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AUTOMATIC STRUCTURES OF BOUNDED DEGREE REVISITED

DIETRICH KUSKE AND MARKUS LOHREY

Abstract. The first-order theory of a string automatic structure is known to be decid-

able, but there are examples of string automatic structures with nonelementary first-order

theories. We prove that the first-order theory of a string automatic structure of bounded

degree is decidable in doubly exponential space (for injective automatic presentations, this

holds even uniformly). This result is shown to be optimal since we also present a string

automatic structure of bounded degree whose first-order theory is hard for 2EXPSPACE.

We prove similar results also for tree automatic structures. These findings close the gaps

left open in [28] by improving both the lower and the upper bounds.

§1. Introduction. The idea of an automatic structure goes back to Büchi
and Elgot who used finite automata to decide, e.g., Presburger arithmetic [14].
Automaton decidable theories [18] and automatic groups [15] are similar con-
cepts. A systematic study was initiated by Khoussainov and Nerode [20] who
also coined the name “automatic structure” (we prefer the term “string auto-
matic structure” in this paper). In essence, a structure is string automatic if the
elements of the universe can be represented as strings from a regular language
(an element can be represented by several strings) and every relation of the
structure can be recognized by a finite state automaton with several heads that
proceed synchronously. String automatic structures received increasing interest
over the last years [1, 3, 4, 5, 7, 17, 19, 21, 22, 24, 27, 31]. One of the main
motivations for investigating string automatic structures is that their first-order
theories can be decided uniformly (i.e., the input is a string automatic presen-
tation and a first-order sentence). But even the non-uniform first-order theory
is far from efficient since there exist string automatic structures with a nonele-
mentary first-order theory. This motivates the search for subclasses of string
automatic structures whose first-order theories are elementary. The first such
class was identified by the second author in [28] who showed that the first-order
theory of every string automatic structure of bounded degree can be decided in
triply exponential alternating time with linearly many alternations. A structure
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has bounded degree, if in its Gaifman graph, the number of neighbors of a node is
bounded by some fixed constant. The paper [28] also presents a specific example
of a string automatic structure of bounded degree, where the first-order theory
is hard for doubly exponential alternating time with linearly many alternations.
Hence, an exponential gap between the upper and lower bound remained. An
upper bound of 4-fold exponential alternating time with linearly many alterna-
tions was shown for tree automatic structures (which are defined analogously to
automatic structures using tree automata) of bounded degree. Our paper [25]
proves a triply exponential space bound for the first-order theory of an injective
ω-string automatic structure (that is defined via Büchi-automata) of bounded
degree. Here, injectivity means that every element of the structure is represented
by a unique ω-string from the underlying regular language. By [17], the class
of injective ω-string automatic structures is a strict subclass of the class of all
ω-string automatic structures, whereas for string and tree automatic structures
injectivity is not a restriction [9, 20, 35].

In this paper, we achieve three goals:

• We close the complexity gaps from [28] for string/tree automatic structures
of bounded degree.

• We investigate, for the first time, the complexity of the uniform first-order
theory (where the automatic presentation is part of the input) of string/tree
automatic structures of bounded degree.

• We refine our complexity analysis using the growth function of a structure.
This function measures the size of a sphere in the Gaifman graph depending
on the radius of the sphere. The growth function of a structure of bounded
degree can be at most exponential.

Our main results are the following:

• The uniform first-order theory for injective string automatic presentations
of bounded degree is 2EXPSPACE-complete. The lower bound already holds
in the non-uniform setting, i.e., there exists a string automatic structure of
bounded degree with a 2EXPSPACE-complete first-order theory.

• For every string automatic structure of bounded degree, where the growth
function is polynomially bounded, the first-order theory is in EXPSPACE,
and there exists an example with an EXPSPACE-complete first-order theory.

• The uniform first-order theory for injective tree automatic presentations
of bounded degree belongs to 4EXPTIME. For every fixed tree automatic
structure of bounded degree, the first-order theory belongs to 3EXPTIME,
and to 2EXPTIME if the growth function is polynomial. Our bounds for
the non-uniform problem are sharp, i.e., there are tree automatic structures
of bounded degree (and polynomial growth) with a 3EXPTIME-complete
(2EXPTIME-complete, resp.) first-order theory.

For the uniform first-order theory for injective tree automatic presentations of
bounded degree, the precise complexity remains open (it is in 4EXPTIME and
3EXPTIME-hard). If the input presentations are not necessarily injective, the
upper bounds for the uniform theories are one exponent higher: 3EXPSPACE in
the string case and 5EXPTIME in the tree case. We conclude this paper with
some results on the complexity of first-order fragments with fixed quantifier
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alternation depth one or two on string/tree automatic structures of bounded
degree.

Further related work. In [12] the blow-up in formula size inherent in Gaifman’s
locality theorem has been investigated. That work reveals that in the worst case
a non-elementary blow-up is unavoidable already on locally finite structures (in
fact, forests). In the same paper it is also remarked that on (not necessarily
automatic) structures of bounded degree every first-order formula is equivalent
to a Boolean combination of basic local sentences of at most 4-fold exponential
total size. In some sense, our results refine this result for the case of automatic
structures of bounded degree.

In [2], Bárány considers p-automatic structures, which are string automatic
structures having an automatic presentation with a domain language of polyno-
mial growth (i.e., the number of words of length at most n grows polynomially
with n). For each of these structures, the first-order theory belongs to PSPACE.
A p-automatic structure of bounded degree must have polynomial growth in the
sense used in this paper. On the other hand, p-automatic structures are not
required to be of bounded degree. Moreover, our example of an automatic struc-
ture of bounded degree with polynomial growth and an EXPSPACE-complete
first-order theory is not p-automatic (since PSPACE ( EXPSPACE by the space
hierarchy theorem). Hence, the class of p-automatic structures and the class of
bounded degree automatic structures of polynomial growth are incomparable.

§2. Preliminaries. Let Γ be a finite alphabet and w ∈ Γ∗ be a finite word
over Γ. The length of w is denoted by |w|. Let Γn = {w ∈ Γ∗ | n = |w|}.

Let us define exp(0, x) = x and exp(n + 1, x) = 2exp(n,x) for x ∈ N. We
assume that the reader has some basic knowledge in complexity theory, see
e.g. [30]. By Savitch’s theorem, NSPACE(s(n)) ⊆ DSPACE(s(n)2) if s(n) ≥
log(n). Hence, we can just write SPACE(s(n)O(1)) for either NSPACE(s(n)O(1)) or
DSPACE(s(n)O(1)). For k ≥ 1, we denote with kEXPSPACE (resp. kEXPTIME)
the class of all problems that can be accepted in space (resp. time) exp(k, nO(1))
on a deterministic Turing machine. For 1EXPSPACE we write just EXPSPACE

and 0EXPSPACE stands for PSPACE. A computational problem is called elemen-
tary if it belongs to kEXPTIME for some k ∈ N.

2.1. Tree and string automata. For our purpose it suffices to consider
only tree automata on binary trees. Let Γ be a finite alphabet. A finite binary
tree over Γ is a mapping t : dom(t) → Γ, where dom(t) ⊆ {0, 1}∗ is finite,
nonempty, and satisfies the following closure condition for all w ∈ {0, 1}∗: if
{w0, w1} ∩ dom(t) 6= ∅, then also w,w0 ∈ dom(t). With TΓ we denote the set
of all finite binary trees over Γ. A (top-down) tree automaton over Γ is a tuple
A = (Q,∆, q0), where Q is the finite set of states, q0 ∈ Q is the initial state, and

∆ ⊆ (Q× Γ ×Q×Q) ∪ (Q× Γ ×Q) ∪ (Q× Γ) (1)

is the non-empty transition relation. A successful run of A on a tree t is a map-
ping ρ : dom(t) → Q such that (i) ρ(ε) = q0 and (ii) for every w ∈ dom(t) with
children w0, . . . , wi (thus −1 ≤ i ≤ 1) we have (ρ(w), t(w), ρ(w0), . . . , ρ(wi)) ∈
∆. With L(A) we denote the set of all finite binary trees t such that there exists
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a successful run of A on t. A set L ⊆ TΓ is called regular if there exists a finite
tree automaton A with L = L(A).

A tree t with dom(t) ⊆ 0∗ and n = |dom(t)| can be identified with the
nonempty string t(ε)t(0)t(00) . . . t(0n−1). In the same spirit, a finite string au-
tomaton can be defined as a tree automaton, where the transition relation ∆ in
(1) satisfies ∆ ⊆ (Q× Γ ×Q) ∪ (Q× Γ).

We will need the following well known facts on string/tree automata: Empti-
ness (resp. inclusion) of the languages of string automata can be decided in
nondeterministic logarithmic space (resp. polynomial space), whereas emptiness
(resp. inclusion) of the languages of tree automata can be decided in polynomial
time (resp. exponential time), see e.g. [10]. In all four cases completeness holds.

2.2. Structures and first-order logic. A signature is a finite set S of re-
lational symbols, where every symbol r ∈ S has some fixed arity mr. The
notion of an S-structure (or model) is defined as usual in logic. Note that we
only consider relational structures. Sometimes, we will also use constants, but
in our context, a constant c can be always replaced by the unary relation {c}.
Let us fix an S-structure A = (A, (rA)r∈S), where rA ⊆ Amr . To simplify
notation, we will write a ∈ A for a ∈ A. For B ⊆ A we define the restric-
tion A↾B = (B, (rA ∩ Bmr )r∈S). Given further constants a1, . . . , an ∈ A, we
write (A, a1, . . . , ak) for the structure (A, (rA)r∈S , a1, . . . , ak). In the rest of the
paper, we will always identify a symbol r ∈ S with its interpretation rA.

A congruence on the structure A = (A, (r)r∈S) is an equivalence relation ≡
on A such that for every r ∈ S and all a1, b1, . . . , amr

, bmr
∈ A we have: If

(a1, . . . , amr
) ∈ r and a1 ≡ b1, . . . , amr

≡ bmr
, then also (b1, . . . , bmr

) ∈ r. As
usual, the equivalence class of a ∈ A w.r.t. ≡ is denoted by [a]≡ or just [a] and
A/≡ denotes the set of all equivalence classes. We define the quotient structure
A/≡ = (A/≡, (r/≡)r∈S), where r/≡ = {([a1], . . . , [amr

]) | (a1, . . . , amr
) ∈ r}.

The Gaifman graph G(A) of the S-structure A is the following symmetric
graph:

G(A) = (A, {(a, b) ∈ A×A |
∨

r∈S
∃(a1, . . . , amr

) ∈ r ∃j, k : aj = a, ak = b})

Thus, the set of nodes is the universe of A and there is an edge between two
elements, if and only if they are contained in some tuple belonging to one of the
relations of A. With dA(a, b), where a, b ∈ A, we denote the distance between a
and b in G(A), i.e., it is the length of a shortest path connecting a and b in G(A).
For a ∈ A and d ≥ 0 we denote with SA(d, a) = {b ∈ A | dA(a, b) ≤ d} the d-
sphere around a. If A is clear from the context, then we will omit the subscript A.
We say that the structure A is locally finite if its Gaifman graph G(A) is locally
finite (i.e., every node has finitely many neighbors). Similarly, the structure A
has bounded degree, if G(A) has bounded degree, i.e., there exists a constant δ
such that every a ∈ A is adjacent to at most δ many other nodes in G(A);
the minimal such δ is called the degree of A. For a structure A of bounded
degree we can define its growth function as the mapping gA : N → N with
gA(n) = max{|SA(n, a)| | a ∈ A}. Note that if the function gA is not bounded
then gA(n) ≥ n for all n ≥ 1. For us, it is more convenient to not have a bounded
function describing the growth. Therefore, we define the normalized growth
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function g′A by g′A(n) = max{n, gA(n)}. Note that gA and g′A are different only
in the pathological case that all connected components of A contain at most
m elements (for some fixed m). Clearly, g′A(n) can grow at most exponentially
(since A is assumed to have bounded degree). We say that A has exponential
growth if g′A(n) ∈ 2Ω(n); if g′A(n) ∈ nO(1), then A has polynomial growth.

To define logical formulas, we fix a countably infinite set V of variables, which
evaluate to elements of structures. Formulas over the signature S (or formulas if
the signature is clear from the context) are constructed from the atomic formulas
x = y and r(x1, . . . , xmr

), where r ∈ S and x, y, x1, . . . , xmr
∈ V , using the

Boolean connectives ∨ and ¬ and existential quantification over variables from V .
The Boolean connective ∧ and universal quantification can be derived from these
operators in the usual way. The quantifier depth of a formula ϕ is the maximal
nesting depth of quantifiers in ϕ. The notion of a free variable is defined as
usual. A formula without free variables is called closed. If ϕ(x1, . . . , xm) is a
formula with free variables among x1, . . . , xm and a1, . . . , am ∈ A, then A |=
ϕ(a1, . . . , am) means that ϕ evaluates to true in A when the free variable xi

evaluates to ai. The first-order theory of A, denoted by FOTh(A), is the set of
all closed formulas ϕ such that A |= ϕ. For n ≥ 0, Σn-formulas and Πn-formulas
are inductively defined as follows:

• A quantifier-free first-order formula is a Σ0-formula as well as a Π0-formula.
• If ϕ(x1, . . . , xn, y) is a Σn-formula, then ∀x1 · · · ∀xn : ϕ(x1, . . . , xn, y) is a

Πn+1-formula.
• If ϕ(x1, . . . , xn, y) is a Πn-formula, then ∃x1 · · · ∃xn : ϕ(x1, . . . , xn, y) is a

Σn+1-formula.

The Σn-theory Σn-FOTh(A) of a structure A is the set of all Σn-formulas in
FOTh(A); the Πn-theory is defined analogously.

2.3. Structures from automata. This section recalls string automatic and
tree automatic structures and basic results about them. Details can be found in
the surveys [31, 3].

2.3.1. Tree and string automatic structures. String automatic structures were
introduced in [18], their systematic study was later initiated by [20]. Tree auto-
matic structures were introduced in [6], they generalize string automatic struc-
tures. Here, we will first introduce tree automatic structures. String automatic
structures can be considered as a special case of tree automatic structures.

Let Γ be a finite alphabet and let $ 6∈ Γ be an additional padding symbol. Let
t1, . . . , tm ∈ TΓ. We define the convolution t = t1 ⊗ · · · ⊗ tm, which is a finite
binary tree over the alphabet (Γ ∪ {$})m, as follows: dom(t) =

⋃m
i=1 dom(ti)

and for all w ∈ ⋃m
i=1 dom(ti) we define t(w) = (a1, . . . , am), where ai = ti(w) if

w ∈ dom(ti) and ai = $ otherwise. In Fig. 1, the third tree is the convolution of
the first two trees.

An m-dimensional (synchronous) tree automaton over Γ is just a tree automa-
ton A over the alphabet (Γ∪{$})m such that L(A) ⊆ {t1⊗· · ·⊗ tn | t1, . . . , tm ∈
TΓ}. Such an automaton defines an m-ary relation

R(A) = {(t1, . . . , tm) | t1 ⊗ · · · ⊗ tm ∈ L(A)} .

A tree automatic presentation is a tuple P = (Γ, A0, A=, (Ar)r∈S), where:
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Figure 1. The convolution of two trees

• Γ is a finite alphabet.
• S is a signature (the signature of P ), as before mr is the arity of the symbol
r ∈ S.

• A0 is a tree automaton over the alphabet Γ.
• For every r ∈ S, Ar is an mr-dimensional tree automaton over the alphabet

Γ ∪ {$} such that R(Ar) ⊆ L(A0)
mr .

• A= is a 2-dimensional tree automaton over the alphabet Γ ∪ {$} such that
R(A=) ⊆ L(A0) × L(A0) and R(A=) is a congruence on the structure
(L(A0), (R(Ar))r∈S).

This presentation P is called injective if R(A=) is the identity relation on L(A0).
In this case, we can omit the automaton A= and identify P with the tuple
(Γ, A0, (Ar)r∈S). The structure presented by P is the quotient

A(P ) = (L(A0), (R(Ar))r∈S)/R(A=) .

A structure A is called tree automatic if there exists a tree automatic presen-
tation P such that A ≃ A(P ). We will write [u] for the element [u]R(A=)

(u ∈ L(A0)) of the structure A(P ). We say that the presentation P has bounded
degree if the structure A(P ) has bounded degree.

A string automatic presentation is a tree automatic presentation, where all
tree automata are in fact string automata (as explained in Section 2.1), and a
structure A is called string automatic if there exists a string automatic presen-
tation P such that A ≃ A(P ). Typical examples of string automatic structures
are (N,+) (Presburger’s arithmetic), (Q,≤), and all ordinals below ωω [13, 20].
An example of a tree automatic structure, which is not string automatic is (N, ·)
(the natural numbers with multiplication) [6], or the ordinal ωω [13]. Examples
of string automatic structures of bounded degree are transition graphs of Turing
machines and Cayley-graphs of automatic groups [15] (or even right-cancellative
monoids [33]).

Remark 2.1. Usually a tree automatic presentation for an S-structure A =
(A, (r)r∈S ) is defined as a tuple (Γ, L, h) such that

• Γ is a finite alphabet,
• L ⊆ TΓ is a regular set of trees,
• h : L→ A is a surjective function,
• the relation {(u, v) ∈ L × L | h(u) = h(v)} can be recognized by a 2-

dimensional tree automaton, and
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• for all r ∈ S, the relation {(u1, . . . , umr
) ∈ Lmr | (h(u1), . . . , h(umr

)) ∈ r}
can be recognized by an mr-dimensional tree automaton.

Since for our considerations, tree automatic presentations are part of the input
for algorithms, we prefer our definition, where a tree automatic presentation is a
finite object (a tuple of finite tree automata), whereas in the standard definition,
the presentation also contains the presentation map h.

Let SA be the class of all string automatic presentations and let TA be the
class of all tree automatic presentations. Moreover, for X ∈ {SA,TA} let

Xb = {P ∈ X | A(P ) has bounded degree}
iX = {P ∈ X | P is injective}

iXb = Xb ∩ iX

2.3.2. The model checking problem. For the above classes of tree automatic
presentations, we will be interested in the following decision problems.

Definition 2.2. Let C be a class of tree automatic presentations.

• The first-order model checking problem FOMC(C) for C denotes the set of
all pairs (P, ϕ), where P ∈ C and ϕ ∈ FOTh(A(P )).

• For n ≥ 1, the Σn-model checking problem Σn-FOMC(C) for C denotes the
set of all pairs (P, ϕ), where P ∈ C and ϕ ∈ Σn-FOTh(A(P )).

If C = {P} is a singleton, then the model checking problem FOMC(C) for C

can be identified with the first-order theory of the structure A(P ). An algorithm
deciding the model checking problem for a nontrivial class C decides the first-
order theories of each element of C uniformly.

The following two results are the main motivations for investigating tree au-
tomatic structures.

Proposition 2.3 ([6, 20]). There is an algorithm that computes from a tree
automatic presentation P = (Γ, A0, A=, (Ar)r∈S) and a formula ϕ(x1, . . . , xm)
an m-dimensional tree automaton A over Γ with R(A) = {(u1, . . . , um) ∈
L(A0)

m | A(P ) |= ϕ([u1], . . . , [um])}.
The automaton is constructed by induction on the structure of the formula ϕ:

disjunction corresponds to the disjoint union of automata, existential quantifi-
cation to projection, and negation to complementation. The following result is
a direct consequence.

Theorem 2.4 ([6, 20]). The model checking problem FOMC(TA) for all tree
automatic presentations is decidable. In particular, for every tree automatic
structure A the first-order theory FOTh(A) is decidable.

Remark 2.5. Strictly speaking, [6, 20] devise algorithms that, given a tree
automatic presentation and a closed formula, decide whether the formula holds
in the presented structure. But a priori, it is not clear whether it is decid-
able, whether a given tuple (Γ, A0, A=, (Ar)r∈S) is a tree automatic presentation.
Lemma 2.12 below shows that TA is indeed decidable, which then completes the
proof of Theorem 2.4.
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Theorem 2.4 holds even if we add quantifiers for “there are infinitely many x
such that ϕ(x)” [6, 7] and “the number of elements satisfying ϕ(x) is divisible
by k” (for k ∈ N) [23]1. This implies in particular that it is decidable whether
a tree automatic presentation describes a locally finite structure. But the decid-
ability of the first-order theory is far from efficient, since there are even string
automatic structures with a nonelementary first-order theory [7]. For instance
the structure ({0, 1}∗, s0, s1,�), where si = {(w,wi) | w ∈ {0, 1}∗} for i ∈ {0, 1}
and � is the prefix order on finite words, has a nonelementary first-order theory,
see e.g. [11, Example 8.3]. In fact, even locally finite examples exist:

Proposition 2.6. There exists a locally finite string automatic structure with
a nonelementary first-order theory.

Proof. The theory of all finite binary labeled linear orders is nonelemen-
tary [29]. Since this theory can be reduced to the first-order theory of the struc-
ture consisting of the disjoint union of all finite binary labeled linear orders, the
latter structure has a nonelementary first-order theory too. But this structure
is automatic: The universe is the set L = {u⊗ v | u ∈ {0, 1}+, v ∈ 0∗, |v| < |u|}.
In addition, we have a partial order {(u ⊗ v, u ⊗ v′) ∈ L × L | |v| ≤ |v′|}
that encodes the union of all the linear order relations, and a unary relation
{u⊗ v ∈ L | position |v| in u carries 1} that encodes the labeling. ⊣

The following two results refine Theorem 2.4:

Theorem 2.7 ([26]). The following holds for all n ≥ 0:

(1) The Σn+1-model checking problem Σn+1-FOMC(SA) for all string automatic
presentations is in nEXPSPACE.

(2) There is a fixed string automatic structure with an nEXPSPACE-complete
Σn+1-theory.

(3) There is a closed formula ϕn ∈ Σn+1 for which {P ∈ SA | A(P ) |= ϕn} is
nEXPSPACE-complete.

Remark 2.8. For n = 0 and n = 1, the above statement (2) can be found
in [3]. Regarding (1) and (3), an exponentially better bound holds for automatic
presentations that consist of deterministic automata, only: for n ≤ 1, this can
be found in [3], the general case can be shown using the methods from [26].

Theorem 2.9. For all n ≥ 1, the Σn-model checking problem Σn-FOMC(TA)
for all tree automatic presentations is in nEXPTIME.

In [26] only Theorem 2.7 is shown. But the proof for Theorem 2.9 is almost the
same as for the first statement of Theorem 2.7. The only difference comes from
the fact that emptiness for string automata is NL-complete, whereas emptiness
for tree automata is P-complete.

2.3.3. First complexity results: the classes TA etc and boundedness. This pa-
per is concerned with the uniform and non-uniform complexity of the first-order
theory of (some subclass of) tree automatic structures of bounded degree. Thus,

1[23] only provides the proofs for string automatic structures. These proofs are easily ex-
tended to tree automatic structures once the presentation is injective. But every tree automatic
presentation can be transformed into an equivalent injective one [9, 35].
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we will consider algorithms that take as input tree automatic presentations (to-
gether with closed formulas). For complexity considerations, we have to define
the size |P | of a tree automatic presentation P = (Γ, A0, A=, (Ar)r∈S). First, let
us define the size |A| of an m-dimensional tree automaton A = (Q,∆, q0) over Γ.
A transition tuple from ∆ (see (1)) can be stored with at most 3 log(|Q|) +
m log(|Γ|) many bits. Hence, up to constant factors, ∆ can be stored in space
|∆| · (log(|Q|) +m log(|Γ|)). We can assume that every state is the first compo-
nent of some transition tuple, i.e., |Q| ≤ |∆|. Furthermore, the size of the basic
alphabet Γ can be bounded by |∆| as well, but the dimension m is independent
from the size of ∆. Since our complexity measures will be up to polynomial time
reductions, it therefore makes sense to define the size of the tree automaton A
to be |A| = |∆| · m. We assume ∆ to be nonempty, hence |A| ≥ 1. The size
of the presentation P = (Γ, A0, A=, (Ar)r∈S) is |P | = |A0| + |A=| +

∑

r∈S |Ar|.
Note that |S| ≤ |P | and m ≤ |P |, when m is the maximal arity in S.

It will be convenient to work with injective string (resp. tree) automatic pre-
sentations. The following lemma says that this is no restriction, at least if we do
not consider complexity aspects.

Lemma 2.10 ([20, Corollary 4.3] and [35]). From a given P ∈ TA (resp. P ∈
SA) one can compute in time 2O(|P |) a presentation P ′ ∈ iTA (resp. P ′ ∈ iSA)
with A(P ) ≃ A(P ′).

Remark 2.11. For string automatic presentations, the statement of Lemma 2.10
was shown in [20]. Although the exponential time bound on the construction
of P ′ ∈ iSA is not stated explicitly in [20], it can be easily extracted from the
construction. In [9, Corollary 4.2], it is stated that for every P ∈ TA there exists
P ′ ∈ iTA with A(P ) ≃ A(P ′). Although the construction of P ′ is effective,
the complexity is difficult to extract from [9]. An exponential construction of
P ′ ∈ iTA was presented in [35].

The following lemma shows that the classes of all tree and string automatic
presentations are decidable and gives complexity bounds. While these two results
are not surprising, it is not clear how to determine whether A(P ) has bounded
degree – this will be solved by Proposition 2.14 below.

Lemma 2.12. The class TA is EXPTIME-complete and the class SA is PSPACE-
complete.

Proof. We start with a proof of the first statement. Suppose we are given
a tuple of tree automata A0, A=, (Ar)r∈S over an alphabet Γ. In a first step,
we check in polynomial time, whether A= is a 2-dimensional tree automaton
over Γ and that every Ar (r ∈ S) is an mr-dimensional tree automaton over Γ
according to Section 2.3.1. We proceed as follows for every r ∈ S (for A= the
same algorithm works):

First, we check that no tree from L(Ar) contains the label ($, . . . , $). To this
aim, replace in all transitions of Ar the letters from (Γ∪{$})mr \ {($, . . . , $)} by
⊤ and the letter ($, . . . , $) by ⊥ and check whether the language of the resulting
automaton is contained in T{⊤} (the set of all ⊤-labeled binary trees). Since the
set T{⊤} can be accepted by a fixed automaton, this inclusion can be decided
in polynomial time. Hence, we can assume that no tree from L(Ar) contains
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the label ($, . . . , $). Next, let H ⊆ T{⊤,$} denote the set of those trees t whose
⊤-labeled nodes form an initial segment of t. Again this set can be accepted by
a fixed automaton. For all 1 ≤ i ≤ mr we construct (in polynomial time) an
automaton Ar,i as follows: First we project Ar onto its ith component. Then, we
replace in every transition of the resulting automaton all occurrences of symbols
from Γ by ⊤. It remains to check that L(Ar,i) ⊆ H for all 1 ≤ i ≤ mr, which
can be done in polynomial time.

For the rest of the proof, let us assume that A= is a 2-dimensional tree automa-
ton over Γ and that everyAr (r ∈ S) is anmr-dimensional tree automaton over Γ.
This implies that the tuple P = (Γ, B,A0, A=, (Ar)r∈S), where L(B) = TΓ, is
an injective tree automatic presentation. Here, A0 defines a unary relation on
the domain TΓ, and A= defines a binary relation. Then, (Γ, A0, A=, (Ar)r∈S)
is a tree automatic presentation if and only if the following closed first-order
formulas are true in S(P ′) for all r ∈ S:

∀x, y : (x, y) ∈ R(A=) → x, y ∈ L(A0)

∀x ∈ L(A0) : (x, x) ∈ R(A=)

∀x, y ∈ L(A0) : (x, y) ∈ R(A=) → (y, x) ∈ R(A=)

∀x, y, z ∈ L(A0) : ((x, y) ∈ R(A=) ∧ (y, z) ∈ R(A=)) → (x, z) ∈ R(A=)

∀x1, . . . , xmr
: (x1, . . . , xmr

) ∈ R(Ar) → x1, . . . , xmr
∈ L(A0)

∀(x1, y1), . . . , (xmr
, ymr

) ∈ R(A=)

(

(x1, . . . , xmr
) ∈ R(Ar) →

(y1, . . . , ymr
) ∈ R(Ar)

)

These are Π1-formulas. Hence, by Theorem 2.9, we can check in EXPTIME

whether they hold in S(P ′).
Completeness follows since the inclusion L(A) ⊆ L(B) is EXPTIME-complete

for tree automata A and B.
This finishes the proof of the first statement. To prove the second, one can

proceed analogously using Theorem 2.7. ⊣
Recall that G(A) denotes the Gaifman graph of a structure A. The following

lemma says that the Gaifman graph of a string (resp. tree) automatic structure
is effectively string (resp. tree) automatic. This is an immediate consequence of
Proposition 2.3, so the novelty lies in the estimation of the complexity.

Lemma 2.13. From a given tree (string) automatic presentation

P = (Γ, A0, A=, (Ar)r∈S)

one can construct a 2-dimensional tree (string) automaton A such that

R(A) = {(u, v) ∈ L(A0) × L(A0) | ([u], [v]) is an edge in G(A(P ))} . (2)

If m is the maximal arity in S, then A has m2 · |P |2 many states and can be
computed in time O(m2 · |P |2) ≤ |P |O(1).

Proof. We only give the proof for string automatic presentations, the tree
automatic case can be shown verbatim. Let E be the edge relation of the Gaifman
graph G(A(P )). Note that for all u, v ∈ L(A0) we have ([u], [v]) ∈ E if and only
if for some r ∈ S of arity mr ≤ m and 1 ≤ i, j ≤ mr, there exist u1, . . . , umr

∈
L(A0) with (u1, . . . , umr

) ∈ R(Ar), u = ui, and v = uj . Let r ∈ S and 1 ≤
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i, j ≤ mr. Projecting the automaton Ar onto the tracks i and j, one obtains
a 2-dimensional automaton accepting all pairs (u, v) ∈ Γ∗ × Γ∗ such that there
exists (u1, . . . , umr

) ∈ R(Ar) with u = ui and v = uj. Then the disjoint union
of all these automata (for r ∈ S and 1 ≤ i, j ≤ mr) satisfies (2). Since |S| ≤ |P |,
the construction can be performed in time O(m2 · |P |2). ⊣

Lemma 2.13 allows to show that also the bounded class TAb is decidable in
exponential time:

Proposition 2.14. The class TAb (and hence also SAb) belongs to EXPTIME.

Proof. Let P ∈ TA (which is decidable by Lemma 2.12 in exponential time).
By Lemma 2.10, we can construct in exponential time an injective presentation
P ′ ∈ iTA with A(P ) ∼= A(P ′). Hence, |P ′| is exponentially bounded in |P |. By
Lemma 2.13 we can compute an automaton A with (2), i.e., A defines the edge
relation of the Gaifman-graph of A(P ). The size of A is again exponentially
bounded in the size of P . Since P ′ is injective (i.e., every equivalence class [u]
is the singleton {u}), A(P ) is of bounded degree if and only if A (seen as a
transducer) is finite-valued. But this is decidable in polynomial time [32, 34] in
the size of A and hence in exponential time in the size of P . ⊣

Finally, since we deal with structures of bounded degree, it will be important
to estimate the degree of such a structure given its presentation. Such estimates
are provided by the following result.

Proposition 2.15. The following hold:

(a) If P ∈ iSAb, then the degree of A(P ) is bounded by exp(1, |P |O(1)).
(b) If P ∈ iTAb, then the degree of A(P ) is bounded by exp(2, |P |O(1)).
(c) If P ∈ SAb, then the degree of A(P ) is bounded by exp(2, |P |O(1)).
(d) If P ∈ TAb, then the degree of A(P ) is bounded by exp(3, |P |O(1)).

Proof. For statement (a) let P ∈ iSAb. From Lemma 2.13, we can construct
a string automaton A of size |P |O(1) that accepts the edge relation of the Gaifman
graph of A(P ). Then the degree of A(P ) equals the maximal outdegree of the
relation R(A). For string transducers, this number is exponential in the size
of A, i.e., it is in exp(1, |P |O(1)) [34].

For (b) we can use a similar argument. But since the maximal outdegree of
the relation recognized by a tree transducer A is doubly exponential in the size
of A [32], we obtain the bound exp(2, |P |O(1)) for the degree of A(P ).

Finally statement (c) (resp. (d)) follows immediately from Lemma 2.10 and
(a) (resp. (b)). ⊣

Remark 2.16. All bounds in Proposition 2.15 are sharp:

(a) Let An be the complete graph on {a, b}n; it has degree 2Ω(n). Moreover, An

has an injective string automatic presentation of size O(n).
(b) Let An be the complete graph on the set of all trees from T{a,b} that have

height n. This graph has degree exp(2,Ω(n)) and it has an injective tree
automatic presentation of size O(n).

(c) In [35], it was shown that for every n there exists a finite (non-deterministic)
string automaton An (over the alphabet {a, b}) of size nO(1) such that the
complement {a, b}∗ \ L(An) is finite and has size exp(2,Ω(n)). Let us now
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consider the (non-injective) string automatic presentation (A0, A=, AE) over
the signature {E}, where L(A0) = {a, b}∗, R(AE) = {a, b}∗ × {a, b}∗, and
R(A=) = L(An)×L(An). This presentation has size nO(1) and the structure
it defines is a complete graph of size exp(2,Ω(n)) and therefore has degree
exp(2,Ω(n)).

(d) The analogous result for tree automatic structures follows from [35] as well:
in the previous paragraph, replace “string” by “tree”, “{a, b}∗” by T{a,b},
and “exp(2,Ω(n))” by “exp(3,Ω(n))”.

Remark 2.17. The additional exponents in (b), (c), and (d), are the reason for
the remaining complexity gaps for FOMC(iTAb), FOMC(SAb), and FOMC(TAb).
For instance, the double exponential bound in (c) will result in a 3EXPSPACE

bound for FOMC(SAb), whereas we only can prove a 2EXPSPACE lower bound
(which already holds for the non-uniform theory).

Note that the example presentations in point (c) and (d) from Remark 2.16
contain non-deterministic finite automata. It is not clear, whether these exam-
ples can be adapted so that the presentations are deterministic. On the other
hand, if the degree bounds in (c) and (d) from Proposition 2.15 can be improved
for deterministic presentations, then this would give better upper bounds for
FOMC(SAb) and FOMC(TAb), when restricted to deterministic automata.

Remark 2.18. In the proofs of Lemma 2.14 and 2.15 we used the main results
from [32, 34]. These results are proved for general (asynchronous) transducers,
and are quite difficult to obtain. Here, we need these results only for synchronous
transducers, and for these one can provide simpler proofs. On the other hand,
using the general results from [32, 34] has no drawback for our upper bounds.

§3. Upper bounds. It is the aim of this section to give an algorithm that
decides the theory of a string/tree automatic structure of bounded degree. The
algorithm from Theorem 2.4 (that in particular solves this problem) is based on
Proposition 2.3, i.e., the inductive construction of an automaton accepting all
satisfying assignments. Differently, we base our algorithm on Gaifman’s The-
orem 3.1, i.e., on the combinatorics of spheres. We therefore start with some
model theory.

3.1. Model-theoretic background. The following locality principle of Gaif-
man implies that super-exponential distances cannot be handled in first-order
logic:

Theorem 3.1 ([16]). Let A be a structure, (a1, . . . , ak), (b1, . . . , bk) ∈ Ak,
d ≥ 0, and D1, . . . , Dk ≥ 2d such that

(A↾(

k
⋃

i=1

S(Di, ai)), a1, . . . , ak) ≃ (A↾(

k
⋃

i=1

S(Di, bi)), b1, . . . , bk) . (3)

Then, for every formula ϕ(x1, . . . , xk) of quantifier depth at most d, we have:

A |= ϕ(a1, . . . , ak) ⇐⇒ A |= ϕ(b1, . . . , bk) .

Note that (3) says that there is an isomorphism between the two induced

substructures A↾(
⋃k

i=1 S(Di, ai)) and A↾(
⋃k

i=1 S(Di, bi)) that maps ai to bi for
all 1 ≤ i ≤ k.
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Let S be a signature and let k, d ∈ N with 0 ≤ k ≤ d. A (d, k)-sphere is a
tuple (B, b1, . . . , bk) such that the following holds:

• B is an S-structure with b1, . . . , bk ∈ B.
• For all b ∈ B there exists 1 ≤ i ≤ k such that dB(bi, b) ≤ 2d−i.

There is only one (d, 0)-sphere namely the empty sphere ∅. For our later appli-
cations, B will be always a finite structure, but in this subsection finiteness is
not needed. The parameters b1, . . . , bk will be the values for quantified variables
y1, . . . , yk, where y1 is the variable from the outermost quantifier. This explains
the shrinking radiuses 2d−1, . . . , 2d−k in the definition of a (d, k)-sphere. For
each additional quantifier, the distance of two vertices that can be related with
a formula doubles, see also Lemma 4.1 below.

The (d, k)-sphere (B, b1, . . . , bk) is realizable in the structure A if there exist
a1, . . . , ak ∈ A such that

(A↾(

k
⋃

i=1

S(2d−i, ai)), a1, . . . , ak) ≃ (B, b1, . . . , bk) .

Take a (d, k)-sphere σ = (B, b1, . . . , bk) and a (d, k + 1)-sphere (k + 1 ≤ d)
σ′ = (B′, b′1, . . . , b

′
k, b

′
k+1). Then σ′ extends σ (abbreviated σ � σ′) if

(B′↾(
k
⋃

i=1

S(2d−i, b′i)), b
′
1, . . . , b

′
k) ≃ (B, b1, . . . , bk) .

The following definition is the basis for our decision procedure.

Definition 3.2. Let A be an S-structure, ψ(y1, . . . , yk) a formula of quan-
tifier depth at most d, and let σ = (B, b1, . . . , bk) be a (d + k, k)-sphere. The
Boolean value ψσ ∈ {0, 1} is defined inductively as follows:

• If ψ(y1, . . . , yk) is an atomic formula, then

ψσ =

{

1 if B |= ψ(b1, . . . , bk)

0 if B 6|= ψ(b1, . . . , bk) .
(4)

• If ψ = ¬θ, then ψσ = 1 − θσ.
• If ψ = α ∨ β, then ψσ = max(ασ, βσ).
• If ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1) then

ψσ = max{θσ′ | σ′ is a realizable (d+ k, k + 1)-sphere with σ � σ′} . (5)

The following result ensures for every closed formula ψ that ψ∅ = 1 if and only
if A |= ψ. Hence the above definition can possibly be used to decide validity of
the formula ϕ in the structure A.

Proposition 3.3. Let S be a signature, A an S-structure with a1, . . . , ak ∈ A,
ψ(y1, . . . , yk) a formula of quantifier depth at most d, and σ = (B, b1, . . . , bk) a
(d+ k, k)-sphere with

(A↾(

k
⋃

i=1

S(2d+k−i, ai)), a1, . . . , ak) ≃ (B, b1, . . . , bk) . (6)

Then A |= ψ(a1, . . . , ak) ⇐⇒ ψσ = 1.
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Proof. We prove the lemma by induction on the structure of the formula ψ.
First assume that ψ is atomic, i.e., d = 0. Then we have:

ψσ = 1
(4)⇐⇒ B |= ψ(b1, . . . , bk)

(6)⇐⇒ A↾(

k
⋃

i=1

S(2k−i, ai)) |= ψ(a1, . . . , ak)

⇐⇒ A |= ψ(a1, . . . , ak) ,

where the last equivalence holds since ψ is atomic.
The cases ψ = ¬θ and ψ = α ∨ β are straightforward and therefore omitted.
We finally consider the case ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1).
First assume that ψσ = 1. By (5), there exists a realizable (d + k, k +

1)-sphere σ′ with σ � σ′ and θσ′ = 1. Since σ′ is realizable, there exist
a′1, . . . , a

′
k, a

′
k+1 ∈ A with

(A↾(

k+1
⋃

i=1

S(2d+k−i, a′i)), a
′
1, . . . , a

′
k, a

′
k+1) ≃ (B′, b′1, . . . , b

′
k, b

′
k+1) = σ′ . (7)

By induction, we have A |= θ(a′1, . . . , a
′
k, a

′
k+1) and therefore A |= ψ(a′1, . . . , a

′
k).

From (6), (7), and σ � σ′, we also obtain

(A↾(

k
⋃

i=1

S(2d+k−i, a′i)), a
′
1, . . . , a

′
k) ≃ (A↾(

k
⋃

i=1

S(2d+k−i, ai)), a1, . . . , ak)

and therefore by Gaifman’s Theorem 3.1 A |= ψ(a1, . . . , ak).
Conversely, let ak+1 ∈ A such that A |= θ(a1, . . . , ak, ak+1). Let σ′ =

(B′, b′1, . . . , b
′
k, b

′
k+1) be the unique (up to isomorphism) (d + k, k + 1)-sphere

such that

(A↾(

k+1
⋃

i=1

S(2d+k−i, ai)), a1, . . . , ak, ak+1) ≃ (B′, b′1, . . . , b
′
k, b

′
k+1) . (8)

Then (6) implies σ � σ′. Moreover, by (8), σ′ is realizable in A, and A |=
θ(a1, . . . , ak, ak+1) implies by induction θσ′ = 1. Hence, by (5), we get ψσ = 1
which finishes the proof of the lemma. ⊣

3.2. The decision procedure. Now suppose we want to decide whether the
closed formula ϕ holds in a tree automatic structure A of bounded degree. By
Proposition 3.3 it suffices to compute the Boolean value ϕ∅. This computation
will follow the inductive definition of ϕσ from Definition 3.2. Since every (d, k)-
sphere that is realizable in A is finite, we only have to deal with finite spheres.
The crucial part of our algorithm is to determine whether a finite (d, k)-sphere is
realizable in A. In the following, for a finite (d, k)-sphere σ = (B, b1, . . . , bk), we
denote with |σ| the number of elements of B and with δ(σ) we denote the degree
of the finite structure B. We have to solve the following realizability problem:

Definition 3.4. Let C be a class of tree automatic presentations. Then the
realizability problem REAL(C) for C denotes the set of all pairs (P, σ) where
P ∈ C and σ is a finite (d, k)-sphere over the signature of P for some 0 ≤ k ≤ d
such that σ can be realized in A(P ).
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In this definition, we assume that the finite (d, k)-sphere σ is represented by
enumerating all elements as well as all tuples for each relation symbol from the
signature of P .

Note that the following lemma is not restricted to string/tree automatic pre-
sentations of bounded degree. Moreover, one could prove an analogous state-
ment for non-injective presentations as well. We do not do so, because (i) the
proof becomes more technical and (ii) a version for non-injective presentations
would not improve our upper bounds for the decision problems FOMC(SAb) and
FOMC(TAb), respectively. As already stated in Remark 2.17, the main bot-
tlenecks in our algorithms for these problems are the (unavoidable) multiply
exponential degree bounds in Proposition 2.15.

Lemma 3.5. The problems REAL(iSA) and REAL(iTA) are decidable. More
precisely:

• Let P ∈ iSA and let m be the maximal arity of a relation in A(P ). Let σ
be a finite (d, k)-sphere over the signature of P . Then it can be checked in
space |σ|O(m) · |P |2 · 2O(δ(σ)), whether σ is realizable in A(P ).

• If P ∈ iTA, then realizability can be checked in time exp(1, |σ|O(m) · |P |2 ·
2O(δ(σ))).

Proof. We first prove the statement on injective string automatic presenta-
tions. Let P = (Γ, A0, (Ar)r∈S) ∈ iSA. Let σ = (B, b1, . . . , bk) and let c1, . . . , c|σ|
be a list of all elements of B. Note that every bi occurs in this list. Let EA(P )

be the edge relation of the Gaifman graph G(A(P )) and EB that of the Gaif-
man graph G(B). Then σ is realizable in A(P ) if and only if there are words
u1, . . . , u|σ| ∈ Γ∗ such that

(a) ui ∈ L(A0) for all 1 ≤ i ≤ |σ|,
(b) ui 6= uj for all 1 ≤ i < j ≤ |σ|,
(c) (ui1 , . . . , uimr

) ∈ R(Ar) for all r ∈ S and all (ci1 , . . . , cimr
) ∈ rB,

(d) (ui1 , . . . , uimr
) /∈ R(Ar) for all r ∈ S and all (ci1 , . . . , cimr

) ∈ Bmr \ rB, and
(e) there is no v ∈ L(A0) such that, for some 1 ≤ j ≤ |σ| and 1 ≤ i ≤ k with

d(cj , bi) < 2d−i, we have
(e.1) (uj, v) ∈ EA(P ) and
(e.2) v /∈ {up | (cj , cp) ∈ EB}.

Then (a)–(d) express that the mapping f : ci 7→ ui (1 ≤ i ≤ |σ|) is well-
defined and an embedding of B into A(P ). In (e), (uj, v) ∈ EA(P ) implies that

v belongs to
⋃

1≤i≤k S(2d−i, f(bi)). Hence (e) expresses that all elements of
⋃

1≤i≤k S(2d−i, f(bi)) belong to the image of f .

We now construct a |σ|-dimensional automaton A over the alphabet Γ that
checks (a)–(e). More precisely, this automaton will accept all convolutions u1 ⊗
u2 ⊗ · · ·⊗u|σ| with u1, . . . , u|σ| ∈ Γ∗ such that (a)–(e) hold. At the end, we have
to check the language of this automaton for non-emptiness. Our actual algorithm
for checking realizability will not construct the automaton A explicitly (it would
not fit into the space bound) but will check its non-emptiness on the fly. The
automaton A is the direct product of automata Aa, Ab, Ac,d, and Ae that check
the conditions separately (Ac,d checks both (c) and (d)). The automaton Aa
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is the direct product of |σ| many copies of the automaton A0, hence Aa has at
most |P ||σ| many states.

Next, the automaton for (b) is the direct product of O(|σ|2) many copies of an
automaton of fixed size (that checks whether two tracks are different). Hence,

this automaton has 2O(|σ|2) many states.
The automaton Ac,d checks for every relation symbol r ∈ S of arity mr ≤ m

and every tuple (i1, . . . , imr
) ∈ {1, . . . , |σ|}mr whether the input words on tracks

i1, . . . , imr
are accepted by the automaton Ar (in case (ci1 , . . . , cimr

) ∈ rB) or

by an automaton for the complement of L(Ar) (in case (ci1 , . . . , cimr
) 6∈ rB).

Using the powerset construction, we obtain an automaton for the complement
of L(Ar) with at most 2|P | many states. Hence, since the number of relation
symbols in S is bounded by |P |, the automaton Ac,d is the direct product of at

most |P | · |σ|m many automata of size at most 2|P |. Hence, the number of states
of Ad,e is bounded by (2|P |)|P |·|σ|m = exp(1, |P |2 · |σ|m).

It remains to construct the automaton Ae. For this, we first construct its com-
plement, i.e., an automaton A′

e that accepts all convolutions u1 ⊗u2⊗ · · ·⊗u|σ|,
for which there exists v ∈ L(A0) with the desired properties. This automaton A′

e

is the disjoint union of at most |σ| many automata A′
e,j , one for each 1 ≤ j ≤ |σ|

such that there exists 1 ≤ i ≤ k with d(cj , bi) < 2d−i. Each of these compo-
nents A′

e,j is the projection onto the first |σ| many tracks of an automaton A′′
e,j

that accepts all convolutions u1 ⊗ u2 ⊗ · · · ⊗ u|σ| ⊗ v such that (e.1) and (e.2)
hold. Hence, A′′

e,j is the direct product of automata A′′
e.1,j and A′′

e.2,j checking

(e.1) and (e.2), respectively. By Lemma 2.13, A′′
e.1,j has at most m2 · |P |2 many

states. Recall that the degree of B is δ(σ). Hence, the set {up | (cj , cp) ∈ EB}
contains at most δ(σ) many elements, and A′′

e.2,j is the direct product of at most
δ(σ) many automata of constant size (checking whether two tracks are differ-
ent). Thus, A′′

e.2,j has 2O(δ(σ)) many states. Hence, A′
e is the disjoint union of

at most |σ| many automata of size |P |2 ·m2 · 2O(δ(σ)) and therefore has at most
|σ| · |P |2 · m2 · 2O(δ(σ)) many states. Since Ae results from complementing the
nondeterministic automaton A′

e, the number of states of Ae can be bound by
exp(1, |σ| · |P |2 ·m2 · 2O(δ(σ))).

In summary, the automaton A has at most

|P ||σ| · 2O(|σ|2) · 2|P |2·|σ|m · 2|σ|·|P |2·m2·2O(δ(σ)) ≤ exp(1, |σ|O(m) · |P |2 · 2O(δ(σ)))

many states. Hence checking emptiness of its language (and therefore realizabil-
ity of σ in A(P )) can be done in space logarithmic to the number of states, i.e.,
in space |σ|O(m) · |P |2 ·2O(δ(σ)). For this the algorithm does not have to construct
A but only has to store two states of A, for which space |σ|O(m) · |P |2 · 2O(δ(σ))

is sufficient. This proves the statement for string automatic presentations.
For injective tree automatic presentations, the construction and size estimate

for A are the same as above. But emptiness of tree automata can only be checked
in deterministic polynomial time (and not in logspace unless NL = P). Hence,
emptiness of A can be checked in time exp(1, |σ|O(m) · |P |2 · 2O(δ(σ))). ⊣

Remark 3.6. Realizability of a given (d, k)-sphere σ can be expressed as a
Σ2-formula of the form ∃x1 · · · ∃x|σ|∀y : θ(x1, . . . , x|σ|, y), where θ is a quantifier
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free formula. Using the standard automata construction (which underlies the
proof of Theorem 2.7), one can translate the formula ∀y : θ(x1, . . . , x|σ|, y) into
an equivalent automaton of size exp(2, |P | · |θ|), which can be checked for non-
emptiness in space exp(1, |P | · |θ|). Our finer analysis has the advantage of
yielding a space bound, which is only exponential in the maximal arity m and
the degree δ(σ) of the sphere σ; this is crucial in order to obtain our upper
bounds in Theorem 3.7 below. Basically, this finer analysis is possible, since
the universal quantifier ∀y is used in a very restricted way in the formula for
realizability (in some sense, it is a guarded quantifier).

In the following, for a tree automatic presentation P of bounded degree, we
denote with g′P = g′A(P ) the normalized growth function of the structure A(P ).

Theorem 3.7. The model checking problem FOMC(TAb) is decidable, i.e., on
input of a tree automatic presentation P of bounded degree and a closed formula ϕ
over the signature of P , one can effectively determine whether A(P ) |= ϕ holds.
More precisely (where m is the maximal arity of a relation from the signature
of P ):

(1) FOMC(iSAb) can be decided in space

g′P (2|ϕ|)O(m) · exp(2, |P |O(1)) ≤ exp(2, |P |O(1) + |ϕ|) .
(2) FOMC(SAb) can be decided in space

exp(3, O(|P |) + log(|ϕ|)) .
(3) FOMC(iTAb) can be decided in time

exp

(

1, g′P (2|ϕ|)O(m) · exp(3, |P |O(1))

)

≤ exp(4, |P |O(1) + log(|ϕ|)) .

(4) FOMC(TAb) can be decided in time

exp(4, 2O(|P |) + log(|ϕ|)) ≤ exp(5, O(|P |) + log(log(|ϕ|))) .
Proof. The decidability follows immediately from Theorem 2.4 and Propo-

sition 2.14(a).
We first give the proof for injective string automatic presentations. So, let

P ∈ iSAb and let ϕ be a closed first-order formula of quantifier rank d. Let δ be
the degree of A(P ). By Proposition 2.15, it is bounded by exp(1, |P |O(1)). By
Proposition 3.3 it suffices to compute the Boolean value ϕ∅. Recall the inductive
definition of ϕσ from Definition 3.2 that we now translate into an algorithm for
computing ϕ∅.

First note that such an algorithm has to handle (d, k)-spheres for 1 ≤ k ≤ d ≤
|ϕ| that are realizable in A(P ). The number of nodes of a (d, k)-sphere realizable
in A(P ) is bounded by k · g′P (2d) ≤ g′P (2d)O(1) since k ≤ d < 2d ≤ g′P (2d). The
number of relations of A(P ) is bounded by |P |. Hence, any (d, k)-sphere that is
realizable in A(P ) can be described by |P | · g′P (2d)O(m) many bits. Moreover,

only (d, k)-sphere of degree at most δ ≤ exp(1, |P |O(1)) can be realizable.
Note that the set of (d, k)-spheres with 0 ≤ k ≤ d (ordered by the extension

relation �) forms a tree of depth d + 1. The algorithm visits the nodes of this
tree (restricted to spheres with at most g′P (2d)O(1) many nodes) in a depth-first
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manner and descends when unraveling an existential quantifier. Hence we have
to store d + 1 many spheres. For this, the algorithm needs space (d + 1) · |P | ·
g′P (2d)O(m) ≤ |P | · g′P (2|ϕ|)O(m).

Moreover, during the unraveling of a quantifier, the algorithm has to check
realizability of a (d, k)-sphere for 1 ≤ k ≤ d ≤ |ϕ|. Any such sphere has at
most g′P (2d)O(1) many elements. If the current sphere has degree larger than

exp(1, |P |O(1)) (which is an upper bound for the degree of A(P )) then it is
clearly not realizable. Otherwise, we can check realizability by Lemma 3.5 in
space g′P (2d)O(m) · |P |2 · exp(2, |P |O(1)) ≤ g′P (2|ϕ|)O(m) · exp(2, |P |O(1)).

At the end, we have to check whether a tuple b satisfies an atomic formula ψ(y),
which is trivial. In total, the algorithm runs in space

|P | · g′P (2|ϕ|)O(m) + g′P (2|ϕ|)O(m) · exp(2, |P |O(1))

= g′P (2|ϕ|)O(m) · exp(2, |P |O(1)) .

Recall that g′A(2|ϕ|) ≤ δ2
|ϕ|

and δ ≤ 2|P |O(1)

by Proposition 2.15. Since also
m ≤ |P |, we obtain

g′P (2|ϕ|)O(m) · exp(2, |P |O(1)) ≤ exp(1, |P |O(1) · 2|ϕ| ·O(m)) · exp(2, |P |O(1))

≤ exp(2, |P |O(1) + |ϕ|) .
This completes the consideration for injective string automatic presentations.

If P is just string automatic, we can transform it into an equivalent injec-
tive string automatic presentation which increases the size exponentially by
Lemma 2.10. Hence, replacing |P | by 2O(|P |) yields the space bound.

Next, we consider injective tree automatic presentations. The algorithm is the
same, i.e., it parses the tree of all (d, k)-spheres and checks them for realizabil-
ity. Note that the number of (d, k)-spheres that are realizable is bounded by
exp(1, |P | · g′P (2d)O(m)). By Proposition 2.15, the degree δ of A(P ) is bounded

by exp(2, |P |O(1)). By Lemma 3.5, the realizability of any (d, k)-sphere of degree
exp(2, |P |O(1)) can be checked in time

exp

(

1, g′P (2d)O(m) · |P |2 · exp(3, |P |O(1))

)

≤ exp

(

1, g′P (2|ϕ|)O(m) · exp(3, |P |O(1))

)

.

Recall that g′P (2|ϕ|) ≤ δ2
|ϕ|

and δ ≤ exp(2, |P |O(1)) by Proposition 2.15. Since
also m ≤ |P |, we obtain

g′P (2|ϕ|)O(m) · exp(3, |P |O(1)) ≤ exp(2, |P |O(1))2
|ϕ|·O(|P |) · exp(3, |P |O(1))

= exp(2, |P |O(1) + |ϕ|) · exp(3, |P |O(1))

≤ exp(3, |P |O(1) + log(|ϕ|)) .
Finally, the last statement for FOMC(TAb) follows from the time bound for
FOMC(iTAb) and Lemma 2.10. ⊣

We derive a number of consequences on the uniform and non-uniform com-
plexity of the first-order theories of string/tree automatic structures of bounded
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degree. The first one concerns the uniform model checking problems and is a
direct consequence of the above theorem.

Corollary 3.8. The following holds:

(a) The model checking problem FOMC(iSAb) belongs to 2EXPSPACE.
(b) The model checking problem FOMC(SAb) belongs to 3EXPSPACE.
(c) The model checking problem FOMC(iTAb) belongs to 4EXPTIME.
(d) The model checking problem FOMC(TAb) belongs to 5EXPTIME.

Next we concentrate on the non-uniform complexity, where the structure is
fixed. For string automatic structures, we do not get a better upper bound in this
case (statement (i) below) except in case of polynomial growth (statement (ii)
below).

Corollary 3.9. Let A be a string automatic structure of bounded degree.

(i) Then FOTh(A) belongs to 2EXPSPACE.
(ii) If A has polynomial growth then FOTh(A) belongs to EXPSPACE.

Proof. Since A is string automatic, it has a fixed injective string automatic
presentation P , i.e., |P | and m are fixed constants. Hence the first result follows
immediately from (1) in Theorem 3.7.

Now suppose that A has polynomial growth, i.e., g′A(x) ∈ xO(1). Then,
again, the second claim follows immediately from (1) in Theorem 3.7, since
g′A(2|ϕ|)O(m) ≤ 2O(|ϕ|). ⊣

The last consequence of Theorem 3.7 concerns tree automatic structures. Here,
we can improve the upper bound from Theorem 3.7 for the non-uniform case by
one exponent. In case of polynomial growth, we can save yet another exponent:

Corollary 3.10. Let A be a tree automatic structure of bounded degree.

(i) Then FOTh(A) belongs to 3EXPTIME.
(ii) If A has polynomial growth then FOTh(A) belongs to 2EXPTIME.

Proof. Since A is tree automatic, it has a fixed injective tree automatic
presentation P . Hence, again, the first claim follows immediately from (3) in
Theorem 3.7.

Now suppose that A has polynomial growth, i.e., g′A(x) ∈ xO(1). Then the
second claim follows since

exp(1, g′A(2|ϕ|)O(m)) ≤ exp(1, 2O(|ϕ|)) = exp(2, O(|ϕ|)) ,
implying that the problem belongs to 2EXPTIME. ⊣

3.2.1. Two observations on the growth function. We complement this section
with a short excursion into the field of growth functions of automatic structures.
The two results to be reported indicate that these growth functions do not behave
as nicely as one would wish. Fortunately, these negative findings are of no
importance to our main concerns.

Recall that the growth rate of a regular language is either bounded by a
polynomial from above or by an exponential function from below and that it is
decidable which of these cases applies. The next lemmas show that the analogous
statements for growth functions of string automatic structures are false.
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Lemma 3.11. There is a string automatic graph of intermediate growth (i.e.,
the growth is neither exponential nor polynomial).

Proof. Let L = {0, 1}∗${0, 1}∗ and let E be

{(u$bv, ub$v) | u, v ∈ {0, 1}∗, b ∈ {0, 1}} ∪ {(u$, $ub) | u ∈ {0, 1}∗, b ∈ {0, 1}} .
Then T = (L,E) is a string automatic tree obtained from the complete binary
tree ${0, 1}∗ by adding a path of length n between u and ub for u ∈ {0, 1}n and
b ∈ {0, 1}. Hence, a path of length n starting in the root $ of T branches at
distance 0, 2, 5, 10, . . . , i2 + 1, . . . , ⌊

√
n− 1⌋2 + 1 from the root. Hence, for the

growth function gT we obtain the following estimate:

gT (n) ∈
Θ(

√
n)

∑

i=0

(i+ 1) · 2i = Θ(
√
n) · 2Θ(

√
n) = 2Θ(

√
n)

⊣
Lemma 3.12. It is undecidable whether a string automatic graph of bounded

degree has polynomial growth.

Proof. We show the undecidability by a reduction of the halting problem
(with empty input) for Turing machines. So let N be a Turing machine. We can
transform N into a deterministic reversible Turing machine M such that:

(i) N halts on empty input if and only if M does so.
(ii) M does not allow infinite sequences of backwards steps (i.e., there are no

configurations ci with ci+1 ⊢M ci for all i ∈ N), see also [27] for a similar
construction.

Let C be the set of configurations of M (a regular set) and c0 the initial config-
uration with empty input. Now define L = ({0, 1}C)+ (we assume that 0 and 1
do not belong to the alphabet of C) and

E = {(uac, uac′) | u ∈ L ∪ {ε}, a ∈ {0, 1}, c, c′ ∈ C, c ⊢M c′} ∪
{(uac, uacbc0) | u ∈ L ∪ {ε}, a, b ∈ {0, 1}, c ∈ C is halting} .

Then (L,E) is an automatic directed graph. Since M is reversible, it is a forest
of rooted trees (by (ii)).

First suppose there are configurations c1, c2, . . . , cn with ci−1 ⊢M ci for 1 ≤
i ≤ n such that cn is halting. Then the set 0(cn{0, 1})∗{c0, c1, . . . , cn} forms an
infinite tree in (L,E). Any branch in this tree branches every n steps. Hence
(L,E) has exponential growth.

Now assume that c0 is the starting point of an infinite computation. Let T
be any tree in the forest (L,E). Then its root is of the form uac ∈ L with
u ∈ L ∪ {ε}, a ∈ {0, 1}, and c ∈ C such that c is no successor configuration of
any other configuration. There are two possibilities:

1. The configuration c is the starting configuration of an infinite computation
of M . Then T is an infinite path.

2. There is a halting configuration c′ and n ∈ N with c ⊢n
M c′. Then T starts

with a path of length n. The final node of this path has two children,
namely uac′0c0 and uac′1c0. But, since M does not halt on the empty
input, each of these nodes is the root of an infinite path.
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Thus, in this case (L,E) has polynomial (even linear) growth. ⊣

§4. Lower bounds. In this section, we will prove that the upper complexity
bounds for the non-uniform problems (Corollary 3.9 and Corollary 3.10) are
sharp. This will imply that the complexity of the uniform problem for injective
string automatic presentations from Corollary 3.8 is sharp as well.

For a binary relation r and m ∈ N we denote with rm the m-fold composition
of r. Then the following lemma is folklore.

Lemma 4.1. Let the signature S contain a binary symbol r. From a given
number n (encoded unary), we can construct in linear time a formula ϕn(x, y)
such that for every S-structure A and all elements a, b ∈ A we have: (a, b) ∈ r2

n

if and only if A |= ϕn(a, b).

Proof. Let ϕ0(x, y) = r(x, y) and, for n > 0 define

ϕn(x, y) = ∃z∀x′, y′(((x′ = x ∧ y′ = z) ∨ (x′ = z ∧ y′ = y)) → ϕn−1(x
′, y′)) .

⊣
For a bit string u = a1 · · ·am (ai ∈ {0, 1}) let val(u) =

∑m−1
i=0 ai+12

i be the
integer value represented by u. Vice versa, for 0 ≤ i ≤ 2m − 1 let binm(i) ∈
{0, 1}m be the unique string with val(binm(i)) = i.

Theorem 4.2. There is a fixed string automatic structure A of bounded degree
such that FOTh(A) is 2EXPSPACE-hard.

Proof. Let M be a fixed Turing machine with a space bound of exp(2, n)
such that M accepts a 2EXPSPACE-complete language; such a machine exists by
standard arguments. Let Γ be the tape alphabet, Σ ⊆ Γ be the input alphabet,
and Q be the set of states. The initial (resp. accepting) state is q0 ∈ Q (resp.
qf ∈ Q), the blank symbol is 2 ∈ Γ \ Σ. Let Ω = Q ∪ Γ. A configuration of
M is described by a string from Γ∗QΓ+ ⊆ Ω+ (later, symbols of configurations
will be preceded with additional counters). For two configurations u and v, we
write u ⊢M v if |u| = |v| and u can evolve with a single M -transition into v.
Note that there exists a relation αM ⊆ Ω3 × Ω3 such that for all configurations
u = a1 · · ·am and v = b1 · · · bm (ai, bi ∈ Ω) we have

u ⊢M v ⇐⇒ ∀i ∈ {1, . . . ,m− 2} : (aiai+1ai+2, bibi+1bi+2) ∈ αM . (9)

Let ∆ = {0, 1,#} ∪ Ω, and let π : ∆ → Ω ∪ {#} be the projection morphism
with π(a) = a for a ∈ Ω∪{#} and π(0) = π(1) = ε. For m ∈ N, a string x ∈ ∆∗

is an accepting 2m-computation if x can be factorized as x = x1#x2# · · ·xn#
for some n ≥ 1 such that the following holds:

• For every 1 ≤ i ≤ n there exist ai,0, . . . , ai,2m−1 ∈ Ω such that xi =
∏2m−1

j=0 binm(j)ai,j .

• For every 1 ≤ i ≤ n, π(xi) ∈ Γ∗QΓ+.
• π(x1) ∈ q0Σ

∗
2

∗ and π(xn) ∈ Γ∗qfΓ+.
• For every 1 ≤ i < n, π(xi) ⊢M π(xi+1).



22 DIETRICH KUSKE AND MARKUS LOHREY

From M we now construct a fixed string automatic structure A of bounded
degree. We start with the following language U0:

U0 = π−1((Γ∗QΓ+#)∗) ∩ (10)

(0+Ω({0, 1}+Ω)∗1+Ω#)+ ∩ (11)

0+q0({0, 1}+Σ)∗({0, 1}+
2)∗#∆∗ ∩ (12)

∆∗qf (∆ \ {#})∗# (13)

A string x ∈ U0 is a candidate for an accepting 2m-computation of M . With
(10) we describe the basic structure of such a computation; it consists of a list
of configurations separated by #. Moreover, every symbol in a configuration is
preceded by a bit string, which represents a counter. By (11) every counter is
non-empty, the first symbol in a configuration is preceded by a counter from 0+,
the last symbol is preceded by a counter from 1+. Moreover, by (12), the first
configuration is an initial configuration, whereas by (13), the last configuration
is accepting (i.e., the current state is qf ).

For the further considerations, let us fix some x ∈ U0. Hence, we can factorize
x as x = x1#x2# · · ·xn# such that:

• For every 1 ≤ i ≤ n, there exist mi ≥ 1, ai,0, . . . , ai,mi
∈ Ω and counters

ui,0, . . . , ui,mi
∈ {0, 1}+ such that xi =

∏mi

j=0 ui,jai,j .

• For every 1 ≤ i ≤ n, ui,0 ∈ 0+, ui,mi
∈ 1+, and π(xi) ∈ Γ∗QΓ+.

• π(x1) ∈ q0Σ
∗
2

∗ and π(xn) ∈ Γ∗qfΓ+

We next want to construct, from m ∈ N, a small formula expressing that x is
an accepting 2m-computation. To achieve this, we add some structure around
strings from U0. Then the formula we are seeking has to ensure two facts:

(a) The counters behave correctly, i.e., for all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we
have |ui,j| = m and if j < mi, then val(ui,j+1) = val(ui,j) + 1. Note that
this enforces mi = 2m − 1 for all 1 ≤ i ≤ n.

(b) For two successive configurations, the second one is the successor configura-
tion of the first one with respect to the machine M , i.e., π(xi) ⊢M π(xi+1)
for all 1 ≤ i < n.

In order to achieve (a), we introduce the following three binary relations; it is
straightforward to exhibit 2-dimensional automata for these relations:

δ = {(w, w ⊗ w) | w ∈ U0}
σ0 = {

(

(0v1#0v2# · · · 0vn#) ⊗ w, (v10#v20# · · · vn0#) ⊗ w
)

|
w ∈ U0, v1, . . . , vn ∈ (∆ \ {#})∗}

σΩ = {
(

(a1v1#a2v2# · · · anvn#) ⊗ w, (v1a1#v2a2# · · · vnan#) ⊗ w
)

|
w ∈ U0, a1, . . . , an ∈ Ω, v1, . . . , vn ∈ (∆ \ {#})∗}

Hence, δ just duplicates a string from U0 and σ0 cyclically rotates every con-
figuration to the left for one symbol, provided the first symbol is 0, whereas
σΩ rotates symbols from Ω. Moreover, let U1 be the following language over
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∆∗ ⊗ ∆∗:

U1 =

({

ua⊗ vb | u, v ∈ {0, 1}+, a, b ∈ Ω,

|u| = |v|, val(u) = val(v) + 1 mod 2|u|
}+

(#,#)

)+

Clearly, U1 is a regular language. The crucial fact is the following, whose proof
is straightforward:

Fact 1. For every m ∈ N, the following two properties are equivalent (recall
that x ∈ U0):

• There exist y1, y2, y3 ∈ ∆∗ ⊗ ∆∗ such that δ(x, y1), σ
m
0 (y1, y2), σΩ(y2, y3),

and y3 ∈ U1.
• For all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we have |ui,j | = m and if j < mi, then

val(ui,j+1) = val(ui,j) + 1.

Assume now that x ∈ U0 satisfies one (and hence both) of the two properties
from Fact 1 for some m. It follows that mi = 2m − 1 for all 1 ≤ i ≤ n and

x = x1#x2# · · ·xn#, where xi =
2m−1
∏

j=0

binm(j)ai,j for every 1 ≤ i ≤ n . (14)

In order to establish (b) we need additional structure. The idea is, for every
counter value 0 ≤ j < 2m, to have a word yj that coincides with x, but has all
the occurrences of binm(j) marked. Then an automaton can check that successive
occurrences of the counter binm(j) obey the transition condition of the Turing
machine. There are two problems with this approach: first, in order to relate
x and yj , we would need a binary relation of degree 2m (for arbitrary m) and,
secondly, an automaton cannot mark all the occurrences of binm(j) at once (for
some j). In order to solve these problems, we introduce a binary relation µ, which
for every x ∈ U0 as in (14) generates a binary tree of depth m with root x; this
will be the only relation in our string automatic structure that causes exponential
growth. This relation will mark in x every occurrence of an arbitrary counter.
For this, we need two copies 0 and 0 of 0 as well as two copies 1 and 1 of 1. For
b ∈ {0, 1}, define the mapping

fb : {0, 0, 1, 1}∗{0, 1}+ → {0, 0, 1, 1}+{0, 1}∗

as follows (where u ∈ {0, 0, 1, 1}∗, c ∈ {0, 1}, and v ∈ {0, 1}∗):

fb(ucv) =

{

ucv if b 6= c

ucv if b = c

We extend fb to a function on (({0, 0, 1, 1}∗{0, 1}+Ω)+#)∗ as follows: Let w =
w1a1 · · ·wℓaℓ with wi ∈ {0, 0, 1, 1}∗{0, 1}+ and ai ∈ Ω ∪ Ω#. Then fb(w) =
fb(w1)a1 · · · fb(wℓ)aℓ; this mapping can be computed with a synchronized trans-
ducer. Hence, the relation

µ = f0 ∪ f1 = {(u, fb(u)) | u ∈ (({0, 0, 1, 1}∗{0, 1}+Ω)+#)∗, b ∈ {0, 1}}
can be recognized by a 2-dimensional automaton.
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Let x ∈ U0 as in (14), let the word y be obtained from x by overlining or
underlining each bit in x, and let u ∈ {0, 1}m be some counter. We say the
counter u is marked in y if every occurrence of the counter u is marked by
overlining each bit, whereas all other counters contain at least one underlined
bit 0 or 1. The following fact follows immediately from the definition of the
relation µ.

Fact 2. Let x ∈ U0 be as in (14).

• For all counters u ∈ {0, 1}m, there exists a unique word y with (x, y) ∈ µm

such that the counter u is marked in y.
• If (x, y) ∈ µm, then there exists a unique counter u ∈ {0, 1}m such that u

is marked in y.

Now, we can achieve our final goal, namely checking whether two successive
configurations in x ∈ U0 represent a transition of the machine M . Let the
counter u ∈ {0, 1}m be marked in y. We describe a finite automaton A2 that
checks on the string y, whether at position val(u) successive configurations in x
are “locally consistent”. The automaton A2 searches for the first marked counter
in y. Then it stores the next three symbols a1, a2, a3 from Ω (only if the separator
symbol does not occur in between a1 and a3), walks right until it finds the
next marked counter, reads the next three symbols b1, b2, b3 from Ω, and checks
whether (a1a2a3, b1b2b3) ∈ αM , where αM is from (9). If this is not the case, the
automaton will reject, otherwise it will store b1b2b3 and repeat the procedure
described above. Let U2 = L(A2). Together with Fact 1 and 2, the behavior
of A2 implies that for all x ∈ U0 and all m ∈ N, x represents an accepting
2m-computation of M if and only if

∃y1, y2, y3
(

δ(x, y1) ∧ σm
0 (y1, y2) ∧ σΩ(y2, y3) ∧ y3 ∈ U1

)

∧

∀y
(

µm(x, y) → y ∈ U2

)

.

Let us now fix some input w = a1a2 · · · an ∈ Σ∗ with |w| = n, and let an+1 = 2

and m = 2n. Thus, w is accepted by M if and only if there exists an accepting
2m-computation x such that in the first configuration of x, the tape content is
of the form w2

+. It remains to add some structure that allows us to express the
latter by a formula. But this is straightforward: Let ⊲ be a new symbol and let
Π = ∆ ∪ {0, 0, 1, 1, ⊲}; this is our final alphabet. Define the binary relations ι0,1

and ιa (a ∈ Ω) as follows:

ι0,1 = {(u ⊲ av, ua ⊲ v) | a ∈ {0, 1}, u, v ∈ ∆∗, uav ∈ U0} ∪
{(0v, 0 ⊲ v) | v ∈ ∆∗, 0v ∈ U0}

ιa = {(u ⊲ av, ua ⊲ v) | u, v ∈ ∆∗, uav ∈ U0} .

Then, A = (Π∗ ∪ (Π∗ ⊗Π∗), δ, σ0, σΩ, µ, ι0,1, (ιa)a∈Ω, U0, U1, U2) is a string auto-
matic structure of bounded degree such that w is accepted by M if and only if
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the following formula is true in A:

∃x ∈ U0



























∃y1, y2, y3
(

δ(x, y1) ∧ σm
0 (y1, y2) ∧ σΩ(y2, y3) ∧ y3 ∈ U1

)

∧

∀y
(

µm(x, y) → y ∈ U2

)

∧

∃y0, z0, . . . , yn+1, zn+1









ιm0,1(x, y0) ∧ ιq0(y0, z0) ∧
n+1
∧

i=1

ιm0,1(zi−1, yi) ∧ ιai
(yi, zi)



































By Lemma 4.1 we can compute in time O(log(m)) = O(n) an equivalent formula
over the signature of A. This concludes the proof. ⊣

The following theorem, which proves an analogous result for tree automatic
structures, uses alternating Turing machines, see [8, 30] for more details. Roughly
speaking, an alternating Turing machine is a nondeterministic Turing machine,
where the set of states is partitioned into accepting, existential, and universal
states. A configuration is accepting, if either (i) the current state is accepting,
or (ii) the current state is existential and at least one successor configuration is
accepting, or (iii) the current state is universal and every successor configuration
is accepting. By [8], kEXPTIME is the set of all problems that can be accepted
in space exp(k − 1, nO(1)) on an alternating Turing machine (for all k ≥ 1).

Theorem 4.3. There is a fixed tree automatic structure A of bounded degree
such that FOTh(A) is 3EXPTIME-hard.

Proof. Let M be a fixed alternating Turing machine with a space bound of
exp(2, n) such that M accepts a 3EXPTIME-complete language. W.l.o.g. every
configuration, where the current state is either existential or universal has exactly
two successor configurations. Let Σ, Γ, Q, and Ω have the same meaning as in
the previous proof. Moreover, let ∆ = Ω ∪ {0, 1,#∃,#∀}.

The idea is that a binary tree x over the alphabet ∆ can encode a computa-
tion tree for some input. Configurations can be encoded by linear chains over
the alphabet Ω ∪ {0, 1} as in the previous proof. The separator symbol #∃
is used to separate an existential configuration from a successor configuration,
whereas the separator symbol #∀ is used to separate a universal configuration
from its two successor configurations. Hence, a #∃-labeled node has exactly one
child, whereas a #∀-labeled node has exactly two children. Checking whether
the counters behave correctly can be done similarly to the previous proof by
introducing binary relations σ0 and σΩ, which rotate symbols within configura-
tions. Remember that in our tree encoding, configurations are just long chains.
Also the marking of some specific counter can be done in the same way as before.
Finally, having marked some specific counter allows to check with a top-down
tree automaton, whether the tree x represents indeed a valid computation tree.
Of course, the tree automaton has to check whether the current configuration
is existential or universal. In case of a universal configuration, the automaton
branches at the next separator symbol #∀. If e.g. the current configuration is
universal but the next separator symbol is #∃, then the automaton rejects the
tree. ⊣
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The proof of the next result is in fact a simplification of the proof of Theo-
rem 4.2, since we do not need counters.

Theorem 4.4. There is a fixed string automatic structure A of bounded degree
and polynomial growth (in fact linear growth) such that FOTh(A) is EXPSPACE-
hard.

Proof. Let M be a fixed Turing machine with a space bound of 2n such
that M accepts an EXPSPACE-complete language. Let Σ, Γ, Q, q0, qf , 2,
and Ω have the usual meaning. Let ∆ = {#} ∪ Ω. This time, for m ∈ N,
an accepting m-computation is a string x1#x2# · · ·xn#, where x1, . . . , xn ∈
Γ∗QΓ+ are configurations with |xi| = m (1 ≤ i ≤ n), xi ⊢M xi+1 (1 ≤ i < n),
x1 ∈ q0Σ

∗
2

∗, and xn ∈ Γ∗qfΓ+. Let U0 be the fixed regular language

U0 = (Γ∗QΓ+#)+ ∩ q0Σ
∗
2

∗#∆∗ ∩ ∆∗qf (∆ \ {#})∗# .

The following binary relations δ and σΩ can be easily recognized by 2-dimensional
automata:

δ = {(w, w ⊗ w) | w ∈ U0}
σΩ = {(av ⊗ w, va⊗ w) | w ∈ U0, a ∈ Ω, v ∈ ∆∗}

Moreover, let U1 be the following regular language over ∆∗ ⊗ ∆∗:

U1 = {#u⊗v# | u, v ∈ Ω+, |u| = |v|, v ⊢M u}+{#u⊗v# | u, v ∈ Ω+, |u| = |v|} .
Then, for every x ∈ U0 and m ∈ N we have: x is an accepting m-computation
if and only if there exist y1, y2 ∈ ∆∗ ⊗ ∆∗ such that δ(x, y1), σ

m
Ω (y1, y2), and

y2 ∈ U1.
Let us now fix some input w = a1 · · ·an ∈ Σ∗ with |w| = n, let an+1 = 2, and

let m = 2n. Thus, w is accepted by M if and only if there exists an accepting
m-computation x such that in the first configuration of x, the tape content is
of the form w2

+. It remains to add some structure that allows us to express
the latter by a formula. This can be done similarly to the proof of Theorem 4.2:
Let Π = ∆ ∪ {⊲}, where ⊲ is a new symbol and define the binary relations ιa
(a ∈ Σ ∪ {2}) as follows:

ιa = {(q0av, q0a⊲v) | v ∈ ∆∗, q0av ∈ U0} ∪ {(u⊲av, ua⊲v) | u, v ∈ ∆∗, uav ∈ U0}
Then, A = (Π∗∪(∆∗⊗∆∗), δ, σΩ, (ιa)a∈Σ∪{2}, U0, U1) is a fixed string automatic
structure of bounded degree and linear growth. For the latter note that the
Gaifman graph of A is just a disjoint union of cycles and finite paths (in fact,
every node has degree at most 2). Moreover, w is accepted by M if and only if
the following statement is true in A:

∃x ∈ U0











∃y1, y2
(

δ(x, y1) ∧ σm
Ω (y1, y2) ∧ y2 ∈ U1

)

∧

∃y0, . . . , yn

(

ιa1(x, y0) ∧
n
∧

i=1

ιai
(yi−1, yi)

)











. (15)

By Lemma 4.1 this concludes the proof. ⊣
The next result can be easily shown by combining the techniques from the

proof of Theorem 4.3 and 4.4. We leave the details for the reader.
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Theorem 4.5. There is a fixed tree automatic structure A of bounded degree
and polynomial growth (in fact linear growth) such that FOTh(A) is 2EXPTIME-
hard.

§5. Bounded quantifier alternation depth. In this section we prove some
facts about first-order fragments of fixed quantifier alternation depth. These
results will follow easily from the constructions in the preceding section. Recall
Theorem 2.7 and 2.9 on the complexity of Σn-FOMC(SA) and Σn-FOMC(TA),
respectively. These results are not restricted to structures of bounded degree.
From our construction in the proof of Theorem 4.4, we can slightly sharpen the
lower bound from Theorem 2.7 for n = 0.

Theorem 5.1. There exists a fixed string automatic structure of bounded de-
gree and linear growth with a PSPACE-complete Σ1-theory.

Proof. Let M be a fixed linear bounded automaton with a PSPACE-complete
acceptance problem and consider the structure A from the proof of Theorem 4.4.
If we replace the number m in the formula (15) by n + 1, where n is the input
length, then (15) is equivalent to the following formula, which is equivalent to a
Σ1-formula:

∃x ∈ U0















∃y0, . . . , yn+2

(

δ(x, y0) ∧
n+1
∧

i=0

σΩ(yi, yi+1) ∧ yn+2 ∈ U1

)

∧

∃y1, . . . , yn

(

ιa1(x, y1) ∧
n
∧

i=2

ιai
(yi−1, yi)

)















.

This formula is true in A if and only if the linear bounded automaton accepts
the input w = a1 · · · an. ⊣

Let us now move on to Σ2-formulas and structures of arbitrary growth:

Theorem 5.2. There is a fixed string automatic structure of bounded degree
with an EXPSPACE-complete Σ2-theory.

Proof. We reuse our construction from the proof of Theorem 4.2. We start
with an exp(1, n)-space-bounded machineM that accepts an EXPSPACE-complete
language. We carry out the same construction as in the proof of Theorem 4.2,
but replace 2m (resp. m) everywhere by m (resp. the input length n). In addi-
tion, we need the following (trivial) analogue of Lemma 4.1: Let the signature
S contain a binary symbol r. From a given number n (encoded unary), we can
construct in linear time a Σ1-formula r(n)(x, y) such that for every S-structure
A and all elements a, b ∈ A we have: (a, b) ∈ rn if and only if A |= r(n)(a, b).
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Then, the final formula from the proof of Theorem 4.2 can be written as

∃x ∈ U0



























∃y1, y2, y3
(

δ(x, y1) ∧ σ
(n)
0 (y1, y2) ∧ σΩ(y2, y3) ∧ y3 ∈ U1

)

∧

∀y
(

¬µ(n)(x, y) ∨ y ∈ U2

)

∧

∃y0, z0, . . . , yn+1, zn+1









ι
(n)
0,1 (x, y0) ∧ ιq0 (y0, z0) ∧

n+1
∧

i=1

ι
(n)
0,1 (zi−1, yi) ∧ ιai

(yi, zi)



































.

This formula is equivalent to a Σ2-formula. Moreover, this formula is true in the
string automatic structure A (of bounded degree) from the proof of Theorem 4.2,
if and only if the input w = a1a2 · · · an is accepted by the machine M . ⊣

As before, Theorems 5.1 and 5.2 can be extended to tree automatic structures
as follows:

Theorem 5.3. The following holds:

• There is a fixed tree automatic structure of bounded degree and linear growth
with an EXPTIME-complete Σ1-theory.

• There is a fixed tree automatic structure of bounded degree with a 2EXPTIME-
complete Σ2-theory.

§6. Open problems. The most obvious open question regards the uniform
first-order theory for (injective) string and tree automatic structures: we do not
know whether the upper bounds in Corollary 3.8(b-d) are sharp.

In [7, 23], it is shown that not only the first-order theory of every string auto-
matic structure is (uniformly) decidable, but even its extension by the quantifiers
“there are infinitely many x with . . . ” and “the number of x satisfying . . . is
divisible by p”. In [25], we proved that this extended theory can be decided in
triply exponential time for ω-string automatic structures of bounded degree. It
is not clear whether the doubly-exponential upper bound proved in this paper
extends to this more expressive theory.

Recall that there are tree automatic structures which are not string automatic.
Provided 2EXPSPACE 6= 3EXPTIME, our results on the non-uniform first-order
theories imply the existence of such a structure of bounded degree (namely the
tree automatic structure constructed in the proof of Theorem 4.3). But no
example is known that does not rest on the complexity theoretic assumption
2EXPSPACE 6= 3EXPTIME.

For n ≥ 3, the precise complexity of the Σn-theory of a string/tree automatic
structure of bounded degree remains open. We know that these theories belong to
2EXPSPACE for string automatic structures and to 3EXPTIME for tree automatic
structures. Moreover, from our results for the Σ2-fragment we obtain lower
bounds of EXPSPACE and 2EXPTIME, respectively.

Conjecture 6.1. For every n ≥ 3, the problems Σn-FOMC(SAb) and Σn-
FOMC(TAb) belong to EXPSPACE and 2EXPTIME, respectively.
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A possible attack to this conjecture would follow the line of argument in the
proof of Theorem 3.7 and would therefore be based on Gaifman’s theorem. To
make this work, the exponential bound in Gaifman’s theorem would have to be
reduced which leads to the following conjecture.

Conjecture 6.2. Let A be a structure, (a1, . . . , ak), (b1, . . . , bk) ∈ Ak, d ≥
n ≥ 0, and D1, . . . , Dk ≥ d · 2n such that

(A↾(

k
⋃

i=1

S(Di, ai)), a1, . . . , ak) ≃ (A↾(

k
⋃

i=1

S(Di, bi)), b1, . . . , bk) .

Then, for every Σn-formula ϕ(x1, . . . , xk) of quantifier depth at most d, we have:

A |= ϕ(a1, . . . , ak) ⇐⇒ A |= ϕ(b1, . . . , bk) . (16)

Gaifman’s Theorem 3.1 implies that the conclusion (16) holds, if the lower
bound d · 2n for the radius is replaced by 2d. The intuition behind this con-
jecture is that quantifier alternation (and not only nesting of quantifiers of the
same type) seems to be essential in order to express exponential distances in the
Gaifman-graph (see also the proof of Lemma 4.1).
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