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Abstract. It it shown that the first-order theory of an automatic struc-
ture, whose Gaifman graph has bounded degree, is decidable in doubly
exponential space (for injective automatic presentations, this holds even
uniformly). Presenting an automatic structure of bounded degree whose
theory is hard for 2EXPSPACE, we also prove this result to be optimal.
These findings close the gap left open in [14].

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used fi-
nite automata to decide, e.g., Presburger arithmetic [5]. Automaton decidable
theories [9] and automatic groups [6] are similar concepts. A systematic study
was initiated by Khoussainov and Nerode [10] who also coined the name “au-
tomatic structure”. In essence, a structure is automatic if the elements of the
universe can be represented as strings from a regular language (an element can
be represented by several strings) and every relation of the structure can be rec-
ognized by a finite automaton with several heads that proceed synchronously.
Automatic structures received increasing interest over the last years [3, 11, 12,
15, 1]. One of the main motivations for investigating automatic structures is that
their (first-order) theories can be decided uniformly (i.e., the input is an auto-
matic presentation and a first-order sentence). But even the theory of a specific
automatic structure might be far from efficient: There exist automatic structures
with a nonelementary theory. This motivates the search for subclasses of auto-
matic structures with elementary theory. The first such class was identified by
the second author in [14] who showed that the theory of every automatic struc-
ture of bounded degree can be decided in triply exponential alternating time with
linearly many alternations. A structure has bounded degree, if in its Gaifman
graph, the number of neighbors of a node is bounded by some fixed constant.
The paper [14] also presents a specific automatic structure of bounded degree
whose theory is hard for doubly exponential alternating time with linearly many
alternations. Hence, an exponential gap between the upper and lower bound
remained. An upper bound of 4-fold exponential alternating time with linearly
many alternations was shown for tree automatic structures (which are defined
analogously to automatic structures using tree automata) of bounded degree.

⋆ The second author is supported by the DFG research project GELO.



Our paper [12] proves a triply exponential space bound for the theory of an in-
jective ω-automatic structure (that is defined via Büchi-automata) of bounded
degree; this result was recently applied to one-dimensional cellular automata [7].
Here, injectivity means that every element of the structure is represented by a
unique ω-word from the underlying regular language.

In this paper, we achieve three goals: (i) We close the complexity gaps from
[14] for automatic structures of bounded degree. (ii) We investigate, for the first
time, the complexity of the uniform theory (where the automatic presentation
is part of the input) of automatic structures of bounded degree. (iii) We refine
our complexity analysis using the growth function of a structure. This function
measures the size of a sphere in the Gaifman graph depending on the radius of
the sphere. The growth function of a structure of bounded degree can be at most
exponential.

Our main results are the following:

(a) The uniform theory for injective automatic presentations is 2EXPSPACE-
complete. The lower bound already holds in the non-uniform setting, i.e. there
exists an automatic structure of bounded degree with a 2EXPSPACE-complete
theory.

(b) For every automatic structure of bounded degree, where the growth func-
tion is polynomially bounded, the theory is in EXPSPACE, and there exists an
example with an EXPSPACE-complete theory.

In addition, the full version [13] of this extended abstract also contains anal-
ogous results for tree-automatic structures that had to be left out for space
restrictions:

(c) The uniform theory for injective tree automatic presentations belongs
to 4EXPTIME; the non-uniform one to 3EXPTIME for arbitrary tree automatic
structures, and to 2EXPTIME if the growth function is polynomial. Our bounds
for the non-uniform problem are sharp, i.e., there are tree automatic struc-
tures of bounded degree (and polynomial growth) with a 3EXPTIME-complete
(2EXPTIME-complete, resp.) first-order theory.

We conclude this paper with some results on the complexity of first-order
fragments with fixed quantifier alternation depth one or two on automatic struc-
tures of bounded degree. For a full version of this paper see [13].

2 Preliminaries

Let Γ be a finite alphabet and w ∈ Γ ∗ be a finite word over Γ . The length of w
is denoted by |w|. We also write Γn = {w ∈ Γ ∗ | n = |w|}.

Let exp(0, x) = x and exp(n + 1, x) = 2exp(n,x) for x ∈ N. We assume
basic knowledge in complexity theory. For k ≥ 1, we denote with kEXPSPACE

(resp. kEXPTIME) the class of all problems that can be accepted in space (resp.
time) exp(k, nO(1)) on a deterministic Turing machine. For 1EXPSPACE we write
just EXPSPACE, EXPTIME is to be understood similarly. A problem is called
elementary if it belongs to kEXPTIME for some k ∈ N.
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Recall that emptiness and inclusion of the languages of finite nondetermin-
istic automata are complete for NL (nondeterministic logspace) and PSPACE

(polynomial space), resp..

2.1 Structures and first-order logic

A signature is a finite set S of relational symbols, where every symbol r ∈ S
has some fixed arity mr. The notion of an S-structure (or model) is defined as
usual in logic. We only consider relational structures. Sometimes, we will also use
constants, but in our context, a constant c can be replaced by the unary relation
{c}. Let us fix an S-structure A = (A, (rA)r∈S), where rA ⊆ Amr . To simplify
notation, we will write a ∈ A for a ∈ A. For B ⊆ A we define the restriction
A↾B = (B, (rA ∩ Bmr)r∈S). Given further constants a1, . . . , ak ∈ A, we write
(A, a1, . . . , ak) for the structure (A, (rA)r∈S , a1, . . . , ak). In the rest of the paper,
we will always identify a symbol r ∈ S with its interpretation rA. A congruence
on the structure A = (A, (r)r∈S) is an equivalence relation ≡ on A such that for
every r ∈ S and all a1, b1, . . . , amr

, bmr
∈ A we have: If (a1, . . . , amr

) ∈ r and
a1 ≡ b1, . . . , amr

≡ bmr
, then also (b1, . . . , bmr

) ∈ r. As usual, the equivalence
class of a ∈ A w.r.t. ≡ is denoted by [a]≡ or just [a] and A/≡ denotes the set of
all equivalence classes. We define the quotient structure A/≡ = (A/≡, (r/≡)r∈S),
where r/≡ = {([a1], . . . , [amr

]) | (a1, . . . , amr
) ∈ r}.

The Gaifman-graph G(A) of the S-structure A is the symmetric graph on
the universe A of A, which contains an edge between a and b if and only if
there exists a tuple (a1, . . . , amr

) ∈ r in some of the relations r ∈ S such that
a and b both belong to {a1, . . . , amr

}. With dA(a, b), where a, b ∈ A, we denote
the distance between a and b in G(A), i.e., it is the length of a shortest path
connecting a and b in G(A). For a ∈ A and d ≥ 0 we denote with SA(d, a) =
{b ∈ A | dA(a, b) ≤ d} the d-sphere around a. If A is clear from the context,
then we will omit the subscript A. We say that the structure A is locally finite
if its Gaifman graph G(A) is locally finite (i.e., every node has finitely many
neighbors). Similarly, the structure A has bounded degree, if G(A) has bounded
degree, i.e., there exists a constant δ such that every a ∈ A is adjacent to at
most δ many other nodes in G(A); the minimal such δ is called the degree of A.
For a structure A of bounded degree we define its growth function gA : N → N as
gA(n) = max{|SA(n, a)| | a ∈ A}. Note that if the function gA is not bounded
then gA(n) ≥ n for all n ≥ 1. For us, it is more convenient to not have a
bounded function describing the growth. Therefore, we define the normalized
growth function g′A by g′A(n) = max{n, gA(n)}. Note that gA and g′A are different
only in the case that all connected components of A contain at most m elements
(for some fixed m). Clearly, g′A(n) can grow at most exponentially if A has
bounded degree. We say that A has exponential growth if g′A(n) ∈ 2Ω(n). If
g′A(n) ∈ nO(1), then A has polynomial growth.

We consider (first-order) formulas with equality over the signature S. The
quantifier depth of a formula ϕ is the maximal nesting of quantifiers in ϕ. A
formula without free variables is called closed. The theory of A, denoted by
Th(A), is the set of all closed formulas ϕ with A |= ϕ.
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2.2 Structures from automata

Automatic structures Next we introduce automatic structures, more details
can be found in [10, 3]. Let us fix n ∈ N and a finite alphabet Γ . Let $ /∈ Γ be an
additional padding symbol. For words w1, w2, . . . , wn ∈ Γ ∗ we define the convo-
lution w1⊗w2⊗· · ·⊗wn, which is a word over the alphabet (Γ ∪{$})n, as follows:
Let wi = ai,1ai,2 · · · ai,ki

with ai,j ∈ Γ and k = max{k1, . . . , kn}. For ki < j ≤ k
define ai,j = $. Then w1⊗· · ·⊗wn = (a1,1, . . . , an,1) · · · (a1,k, . . . , an,k). Thus, for
instance aba⊗bbabb = (a, b)(b, b)(a, a)($, b)($, b). An n-ary relation R ⊆ (Γ ∗)n is
called automatic if the language {w1 ⊗ · · · ⊗wn | (w1, . . . , wn) ∈ R} is a regular
language.

Anm-dimensional (synchronous) automaton over Γ is just a finite automaton
A = (Q,∆, q0, F ) over (Γ∪{$})m such that L(A) ⊆ {w1⊗· · ·⊗wn | w1, . . . , wm ∈
Γ ∗}. Such an automaton defines an m-ary relation

R(A) = {(w1, . . . , wm) | w1 ⊗ · · · ⊗ wm ∈ L(A)} .

We define the size |A| of A as max{1, |∆|} ·m. Reasonably assuming that every
state is the target state of some transition and that every letter from Γ appears
in some transition (implying |Γ |, |Q| ≤ |∆|) , the size |A| bounds the number of
bits needed to store A (up to some polynomial).

An automatic presentation is a tuple P = (Γ,S, A0, A=, (Ar)r∈S), where: (i)
Γ is a finite alphabet, (ii) S is the signature of P (as before mr is the arity of the
symbol r ∈ S), (iii) A0 is an automaton over the alphabet Γ , (iv) for every r ∈ S,
Ar is an mr-dimensional automaton over Γ with R(Ar) ⊆ L(A0)

mr , and (v) A=

is a 2-dimensional automaton over Γ such that R(A=) ⊆ L(A0)
2 is a congruence

on the structure (L(A0), (R(Ar))r∈S). This presentation P is injective if R(A=)
is the identity relation on L(A0). The structure presented by P is the quotient
A(P ) = (L(A0), (R(Ar))r∈S)/R(A=). A structure A is automatic if there exists an
automatic presentation P such that A ≃ A(P ). We will write [u] for the element
[u]R(A=) (u ∈ L(A0)) of the structure A(P ). The presentation P has bounded
degree if the structure A(P ) has bounded degree. The size of the presentation
P = (Γ,S, A0, A=, (Ar)r∈S) is |P | = |A0|+|A=|+

∑

r∈S |Ar|. Note that |S| ≤ |P |
and mr ≤ |P | for all r ∈ S.

Typical examples of automatic structures are (N,+) and (Q,≤). Examples of
automatic structures of bounded degree are transition graphs of Turing machines
and Cayley-graphs of automatic groups [6] as well as the queue structure [16]
(the set of finite words together with functions prefixing and suffixing a word by
a fixed letter). There are automatic structures A of bounded degree with growth
gA(n) ∈ 2Θ(

√
n) [13].

We will consider the following classes of automatic presentations1:

– SA: the class of all automatic presentations.
– SAb: the class of all automatic presentations of bounded degree.
– iSAb: the class of all injective automatic presentations of bounded degree.

1 The letter S in the below classes refers to “string”, the full paper [13] also contains
classes starting with T that refers to “tree”
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The model checking problem For the above classes of automatic presenta-
tions, we will be interested in the following decision problems.

Definition 2.1. Let C be a class of automatic presentations. Then the model
checking problem MC(C) for C denotes the set of all pairs (P,ϕ) where P ∈ C,
and ϕ is a closed formula over the signature of P such that A(P ) |= ϕ.

If C = {P} is a singleton, then the model checking problem MC(C) for C can
be identified with the theory of the structure A(P ). An algorithm deciding the
model checking problem for a class C decides the theories of each element of C

uniformly.
The following two results are the main motivations for investigating auto-

matic structures.

Proposition 2.2 (cf. [10]). There is an algorithm that computes, from an au-
tomatic presentation P = (Γ,S, A0, A=, (Ar)r∈S) and a formula ϕ(x1, . . . , xm),
an m-dimensional automaton A over Γ with R(A) = {(u1, . . . , um) ∈ L(A0)

m |
A(P ) |= ϕ([u1], . . . , [um])}.

The automaton is constructed by induction on the structure of the formula ϕ:
disjunction corresponds to the disjoint union of automata, existential quantifi-
cation to projection, and negation to complementation. The following result is
a direct consequence.

Theorem 2.3 (cf. [10]). The model checking problem MC(SA) for all auto-
matic presentations is decidable. In particular, the theory Th(A) of every auto-
matic structure A is decidable.

Strictly speaking, [10] devices algorithms that, given an automatic presentation
and a closed formula, decide whether the formula holds in the presented struc-
ture. But a priori, it is not clear whether it is decidable, whether a given tuple
(Γ,S, A0, A=, (Ar)r∈S) is an automatic presentation. Prop. 2.5(a) below shows
that SA is indeed decidable in polynomial space, which then completes the proof
of this theorem.

Thm. 2.3 holds even if we add quantifiers for “there are infinitely many x
such that ϕ(x)” [2, 3] and “the number of elements satisfying ϕ(x) is divisible
by k” (for k ∈ N) [11]. This implies in particular that it is decidable whether an
automatic presentation describes a locally finite structure. But the decidability
of the theory is far from efficient, since there are automatic structures with a
nonelementary first-order theory [3]. An example for this is the infinite binary
tree with the prefix relation, see e.g. [4, Example 8.3]. A locally finite example
can be obtained by taking the disjoint union of all finite binary-labeled linear
orders, see e.g. [4].

Preliminary complexity results It will be convenient to work with injective
automatic presentations. The following lemma says that this is no restriction, if
we allow an exponential jump in complexity.
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Lemma 2.4 ([10, Cor. 4.3]). From P ∈ SA we can compute in time 2O(|P |)

an injective automatic presentation P ′ ∈ iSA with A(P ) ≃ A(P ′).

Next, we give complexity bounds for the class of all automatic structures as
well as for those of bounded degree.

Proposition 2.5. (a) The class SA is PSPACE-complete and (b) the class SAb

belongs to EXPTIME.

Proof. Statement (a) is shown in the full version [13]. For (b) we can assume by
(a) that the input indeed belongs to SA (which can be checked in polynomial
space and therefore in exponential time). In exponential time, the automatic
presentation can then be transformed into an equivalent injective one P ∈ iSA

of exponential size. Using simple automata constructions, we can compute a 2-
dimensional automaton A for the edge relation of the Gaifman-graph of A(P )
(in fact, A can be computed in time polynomial in |P |). Since P is injective (i.e.
every equivalence class [u] is the singleton {u}), A(P ) is of bounded degree iff A
(seen as a transducer) is finite-valued. But this is decidable in time polynomial
in |P | [17]. Since P is exponential in the input, this completes the proof. ⊓⊔

In contrast to this decidability results, it is undecidable, whether a given
automatic structure of bounded degree has polynomial growth, see the complete
version [13].

Finally, since we deal with structures of bounded degree, it will be important
to estimate the degree of such a structure given its presentation. Such estimates
are provided by the following result.

Proposition 2.6. The following holds:

(a) If P ∈ iSAb, then the degree of A(P ) is bounded by exp(1, |P |O(1)).
(b) If P ∈ SAb, then the degree of A(P ) is bounded by exp(2, |P |O(1)).

Proof. For statement (a) let P ∈ iSAb. From P we can construct a 2-dimensional
automaton A of size |P |O(1) that accepts the edge relation of the Gaifman graph
of A(P ). Then the degree of A(P ) equals the maximal out-degree of the relation
R(A). For string transducers, this number is exponential in the size of A, i.e., it
is in exp(1, |P |O(1)) [17].

For P ∈ SAb, the bound exp(2, |P |O(1)) follows immediately from Lemma 2.4
and (a). ⊓⊔

The bound in Prop. 2.6 for P ∈ iSAb is sharp, see the complete version [13]
for an example.

3 Upper bounds

It is the aim of this section to give an algorithm that decides the theory of an
automatic structure of bounded degree. The algorithm from Thm. 2.3 (that in
particular solves this problem) is based on Prop. 2.2, i.e., the inductive construc-
tion of an automaton accepting all satisfying assignments. Differently, we base
our algorithm on Gaifman’s Thm. 3.1, i.e., on the combinatorics of spheres. We
therefore start with some model theory.
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3.1 Model-theoretic background

For a structure A, a = (a1, . . . , ak) ∈ Ak and d ≥ k ≥ 0, we denote with A[d, a]

the induced substructure A↾
⋃k

i=1 S(7d−i, ai). The following locality principle of
Gaifman implies that super-exponential distances cannot be handled in first-
order logic:

Theorem 3.1 ([8]). Let A be a structure, a, b ∈ Ak and d ≥ 0 such that
(A[d+ k, a], a) ≃ (A[d+ k, b], b) (i.e. there is an isomorphism between the two
induced substructures A[d + k, a] and A[d + k, b] that maps the ith component
of a to the ith component of b for all 1 ≤ i ≤ k). Then, for every formula
ϕ(x1, . . . , xk) of quantifier depth at most d, we have: A |= ϕ(a) ⇐⇒ A |= ϕ(b).

Let S be a signature and let k, d ∈ N with 0 ≤ k ≤ d. A potential (d, k)-
sphere is a tuple (B, b) such that B is an S-structure, b ∈ Bk, and B = B[d, b].
There is only one potential (d, 0)-sphere namely the empty sphere ∅. For our later
applications, B will be always a finite structure, but in this subsection finiteness
is not needed. The potential (d, k)-sphere (B, b) is realized in the structure A if
there exists a ∈ Ak such that (A[d, a], a) ≃ (B, b).

Let σ = (B, b) be a potential (d, k)-sphere and let σ′ = (C, c, c) be a potential
(d, k + 1)-sphere (k + 1 ≤ d, c ∈ Ck, c ∈ C). Then σ′ extends σ (abbreviated
σ � σ′) if σ ≃ (C[d, c], c). The following definition is the basis for our decision
procedure.

Definition 3.2. Let A be an S-structure, ψ(y1, . . . , yk) a formula of quantifier
depth at most d, and let σ = (B, b) be a potential (d+ k, k)-sphere. The Boolean
value ψσ ∈ {0, 1} is defined inductively as follows:

– If ψ(y1, . . . , yk) is an atomic formula, then

ψσ = 1 ⇐⇒ B |= ψ(b). (1)

– (¬θ)σ = 1 − θσ and (α ∨ β)σ = max{ασ, βσ}
– If ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1) then

ψσ = max{θσ′ | σ′ is a potential(d+ k, k + 1)-sphere with (2)

σ � σ′ that is realized in A} .

The following result ensures for every closed formula ψ that ψ∅ = 1 if and only
if A |= ψ. Hence the above definition can possibly be used to decide validity of
the formula ϕ in the structure A.

Proposition 3.3. Let S be a signature, A an S-structure, a ∈ Ak, ψ(y1, . . . , yk)
a formula of quantifier depth at most d, and σ = (B, b) a potential (d + k, k)-
sphere with

(A[d+ k, a], a) ≃ σ . (3)

Then A |= ψ(a) ⇐⇒ ψσ = 1.
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Proof. We prove the lemma by induction on the structure of ψ. First assume
that ψ is atomic, i.e. d = 0. We have

ψσ = 1
(1)
⇐⇒ B |= ψ(b)

(3)
⇐⇒ A[0 + k, a] |= ψ(a) ⇐⇒ A |= ψ(a) ,

where the last equivalence holds since ψ is atomic. The cases ψ = ¬θ and ψ =
α ∨ β are straightforward.

We finally consider the case ψ(y1, . . . , yk) = ∃yk+1θ(y1, . . . , yk, yk+1). First
assume that ψσ = 1. By (2), some potential (d+k, k+1)-sphere σ′ is realized in
A with σ � σ′ and θσ′ = 1. Since σ′ is realized, there exist a′ ∈ Ak, a′ ∈ A with

(A[d+ k, a′, a′], a′, a′) ≃ (B′, b, b) = σ′ . (4)

By induction, we have A |= θ(a′, a′) and therefore A |= ψ(a′). From (4), σ � σ′,
and (3), we also obtain

(A[d+ k, a′], a′) ≃ (A[d+ k, a], a)

and therefore by Gaifman’s Thm. 3.1 A |= ψ(a).
Conversely, let a ∈ A with A |= θ(a, a). Let σ′ = (B′, b, b) be the unique (up

to isomorphism) potential (d+ k, k + 1)-sphere such that

(A[d+ k, a, a], a, a) ≃ (B′, b, b) . (5)

Then (3) implies σ � σ′. Moreover, by (5), σ′ is realized in A, and A |= θ(a, a)
implies by induction θσ′ = 1. Hence, by (2), we get ψσ = 1 which finishes the
proof. ⊓⊔

3.2 The decision procedure

Now suppose we want to decide whether the closed formula ϕ holds in an au-
tomatic structure A of bounded degree. By Prop. 3.3 it suffices to compute the
Boolean value ϕ∅. This computation will follow the inductive definition of ϕσ

from Def. 3.2. Since every (d, k)-sphere that is realized in A is finite, we only
have to deal with finite spheres. The crucial part of our algorithm is to determine
whether a finite potential (d, k)-sphere is realized in A. In the following, for a
finite potential (d, k)-sphere σ = (B, b1, . . . , bk), we denote with |σ| the number
of elements and with δ(σ) the degree of the finite structure B.

For a class of automatic presentations C the realizability problem REAL(C)
for C denotes the set of all pairs (P, σ) where P ∈ C and σ is a finite potential
(d, k)-sphere over the signature of P for some 0 ≤ k ≤ d such that σ can be
realized in A(P ). In the complexity estimates in the following lemma, σ is the
input potential (d, k)-sphere and P is the input automatic presentation.

Lemma 3.4. REAL(iSA) can be solved in space |σ|O(|P |) · 2O(δ(σ)).

Proof. Let P = (Γ,S, A0, A=, (Ar)r∈S) ∈ iSA. Let σ = (B, b1, . . . , bk) and let
c1, . . . , c|σ| be a list of all elements of B; every bi occurs in this list. Let EA(P )

(resp. EB) be the edge relation of the Gaifman graph G(A(P )) (resp. G(B)).
Then σ is realized in A(P ) iff there are u1, . . . , u|σ| ∈ Γ ∗ with
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(a) ui ∈ L(A0) for all 1 ≤ i ≤ |σ|,
(b) ui 6= uj for all 1 ≤ i < j ≤ |σ|,
(c) For all r ∈ S: (ui1 , . . . , uimr

) ∈ R(Ar) if and only if (ci1 , . . . , cimr
) ∈ rB, and

(d) there is no v ∈ L(A0) such that, for some 1 ≤ j ≤ |σ| and 1 ≤ i ≤ k with
d(cj , bi) < 2d−i, we have: (uj , v) ∈ EA(P ) and v /∈ {up | (cj , cp) ∈ EB}.

Then (a-c) express that the mapping ci 7→ ui is well-defined and an embedding of
B into A(P ). In (d), (uj , v) ∈ EA(P ) implies that v belongs to

⋃

1≤i≤k S(2d−i, ui).

Hence (d) expresses that all elements of
⋃

1≤i≤k S(2d−i, ui) belong to the image
of this embedding.

Using standard automata constructions for Boolean operations and projec-
tion, we can construct a |σ|-dimensional automaton A over the alphabet Γ that
checks (a-d). A detailed size estimate shows that A has at most exp(1, |σ|O(|P |) ·
2O(δ(σ))) many states. Hence checking emptiness of its language (and therefore
realizability of σ in A(P )) can be done in space logarithmic to the number of
states, i.e., in space |σ|O(|P |) · 2O(δ(σ)) which proves the statement. ⊓⊔

In the following, for an automatic presentation P of bounded degree, g′P
denotes the normalized growth function g′A(P ) of the structure A(P ). In the
complexity estimates in the following theorem, ϕ is the input sentence and P is
the input automatic presentation.

Theorem 3.5. MC(iSAb) can be solved in space g′P (2|ϕ|)O(|P |) exp(2, |P |O(1)).

Proof. It suffices by Prop. 3.3 to compute the Boolean value ϕ∅. Recall the
inductive definition of ϕσ from Def. 3.2 that we now translated into an algorithm
for computing ϕ∅. Such an algorithm has to handle potential (d, k)-spheres for
1 ≤ k ≤ d ≤ |ϕ| (d is the quantifier rank of ϕ) that are realized in A(P ). The
number of nodes of a potential (d, k)-sphere realized in A(P ) is bounded by
k · g′P (2d) ≤ g′P (2|ϕ|)O(1) since k < 2|ϕ| ≤ g′P (2|ϕ|). The number of relations of
A(P ) as well as each arity is bounded by |P |. Hence, any potential (d, k)-sphere
can be stored in space |P | · g′P (2|ϕ|)O(|P |) = g′P (2|ϕ|)O(|P |).

The set of (d, k)-spheres with 0 ≤ k ≤ d (ordered by the extension relation �)
forms a tree of depth d+1. The algorithm visits the nodes of this tree in a depth-
first manner and descents when unraveling an existential quantifier. Hence, we
have to store d + 1 ≤ |ϕ| many spheres, for which space |ϕ| · g′P (2|ϕ|)O(|P |) =
g′P (2|ϕ|)O(|P |) is sufficient.

Moreover, during the unraveling of a quantifier, the algorithm has to check re-
alizability of a potential (d, k)-sphere for 1 ≤ k ≤ d. Any such sphere has at most
g′P (2|ϕ|)O(1) many elements and the degree δ of A is bounded by exp(1, |P |O(1))
by Prop. 2.6(a). Hence, by Lemma 3.4, realizability can be checked in space
g′P (2|ϕ|)O(|P |) · exp(2, |P |O(1)).

At the end, we have to check whether a tuple b satisfies an atomic formula
ψ(y), which is trivial. Thus, the totally needed space is at most g′P (2|ϕ|)O(|P |) ·
exp(2, |P |O(1)). ⊓⊔

We derive a number of consequences on the combined and expression com-
plexity of automatic structures of bounded degree. The first one concerns the
combined complexity and is a direct consequence of Thm. 3.5:
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Corollary 3.6. The following holds:

(a) MC(iSAb) is in 2EXPSPACE.
(b) MC(SAb) is in 3EXPSPACE.

Proof. Statement (a) follows from Thm. 3.5 and the fact that (i) g′A(2|ϕ|) ≤ δ2
|ϕ|

if δ is the degree of A(P ) and (ii) Prop. 2.6(a), which allows to bound δ by

2|P |O(1)

. Statement (b) follows from (a) and Lemma 2.4, which allows to make
an automatic presentation injective with an exponential blow up. ⊓⊔

Next we concentrate on the expression complexity, i.e., we fix the structure.

Corollary 3.7. If A is an automatic structure of bounded degree, then Th(A)
belongs to 2EXPSPACE. If in addition, A has also polynomial growth, then Th(A)
belongs to EXPSPACE.

Proof. Since A is automatic, it has a fixed injective automatic presentation P ,
i.e., |P | is a fixed constant. Hence, the first statement follows immediately from
Thm. 3.5. If A has in addition polynomial growth, then, again, the claim follows
immediately from Thm. 3.5 since g′A(2|ϕ|)O(|P |) = 2O(|ϕ|). ⊓⊔

4 Lower bounds

In this section, we will prove that the upper bounds for the expression complexi-
ties (Cor. 3.7) are sharp. This will imply that the upper bounds for the combined
complexity for injective automatic presentations from Thm. 3.5 is sharp as well.

For a binary relation r and m ∈ N we denote with rm the m-fold composition
of r. The following lemma is folklore.

Lemma 4.1. Let the signature S contain a binary symbol r. From a given num-
ber m (encoded unary), we can construct in linear time a formula ϕm(x, y) such
that for every S-structure A and all elements a, b ∈ A we have: (a, b) ∈ r2

m

if
and only if A |= ϕm(a, b).

For a bit string u = a1 · · · am (ai ∈ {0, 1}) let val(u) =
∑m−1

i=0 ai+12
i be the

integer value represented by u. Vice versa, for 0 ≤ i < 2m let binm(i) ∈ {0, 1}m

be the unique string with val(binm(i)) = i.

Theorem 4.2. There exists a fixed automatic structure A of bounded degree
such that Th(A) is 2EXPSPACE-hard.

Proof. Let M be a fixed Turing machine with a space bound of exp(2, n) such
that M accepts a 2EXPSPACE-complete language; such a machine exists by
standard arguments. Let Γ be the tape alphabet, Σ ⊆ Γ be the input alphabet,
and Q be the set of states. The initial (resp. accepting) state is q0 ∈ Q (resp.
qf ∈ Q), the blank symbol is � ∈ Γ \ Σ. Let Ω = Q ∪ Γ . A configuration of
M is described by a string from Γ ∗QΓ+ ⊆ Ω+ (later, symbols of configurations
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will be preceded with additional counters). For two configurations u and v with
|u| = |v| we write u ⊢M v if u can evolve with a single M -transition into v.
Note that there exists a relation αM ⊆ Ω3 × Ω such that for all configurations
u = a1 · · · am and v = b1 · · · bm (ai, bi ∈ Ω) we have u ⊢M v if and only if

∀i ∈ {2, . . . ,m− 1} : (ai−1aiai+1, bi) ∈ αM . (6)

Let ∆ = {0, 1,#} ∪ Ω, and let π : ∆ → Ω ∪ {#} be the projection morphism
with π(a) = a for a ∈ Ω ∪{#} and π(0) = π(1) = ε. For m ∈ N, a string x ∈ ∆∗

is an accepting 2m-computation if x can be factorized as x = x1#x2# · · ·xn#
for some n ≥ 1 such that:

– For every 1 ≤ i ≤ n there exist ai,0, . . . , ai,2m−1 ∈ Ω such that xi =
∏2m−1

j=0 binm(j)ai,j .

– For every 1 ≤ i ≤ n, π(xi) ∈ Γ ∗QΓ+.
– π(x1) ∈ q0Σ

∗�∗ and π(xn) ∈ Γ ∗qfΓ+

– For every 1 ≤ i < n, π(xi) ⊢M π(xi+1).

From M we now construct a fixed automatic structure A of bounded degree. We
start with the following regular language U0:

U0 = π−1((Γ ∗QΓ+#)∗) ∩ (7)

(0+Ω({0, 1}+Ω)∗1+Ω#)+ ∩ (8)

0+q0({0, 1}
+Σ)∗({0, 1}+�)∗#∆∗ ∩ (9)

∆∗qf (∆ \ {#})∗# (10)

A string x ∈ U0 is a candidate for an accepting 2m-computation of M . With
(7) we describe the basic structure of such a computation, it consists of a list
of configurations separated by #. Moreover, every symbol in a configuration is
preceded by a bit string, which represents a counter. By (8) every counter is
non-empty, the first symbol in a configuration is preceded by a counter from 0+,
the last symbol is preceded by a counter from 1+. Moreover, by (9), the first
configuration is an initial configuration, whereas by (10), the last configuration
is accepting (i.e. the state is qf ).

For the further considerations, let us fix some x ∈ U0. Hence, we can write x
as x = x1#x2# · · ·xn# such that:

– For every 1 ≤ i ≤ n, there exist mi ≥ 1, ai,0, . . . , ai,mi
∈ Ω and counters

ui,0, . . . , ui,mi
∈ {0, 1}+ such that xi =

∏mi

j=0 ui,jai,j .

– For every 1 ≤ i ≤ n, ui,0 ∈ 0+, ui,mi
∈ 1+, and π(xi) ∈ Γ ∗QΓ+.

– π(x1) ∈ q0Σ
∗�∗ and π(xn) ∈ Γ ∗qfΓ+

We next want to construct, from m ∈ N, a small formula expressing that x is
an accepting 2m-computation. To achieve this, we add some structure around
strings from U0. Then the formula we are seeking has to ensure two facts:

(a) The counters behave correctly, i.e. for all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we
have |ui,j | = m and if j < mi, then val(ui,j+1) = val(ui,j) + 1. Note that
this enforces mi = 2m − 1 for all 1 ≤ i ≤ n.
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(b) For two successive configurations, the second one is the successor configura-
tion of the first one, i.e., π(xi) ⊢M π(xi+1) for all 1 ≤ i < n.

In order to achieve (a), we introduce the following three binary automatic rela-
tions:

σ0 = {(0v#, v0#) | v ∈ (∆ \ {#})∗}+

σΩ =

(

{(au, ua) | u ∈ {0, 1}+, a ∈ Ω}+(#,#)

)+

δ =

(

{(ua, va) | a ∈ Ω, u, v ∈ {0, 1}+, |u| = |v|,

val(v) = val(u) + 1 mod 2|u|}+(#,#)

)+

Hence, σ0 cyclically rotates every configuration to the left for one symbol, pro-
vided the first symbol is 0, whereas σΩ shifts all Ω-symbols one step to the
right in every configuration. The relation δ increments every counter modulo
2length of the counter. The crucial fact is the following:

Fact 1. For every m ∈ N, the following two properties are equivalent (recall that
x ∈ U0):

– ∃y1, y2 ∈ ∆∗ : δ(x, y2), σ
m
0 (x, y1), σΩ(y1, y2).

– For all 1 ≤ i ≤ n and 0 ≤ j ≤ mi, we have |ui,j | = m and if j < mi, then
val(ui,j+1) = val(ui,j) + 1.

Assume now that x ∈ U0 satisfies one (and hence both) of the two properties
from Fact 1 for some m. It follows that mi = 2m − 1 for all 1 ≤ i ≤ n and

x = x1#x2# · · ·xn#, where xi =

2m−1
∏

j=0

binm(j)ai,j for every 1 ≤ i ≤ n . (11)

In order to establish (b) we need additional structure. The idea is, for every
counter value 0 ≤ j < 2m, to have a word yj that coincides with x, but has all
the occurrences of binm(j) marked. Then an automaton can check that successive
occurrences of the counter binm(j) obey the transition condition of the Turing
machine. There are two problems with this approach: first, in order to relate x
and yj , we would need a binary relation of degree 2m (for arbitrary m) and,
secondly, an automaton cannot mark all the occurrences of binm(j) at once
(for some j). In order to solve these problems, we introduce a binary relation µ,
which for every x ∈ U0 as in (11) generates a binary tree of depth m with root x;
this will be the only relation in our automatic structure that causes exponential
growth. This relation will mark in x every occurrence of an arbitrary counter.
For this, we need two copies 0 and 0 of 0 as well as two copies 1 and 1 of 1. For
b ∈ {0, 1}, we define the mapping fb : {0, 0, 1, 1}∗{0, 1}+ → {0, 0, 1, 1}+{0, 1}∗

as follows (where u ∈ {0, 0, 1, 1}∗, c ∈ {0, 1}, and v ∈ {0, 1}∗):

fb(ucv) =

{

ucv if b 6= c

ucv if b = c
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We extend fb to (({0, 0, 1, 1}∗{0, 1}+Ω)+#)∗ as follows: For w = w1a1 · · ·wℓaℓ

with wi ∈ {0, 0, 1, 1}∗{0, 1}+ and ai ∈ Ω∪Ω# let fb(w) = fb(w1)a1 · · · fb(wℓ)aℓ.
Since fb can be computed with a synchronized transducer, the relation µ = f0∪f1
(here fb is viewed as a binary relation) is automatic.

Let x ∈ U0 as in (11), let the word y be obtained from x by overlining or
underlining each bit in x, and let u ∈ {0, 1}m be some counter. We say the
counter u is marked in y if every occurrence of the counter u is marked by
overlining each bit, whereas all other counters contain at least one underlined
bit.

Fact 2. Let x ∈ U0 be as in (11).

– For every counter u ∈ {0, 1}m, there is a unique y such that (x, y) ∈ µm and
u is marked in y.

– If (x, y) ∈ µm, then there exists a unique counter u ∈ {0, 1}m such that u is
marked in y.

Now, we can achieve our final goal, namely checking whether two successive
configurations in x ∈ U0 represent a transition of the machineM . Let the counter
u ∈ {0, 1}m be marked in y. We describe a finite automaton A1 that checks on
the string y, whether at position val(u) successive configurations in x are “locally
consistent”. The automaton A1 searches for the first marked counter in y. Then
it stores the next three symbols a1, a2, a3 from Ω (if the separator # is seen
before, then only one or two symbols may be stored), walks right until it finds
the next marked counter, reads the next three symbols b1, b2, b3 from Ω, and
checks whether (a1a2a3, b2) ∈ αM , where αM is from (6). If this is not the
case, then A1 will reject, otherwise it will store b1b2b3 and repeat the procedure
described above. Let U1 = L(A1). Together with Fact 1 and 2, the behavior
of A1 implies that for all x ∈ U0 and all m ∈ N, x represents an accepting
2m-computation of M iff x satisfies the formula

Φ(x) = ∃y1, y2 (δ(x, y2) ∧ σm
0 (x, y1) ∧ σΩ(y1, y2)) ∧ ∀y (µm(x, y) → y ∈ U1) .

Let us now fix some input w = a1a2 · · · an ∈ Σ∗ with |w| = n, and let an+1 = �

and m = 2n. Thus, w is accepted by M if and only if there exists an accepting
2m-computation x such that in the first configuration of x, the tape content is
of the form w�+. It remains to add some structure that allows us to express the
latter by a formula. But this is straightforward: Let ⊲ be a new symbol and let

Π = ∆ ∪ {0, 0, 1, 1, ⊲};

this is our final alphabet. Define the binary automatic relations ι01 and ιa (a ∈ Ω)
as follows:

ι01 = {(u ⊲ av, ua ⊲ v) | a ∈ {0, 1}, u, v ∈ ∆∗} ∪ {(0v, 0 ⊲ v) | v ∈ ∆∗}

ιa = {(u ⊲ av, ua ⊲ v) | u, v ∈ ∆∗} .
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Then, the first configuration of x has a tape from w�+ if and only if x satisfies
the formula

Ψ(x) = ∃y0, z0, . . . , yn+1, zn+1

(

ιm01(x, y0) ∧ ιq0
(y0, z0)

∧
n+1
∧

i=1

ιm0,1(zi−1, yi) ∧ ιai
(yi, zi)

)

.

Then, A = (Π∗, σ0, σΩ , δ, µ, ι01, (ιa)a∈Ω , U0, U1) is an automatic structure of
bounded degree such that M accepts w iff the formula ∃x ∈ U0 (Φ(x) ∧ Ψ(x))
holds in A. Lemma 4.1 allows to compute in time O(log(m)) = O(n) an equiva-
lent formula over the signature of A. This concludes the proof. ⊓⊔

The proof of the next result is in fact a simplification of the proof of Thm. 4.2,
since we do not need counters. In particular, the µ-relation in the proof of
Thm. 4.2, which was responsible for exponential growth, is not needed:

Theorem 4.3. There exists a fixed automatic structure A of bounded degree and
polynomial growth (in fact linear growth) such that Th(A) is EXPSPACE-hard.

5 Bounded quantifier alternation depth and open

problems

In this section we state some facts about first-order fragments of fixed quantifier
alternation depth. These results can be deduced by reusing the construction from
Section 4.

For n ≥ 0, a Σn-formula is a formula in prenex normal form, where the quan-
tifier prefix consists of n alternating blocks and the first block is a block of exis-
tential quantifiers. The Σn-theory of a structure A is the set of all Σn-formulas in
Th(A). For a class C of automatic presentations, the Σn-model checking problem
Σn-MC(C) of C denotes the set of all pairs (P,ϕ) where P ∈ C, and ϕ belongs
to the Σn-theory of A(P ). The following result can be found in [3]:

Theorem 5.1 (cf. [3]). The problem Σ1-MC(SA) is in PSPACE. Moreover,
there is a fixed automatic structure with a PSPACE-complete Σ1-theory.

From our construction in the proof of Thm. 4.3, we can slightly sharpen the
lower bound in this theorem:

Theorem 5.2. There exists a fixed automatic structure of bounded degree and
polynomial growth (in fact linear growth) with a PSPACE-complete Σ1-theory.

Let us now move on to Σ2-formulas and structures of arbitrary growth:

Theorem 5.3. Σ2-MC(SA) is in EXPSPACE. Moreover, there exists a fixed au-
tomatic structure of bounded degree with an EXPSPACE-complete Σ2-theory.
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For n ≥ 3, the precise complexity of the Σn-theory of an automatic structure
of bounded degree remains open. From our results, it follows that the complexity
is somewhere between EXPSPACE and 2EXPSPACE.

Conjecture 5.4. For n ≥ 3, Σn-MC(SAb) is in EXPSPACE.

A possible attack to this conjecture would follow the line of argument in the proof
of Thm. 3.5 and would therefore be based on Gaifman’s theorem. To make this
work, the exponential bound in Gaifman’s theorem would have to be reduced
which leads to the following conjecture:

Conjecture 5.5. Let A be a structure, a, b ∈ Ak, and d, n ≥ 0 such that the
spheres of radius d · 2n around a and b are isomorphic. Then, for every Σn-
formula ϕ(x1, . . . , xk) of quantifier depth at most d, we have: A |= ϕ(a) iff
A |= ϕ(b).
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