G that visits
every node ofG exactly once, i.e. the mappingi 7→ vi (i ∈ N) is a bijection between
N and the set of nodes.
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Recursive graphs and automatic graphs

A recursive graphis a graphG = (V,E) such thatV andE are recursive subsets of
N andN×N, respectively. In caseG is infinite, one can w.l.o.g. assume thatV = N.
A recursive graphG is highly recursiveif it is locally finite and for every nodev a
list of its finitely many neighbors can be computed fromv. Harel [13] has shown the
following result:

Theorem 1 ([13]).It is Σ1
1-complete to determine, whether a given highly recursive

undirected graph of bounded degree has a Hamiltonian path.

Recall thatΣ1
1 is the first level of theanalytic hierarchy[21]. More precisely, it is

the class of all subsets ofN of the form{n∈ N | ∃Aϕ(A)}, whereϕ(A) is a formula
of first-order arithmetic. In Thm. 1, a recursive graph is encoded by a pair of G̈odel
numbers for machines for the node and edge set, respectively.

In [14], Hirst and Harel proved that for planar recursive graphs the existence
of a Hamiltonian path is stillΣ1

1-complete. The aim of this paper is to extend the
results from [13, 14] to the class of planar automatic graphsof bounded degree. We
introduce this class of graphs briefly, more details can be found in [16, 5]

Let us fix n ∈ N and a finite alphabetΓ . Let # 6∈ Γ be an additional padding
symbol. For wordsw1, . . . ,wn ∈ Γ ∗ we define theconvolution w1⊗w2⊗ ·· ·⊗wn,
which is a word over the alphabet∏n

i=1(Γ ∪{#}), as follows: Letwi = ai,1ai,2 · · ·ai,ki

with ai, j ∈ Γ and k = max{k1, . . . ,kn}. For ki < j ≤ k define ai, j = #. Then
w1⊗·· ·⊗wn = (a1,1, . . . ,an,1) · · ·(a1,k, . . . ,an,k). Thus, for instanceaba⊗bbabb=
(a,b)(b,b)(a,a)(#,b)(#,b). An n-ary relationR⊆ (Γ ∗)n is called automatic if the
language{w1⊗·· ·⊗wn | (w1, . . . ,wn) ∈ R} is a regular language.

Now let A = (A,(Ri)i∈J) be a relational structure with finitely many relations,
whereRi ⊆ Ani . A tuple (Γ ,L,h) is called anautomatic presentationfor A if (i) Γ
is a finite alphabet, (ii)L ⊆ Γ ∗ is a regular language, (iii)h : L → A is a bijective
function, (iv) the relation{(u,v) ∈ L× L | h(u) = h(v)} is automatic, and (v) the
relation{(u1, . . . ,uni ) ∈ Lni | (h(u1), . . . ,h(uni )) ∈ Ri} is automatic for everyi ∈ J.
We say thatA is automaticif there exists an automatic presentation forA . In the
rest of the paper we will mainly restrict to automatic graphs. Such a graph can be
represented by an automaton for the node set and an automatonfor the edge set.
Clearly, a (locally finite) automatic graph is (highly) recursive.

In contrast to recursive graphs, automatic graphs have somenice algorithmic
properties. In [16] it was shown that the first-order theory of an automatic structure
is decidable. This result extends to first-order logic with infinity and modulo quanti-
fiers [5, 19]. For general automatic structures, these logics do not allow elementary
algorithms [5]. On the other hand, for automatic structureswith a Gaifman graph
of bounded degree first-order logic extended by a rather general class of counting
quantifiers can be decided in triply exponential space [22].

In contrast to these positive results, several strong undecidability results show
that algorithmic methods for automatic structures are quite limited. Since the con-
figuration graph of a Turing machine is automatic, it followseasily that reachability
in automatic graphs is undecidable. Khoussainov, Nies, andRubin have shown that
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the isomorphism problem for automatic graphs isΣ1
1-complete [17], whereas iso-

morphism of locally finite automatic graphs isΠ0
3 -complete [24]. Our main result

is the following:

Theorem 2. It is Σ1
1-complete to determine, whether a given planar automatic undi-

rected graph of bounded degree has a Hamiltonian path.

Note that theΣ1
1 upper bound in Thm. 2 follows immediately from the correspond-

ing result for general recursive graphs (Thm. 1). For the lower bound we use a
special variant of the tiling problem [29, 4] that was introduced by Harel.

Tilings

Our main tool for provingΣ1
1-hardness of the existence of a Hamiltonian path in a

planar automatic graph of bounded degree is therecurring tiling problem[10, 12].
An instance of the recurring tiling problem consists of (i) afinite set ofcolors C=
{c0,c1, . . . ,cn}, (ii) a distinguished colorc0, and (iii) a setT ⊆C4 of tile types. For
a tile typet ∈ T we write t = (tW, tN, tE, tS) (“W” for west, “N” for north, “E” for
east “S” for south); a visualization looks as follows:

cN

cW

cS

cE

A mapping f : N
2 → T is a tiling if, for every (i, j) ∈ N

2, we havef (i, j)N =
f (i + 1, j)S and f (i, j)E = f (i, j + 1)W. A recurring tiling is a tiling f such that
for infinitely many j ∈ N, we havef (0, j)S = c0. Now the recurring tiling problem
asks whether a given problem instance has a recurring tiling. Harel has shown the
following result:

Theorem 3 ([10]).The recurring tiling problem isΣ1
1-complete.

The recurring tiling problem turned out be very useful for proving Σ1
1 lower

bounds for certain satisfiability problems in logic [11].

3 Hamiltonicity for automatic graphs

In this section, we reduce the recurring tiling problem to the existence of a Hamil-
tonian path in a planar automatic graph of bounded degree. This proves Thm. 2 by
Thm. 3.
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u1 u2

v1 v2

u1 u2

v1 v2

u1 u2

v1 v2

u′1 u′2

v′1 v′2

u′

v′

u′1 u′2

v′1 v′2

u′

v′

×

Fig. 1 The graphX, its use and abbreviation

3.1 Building blocks

Let us introduce several building blocks from which we assemble our final planar
automatic graph of bounded degree. These building blocks are variants of graphs
taken from the NP-hardness proof for the Hamiltonian path problem in finite planar
graphs [9].

Exclusive or

Consider the finite plane graphX in Fig. 1 (first picture). It has a Hamiltonian path
from u1 to u2 (and similarly fromv1 to v2) indicated in the second picture. Now
supposeG′ is some graph containing the edgesu′ andv′. Then we build a graphG
as follows: in the disjoint union ofG′ andX, delete the edgesu′ andv′ and connect
their endpoints tou1 and u2 (to v1 and v2, resp., see Fig. 1, third picture). Now
supposeH is a Hamiltonian path inG with no endpoint inX. Supposeu1 is the
first vertex fromX in H. Then the restriction ofH to X has to coincide with the
Hamiltonian path fromu1 to u2. HenceH gives rise to a Hamiltonian path inG′ that
coincides withH on G′ but passes through the edgeu′ instead of taking the detour
throughX. Note thatH ′ does not contain the edgev′. Conversely, every Hamiltonian
pathH ′ of G′ that contains the edgeu′ but not the edgev′ induces a Hamiltonian
pathH of G in a similar way. JoiningX to the graphG′ in this manner restricts the
Hamiltonian paths to those that either contain the edgeu′ or the edgev′, but not both.
This also explains the nameX: this graph acts as an “exclusive-or”. Note that, ifG′

is planar and the two edgesu′ andv′ belong to the same face, then alsoG can be
constructed as a planar graph. Since we will make repeated use of this construction,
we abbreviate it as in Fig. 1, fourth picture.

Boolean functions

Let f : {0,1}n → {0,1} be a Boolean function. In the NP-hardness proof of [9], a
planar graphG together with distinguished edgese1, . . . ,en is constructed such that
f (b1, . . . ,bn) = 1 iff G has a Hamiltonian cycleH with bi = 1⇔ ei ∈ H. We modify
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Fig. 3 Paths through the graphA

this construction slightly in order to place the edgesei and two verticesu andv in a
specified order at the boundary of the outer face.

Theorem 4.There exists a constant c such that from given k, ℓ,n ∈ N and F ⊆
2{1,...,k+ℓ+n}, one can construct effectively a finite plane graph GF of degree at most
c such that:

• At the boundary of the outer face of GF , we find (in this counter-clockwise order)
edges e1, . . .ek, a vertex u, edges ek+1, . . . ,ek+ℓ, a vertex v, and edges ek+ℓ+1, . . . ,
ek+ℓ+n.

• For every M⊆ {1, . . . ,k+ ℓ+n}, M ∈ F iff there is a Hamiltonian path H from
u to v such that M= {i | ei belongs to H}.

Infinity checking

Next consider Fig. 2 – it depicts a graphA that is connected to some context via
the edgesℓ, a, a′, b, b′, andr. If the complete graph has a Hamiltonian path, then
locally, it has to be of one of the four forms depicted in Fig. 3.

Now consider Fig. 4 – it consists of infinitely many copies of the graphA ar-
ranged in a line, the edgesa′ andb′ connect these copies ofA with a line of nodes.
Suppose the edgesa andb of the copies ofA are connected to some infinite graph
G. Then, every Hamiltonian pathH of the resulting graph has to enter and leave
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A A A A
. . . . . .

Fig. 4 The infinite graphL

A A A A
. . . . . .

Fig. 5 A visit of a Hamiltonian path to the graphL

L infinitely often. Since the possibilities to passA are restricted as shown in Fig.3,
any such visit has to look as described in Fig. 5, i.e., the path enters froma into
some copy ofA, moves left to some copy ofA (possibly without doing any step),
moves down to the third line where it goes all the way back until it can enter the first
A-copy via the edgeb′ and leave it via the edgeb.

3.2 Assembling

From an instance of the recurring tiling problem, we construct in this section a
planar automatic graphG of bounded degree that has an Hamiltonian path iff the
instance of the recurring tiling problem admits a solution.So, we fix a finite set
C = {c0,c1, . . . ,cn} of colors, a distinguished colorc0, and a setT ⊆ C4 of tile
types. Next let

V = {W0,W1, . . . ,Wn,S0,S1, . . . ,Sn,N0,N1, . . . ,Nn,E0,E1, . . . ,En}.

We will describe tile types by certain subsets ofV whereWi expresses that the left
color isci , andNi denotes that the top color isnot ci (Si andEi refer to the bottom
and right color and are to be understood similarly). More precisely, the tiled =
(ci ,c j ,ck,cℓ) is denoted by the setSd = {Wi}∪{Nm | m 6= j}∪{Em | m 6= k}∪{Sℓ}.
Now let F = {Sd | d ∈ T } be the descriptions of all the tile typesd in T . Then,
by Thm. 4, there are finite plane graphsG1, G2, G3, andG4 with the following
properties: (i) at the outer face, we find edgese for e∈ V and nodesu andv in the
order indicated in Fig. 6 and (ii)M ∈ F iff there exists a Hamiltonian pathH of Gx

from u to v such thatM = {v∈ V | v belongs toH} (for all 1≤ x≤ 4 andM ⊆ V ).
Next we choose mutually disjoint graphsG(k, ℓ) (for k, ℓ ∈ N) such that
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G1

v

u

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn
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u v

W0

W1

Wn

E0

E1

En

N0 N1 Nn

S0 S1 Sn

G3

u
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W1

Wn
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En
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W1
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En

N0 N1 Nn

S0 S1 Sn

Fig. 6 The graphsGx

G(k, ℓ) ∼=



















G1 if k+ ℓ is even andk > 0 ork = ℓ = 0

G2 if k+ ℓ is odd andℓ = 0

G3 if k+ ℓ is odd andℓ > 0

G4 if k+ ℓ is even,k = 0, andℓ > 0.

Thenu(k, ℓ) andv(k, ℓ) refer to the nodesu andv of the graphG(k, ℓ); similarly,
e(k, ℓ) for e∈ V refers to the edgee of the graphG(k, ℓ). In the disjoint union of
these graphsG(k, ℓ), we connect the nodev(k, ℓ) by a new edge with the following
node:

u(k+1, ℓ) for k+ ℓ even andℓ = 0

u(k+1, ℓ−1) for k+ ℓ even andℓ > 0

u(k−1, ℓ+1) for k+ ℓ odd andk > 0

u(k, ℓ+1) for k+ ℓ odd andk = 0.

The resultG1 of this construction is visualized in Fig. 7 where the verticesu(k, ℓ)
are denoted by empty nodes andv(k, ℓ) by filled nodes. FromG1 we constructG2

by replacing the edgesEi(k, ℓ) andWi(k, ℓ+ 1) as well asNi(k, ℓ) andSi(k+ 1, ℓ)
(k, ℓ ∈ N, 0≤ i ≤ n) by a copy of the exclusive-or graphX, see Fig. 8. In a third
step, we constructG3 by adding toG2 the graphL from Fig. 4. To connectL to G2,
the start node of the edgesa andb, resp., of theith copy ofA in L is the left and right,
resp., node of the edgeS0(0, i). The final graphG is obtained fromG3 by adding a
new node⊥ together with an edge between⊥ andu(0,0).
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Fig. 7 First step in global construction - the graphG1
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Fig. 8 Second step in global construction – the graphG2 (for two colorsc0 andc1)

Let us now prove thatG has a Hamiltonian path iffT admits a recurring tiling.
First suppose there is a recurring tilingf : N×N → T . Let k, ℓ ∈ N and f (k, ℓ) =
(cW,cN,cE,cS). Then the graphG(k, ℓ) ∈ {Gx | 1≤ i ≤ 4} has a Hamiltonian path
H(k, ℓ) from u(k, ℓ) to v(k, ℓ) such that for all 1≤ i ≤ n

1. the edgeSi belongs toH(k, ℓ) iff cS = ci ,
2. the edgeWi belongs toH(k, ℓ) iff cW = ci ,
3. the edgeNi belongs toH(k, ℓ) iff cN 6= ci , and
4. the edgeEi belongs toH(k, ℓ) iff cE 6= ci .
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Then we find a Hamiltonian pathH1 of the infinite graphG1 in Fig. 7 by appending
these Hamiltonian paths suitably:

H1 = H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

Since f is a tiling, we get

Ei(k, ℓ) /∈ H1 ⇐⇒ f (k, ℓ)E = ci

⇐⇒ f (k, ℓ+1)W = ci

⇐⇒ Wi(k, ℓ+1) ∈ H1

and similarlyNi(k, ℓ) /∈ H1 iff Si(k+1, ℓ) ∈ H1. Hence the Hamiltonian pathH1 can
be extended to a Hamiltonian pathH2 of the graphG2 obtained fromG1 by adding
all the copies of the exclusive-or graphX. Observe also thatf is recurring, i.e., there
are infinitely manyℓ ∈ N with f (0, ℓ)S = c0. For every suchℓ, the pathH1 passes
through the edgeS0(0, ℓ). Instead of passing through this edge, we now enter the
graphL (Fig. 4) via the edgea of theℓth copy ofA and leave it via its edgeb. We
can ensure that after this visit, all nodes ofL to the left of theℓth copy ofA have been
visited (cf. Fig. 5). This results in a Hamiltonian pathH3 of the graphG3 starting in
u(0,0). Prepending the node⊥ gives a Hamiltonian pathH of the final graphG.

Conversely, letH be a Hamiltonian path of the final graphG. Since⊥ has degree
1, it has to start in⊥ – deleting⊥ from H gives a Hamiltonian pathH3 of G3

that starts inu(0,0). SinceG3 contains infinitely many nodes outside ofL, this
path has to enter and leaveL infinitely often. Any such visit has to enter via the
edgea some copy ofA and leave via the edgeb of the same copy ofA (or vice
versa, see Fig. 5). Hence, deleting all the vertices ofL from the pathH, we obtain
a Hamiltonian pathH2 of the graphG2 that contains infinitely many edges of the
form S0(0, ℓ). Recall thatG2 is obtained fromG1 by replacing some pairs of edges
by the exclusive-or graphX. Hence, the restriction ofH2 to the nodes ofG1 gives
rise to a Hamiltonian pathH1 of G1 that

(a) contains infinitely many edges of the formS0(0, ℓ),
(b) contains the edgeWi(k, ℓ+1) iff it does not contain the edgeEi(k, ℓ), and
(c) contains the edgeSi(k+1, ℓ) iff it does not contain the edgeNi(k, ℓ)

for all 0≤ i ≤ n andk, ℓ ∈ N. SinceH1 has to pass through all the graphsG(k, ℓ), it
has to be of the form

H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

whereH(k, ℓ) is a Hamiltonian path of the graphG(k, ℓ) from u(k, ℓ) to v(k, ℓ). Now
we are ready to define the mappingf : N

2 →C4: set

(1) f (k, ℓ)W = ci iff H(k, ℓ) contains the edgeWi(k, ℓ),
(2) f (k, ℓ)N = ci iff H(k, ℓ) does not contain the edgeNi(k, ℓ),
(3) f (k, ℓ)E = ci iff H(k, ℓ) does not contain the edgeEi(k, ℓ), and
(4) f (k, ℓ)S = ci iff H(k, ℓ) contains the edgeSi(k, ℓ).
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SinceH(k, ℓ) is a Hamiltonian path ofG(k, ℓ) from u(k, ℓ) to v(k, ℓ), we getf (k, ℓ)∈
T from the construction of the graphsG1,G2,G3,G4. By (1), (b), and (3), we have

f (k, ℓ)W = ci ⇐⇒ Wi(k, ℓ) belongs toH(k, ℓ)

⇐⇒ Ei(k, ℓ+1) does not belong toH(k, ℓ+1)

⇐⇒ f (k, ℓ+1) = ci

and similarlyf (k, ℓ)N = f (k+1, ℓ)S follows from (2), (c), and (4). Thus,f is a tiling.
SinceH1 contains infinitely many edges of the formS0(0, ℓ), there are infinitely
manyℓ ∈ N such thatS0(0, ℓ) belongs toH(0, ℓ), i.e., f (0, ℓ)S = c0.

Thus, we showed that indeed the graphG contains a Hamiltonian path iff the set
of tilesT admits a recurring tiling.

Clearly, the undirected graphG is planar and has bounded degree. Thus, in order
to finish the proof of Thm. 2, it remains to prove thatG is automatic. Note that
the graphG has a highly regular structure. It results from the infinite grid N×N

by replacing each grid point by a finite graph and connecting these finite graphs in
a regular pattern. It is not surprising that such a graph is automatic, in particular
since the grid is automatic. Let us provide some more formal arguments for the
automaticity ofG.

Recall thatG can be obtained fromN×N by replacing every grid point(k, ℓ) ∈
N × N by a finite graphG′(k, ℓ). This graph is a copy of one of the graphs
G′

1,G
′
2,G

′
3,G

′
4, whereG′

i is the graphGi together with copies of the XOR-graph
X that connectG(k, ℓ) with G(k+1, ℓ) andG(k, ℓ+1). WhetherG′(k, ℓ) is G′

i only
depends on the parity ofk+ℓ and whetherk andℓ are zero or non-zero, respectively.

The alphabet of our presentation consists of the elements of{0,1,#}2 \ {(#,#)}
and the nodes of the graphsG′

1, . . . ,G
′
4. Then, the node set ofG can be represented

by the regular language

{(bin(k)⊗bin(ℓ))v | k, ℓ ≥ 0, v is a node ofG′(k, ℓ)}, (1)

where bin(n) is the binary encoding of a numbern (note that the parity ofk+ℓ can be
determined by a finite automaton from bin(k)⊗bin(ℓ)). Constructing from this node
representation an automaton that recognizes the edge set ofG is straightforward but
tedious. This concludes the proof of Thm. 2.

There also exists the variant of two-way Hamiltonian paths in infinite graphs. A
two-way Hamiltonian path inG= (V,E) is a two-way infinite sequence(vi)i∈Z such
that (vi ,vi+1) ∈ E for all i ∈ Z and for every nodev∈V there is exactly onei ∈ Z

such thatv= vi . From the previous construction, it follows that also the existence of
a two-way Hamiltonian path in a given planar automatic graphof bounded degree is
Σ1

1-complete. Take the disjoint union of two copies of our main graphG and connect
the two⊥-nodes with an edge. The resulting graphG′ has a two-way Hamiltonian
path iff G has a (one-way) Hamiltonian path. Moreover, sinceG is automatic and the
class of automatic graphs is closed under disjoint unions,G′ is automatic as well.
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4 Remarks about large finite graphs

The main purpose of automatic presentations is the finite representation of infinite
structures. But automatic presentations can be also used asa tool for the succinct
representation of large finite structures. Note that a finiteautomaton withn states
can accept a finite language with 2O(n) elements, which may serve as the domain of
a finite structure.

In general, given an automatic presentation(Γ ,L,h) for a finite graph(V,E) to-
gether with an automatonA for the node set languageL, it is clear that|V| is bounded
by |Γ |n, wheren is the number of states ofA. It follows that for every graph problem
L in NP, the succinct version ofL, where the input graph is given by an automatic
presentation, belongs to NEXPTIME. In particular, the Hamiltonian path problem
belongs to NEXPTIME for this succinct input representation.

For the lower bound, consider forn ≥ 1 the finite planar graphGn that results
from our main infinite graphG by restricting it to the graphsG(k, ℓ) for k+ ℓ ≤ n
and the connecting XOR-graphs between these graphs. ThenGn has a Hamiltonian
path if and only if the finite set of tilesT admits a tiling of the “triangle”Dn =
{(k, ℓ) ∈ N×N | k+ ℓ ≤ n} (tilings of finite parts of the gridN×N are defined
analogously to tilings of the whole grid). Now we can use a result of Fürer [8]: It
is NEXPTIME-complete (under logspace reductions) to checkfor a given binary
encoded numbern and a finite set of tilesT whetherT admits a tiling ofDn. Let
us make a few remarks on Fürer’s proof before continuing:

• Fürer proved NEXPTIME-completeness for tilings of the square{(k, ℓ)∈N×N |
k, ℓ ≤ n} instead of the triangleDn. It is straightforward to adapt F̈urer’s proof
for Dn.

• Fürer actually does not speak about NEXPTIME-completeness in his paper, but
states explicit lower bounds. But in his proof he presents a generic reduction from
the acceptance problem for nondeterministic exponential time Turing-machines
to the problem of tiling{(k, ℓ) ∈ N×N | k, ℓ ≤ n} for a given binary coded num-
ber.

• Fürer states that all his construction can be carried out in polynomial time, but it
is straightforward to check that they can be carried out evenin logspace.

Finally, it is easy to construct from a binary coded numbern in logarithmic space an
automatic presentation of the graphGn. For this, we can basically use the automatic
presentation of the infinite graphG, but restrict it to numbers of size at mostn.
Hence, we obtain:

Theorem 5. It is NEXPTIME-complete under logspace reductions to checkfor a
given automatic presentation of a finite planar graph, whether it has a Hamiltonian
path.

A variant of Thm. 5 was shown by Veith [28]. He considers finitestructures that
are represented by OBDDs (ordered binary decision diagrams). In this context, the
node set of a graph is{0,1}n for some fixedn. The edge set is represented by an
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OBDD over variablesx1, . . . ,xn,y1, . . . ,yn. Here the tuple(x1, . . . ,xn) ∈ {0,1}n rep-
resents the initial vertex of an edge, whereas(y1, . . . ,yn) ∈ {0,1}n represents the
final node. The variable order of the OBDDs in [28] is fixed to the interleaved or-
derx1,y1,x2,y2, . . . ,xn,yn. Under this variable order, OBDDs exactly correspond to
deterministic acyclic automata that work on the convolution (x1 · · ·xn)⊗ (y1 · · ·yn).

In [28], the following upgrading theorem was shown (here, only formulated
for the classes NP and NEXPTIME): If a graph problemL is NP-complete under
quantifier free first-order reductions then obdd(L) (the class of all OBDDs of the
above form that encode a graph fromL) is NEXPTIME-complete under polynomial
time reductions. Since the Hamiltonian path problem (HP) isNP-compete under
quantifier free first-order reductions [26], it follows thatobdd(HP) is NEXPTIME-
complete under polynomial time reductions. Thm. 5 strengthens this result in two
points: we obtain NEXPTIME-completeness (i) under logspace reductions and (ii)
for planar graphs. It is not clear for us, whether theplanar Hamiltonian path prob-
lem is still NP-complete under quantifier free first-order reductions.

5 Further graph problems

An order treeis a partial order(A,�) with a least element such that the set{a∈ A |
a� b} is finite and linearly ordered for everyb∈ A, asuccessor treeis the covering
relation of an order tree. It is decidable, whether an automatic order tree has an
infinite path [20]. The following result is in sharp contrastto this positive result.

Theorem 6. It is Σ1
1-complete to determine whether a given automatic successor

tree T has an infinite path.

The proof idea is to transform a recursive successor tree into an automatic one
by adding the computation (i.e., sequence of transitions) that verifies the edge(u,v)
as a path between the nodesu andv; a similar idea was used in [20, 15].

Let us now present some graph problems which areΣ1
1-complete for recursive

graphs, but decidable in automatic graphs. For this, we introduce, inspired by [18,
25], a fragment SOr of second-order logic, which extends first-order logic withthe
infinity quantifier and modulo quantifiers. Every relation that is definable in first-
order logic with the infinity quantifier and modulo quantifiers has a regular set of
representatives [16, 5, 19]. We will extend this result to SOr. The set of all formulas
of SOr is inductively defined as follows:

• Every atomic first-order formula is an SOr-formula.
• X(x1, . . . ,xk) for x1, . . . ,xk first-order variables andX a k-ary second-order vari-

able is an SOr-formula.
• If ϕ andψ are SOr-formulas, then alsoϕ ∨ψ is an SOr-formula.
• If ϕ is an SOr-formula, then also¬ϕ, ∃xϕ, ∃∞xϕ (there are infinitely manyx

satisfyingϕ), ∃(k,p)xϕ for 0≤ k < p∈ N (the number ofx satisfyingϕ is finite
and congruentk modulop are SOr-formulas.
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• If ϕ is an SOr-formula andX is a second-order variable of arityk such that
for every k-tuple of first-order variablesx1, . . . ,xk, ϕ contains the subformula
X(x1, . . . ,xk) only negatively (i.e. within an odd number of negations), then also
∃X infinite : ϕ is an SOr-formula.

Note that the restriction onϕ in the last point means that ifϕ is satisfied for some
k-ary relationX = RandQ⊆ R, thenϕ is also satisfied forX = Q.

Theorem 7.From an automatic presentation(Γ ,L,h) of an automatic structureA
and anSOr-formulaϕ(x) one can compute effectively an automaton for the convo-
lution of the relation{(u1, . . . ,un) ∈ Ln | A |= ϕ(h(u1), . . . ,h(un))}. Hence, ifϕ is
anSOr-sentence, thenA |= ϕ can be checked effectively.

A variation of the proof of Thm. 7 yields the following result.

Theorem 8.Let (Γ ,L,h) be an automatic presentation of the structureA and let
α(X) with X an n-ary relation variable be a formula ofSOr such that∀X,Y : α(X∪
Y)→ α(X) is a tautology andA |= ∃X infinite: α. Then one can construct H⊆ Ln

regular such that h(H) is infinite andA |= α(h(H)).

We use Thm. 7 and 8 to show that two problems, which areΣ1
1-complete for re-

cursive structures [14], are decidable for automatic structures. First, by taking the
SOr-formula∃X infinite ∀x,y : (x,y∈ X ⇒ (x,y) ∈ E), we get:

Corollary 1 (cf. [25, Thm. 3.20]). It is decidable whether a given automatic graph
contains an infinite clique. If an infinite clique exists, a regular set of representatives
of an infinite clique can be computed.

The second problem is the infinite version of maximal set cover considered by Hirst
and Harel [14]. It asks whether, given a setX = {Xi | i ∈ N} of setsXi ⊆ N, there
existsA ⊆ N with

⋃

a∈AXa = N andN \A infinite. Note that the collectionX can
be represented as a set of pairsE with (i, j) ∈ E iff j ∈ Xi . Then there existsA as
required iff the directed graph(N,E) satisfies∃B infinite ∀ j∃i : i /∈ B∧ (i, j) ∈ E
(thenA is the complement ofB). Hence we get:

Corollary 2. The infinite version of maximal set cover is decidable if the collection
X is given as an automatic set of pairs. In case a set cover as required exists, an
infinite such can be computed.

6 Open problems

Hirst and Harel [14] gave an extensive list of problems that are Σ1
1-complete in

the recursive setting. Apart from the infinite version of thelongest common subse-
quence problem, all of these problems are decidable orΣ1

1-complete in the automatic
setting (this follows easily from the problems considered in this paper). We are miss-
ing an explanation for this phenomenon – or a natural problemthat is undecidable
for automatic structures, but “simpler” than for recursivestructures.
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