Compressed word problems in HNN-extensions
and amalgamated products

Niko Haubold and Markus Lohrey

Institut fiir Informatik, Universitéat Leipzig
{haubold,lohrey}@informatik.uni-leipzig.de

Abstract. It is shown that the compressed word problem for an HNN-
extension (H,t | t™'at = ¢(a)(a € A)) with A finite is polynomial time
Turing-reducible to the compressed word problem for the base group H.
An analogous result for amalgamated free products is shown as well.

1 Introduction

Since it was introduced by Dehn in 1910, the word problem for groups has
emerged to a fundamental computational problem linking group theory, topol-
ogy, mathematical logic, and computer science. The word problem for a finitely
generated group G asks, whether a given word over the generators of G represents
the identity of G, see Section 2 for more details. Dehn proved the decidability
of the word problem for surface groups. On the other hand, 50 years after the
appearance of Dehn’s work, Novikov and independently Boone proved the exis-
tence of a finitely presented group with undecidable word problem, see [10] for
references. However, many natural classes of groups with decidable word prob-
lem are known, as for instance finitely generated linear groups, automatic groups
and one-relator groups. With the rise of computational complexity theory, also
the complexity of the word problem became an active research area. This devel-
opment has gained further attention by potential applications of combinatorial
group theory for secure cryptographic systems [11].

In order to prove upper bounds on the complexity of the word problem for
a group G, a “compressed” variant of the word problem for G was introduced
in [6,7,14]. In the compressed word problem for G, the input word over the
generators is not given explicitly but succinctly via a straight-line program (SLP
for short). This is a context free grammar that generates exactly one word, see
Section 2. Since the length of this word may grow exponentially with the size
(number of productions) of the SLP, SLPs can be seen indeed as a succinct string
representation. SLPs turned out to be a very flexible compressed representation
of strings, which are well suited for studying algorithms for compressed data. In
[7,14] it was shown that the word problem for the automorphism group Aut(G)
of G can be reduced in polynomial time to the compressed word problem for G.
In [6], it was shown that the compressed word problem for a finitely generated
free group F' can be solved in polynomial time. Hence, the word problem for

Aut(F) turned out to be solvable in polynomial time [14], which solved an open
problem from [5]. Generalizations of this result can be found in [7].

In this paper, we prove a transfer theorem for the compressed word problem
of HNN-extensions [2]. For a base group H, two isomorphic subgroups A, B < H,
and an isomorphism ¢ : A — B, the corresponding HNN-extension is the group

G = (H,t |t at = p(a) (a € A)). (1)

Intuitively, it is obtained by adding to H a new generator t (the stable letter) in
such a way that conjugation of A by t realizes . The subgroups A and B are also
called the associated subgroups. A related operation is that of the amalgamated
free product of two groups H; and Hs with isomorphic subgroups A; < Hy,
Ay < Hy and an isomorphism ¢ : A7 — A,. The corresponding amalgamated
free product is the group (H1+#Hs | a = p(a) (a € A;)). Intuitively, it results from
the free product Hy = Ho by identifying every element a € A; with ¢(a) € As.
The subgroups A; and As are also called the amalgamated subgroups.

HNN-extensions were introduced by Higman, Neumann, and Neumann in
1949 [2]. They proved that H embeds into the group G from (1). Modern proofs
of the above mentioned Novikov-Boone theorem use HNN-extensions as the main
tool for constructing finitely presented groups with an undecidable word problem
[10]. In particular, arbitrary HNN-extensions do not preserve good algorithmic
properties of groups like decidability of the word problem. In this paper, we
restrict to HNN-extensions (resp. amalgamated products) with finite associated
(resp. amalgamated) subgroups, which is an important subcase. Stallings proved
[15] that a group has more than one end if and only if it is either an HNN-
extension with finite associated subgoups or an amalgamated free product with
finite amalgamated subgroups. Moreover, a group is virtually-free (i.e., has a free
subgroup of finite index) if and only if it can be built up from finite groups using
amalgamated products with finite amalgamated subgoups and HNN-extensions
with finite associated subgroups [1].

It is not hard to see that the word problem for an HNN-extension (1) with A
finite can be reduced in polynomial time to the word problem of the base group
H. The main result of this paper extends this transfer theorem to the compressed
setting: the compressed word problem for (1) with A finite can be reduced in
polynomial time to the compressed word problem for H. In fact, we prove a
slightly more general result, which deals with HNN-extensions with several stable
letters tq, ..., t,, where the number n is part of the input. For each stable letter ¢;
the input contains a partial isomorphism ¢; from the fixed finite subgroup A < H
to the fixed finite subgroup B < H and we consider the multiple HNN-extension
G = (H,t1,...,tn | t;7'at; = pi(a) (1 <i < n,a € dom(y;))). Our polynomial
time reduction consists of a sequence of polynomial time reductions. In a first
step, we reduce the compressed word problem for G to the same problem for
reduced sequences. These are strings (over the generators of H and the symbols
tl,tfl, ...y tn,t; 1) that do not contain a substring of the form t;lwti (resp.
tiwtjl), where the string w represents a group element from the domain (resp.
range) of ;. In a second step, we reduce the number n of stable letters to a

constant ¢, which only depends on the size of the fixed subgroup A. The main
step of the paper reduces the compressed word problem for reduced sequences
over an HNN-extension with k£ < ¢ many stable letters (and associated partial
isomorphisms from A to B) into two simpler problems: (i) the same problem but
with only k& — 1 many stable letters and (ii) the same problem (with at most ¢
many stable letters) but with associated subgroups that are strictly smaller than
A. By iterating this procedure, we arrive after a constant number of iterations
(where each iteration is a polynomial time reduction) at a compressed word
problem for which we directly know the existence of a polynomial time reduction
to the compressed word problem for the base group H. Since the composition
of a constant number of polynomial time reductions is again a polynomial time
reduction, our main result follows.

The main reduction step in our algorithm uses techniques similar to those
from [8], where a transfer theorem for solving equations over HNN-extensions
with finite associated subgroups was shown.

From the close relationship of HNN-extensions with amalgamated free prod-
ucts, a polynomial time reduction from the compressed problem for an amal-
gamated free product (Hy * Ha | a = ¢(a)(a € A;p)) (with A; finite) to the
compressed word problems of H; and Hs is deduced in the final Section 4.

A full version of this paper can be found at [3].

2 Preliminaries

Groups and the word problem For background in combinatorial group the-
ory see [10]. For a group G and two elements x,y € G we denote with z¥ = y~lxy
the conjugation of x by y. Let G be a finitely generated group and let X' be a finite
group generating set for G. Hence, X' = XU X~ is a finite monoid generating
set for G and there exists a canonical monoid homomorphism h : (X¥1)* — G|
which maps a word w € (X*1)* to the group element represented by w. For
u,v € (XFH)* we will also say that u = v in G in case h(u) = h(v). The word

problem for G w.r.t. X is the following decision problem:

INPUT: A word w € (ZFh)*.
QUESTION: w =1 in G?

It is well known that if I" is another finite generating set for G, then the word
problem for G w.r.t. X is logspace many-one reducible to the word problem for
G w.r.t. I'. This justifies one to speak just of the word problem for the group G.

The free group F(X) generated by X' can be defined as the quotient monoid
F(X) = (Z*)*/{aa! = ¢ | a € ¥*'}, where ¢ denotes the empty word. A
group presentation is a pair (X, R), where X' is an alphabet of symbols and R is
a set of relations of the form u = v, where u,v € (X%1)*. The group defined by
this presentation is denoted by (X' | R). It is defined as the quotient F/(X)/N(R),
where N (R) is the smallest normal subgroup of the free group F'(X') that contains
all elements uv~! with (u = v) € R. In particular F(X) = (X |). Of course,
one can assume that all relations are of the form r = 1. In fact, usually the set

of relations is given by a set of relators R C (X%1)*, which corresponds to the
set {r =1|r € R} of relations.

The free product of two groups G; and Gs is denoted by Gy * Ga. If G; ~
<2,L' | R,L> for i € {1,2} with Xy N Xy = @7 then Gy x Go ~ <21 U s | Ry U R2>

Straight-line programs We are using straight-line programs as a compressed
representation of strings with reoccuring subpatterns [13]. A straight-line pro-
gram (SLP) over the alphabet I' is a context free grammar A = (V, IS, P),
where V' is the set of nonterminals, I" is the set of terminals, S € V is the initial
nonterminal, and P C V' x (VU T')* is the set of productions such that (i) for
every X € V there is exactly one o € (V UTI')* with (X,) € P and (ii) there
is no cycle in the relation {(X,Y) € V.xV | Ja: (X,a) € P,Y occurs in a}.
A production (X, «) is also written as X — «. The language generated by the
SLP A contains exactly one word val(A). Moreover, every nonterminal X € V
generates exactly one word that is denoted by val(A, X), or briefly val(X), if A
is clear from the context. The size of A is [A| = } ¢ ,)ep | It can be seen
easily that an SLP can be transformed in polynomial time into an SLP in Chom-
sky normal form, which means that all productions have the form A — BC or
A—afor A,B,CeVanda€el.

Let G be a finitely generated group and X' a finite generating set for G. The
compressed word problem for G w.r.t. X' is the following decision problem:

INPUT: An SLP A over the terminal alphabet S+
OUTPUT: Does val(A) =1 hold in G?

In this problem, the input size is |A|. As for the ordinary word problem, the
complexity of the compressed word problem does not depend on the chosen
generating set. This allows one to speak of the compressed word problem for the
group G. The compressed word problem for G is also denoted by CWP(G).

Polynomial time Turing-reductions For two computational problems A and
B, we write A g; B if A is polynomial time Turing-reducible to B. This means
that A can be decided by a deterministic polynomial time Turing-machine that
uses B as an oracle. Clearly, < is transitive, and A <P B € P implies A €
P. More generally, if A, By, ..., B, are computational problems, then we write
A<EABy,....B,}if A<P U, ({i} x B;) (the set U}, ({i} x B;) is basically
the disjoint union of the B; with every element from B; marked by i).

HNN-extensions Let H = (X | R) be a base group with isomorphic subgroups
A;,B; < H (1 <i < n) and isomorphisms ¢; : 4; — B;. Let h : (X*1)* — H
be the canonical morphism, which maps a word w € (X%1)* to the element of
H it represents. We consider the HNN-extension

G=(Ht,... tn|a" = pi(a) (1 <i<nacA). (2)

This means that G = (X U {t1,...,t,} | RU{a' = p;(a) | 1 <i<n,a € A;}).
It is known that the base group H naturally embeds into G [2]. In this paper,

we will be only concerned with the case that all groups Ay, ..., A, are finite and
that X is finite. In this situation, we may assume that (J!, (A4, U B;) C X. We
say that A; and B; are associated subgroups in the HNN-extension G. For the
following, the notations A4;(+1) = A; and A;(—1) = B; are useful. Note that
o+ Aj(a) = Ai(—a) for o € {+1,-1}.

A word u € (ZFL U {t1, 17", ..ty t 1)) is reduced if u does not contain
a factor of the form ¢; “wt® for a € {1,—1}, w € (X*FH)* and h(w) € A;(a).
With Red(H,p1,...,p,) we denote the set of all reduced words. For a word
uw € (ZFLU{t,t7h . te, t;1})* let us denote with m;(u) the projection of u
to the alphabet {t1,t7*, ..., t,,t,,;'}. The following Lemma provides a necessary
and sufficient condition for equality of reduced strings in the group (2) [9]:

Lemma 2.1. Let u = uotf‘llul - ~tzfue and v = voté?vl . ~~t§:vm be reduced
words with ug, ..., U0, ..., Um € (T, aq,...,a0,81,...,8m € {1,-1},
and i1, ...,80,J1, -5 Jjm € {1,...,n}. Then u = v in the HNN-extension G from
(2) if and only if the following hold:

(a) mi(u) =7 (v) (ie., € =m, iy = ji, and ap = B for 1 <k < ()

(b) there exist c1,. .., com € Up_i(Ar U Bg) such that:
— UkCopt1 = Copvg in H for 0 < k < ¢ (here we set co = copy1 = 1)
— cop—1 € Aj (ag) and cop, = cp;’: (cor—1) € Aj (—ag) for 1 <k < {.

Condition (b) of the lemma can be visualized by a diagram of the following form
(also called a Van Kampen diagram, see [10] for more details), where £ = m = 4.
Light-shaded (resp. dark-shaded) faces represent relations in H (resp. relations
of the form ct® = t&p%(c) with ¢ € A;(a)).

5 s
o) U i Ug "ig us x4
71 4
Uuo Uy
€1 |c 3 [C4 s [Cs b
Vo Vg
tOél Y t0l4
i1 U1 1o vz s U3 ia

12 13

Some simple compressed word problems Plandowski [12] has shown that
for two SLPs A and B it can be checked in polynomial time whether val(A) =
val(B). In other words: the compressed word problem for a free monoid can be
solved in polynomial time. In [6], this result was extended to free groups. A
further generalization to free products G * G2 was shown in [7]:

Theorem 2.2. CWP(G; * G2) <E {CWP(G;), CWP(G2)}.

For our reduction of the compressed word problem of an HNN-extension to the
compressed word problem of the base group, we need the special case that in
(2) we have H = Ay = --- = A, = By = --- = B, (in particular, H is finite).
In this case, we can even assume that the finite group H (represented by its
multiplication table) is part of the input:

Lemma 2.3. The following problem can be solved in polynomial time:

INPUT: A finite group H, automorphisms ¢; : H — H (1 < i < n), and an
SLP A over the alphabet H U {t1,t7",.. . t,,t'}.
QUESTION: val(A) =1 in (H,t1,...,tn, | Al = pi(h) 1 <i<n,he€ H))?

Note that the group (H,ti,...,t, | bt = @;(h) (1 < i < n,h € H)) is the
semidirect product H x, F', where F' = F(t1,...,t,) is the free group generated
by t1,...,t, and the homomorphism ¢ : F — Aut(H) is defined by ¢(t;) = ¢;.

3 Compressed word problem of an HNN-extension

In this section we show that the compressed word problem for an HNN-extension
of the form (1) is polynomial time Turing-reducible to the compressed word
problem for H. In fact, we prove the existence of such a reduction for a slightly
more general problem, which we introduce below.

For the further consideration, let us fix the group H together with the finite
subgroups A and B. Let X be a finite generating set for H. These data are
fixed, i.e., they will not belong to the input of computational problems. In the
following, when writing down a multiple HNN-extension

(H ty, ...ty | a" = pi(a) (1<i<n,acA)), (3)

we allow implicitly that every ; is only partially defined on A. Thus, (3) is in
fact an abbreviation for (H,ty,...,t, | a' = p;(a) (1 <i < n,a € dom(p;))).
Note that there is only a fixed number of partial isomorphisms from A to B, but
we allow ¢; = ¢; for ¢ # j in (3).

Let us introduce several restrictions and extensions of CWP(G). Our most
general problem is the following computational problem UCWP(H, A, B) (the
letter “U” stands for “uniform”, meaning that a list of partial isomorphisms
from A to B is part of the input):

INPUT: Partial isomorphisms ¢; : A — B (1 <i < n) and an SLP A over the
alphabet XEL U {t1,t7%, ... t,, t 1}

QUESTION: val(A) = 1 in (H,t1,...,t, | a' = @;(a) (1 <i<n,a € A))?

The restriction of this problem UCWP(H, A, B) to reduced input strings is de-
noted by RUCWP(H, A, B). It is formally defined as the following problem:

INPUT: Partial isomorphisms ¢; : A — B (1 <i < n) and SLPs A, B over the al-
phabet XF U{ty,t71, ... t,, 1, '} such that val(A), val(B) € Red(H, p1,. .., ¢n).
QUESTION: val(A) = val(B) in (H,t1,...,t, | a' = pi(a) (1 <i<n,a € A))?
Let us now consider a fixed list of partial isomorphisms ¢1,...,¢, : A — B.
Then RCWP(H, A, B, ¢1,...,pn) is the following computational problem:

INPUT: Two SLPs A and B over the alphabet X' U {t1,¢7', ... t,,t. 1} such
that val(A), val(B) € Red(H, ¢1,...,¢n)-
QUESTION: val(A) = val(B) in (H,t1,...,t, | a¥ = pi(a) (1 <i<n,a € A))?

Our main result is:

Theorem 3.1. UCWP(H, A4, B) <L CWP(H).

The rest of Section 3 sketches the main steps of our proof of Theorem 3.1. First,
we state that we may restrict ourselves to SLPs that evaluate to reduced strings:

Lemma 3.2. UCWP(H, A, B) <L RUCWP(H, A, B). More precisely, there is
a polynomial time Turing-reduction from UCWP(H, A, B) to RUCWP(H, A, B)
that on input (p1,...,¢on,A) only asks RUCWP(H, A, B)-queries of the form
(1, 0n, A B") (thus, the list of partial isomorphisms is not changed).

Lemma 3.3. Let v1,...,0n : A — B be fixed partial isomorphisms. Then
CWP((H,t1,...,t, | a' = @i(a) (1 < i < n,a € A))) is polynomial time
Turing-reducible to RCWP(H, A, B, ¢1,...,¢n).

In a second step we show that the number of different stable letters can be
reduced to a constant. For this, it is important to note that the associated
subgroups A, B < H do not belong to the input; so their size is a fixed constant.

Fix the constant § = 2 - |A|! - 214]. Note that the number of HNN-extensions
of the form (H,t1,...,tx | a’ = ¢;(a) (1 < i < k,a € A)) with k < § is
constant. The following lemma says that RUCWP(H, A, B) can be reduced in
polynomial time to one of the problems RCWP(H, A, B, 1, ...,4y). Moreover,
we can determine in polynomial time, which of these problems arises.

Lemma 3.4. There exists a polynomial time algorithm for the following:

INPUT: Partial isomorphisms @1,...,¢0, : A — B and SLPs A;B over the al-
phabet S ULty 7Y, ... tn, t 1} such that val(A), val(B) € Red(H, 1, ..., ¢n).
OUTPUT: Partial isomorphisms 1, ..., : A — B where k < 0 and SLPs A’,
B’ over the alphabet X' U {t1,t7", ... ,tk,tlgl} such that:

— For every 1 <1i < k there exists 1 < j < n with ¢; = ;.

— val(A’),val(B’) € Red(H, 1, ...,¥)

— val(A) = val(B) in (H,t1,...,tn, | a' = ¢;(a) (1 < i < n,a € A)) if and
only if val(A') = val(B') in (H,t1,...,t | a' = ;(a) (1 <i<k,aec A)).

Due to Lemma 3.4 it suffices to concentrate our effort on problems of the form
RCWP(H, A, B, 1,...,¢k), where k < §. We have to check whether for two
given SLP-compressed reduced strings w and v conditions (a) and (b) from
Lemma 2.1 are satisfied. Condition (a) can be easily checked by computing SLPs
for m¢(u) and 7¢(v) and then checking for equality using Plandowski’s algorithm
[12]. The whole difficulty lies in checking condition (b) from Lemma 2.1. Let

Go= (H,t1,...,tx | a" = pi(a) (1 <i<k,a€ A)) (4)

and let us choose i € {1,...,k} such that |[dom(y;)| is maximal. W.l.o.g. assume
that ¢ = 1. Let dom(¢1) = A1 < A and ran(p;) = By < B. We write ¢t for ¢; in
the following and define I' = X U {ta, ..., t;}. We can write our HNN-extension
Gy from (4) as

Go = (K,t|a" = ¢1(a) (a € A1)), where (5)
K = (H,ty,...,t; | a" = pi(a) (2<i < k,a € A)). (6)

The latter group K is generated by I'. The main reduction step in our algorithm
is expressed in the following lemma:

Lemma 3.5. RCWP(H, A, B, ¢1,...,¢k) is polynomial time Turing-reducible
to the problems RCWP(H, A, B, o, ...,¢k) and RUCWP (A1, A1, 41).

Let us briefly sketch the proof of Lemma 3.5: Let (A,B) be an input for the
problem RCWP(H, A, B, ¢1, ..., ¢k) with k < §. Thus, A and B are SLPs over
the alphabet X1 U {t1,¢7", ...t ;' } = T U {t,¢t 71} with val(A), val(B) €
Red(H, ¢, ..., pr). Hence, we also have val(A), val(B) € Red(K, ¢1). W.lo.g.
we may assume that m(val(A)) = m;(val(B)). This property can be checked in
polynomial time using Plandowski’s algorithm [12], and if it is not satisfied then
we have val(A) # val(B) in Gy.

In a first step, we modify the SLPs A and B in such a way that in a first step
they generate strings of the form Xpt**X;..-t*mX,, and Ypt®1Y;---t*Y,,,
respectively. Here the X; and Y are nonterminals that generate in a second
phase strings over the alphabet I'*!. This is possible in polynomial time. Then,
we transform our RCWP(H, A, B, ¢1, ..., ¢k)-instance (A, B) into a compressed
word problem for a new group G; that is generated by the stable letter ¢ and
the symbols X1,..., X,,,Y1,...,Y,,. Here, the idea is to abstract as far as pos-
sible from the concrete structure of the original base group K. In some sense,
we only keep those K-relations that are necessary to prove (or disprove) that
val(A) = val(B) in the group Gy. These K-relations are translated into relations
on the “generic” symbols Xi,..., X\, Y1, .., Yy In order to compute these re-
lations, we need oracle access to CWP(K) or alternatively (by Lemma 3.3) to
RCWP(H, A, B, pa,...,¢k). Using Tietze transformations [10], our new group
(G1 is finally transformed into an HNN-extension with base group A; — this
gives us the RUCWP(Ay, A, Ap)-instance in Lemma 3.5.

We now apply Lemma 3.4 to the problem RUCWP(A;, A, A1) (one of the
two target problems in Lemma 3.5). An input for this problem can be reduced
in polynomial time to an instance of a problem RCWP (A1, A1, A1, ¢, ..., ¥k),
where v¥n,... 1, : A1 — A; are partial automorphisms and k£ < § (we have
k < 2|A|!-2l4l < 21A]1. 2141 = §). Hence, we are faced with an HNN-extension
of the form Gy = (A1, t1,...,tx | a¥ = ¥i(a) (1 < i < k,a € dom(y))).
Next, we separate the (constantly many) stable letters t1,...,t; that occur in
the RCWP(A4, Ay, A1, 91, ...,k)-instance into two sets: {t1,...,tx} = S1US
where S; = {t; | dom();) = A1} and Sy = {t1,...,tk} \ S1. W.lo.g. assume that
Sy = {t1,...,t¢}. Then we can write our HNN-extension G as

Gy = <H/,t1, R 7 | ali = wl(a) (1 <i</t,a€ ClOIIl(wZ»7 (7)

where H' = (Aj,tpp1,...,tx | @' = ¢¥i(a) L+ 1 < i < k,a € A;)). Note
that |dom(v;)| < |A;] for every 1 < ¢ < ¢ and that Ay = dom(v;) for every
£+1<4i<k.ByLemma 2.3, CWP(H’) can be solved in polynomial time; H' is
in fact the semidirect product Ay ¥y, F'(te41,. .., tx), where ¢ @ F'(tepq,...,te) —
Aut(Ay) is defined by ©(t;) = ;. Recall also that A; was chosen to be of
maximal cardinality among the domains of all partial isomorphisms ¢, ..., k.
The following proposition summarizes what we have shown so far:

Proposition 3.6. Let p1,...,pr : A — B be partial isomorphisms, where k <
0, A1 = dom(py), and w.l.o.g |A1| > |dom(y;)| for 1 <i < k. From an instance
(A,B) of the problem RCWP(H, A, B, p1,...,¢r) we can compute in polynomial
time with oracle access to the problem RCWP(H, A, B, pa, ..., ¢k)

(1) a semidirect product Ay %, F, where F' is a free group of rank at most 6,

(2) partial automorphisms ¥1,... 1% : A1 — Ay with £ < § and |dom();)| <
|A1| for all 1 <i<{, and

(3) an RCWP(A1x,F, A1, A1,91,...,1)-instance, which is positive if and only
if the initial RCWP(H, A, B, 1, ..., p)-instance (A, B) is positive.

Note that in (1) there are only constantly many semidirect products of the
form A; x, F' and that CWP(A; X, F') can be solved in polynomial time by
Lemma 2.3. We are now ready to prove the main theorem of this paper.

Proof of Theorem 3.1. By Lemma 3.2 and Lemma 3.4 it suffices to solve a prob-
lem RCWP(H, A, B, p1,...,ps) in polynomial time. For this we apply Proposi-
tion 3.6 repeatedly. We obtain a computation tree, where the root is labeled with
an RCWP(H, A, B, ¢1,...,¢s)-instance and every other node is labeled with an
instance of a problem RCWP(C' x, F,C,C,01,...,0,), where F is a free group of
rank at most J, C is a subgroup of our finite group A4, and p < §. The number of
these problems is bounded by some fixed constant. Since along each edge in the
tree, either the number of stable letters reduces by one, or the maximal size of an
associated subgroup becomes strictly smaller, the height of the tree is bounded
by a constant (it is at most |A| -6 = 2 - |A] - |A|! - 214]). Moreover, along each
tree edge, the size of a problem instance can grow only polynomially. Hence,
each problem instance that appears in the computation tree has polynomial size
w.r.t. the input size. Hence, the total running time is bounded polyomially. O

4 Amalgamated Products

Let Hy and Hy be two finitely generated groups. Let A; < Hy and A; < Hs be
finite and ¢ : A; — Ay an isomorphism. The amalgamated free product of Hy
and Hs, amalgamating the subgroups Ay and As by the isomorphism , is the
group G = (Hy * Ha | a = p(a) (a € Ay)).

Theorem 4.1. Let G = (H; * Hy | a = ¢(a) (a € Ay)) be an amalgamated free
product with Ay finite. Then CWP(G) <E {CWP(H,), CWP(Hz)}.

Proof. Tt is well known [10, Theorem 2.6, p. 187] that G' can be embedded into
the HNN-extension G’ = (Hy* Ha,t | a® = p(a) (a € A1)) by the homomorphism
¢ with &(z) =t~ 1ot for x € H; and &(x) = z for x € Hy. Given an SLP A we
can easily compute an SLP B with val(B) = &(val(A)). We obtain: val(A) =1
in G < @(val(A)) =11in &(G) < val(B) =1 in G'. By Theorem 3.1 and
Theorem 2.2, CWP(G’) can be solved in polynomial time with oracle access to
CWP(H;) and CWP (). 0

5

Open Problems

We have shown that the compressed word problem for an HNN-extension with
finite associated subgroups is polynomial time Turing-reducible to the com-
pressed word problem for the base group. Here, the base group and the as-
sociated subgroups are fixed, i.e. are not part of the input. One might also
consider the uniform compressed word problem for HNN-extensions of the form
(H,t|a" = ¢(a) (a € A)), where H is a finite group that is part of the input.
It is not clear, whether this problem can be solved in polynomial time. Finally,
one might also consider the compressed word problem for HNN-extensions of
semigroups [4].

References

1.

2.

10.
11.

12.

13.

14.

15.

W. Dicks and M. J. Dunwoody. Groups Acting on Graphs. Cambridge University
Press, 1989.

G. Higman, B. H. Neumann, and H. Neumann. Embedding theorems for groups.
Journal of the London Mathematical Society. Second Series, 24:247-254, 1949.

N. Haubold and M. Lohrey. Compressed word problems in HNN-extensions and
amalgamated products. arXiv.org, 2008. http://arxiv.org/abs/0811.3303.

J. M. Howie. Embedding theorems for semigroups. Quart. J. Math. Oxford Ser.
(2), 14:254-258, 1963.

I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity,
decision problems in group theory, and random walks. J. Algebra, 264(2):665-694,
2003.

M. Lohrey. Word problems and membership problems on compressed words. STAM
J. Comput., 35(5):1210 — 1240, 2006.

M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In
Proc. CSR 2007, LNCS 4649, pages 249-258. Springer, 2007.

M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated
products. In Proc. ICALP 2006, LNCS 4052, pages 681-692. Springer, 2006.

M. Lohrey and G. Sénizergues. Rational subsets in HNN-extensions and amalga-
mated products. Internat. J. Algebra Comput., 18(1):111-163, 2008.

R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.
A. Myasnikov, V. Shpilrain, and A. Ushakov. Group-based Cryptography.
Birkhauser, 2008.

W. Plandowski. Testing equivalence of morphisms on context-free languages. In
Proc. ESA’94, LNCS 855, pages 460-470. Springer, 1994.

W. Plandowski and W. Rytter. Complexity of language recognition problems for
compressed words. In Jewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomaa, pages 262-272. Springer, 1999.

S. Schleimer. Polynomial-time word problems. Comment. Math. Helv., 83(4):741—
765, 2008.

J. R. Stallings. Group Theory and Three-Dimensional Manifolds. Number 4 in
Yale Mathematical Monographs. Yale University Press, 1971.

10

