Hamiltonicity of automatic graphs

Dietrich Kuske and Markus Lohrey

Abstract It is shown that the existence of a Hamiltonian path in a plangomatic
graph of bounded degree is complete &, the first level of the analytical hier-
archy. This sharpens a corresponding result of Hirst anelHar highly recursive
graphs. Furthermore, we also show: (i) The Hamiltonian patblem for finite pla-
nar graphs that are succinctly encoded by an automaticriegs® is NEXPTIME-
complete. (i) The existence of an infinite path in an autéosiccessor tree i5-
complete. (iii) An infinite version of the set cover problesidiecidable for automatic
graphs (it ilel—compIete for recursive graphs).

1 Introduction

The theory ofecursive structurebas its origins in computability theory. A structure
is recursive, if its domain is a recursive set of naturals| every relation is again
recursive. Starting with the work of Manaster and Roseng28] and Bean [1,
2], infinite variants of classical graph problems for finiteyghs were studied for
recursive graphs. It is not surprising that these problemsrestly undecidable for
recursive graphs. This motivates the search for the prémiséof undecidability. It
turned out that some of the problems reside on low levelseatithmetic hierarchy
(e.g. the question whether a given recursive graph has ami&olpath [3]), whereas
others are complete fc}Tll — the first level of the analytic hierarchy [21]. A classical
example for the latter situation is the question whethewrargrecursive tree has an
infinite path. With a technically quite subtle reductionrfr¢he latter problem, Harel
proved in [13] that also the existence dflamiltonian path(i.e., a one-way infinite
path that visits every node exactly once) in a recursive rgiafill-complete.zll—
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hardness holds already for highly recursive graphs, whégt af the neighbors of
a nodev can be computed effectively from

Hamiltonian paths in infinite graphs were also studied urdaurely graph the-
oretic view. An important result of Dean, Thomas, and Yu fakss that an infinite
undirected grapl® has an Hamiltonian path if it is (i) planar, (ii) 4-connectedd
(iii) has only one end (see [7] for definitions). This extead®sult of Tutte [27] for
finite graphs.

In computer science, in particular in the area of automagidfication, focus
has shifted in recent years from arbitrary recursive grdptsibclasses that have
more amenable algorithmic properties. An important exanfipt this is the class
of automatic graphg5, 16]. A graph is called automatic if it has automatic
presentationwhich consists of a finite automaton that generates thefssbdes
and a two-tape automaton with synchronously moving healighmaccepts the set
of edges. One of the main motivations for investigating engtic graphs is the fact
that every automatic graph has a decidable first-orderytj&6t, this result extends
to first-order logic with infinity and modulo quantifiers [3]1 In contrast to these
positive results, Khoussainov, Nies, and Rubin have shdwahthe isomorphism
problem for automatic graphs &' -complete [17]. Results on the model theoretic
complexity of automatic structures can be found in [15].

The main result of this paper states that the existence ofrailtdmian path
becomelel—compIete already for a quite restricted subclass of ré@ugraphs,
namely for automatic graphs, which are planar and of boumi#egee. The latter
means that there exists a constastich that every node has at moshany neigh-
bors. The proof of the&? lower bound (the non-trivial part) in Section 3 is based on
a reduction from theecurring tiling problem[10, 12]. This is a variant of the clas-
sical tiling problem [29, 4] that asks whether a given fingeaf tiles allows a tiling
of the infinite quarter plane such that a distinguished cotmurs infinitely often
at the lower border. Harel proved that the recurring tilimghpem ilel-compIete
[10, 12]. In our reduction we use as building blocks some efgtaph gadgets from
the NP-hardness proof of the Hamiltonian path problem infiplanar graphs [9].
These gadgets have to be combined in a non-trivial way fowtiae reduction.

The main purpose of automatic presentations is the finiteesemtation of infi-
nite structures. But automatic presentations can be atxbassa tool for the succinct
representation of large finite structures. An automatic@néation of sizen may
generate a finite graph of siz€® . A straightforward adaptation of our proof for
infinite automatic graphs shows that it is NEXPTIME-comel&t check whether a
finite planar graph given by an automatic presentation haaraiktbnian path, see
Section 4. Without the restriction to planar graphs, thisitewas already shown by
Veith [28] in the slightly different context of graphs repemted by ordered binary
decision diagrams (OBDDs). The special OBDDs considere¥ddity in [28] can
be seen as automatic presentations of finite graphs.

Finally, in Section 5 we investigate some other graph proklen the automatic
setting. Using a proof technique from [20, 15], we prove thatfundamentak?-
complete problem in recursion theory, namely the existerfi@n infinite path in a
recursive tree remainki-complete if the input tree is automatic. For this result it
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is crucial that the tree is successor treavhich means that it is an acyclic graph,
where every node is reachable from a root node and every nadptethe root
has exactly one incoming edge. If trees are given as paatipalrtially ordered sets
(order trees), then the existence of an infinite path is ddtedfor automatic trees
[20].

From the above results, one might get the feeling that grapblegms always
have the same degree of undecidability in the recursive ratftei automatic world.
To the contrary, there are problems that Ajecomplete for recursive graphs [14]
but decidable for automatic graphs. This applies to theexi® of an infinite branch
in an automaticorder tree(i.e., the reflexive and transitive closure of a successor
tree, Khoussainov, Rubin, and Stephan [20]) as well as texttstence of an infinite
cligue in an automatic graph (Rubin [25]). We show that alsindinite version of
the set cover problem is decidable for automatic graphs fdsult is achieved by
providing a decision procedure for a fragment of seconaokalyic that allows to
express the set cover problem as well as the two other ddeidedblems mentioned
before.

Proofs, which are not included in this extended abstradtapibear in the long
version of this paper.

2 Preliminaries

Infinite graphs and Hamiltonian paths

For details on graph theory see [7].gkaphis a pairG = (V,E), whereV is the
(possibly infinite) set of nodes arElC V x V is the set of edges. It isndirected
if (u,v) € E implies (v,u) € E. The graphG hasdegree at most,avherec € N,

if every node is contained in at mostmany edges. |5 has degree at mostfor
some constart, thenG hasbounded degresdf it is only required that every node
is contained in only finitely many edges théris calledlocally finite The graphG
is planar if it can be embedded in the Euclidean plane without crossiages and
without accumulation points; any such embeddingidaame graph A finite pathin
Gis a sequencp,Vy, ..., Vy] of nodes such thawi,viy1) € Eforall1<i<n.The
nodesv; andv, are the end points of this path. The graph= (V,E) is connected
if for all u,v €V there exists a finite path in the undirected graghe U {(x,y) |
(v,x) € E} with end pointsu andv. An infinite pathin G is an infinite sequence
[v1,V2,...] such that every initial segment is a finite pathHamiltonian path(or
spanning ray of an infinite graphG is an infinite pathivi,v,,...] in G that visits
every node of5 exactly once, i.e. the mapping- v; (i € N) is a bijection between
N and the set of nodes.
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Recursive graphs and automatic graphs

A recursive graphs a graphG = (V, E) such thalv andE are recursive subsets of
N andN x N, respectively. In casé is infinite, one can w.l.0.g. assume thNat N.

A recursive graplG is highly recursivef it is locally finite and for every node a
list of its finitely many neighbors can be computed franiarel [13] has shown the
following result:

Theorem 1 ([13]).1tis Z1-complete to determine, whether a given highly recursive
undirected graph of bounded degree has a Hamiltonian path.

Recall thatz] is the first level of theanalytic hierarchy[21]. More precisely, it is
the class of all subsets Bfof the form{n e N | JA¢(A)}, whereg (A) is a formula
of first-order arithmetic. In Thm. 1, a recursive graph isated by a pair of Gdel
numbers for machines for the node and edge set, respectively

In [14], Hirst and Harel proved that for planar recursive pre the existence
of a Hamiltonian path is stilE}-complete. The aim of this paper is to extend the
results from [13, 14] to the class of planar automatic gragtounded degree. We
introduce this class of graphs briefly, more details can badan [16, 5]

Let us fixn € N and a finite alphabef. Let #¢ I’ be an additional padding
symbol. For wordawvs, ..., w, € I * we define theconvolution w @ Wy & - - - @ W,
which is a word over the alphabgt’_, (" U{#}), as follows: Lew; = &; 18 2 - aj
with & j € I and k = max{ky,...,ka}. For ki < j < k definea;;j = #. Then
W1 ® - @Wn=(ar1,...,an1) - (a1k,---,8nk). Thus, for instancaba® bbabb=
(a,b)(b,b)(a,a)(#,b)(#b). An n-ary relationR C (I *)" is called automatic if the
language{w; ® - -- @wy | (Wi, ...,Wn) € R} is a regular language.

Now let o7 = (A, (Ri)icy) be a relational structure with finitely many relations,
whereR, C A". A tuple (I,L,h) is called arautomatic presentatiofor .« if (i) I
is a finite alphabet, (il C I'* is a regular language, (iib: L — A is a bijective
function, (iv) the relation{(u,v) € L x L | h(u) = h(v)} is automatic, and (v) the
relation{(us,...,un) € L" | (h(u1),...,h(uy)) € R} is automatic for every € J.
We say thateZ is automaticif there exists an automatic presentation £r In the
rest of the paper we will mainly restrict to automatic grapbsch a graph can be
represented by an automaton for the node set and an autofioatthre edge set.
Clearly, a (locally finite) automatic graph is (highly) resive.

In contrast to recursive graphs, automatic graphs have sooeealgorithmic
properties. In [16] it was shown that the first-order thedrgmm automatic structure
is decidable. This result extends to first-order logic witfiriity and modulo quanti-
fiers [5, 19]. For general automatic structures, these $odacnot allow elementary
algorithms [5]. On the other hand, for automatic structwéh a Gaifman graph
of bounded degree first-order logic extended by a ratherrgenkass of counting
guantifiers can be decided in triply exponential space [22].

In contrast to these positive results, several strong uddbiity results show
that algorithmic methods for automatic structures areeglintited. Since the con-
figuration graph of a Turing machine is automatic, it follogesily that reachability
in automatic graphs is undecidable. Khoussainov, NiesRarin have shown that
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the isomorphism problem for automatic graphsiscomplete [17], whereas iso-
morphism of locally finite automatic graphsll'%)-complete [24]. Our main result
is the following:

Theorem 2.1tis Z1-complete to determine, whether a given planar automatiti-un
rected graph of bounded degree has a Hamiltonian path.

Note that theZ} upper bound in Thm. 2 follows immediately from the correspon
ing result for general recursive graphs (Thm. 1). For theelolsound we use a
special variant of the tiling problem [29, 4] that was intnoéd by Harel.

Tilings

Our main tool for provinngl—hardness of the existence of a Hamiltonian path in a
planar automatic graph of bounded degree isrémairring tiling problem[10, 12].

An instance of the recurring tiling problem consists of (fjrate set ofcolors C=
{co,C1,...,Cn}, (i) a distinguished coloco, and (iii) a set7 C C* of tile types For

a tile typet € 7 we writet = (tw, tn, tg,ts) (“W” for west, “N” for north, “E” for
east “S” for south); a visualization looks as follows:

N4
AN

A mappingf : N2 — 7 is atiling if, for every (i, j) € N?, we havef (i, j)ny =
f(i+1,j)sand f(i,j)e = f(i,j + 1)w. A recurring tiling is a tiling f such that
for infinitely many j € N, we havef (0, j)s = cp. Now the recurring tiling problem
asks whether a given problem instance has a recurring.titilagel has shown the
following result:

Theorem 3 ([10]). The recurring tiling problem i1-complete.

The recurring tiling problem turned out be very useful fooying 3} lower
bounds for certain satisfiability problems in logic [11].

3 Hamiltonicity for automatic graphs

In this section, we reduce the recurring tiling problem te éxistence of a Hamil-
tonian path in a planar automatic graph of bounded degrae.pfaves Thm. 2 by
Thm. 3.
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Fig. 1 The graphX, its use and abbreviation

3.1 Building blocks

Let us introduce several building blocks from which we adslenour final planar
automatic graph of bounded degree. These building blockvatants of graphs
taken from the NP-hardness proof for the Hamiltonian patiblem in finite planar
graphs [9].

Exclusive or

Consider the finite plane graphin Fig. 1 (first picture). It has a Hamiltonian path
from u;y to u; (and similarly fromv; to v,) indicated in the second picture. Now
suppose&s’ is some graph containing the edgésandv. Then we build a grapls
as follows: in the disjoint union o&’ andX, delete the edgag andv and connect
their endpoints tai; anduy (to v andvy, resp., see Fig. 1, third picture). Now
supposeH is a Hamiltonian path irG with no endpoint inX. Supposey; is the
first vertex fromX in H. Then the restriction oH to X has to coincide with the
Hamiltonian path fronu; to u,. HenceH gives rise to a Hamiltonian path @& that
coincides withH on G’ but passes through the edglenstead of taking the detour
throughX. Note thatH’ does not contain the edge Conversely, every Hamiltonian
pathH’ of G’ that contains the edgé but not the edge’ induces a Hamiltonian
pathH of G in a similar way. Joining to the graphG’ in this manner restricts the
Hamiltonian paths to those that either contain the adgethe edge/, but not both.
This also explains the namé this graph acts as an “exclusive-or”. Note thatGif
is planar and the two edges andV' belong to the same face, then alSacan be
constructed as a planar graph. Since we will make repeatedfiiBis construction,
we abbreviate it as in Fig. 1, fourth picture.

Boolean functions
Let f : {0,1}" — {0,1} be a Boolean function. In the NP-hardness proof of [9], a

planar graplG together with distinguished edges ..., e, is constructed such that
f(by,...,bn) = 1iff G has a Hamiltonian cyclel with by = 1< g € H. We modify



Hamiltonicity of automatic graphs 7
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Fig. 3 Paths through the graph

this construction slightly in order to place the edgeand two verticesi andv in a
specified order at the boundary of the outer face.

Theorem 4. There exists a constant ¢ such that from giveAke N and F C

¢ such that:

e At the boundary of the outer face of Bwe find (in this counter-clockwise order)
edges g ...&, avertex u, edgeses, - - ., &, avertex v, and edges .1, . . .,
€+t+n-

e Forevery MC {1,....k+¢+n}, M € F iff there is a Hamiltonian path H from
u to v such that M= {i | & belongs to H.

Infinity checking

Next consider Fig. 2 — it depicts a grapghthat is connected to some context via
the edged, a, &, b, b/, andr. If the complete graph has a Hamiltonian path, then
locally, it has to be of one of the four forms depicted in Fig. 3

Now consider Fig. 4 — it consists of infinitely many copies lo¢ tgraphA ar-
ranged in a line, the edg@sandb’ connect these copies #fwith a line of nodes.
Suppose the edgesandb of the copies ofA are connected to some infinite graph
G. Then, every Hamiltonian patH of the resulting graph has to enter and leave
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Fig. 4 The infinite graph.
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Fig. 5 A visit of a Hamiltonian path to the gragh

L infinitely often. Since the possibilities to pa&sare restricted as shown in Fig.3,
any such visit has to look as described in Fig. 5, i.e., thé paters froma into
some copy ofA, moves left to some copy @& (possibly without doing any step),
moves down to the third line where it goes all the way bacH itrtian enter the first
A-copy via the edgé’ and leave it via the edde

3.2 Assembling

From an instance of the recurring tiling problem, we cortin this section a
planar automatic grap@® of bounded degree that has an Hamiltonian path iff the
instance of the recurring tiling problem admits a solutiSo, we fix a finite set

C = {cop,cC1,...,Cn} Of colors, a distinguished colayp, and a set7 C C* of tile
types. Next let

V= {\%7W17" . 7WH;S)7S.|.7‘ e »SbNiOvNila' o ,Wn7?0,?l,- . 7E}

We will describe tile types by certain subsetsyofwhereW expresses that the left
color isc;, andN; denotes that the top color it g (S andE; refer to the bottom
and right color and are to be understood similarly). Morecizay, the tiled =
(ci,Cj,C, C;) is denoted by the s&y = {W} U{Nm | m# j} U{Em | m#k}U{S}.
Now letF = {Sy | d € 7} be the descriptions of all the tile typesin .7. Then,
by Thm. 4, there are finite plane grapBs, G, G3, and G4 with the following
properties: (i) at the outer face, we find edgder e € ¥ and nodesi andv in the
order indicated in Fig. 6 and (i € F iff there exists a Hamiltonian patd of Gy
fromutovsuchthaM = {ve ¥ | vbelongs taH} (forall 1 < x <4 andM C ¥).
Next we choose mutually disjoint grap@gk, ¢) (for k, ¢ € N) such that
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Fig. 6 The graphssy

G, ifk+/Zisevenank >0o0ork=¢=0
G, ifk+/Zisoddand =0

Gz ifk+/Zisoddand >0

Gs ifk+/isevenk=0,and/ > 0.

G(k,£) =

Thenu(k,¢) andv(k,¢) refer to the nodes andv of the graphG(k, ¢); similarly,
e(k,¢) for e € ¥ refers to the edge of the graphG(k, £). In the disjoint union of
these graph&(k, ¢), we connect the nodék, ¢) by a new edge with the following
node:

u(k+1,¢) fork+ /¢ evenand =0
u(k+1,£—1) for k+ ¢ even and’ > 0
u(k—1,£+1) for k+¢ odd andk > 0

u(k, ¢+ 1) for k+ ¢ odd anck = 0.

The resultG! of this construction is visualized in Fig. 7 where the vesia(k, £)
are denoted by empty nodes ar(#, ¢) by filled nodes. FronG! we construcG?
by replacing the edgei;(k,¢) andW(k, ¢+ 1) as well asN;(k,¢) andS(k+ 1,¢)
(k,£ € N, 0<i <n) by a copy of the exclusive-or grapf, see Fig. 8. In a third
step, we construds® by adding toG? the graphL from Fig. 4. To connect to G?,
the start node of the edgasndb, resp., of thé'" copy ofAin L is the left and right,
resp., node of the edd®(0,i). The final graplG is obtained fromG? by adding a
new nodel together with an edge betweenandu(0,0).
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Fig. 8 Second step in global construction — the gr&gh(for two colorscy andc;)

Let us now prove tha® has a Hamiltonian path it/ admits a recurring tiling.
First suppose there is a recurring tilifig Nx N — 7. Letk,/ € Nand f(k,¢) =
(ow, ¢, Ce,Cs). Then the grapli(k,£) € {Gx | 1 <i < 4} has a Hamiltonian path
H(k,¢) from u(k, ¢) to v(k, ¢) such that for all I<i <n

the edge§ belongs tdH (k,¢) iff cs=c;,

the edg&\f belongs taH (k, ¢) iff o = ¢,
the edgeN; belongs taH (k, /) iff cy # ¢, and
the edges; belongs taH (k, ¢) iff cg # ci.

rPonNE
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Then we find a Hamiltonian path; of the infinite graptG? in Fig. 7 by appending
these Hamiltonian paths suitably:

H1 =H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0)...
Sincef is a tiling, we get

E(KE) ¢ Hy < f(k7£)E =G
— f(k{+Dw=c
< W(k,{+1) eHs

and similarlyN; (k, ¢) ¢ H; iff S(k+1,¢) € H;. Hence the Hamiltonian path can
be extended to a Hamiltonian path of the graphG? obtained fromG* by adding
all the copies of the exclusive-or gragh Observe also thdtis recurring, i.e., there
are infinitely many? € N with f(0,¢)s = cp. For every sucH, the pathH; passes
through the edg&y(0,¢). Instead of passing through this edge, we now enter the
graphL (Fig. 4) via the edge of the /" copy of A and leave it via its edgb. We
can ensure that after this visit, all noded.db the left of the/!" copy of A have been
visited (cf. Fig. 5). This results in a Hamiltonian pad of the graphG? starting in
u(0,0). Prepending the node gives a Hamiltonian pathl of the final graptG.
Conversely, leH be a Hamiltonian path of the final gragh Since_L has degree
1, it has to start inL — deleting L. from H gives a Hamiltonian patliz of G®
that starts inu(0,0). SinceG? contains infinitely many nodes outside bof this
path has to enter and lealeinfinitely often. Any such visit has to enter via the
edgea some copy ofA and leave via the edde of the same copy oA (or vice
versa, see Fig. 5). Hence, deleting all the verticek fsbm the pathH, we obtain
a Hamiltonian pattH, of the graphG? that contains infinitely many edges of the
form $(0,¢). Recall thatG? is obtained fronG! by replacing some pairs of edges
by the exclusive-or grapX. Hence, the restriction dfi, to the nodes oG! gives
rise to a Hamiltonian patH; of G! that

(a) contains infinitely many edges of the fof(0, ¢),
(b) contains the edgéf(k, ¢+ 1) iff it does not contain the eddg (k, ¢), and
(c) contains the edg8 (k+ 1,¢) iff it does not contain the edg¥ (k, /)

forall 0 <i < nandk,¢ € N. SinceH; has to pass through all the grapgB&, ¢), it
has to be of the form

H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0)...

whereH (k, ¢) is a Hamiltonian path of the gragb(k, ¢) from u(k, ¢) to v(k, ¢). Now
we are ready to define the mappifgN? — C*: set

1) f(k,&)w = ¢ iff H(k,¢) contains the eddé(k, £),

(2) f(k,¢)n = ¢ iff H(k,¢) does not contain the eddg(k, £),
(3) f(k,£)g = ¢ iff H(k,¢) does not contain the ed@e(k, /), and
(4) f(k¢)s=ciff H(k,¢) contains the edg§ (k, ¢).
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SinceH (k, ¢) is a Hamiltonian path o&(k, £) fromu(k, ¢) to v(k, ¢), we getf (k,£) €
7 from the construction of the grapi&, G2, Gs, G4. By (1), (b), and (3), we have

f(k,\)w = ¢ < W(k,¢) belongs taH (k,¢)
<= Ei(k,/+1) does not belong téi (k, £ + 1)
— f(k,{+1)=c

and similarlyf (k, £)ny = f(k+1,¢)sfollows from (2), (c), and (4). Thud, is a tiling.
SinceH; contains infinitely many edges of the for8(0,¢), there are infinitely
many/ € N such that$(0, £) belongs taH (0,¢), i.e., f(0,£)s = Cp.

Thus, we showed that indeed the gr&pliontains a Hamiltonian path iff the set
of tiles 7 admits a recurring tiling.

Clearly, the undirected graghis planar and has bounded degree. Thus, in order
to finish the proof of Thm. 2, it remains to prove thatis automatic. Note that
the graphG has a highly regular structure. It results from the infinitel N x N
by replacing each grid point by a finite graph and connectiege finite graphs in
a regular pattern. It is not surprising that such a graph israatic, in particular
since the grid is automatic. Let us provide some more formgliraents for the
automaticity ofG.

Recall thatG can be obtained fro¥ x N by replacing every grid pointk, ¢) €
N x N by a finite graphG'(k,¢). This graph is a copy of one of the graphs
Gy, G,,G5,G), whereG| is the graphG; together with copies of the XOR-graph
X that connecG(k, ¢) with G(k+ 1,¢) andG(k, ¢+ 1). WhetherG'(k, ¢) is G| only
depends on the parity &ft+ ¢ and whethek and/ are zero or non-zero, respectively.

The alphabet of our presentation consists of the elemen{®, &f#}2\ {(#,#)}
and the nodes of the grap. . ..,G},. Then, the node set @ can be represented
by the regular language

{(bin(k) @ bin(¢))v | k,¢ > 0, vis a node of5'(k,/)}, (1)

where bir{n) is the binary encoding of a numhe(note that the parity df+ ¢ can be
determined by a finite automaton from bk bin(¢)). Constructing from this node
representation an automaton that recognizes the edgeGas straightforward but
tedious. This concludes the proof of Thm. 2.

There also exists the variant of two-way Hamiltonian pathimfinite graphs. A
two-way Hamiltonian path is = (V, E) is a two-way infinite sequend#; )iz such
that (vi,vi+1) € E for all i € Z and for every node € V there is exactly onec Z
such thav = v;. From the previous construction, it follows that also thissence of
a two-way Hamiltonian path in a given planar automatic grafdbounded degree is
>1-complete. Take the disjoint union of two copies of our maapiG and connect
the two_L-nodes with an edge. The resulting graphhas a two-way Hamiltonian
path iff G has a (one-way) Hamiltonian path. Moreover, si@ds automatic and the
class of automatic graphs is closed under disjoint uni@hg automatic as well.
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4 Remarks about large finite graphs

The main purpose of automatic presentations is the finiteesgmtation of infinite
structures. But automatic presentations can be also usadas for the succinct
representation of large finite structures. Note that a fiaittomaton witn states
can accept a finite language witR® elements, which may serve as the domain of
a finite structure.

In general, given an automatic presentatibnL, h) for afinite graph(V,E) to-
gether with an automatokfor the node set languagdeit is clear thatV | is bounded
by |I"|", wheren is the number of states éf It follows that for every graph problem
L in NP, the succinct version df, where the input graph is given by an automatic
presentation, belongs to NEXPTIME. In particular, the Héwnian path problem
belongs to NEXPTIME for this succinct input representation

For the lower bound, consider for> 1 the finite planar graps, that results
from our main infinite grapl® by restricting it to the graph&(k, ¢) for k+¢ <n
and the connecting XOR-graphs between these graphs.Ghbas a Hamiltonian
path if and only if the finite set of tiles admits a tiling of the “triangle’D,, =
{(k,¢) € Nx N | k+ ¢ < n} (tilings of finite parts of the gridN x N are defined
analogously to tilings of the whole grid). Now we can use ailtesf Furer [8]: It
is NEXPTIME-complete (under logspace reductions) to chfecka given binary
encoded numbar and a finite set of tiles” whether.7 admits a tiling ofDy,. Let
us make a few remarks oriifer’'s proof before continuing:

e Furer proved NEXPTIME-completeness for tilings of the sgydk, /) e Nx N |
k, ¢ < n} instead of the triangl®y,. It is straightforward to adaptiFer's proof
for Dp,.

e Furer actually does not speak about NEXPTIME-completernesssipaper, but
states explicit lower bounds. But in his proof he preseneregc reduction from
the acceptance problem for nondeterministic exponerniied Turing-machines
to the problem of tiling{ (k,¢) € N x N | k,¢ < n} for a given binary coded num-
ber.

e Furer states that all his construction can be carried out iyngmnial time, but it
is straightforward to check that they can be carried out @vémgspace.

Finally, it is easy to construct from a binary coded numbirlogarithmic space an
automatic presentation of the gra@h. For this, we can basically use the automatic
presentation of the infinite grap®, but restrict it to numbers of size at mast
Hence, we obtain:

Theorem 5.1t is NEXPTIME-complete under logspace reductions to cHecla
given automatic presentation of a finite planar graph, wkethhas a Hamiltonian
path.

A variant of Thm. 5 was shown by Veith [28]. He considers firstauctures that
are represented by OBDDs (ordered binary decision diagrdm#ghis context, the
node set of a graph i§0,1}" for some fixedn. The edge set is represented by an



14 Dietrich Kuske and Markus Lohrey

OBDD over variables, ..., X, Y1, - - ., Yn. Here the tupléxy, ..., X,) € {0,1}" rep-
resents the initial vertex of an edge, wherégs...,y,) € {0,1}" represents the
final node. The variable order of the OBDDs in [28] is fixed te thterleaved or-
derxy,yi1,X%2,¥2,...,%n, Yn. Under this variable order, OBDDs exactly correspond to
deterministic acyclic automata that work on the convolutiey - - - xp) ® (y1--- Yn).

In [28], the following upgrading theorem was shown (herelydormulated
for the classes NP and NEXPTIME): If a graph problens NP-complete under
quantifier free first-order reductions then obidd(the class of all OBDDs of the
above form that encode a graph frawrnis NEXPTIME-complete under polynomial
time reductions. Since the Hamiltonian path problem (HR)FPscompete under
quantifier free first-order reductions [26], it follows tralidd(HP) is NEXPTIME-
complete under polynomial time reductions. Thm. 5 stremgghthis result in two
points: we obtain NEXPTIME-completeness (i) under loggpasductions and (ii)
for planar graphs. It is not clear for us, whether thieanar Hamiltonian path prob-
lem is still NP-complete under quantifier free first-ordeguetions.

5 Further graph problems

An order treeis a partial ordefA, <) with a least element such that the $atc A |

a = b} is finite and linearly ordered for evebyc A, asuccessor treis the covering
relation of an order tree. It is decidable, whether an autmnmader tree has an
infinite path [20]. The following result is in sharp contrésthis positive result.

Theorem 6.1t is Z}-complete to determine whether a given automatic successor
tree T has an infinite path.

The proof idea is to transform a recursive successor treeaintautomatic one
by adding the computation (i.e., sequence of transitidre)\terifies the edggu, v)
as a path between the nodeandyv; a similar idea was used in [20, 15].

Let us now present some graph problems which?ofrﬁomplete for recursive
graphs, but decidable in automatic graphs. For this, wediire, inspired by [18,
25], a fragment SOof second-order logic, which extends first-order logic vitib
infinity quantifier and modulo quantifiers. Every relatioratlis definable in first-
order logic with the infinity quantifier and modulo quantifidras a regular set of
representatives [16, 5, 19]. We will extend this result td.9®e set of all formulas
of SO is inductively defined as follows:

e Every atomic first-order formula is an S@rmula.

o X(x1,...,X) for xq,...,x first-order variables an¥ ak-ary second-order vari-
able is an SGformula.

e If ¢ andy are SO-formulas, then als@ Vv ¢ is an SO-formula.

e If ¢ is an SO-formula, then also~¢, Ix¢, I°x @ (there are infinitely manyx
satisfyingg), 3¢P)x¢ for 0 < k < p € N (the number ok satisfying¢ is finite
and congruerk modulop are SO-formulas.
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e If ¢ is an SO-formula andX is a second-order variable of ariysuch that
for every k-tuple of first-order variableg;, ..., X, ¢ contains the subformula
X(x1,...,X) only negatively (i.e. within an odd number of negationsgrtfalso
IX infinite : ¢ is an SO-formula.

Note that the restriction og in the last point means that ¢f is satisfied for some
k-ary relationX = RandQ C R, theng¢ is also satisfied foK = Q.

Theorem 7.From an automatic presentatigii ,L, h) of an automatic structure?

and anSO'-formula ¢ (X) one can compute effectively an automaton for the convo-
lution of the relation{(uy,...,us) € L" | & = ¢ (h(u1),...,h(un))}. Hence, if¢ is

an SO-sentence, ther/ |= ¢ can be checked effectively.

A variation of the proof of Thm. 7 yields the following result

Theorem 8.Let (I",L,h) be an automatic presentation of the structureand let
o (X) with X an n-ary relation variable be a formula 80 such thatvX,Y : a (XU
Y) — a(X) is a tautology and |= 3X infinite: a. Then one can construct & L"
regular such that fH) is infinite ande’ = a(h(H)).

We use Thm. 7 and 8 to show that two problems, whichZreomplete for re-
cursive structures [14], are decidable for automatic stimes. First, by taking the
SO-formula3X infinite Yx,y : (x,y € X = (X,y) € E), we get:

Corollary 1 (cf. [25, Thm. 3.20]). It is decidable whether a given automatic graph
contains an infinite clique. If an infinite clique exists, gutar set of representatives
of an infinite clique can be computed.

The second problem is the infinite version of maximal set cowasidered by Hirst
and Harel [14]. It asks whether, given a 3t {X | i € N} of setsX; C N, there
existsA C N with UacaXa = N andN\ A infinite. Note that the collectioX can
be represented as a set of pdirsvith (i, j) € E iff j € X;. Then there exista as
required iff the directed graptN,E) satisfies3B infinite Vj3i :i ¢ BA(i,]) € E
(thenAis the complement dB). Hence we get:

Corollary 2. The infinite version of maximal set cover is decidable if thikection
X is given as an automatic set of pairs. In case a set cover @qane exists, an
infinite such can be computed.

6 Open problems

Hirst and Harel [14] gave an extensive list of problems th&t&-complete in
the recursive setting. Apart from the infinite version of tbegest common subse-
quence problem, all of these problems are decidahig eromplete in the automatic
setting (this follows easily from the problems considerethis paper). We are miss-
ing an explanation for this phenomenon — or a natural proltkerhis undecidable
for automatic structures, but “simpler” than for recurss@uctures.
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