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Abstract. We give a simpler proof using automata theory of a recent
result of Kapovich, Weidmann and Myasnikov according to which so-
called benign graphs of groups preserve decidability of the generalized
word problem. These include graphs of groups in which edge groups are
polycyclic-by-finite and vertex groups are either locally quasiconvex hy-
perbolic or polycyclic-by-finite and so in particular chordal graph groups
(right-angled Artin groups).

1. Introduction

The generalized word problem is one the classical decision problems in
group theory. For a finitely generated (f.g.) group G, the generalized word
problem for G asks given as input elements g, g1, . . . , gn (represented by
words over some given generating set of G) whether g belongs to the sub-
group generated by g1, . . . , gn. Examples of groups with decidable gener-
alized word problem are f.g. free groups (see for instance [15]), polycyclic
groups [1, 7], and f.g. metabelian groups [11, 12]. Moreover, every subgroup
separable finitely presented group has a decidable generalized word problem.
Mikhailova [8] proved that if the generalized word problem is decidable in
G1 and G2 then the same holds for the free product G1 ∗G2. On the other
hand, Mikhailova also proved that the direct product of two free groups of
rank 2 has an undecidable generalized word problem [9]. The same was
shown by Rips [10] for certain hyperbolic groups, see [17] for refinements
of Rip’s construction. Free solvable groups of rank 2 and derived length at
least 3 also have undecidable generalized word problem [16]. It should be
noted that in these undecidability results the f.g. subgroup for which mem-
bership is being asked is fixed, i.e., a fixed f.g. subgroup H of the ambient
group G is constructed such that it is undecidable whether a given element
of G belongs to H. On the other hand, all the decidability results mentioned
above are uniform in the sense that the f.g. subgroup is part of the input.
In order to make this distinction clear, we will often use the term “uniform
generalized word problem” in the sequel.
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The starting point of our work is a recent result of Kapovich, Weidmann
and Myasnikov [5], which provides a condition for a graph of groups G
that implies decidability of the uniform generalized word problem for the
fundamental group π1(G). These conditions are quite technical (see the
definition of a benign graph of groups in Section 4); let us just mention
that (of course), for every vertex group of G, the uniform generalized word
problem has to be decidable and that every edge group has be Noetherian
(i.e., does not contain an infinite ascending chain of subgroups). In [5] it is
shown that graphs of groups in which edge groups are polycyclic-by-finite
and vertex groups are either locally quasiconvex hyperbolic or polycyclic-by-
finite — and so in particular the graphs of groups representing chordal graph
groups (right-angled Artin groups) — satisfy the necessary conditions.

The proof in [5] uses an extension of the Stallings folding technique [15].
The idea is to create a “folded” graph that recognizes a normal form for each
element of the subgroup. The need to be able to accept each element of the
subgroup with one graph is what makes the folding moves in [5] very tech-
nical. Our proof in Section 4 is based on an automaton saturation process
in the style of Benois construction [2, 3] for rational subsets of free groups,
see also [4, 6]. A crucial idea is that instead of looking for membership of a
given group element g in a f.g. subgroup H, we check membership of 1 in the
coset Hg−1. This makes the whole algorithm simpler because the normal
form theorem for fundamental groups of graphs of groups is simplest for
elements representing 1. The ascending chain condition for edge groups is
what guarantees that our saturation process eventually terminates.

2. Cosets

Our approach to the generalized word problem is to consider cosets of
finitely generated subgroups, rather than finitely generated subgroups. This
has the advantage that the uniform problem reduces to checking whether
the identity belongs to a coset, which is often easier.

It turns out to be useful to describe cosets in a way that does not refer to
which subgroup it is a coset of and whether it is a right or left coset. Such
a way was considered by Schein [13].

A coset of a group G is a subset A of G such that AA−1A = A. Equiva-
lently, if we viewG as a universal algebra with a ternary operation (x, y, z) 7→
xy−1z, then a coset is a subalgebra of G. Traditionally, cosets are required
to be non-empty, but it turns out for this paper that it is convenient to also
allow the empty set to be a coset. Notice that this definition of a coset is
left-right dual. One can verify that a non-empty set A is a coset in this sense
if and only if A = Hg for some subgroup H ≤ G and some element g ∈ G.

Proposition 2.1. Let A be a non-empty coset of G. Then H = AA−1 is a
subgroup of G and if g ∈ A, then A = Hg. Conversely, if H is a subgroup
of G and g ∈ G, then Hg is a non-empty coset of G.
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Proof. Assume first that A is a non-empty coset. Since AA−1 is non-empty,
AA−1AA−1 = AA−1 and (AA−1)−1 = AA−1, it follows that H = AA−1 is a
subgroup of G. Let g ∈ A. Clearly Hg ⊆ AA−1A = A. Conversely, if a ∈ A
then ag−1 ∈ AA−1 = H and so a ∈ Hg.

Clearly, if H is a subgroup of G and g ∈ G, then (Hg)(Hg)−1Hg =
H3g = Hg and so Hg is a non-empty coset. �

The set K(G) of all cosets of G is a complete lattice with respect to the
inclusion ordering since it is the set of all subalgebras of G with respect to
the ternary operation considered above. The maximum element of K(G)
is the coset G itself. The minimal non-empty elements are the singleton
subsets of G, which we identify with the elements of G notationally, i.e.,
we write g instead of {g}. Given any subset X of G, there is a least coset
A containing X, denoted X, and called the coset generated by X. It can
be described as the intersection of all cosets containing X. If X = ∅, then
X = ∅ and otherwise X is non-empty. We remark that if A and B are two
cosets containing g and A = Hg, B = Kg, then A ∩ B = (H ∩K)g. Note
that if A is a coset of G and H is a subgroup of G, then A∩H is a coset of
H (possibly empty).

Notice that if A ⊆ B are cosets and AA−1 = BB−1, then A = B. This
is clear if A = ∅. Otherwise, A,B are non-empty. Suppose g ∈ A ⊆ B.
Then B = BB−1g = AA−1g = A. Thus G is Noetherian (i.e., G satisfies
the ascending chain condition on subgroups, or equivalently all its subgroups
are finitely generated) if and only if it satisfies the ascending chain condition
on cosets.

Let us say that a coset A is finitely generated if there is a finite set of
elements X ⊆ G so that A = X. That is A is finitely generated as an
algebra with respect to the ternary operation (x, y, z) 7→ xy−1z. The next
proposition shows that a non-empty coset is finitely generated if and only
if it is a coset of a finitely generated subgroup; the empty coset is of course
finitely generated.

Proposition 2.2. Let A be a non-empty coset of G. Then A is finitely
generated if and only if H = AA−1 is a finitely generated subgroup of G.
More specifically, let g ∈ A. If {gi | i ∈ I} generates H as a subgroup, then
{gig | i ∈ I} ∪ {g} generates the coset A and if {ai | i ∈ J} generates the
coset A, then {aig−1 | i ∈ J} generates H as a subgroup.

Proof. Assume first that {gi | i ∈ I} generates H as a subgroup. Then
clearly gig ∈ Hg = A for all i ∈ I and g ∈ Hg = A. Now if B is any coset
containing all gig and g, then BB−1 contains the gi and hence H. Thus A =
Hg ⊆ BB−1B = B. This shows that A is generated by {gig | i ∈ I} ∪ {g}.
Next suppose that {ai | i ∈ J} generates A as a coset. Then clearly, H
contains the aig−1. If K is any subgroup containing the aig−1, then Kg
contains the ai and hence contains A. Thus H = AA−1 ⊆ Kg(Kg)−1 = K.
This shows that the aig−1 generate H as a subgroup. �
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Notice that when going from coset generators to group generators, we can
choose g to be one of the ai.

3. Dual automata and cosets

In this section we consider an automaton model for recognizing cosets of
groups. If Σ is a set we use Σ̃ for Σ together with a set of formal inverses Σ−1.
Then Σ̃∗ denotes the free monoid on Σ̃, which we view as the free monoid
with involution in the natural way. The free group on Σ will be denoted
F (Σ). When convenient, we will identify F (Σ) with the set of reduced words
in Σ̃∗ and the canonical projection ρ : Σ̃∗ → F (Σ) will often be thought of
as freely reducing a word. Throughout this article, Σ will be assumed finite.

3.1. Dual automata. By a graph Γ, we mean a graph in the sense of
Serre [14]. So Γ consists of a set V of vertices, E of edges, a function
α : E → V selecting the initial vertex of an edge and a fixed-point-free
involution on E written e 7→ e−1. This involution extends to paths in
the natural way. One defines the terminal vertex function ω : E → V by
ω(e) = α(e). A dual automaton A over Σ is a 4-tuple (Γ, ι, τ, δ) where:

• Γ = (V,E) is a graph;
• ι, τ are distinguished vertices of Γ, called the initial and terminal

vertices of Γ respectively;
• δ : E → Σ̃∗ is an involution preserving map, i.e., δ(e−1) = δ(e)−1.

A dual automaton will be called literal if δ : E → Σ̃.
The map δ extends to paths in the obvious way. The language of A ,

denoted L(A ), is the subset of F (Σ) consisting of all elements w so that
there is a path p from ι to τ with δ(p) = w in F (Σ), i.e., ρδ(p) = w. We say
that p is an accepting path for w.

Proposition 3.1. The language of a (finite) dual automaton over Σ is a
(finitely generated) coset of F (Σ). Conversely, every (finitely generated)
coset of F (Σ) is the language of a literal (finite) dual automaton over Σ.

Proof. Let A = (Γ, ι, τ, δ) be a dual automaton over Σ. Let L = L(A ). If
L is empty, then we are done, so assume it is non-empty. It is always true
that L ⊆ LL−1L. Conversely, if w ∈ LL−1L with w = uv−1z such that
u, v, z ∈ L and if p, q, r are paths accepting u, v, z respectively, then pq−1r
accepts w = uv−1z. Thus LL−1L = L and so L is a coset. Notice that the
map δ : E → Σ̃∗ induces a functor, also denoted δ, from the fundamental
groupoid of Γ to F (Σ). It follows immediately from the definition that if
L 6= ∅, then LL−1 = δ(π1(Γ, ι)) and so alternatively we can describe L as
δ(π1(Γ, ι))δ(p) where p is any path from ι to τ .

Next suppose that A is finite and assume still that L 6= ∅. Then π1(Γ, ι)
is finitely generated and so LL−1 is finitely generated and hence L is finitely
generated by Proposition 2.2.
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Conversely, let X ⊆ F (Σ) and let w ∈ F (Σ). Define a literal dual automa-
ton by taking a bouquet of subdivided circles at a base point ι labeled by the
elements of X (with the appropriate dual edges) and attach a thorn labeled
by w from ι to a new vertex τ (again with the appropriate dual edges). Then
the language recognized by the resulting literal dual automaton is 〈X〉w and
the automaton is finite if X is finite. �

Notice that the proof of Proposition 3.1 is effective. If G is a group
generated by Σ and ϕ : F̃ (Σ) → G is the canonical morphism, then the
subset of G recognized by the dual automaton A is by definition ϕ(L(A )).
It follows that a subset of G is recognized by a finite dual automaton if and
only if it is empty or a coset of a finitely generated subgroup. We obtain:

Proposition 3.2. Let G be a group generated by a finite set Σ. Then the
following are equivalent:

(1) The uniform generalized word problem is decidable for G.
(2) Uniform membership is decidable in finitely generated cosets of G.
(3) Uniform membership is decidable in subsets of G recognized by finite

dual automata over Σ.
(4) There is an algorithm which given a finite dual automaton A over Σ

as input, determines whether 1 belongs to the subset of G recognized
by A .

(5) There is an algorithm which given a finite literal dual automaton A
over Σ as input, determines whether 1 belongs to the subset of G
recognized by A .

(6) There is an algorithm which given a finitely generated coset A of G
(by a generating set) determines whether 1 ∈ A.

Proof. The equivalence of the first two items is clear. The equivalence of 2
and 3 follows from Proposition 3.1. Clearly 3 implies 4 implies 5. To see that
5 implies 6, suppose A = X. If X = ∅, there is nothing to prove. Otherwise,
by Proposition 2.2 we can find a generating set for H = AA−1, and A = Ha
where a ∈ X. The proof of Proposition 3.1 then effectively constructs a
literal dual automaton recognizing A. That 6 implies 1 follows from the
observation that g ∈ H if and only if 1 ∈ Hg−1 and Proposition 2.2, which
allows us to effectively switch between coset generators and generators of a
subgroup. �

4. The generalized word problem

In this section we use dual automata to give a technically simpler proof of
a result from [5] on the decidability of the uniform generalized word problem
for certain graphs of groups. We do not obtain algorithmically the induced
splitting of subgroup, as is done in [5].

To make clear the main idea, we first use dual automata to give a short
proof that the free product of groups with decidable generalized word prob-
lem again has decidable generalized word problem, a result due to Mikhailova
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[8]. Although strictly speaking this is a special case of our main result, it
seems worth proving separately to isolate the key idea.

Theorem 4.1 (Mikhailova [8]). Let G1, G2 be groups with decidable uni-
form generalized word problem. Then the free product G1 ∗G2 has decidable
uniform generalized word problem.

Proof. Let Σ1,Σ2 be disjoint generating sets for G1 and G2 and put Σ =
Σ1∪Σ2. Then Σ is a generating set for G = G1 ∗G2. By a syllable of a word
w ∈ Σ̃∗, we mean a maximal non-empty factor of w that can be written over
a single alphabet Σ̃i. Let ϕ : F (Σ)→ G be the projection.

Suppose that A is a finite literal dual automaton over Σ with initial vertex
ι and terminal vertex τ . We perform the following saturation procedure.
Start with A0 = A . Assume inductively Ai is obtained from Ai−1 by
adding a new edge labeled by 1 together with its inverse edge in such a
way that ϕ(L(Ai)) = ϕ(L(Ai−1)) for i ≥ 1, but no vertices are added.
Suppose that there is a pair p, q of distinct vertices with no edge from p
to q labeled by 1 and that, for some i = 1, 2, there is an element of Σ∗i
representing 1 in Gi accepted by the finite dual automaton over Σi obtained
by keeping only those edges of Ai labeled by elements of Σi or by 1, where
we take the initial vertex to be p and terminal vertex to be q. Then we
add an edge labeled by 1 from p to q, and the corresponding inverse edge
labeled by 1 from q to p, to obtain Ai+1. Otherwise the algorithm halts.
Clearly ϕ(L(Ai)) = ϕ(L(Ai+1)). This procedure can be done effectively by
Proposition 3.2 since the uniform generalized word problem is decidable in
G1 and G2. It eventually stops since we add no new vertices. Let B be the
final automaton obtained when the algorithm terminates.

We claim that 1 ∈ ϕ(L(A )) if and only if 1 labels an edge from ι to τ in
B. Since ϕ(L(B)) = ϕ(L(A )), trivially if there is an edge from ι to τ in
B labeled by 1, then 1 ∈ ϕ(L(A )). Conversely, suppose 1 ∈ ϕ(L(A )) and
let w be a word accepted by B with ϕ(w) = 1 having a minimum number
of syllables. If w = 1 or has one syllable, then by construction of B there
is an edge labeled by 1 from ι to τ . Otherwise, the normal form theorem
for free products implies w has a syllable representing 1 in one of the free
factors. But then by construction of B, the part of the accepting path for
w traversed by this syllable can be replaced by a single edge labeled by 1
and so there is a word with fewer syllables accepted by B and mapping to
1 in G. This contradiction completes the proof. �

We briefly recall the definition of a graph of groups and its fundamental
group; a detailed introduction can be found in [14]. A graph of groups
G = (G, Y ) consists of a graph Y and

(i) for each vertex v ∈ V (Y ), a group Gv;
(ii) for each edge y ∈ E(Y ), a group Gy such that Gy = Gy−1 ;
(ii) for each edge y ∈ E(Y ), monomorphisms αy : Gy → Gα(y) and

ωy : Gy → Gω(y) such that αy = ωy−1 for all y ∈ E(Y ).
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We assume that the groups Gv intersect only in the identity, and that they
are disjoint from the edge set E(Y ). For each v ∈ V (Y ), let 〈Σv | Rv〉 be
a presentation for Gv, with the different generating sets Σv disjoint. Let
∆ be a set containing exactly one edge from each orbit of the involution
y 7→ y−1 on E(Y ); we identify E(Y ) and ∆̃ when convenient. Let Σ be the
(disjoint) union of all the sets Σv and ∆. We define a group F (G, Y ) by the
presentation

F (G, Y ) = 〈Σ | Rv (v ∈ V (Y )) , yωy(g)y−1 = αy(g) (y ∈ E(Y ), g ∈ Gy) 〉.

Fix a vertex v0 ∈ V (Y ). A word in w ∈ Σ̃∗ is of cycle type at v0 if it is of
the form w = w0y1w1y2w2 . . . ynwn where:

(i) yi ∈ E(Y ) for all 1 ≤ i ≤ n;
(ii) y1 · · · yn is a path in Y starting and ending at v0;
(iii) w0 ∈ Σ̃∗v0 ;
(iv) for 1 ≤ i ≤ n, wi ∈ Σ̃∗ω(yi)

.

The images in F (G, Y ) of the words of cycle type at v0 form a subgroup
π1(G, Y, v0) of F (G, Y ), called the fundamental group of (G, Y ) at v0. The
fundamental group of a connected graph of groups is (up to isomorphism)
independent of the choice of vertex v0.

Let G = (G, Y ) be a graph of groups. Let v0 be a vertex of Y and fix a
spanning tree T for Y . For a vertex v, let pv be the unique geodesic path in
T from v0 to v. The fundamental group H = π1(G, Y, v0) is generated by the
words of cycle type at v0 of the form pα(y)yp

−1
ω(y) with y ∈ ∆ \T and pvxp−1

v

with x ∈ Σv. In particular, if Y is finite and each of the vertex groups is
finitely generated, then the fundamental group is finitely generated.

A graph of groups G is benign [5] if the following conditions hold:

(1) For each vertex v ∈ V (Y ) and each edge y ∈ E(Y ) with ω(y) = v,
there is an algorithm which given a finitely generated subgroup K
of Gv (in terms of a finite generating set for K given by words from
Σ̃∗v) and an element g ∈ Gv (via a word in Σ̃∗v) determines whether
Kg ∩ ωy(Gy) is empty and if it is non-empty returns an element of
the intersection (represented by a word in the alphabet Σ̃v);

(2) Each edge group Gy is Noetherian, or equivalently, all its subgroups
are finitely generated;

(3) The uniform generalized word problem is decidable for each edge
group Gy;

(4) For each vertex v ∈ V (Y ) and each edge y ∈ E(Y ) with ω(y) = v,
there is an algorithm which given a finitely generated subgroup K

of Gv (represented by a finite set of words over Σ̃∗v generating K)
computes a finite generating set for K ∩ ωy(Gy) as words over Σ̃v.
Note that K ∩ ωy(Gy) must be finitely generated since ωy(Gy) is
Noetherian.
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It is immediate from Proposition 2.2 that 1 and 4 from the definition of
a benign graph of groups are jointy equivalent to the following statement.

(5) For each vertex v ∈ V (Y ) and each edge y ∈ E(Y ) with ω(y) = v,
there is an algorithm which given a finitely generated coset A of Gv
(in terms of a finite generating set for the coset given by words from
Σ̃∗v) produces a finite generating set for the (possibly empty) coset
A ∩ ωy(Gy) of ωy(Gy) (represented by words in the alphabet Σ̃v).
Again A ∩ ωy(Gy) is finitely generated since Gy is Noetherian.

We remark that in a benign graph of groups, given an element of ωy(g)
as a word w in the generators Σ̃ω(y) one can find effectively a word v in the
generators Σ̃α(y) representing αy(g). To see this assume that Gy is finitely
generated by Σy. Then the monomorphisms αy and ωy can be represented
by mappings α′y : Σy → Σ̃∗α(y), ω

′
y : Σy → Σ̃∗ω(y). Then, given w ∈ Σ̃∗ω(y) one

enumerates all words u ∈ Σ̃∗y until a word u with ω′y(u) = w is found. This
word u represents g ∈ Gy and we can compute v = α′y(u). We shall use this
fact below without comment.

Theorem 4.2 (Kapovich, Weidmann, Myasnikov). Let G = (G, Y ) be a
finite, connected, non-empty benign graph of finitely generated groups with
underlying graph Y . Then the fundamental group of G has decidable uniform
generalized word problem if and only if every vertex group does.

Proof. Let ϕ : F (Σ) → F (G, Y ) be the projection. We retain the above
notation. In particular, we continue to use H to denote the fundamental
group of G. Since each vertex group embeds into the fundamental group [14],
one implication is immediate.

Suppose that K is a finitely generated subgroup of H. We assume its
generators are given as words over Σ̃ of cycle type at v0. Let g ∈ H be given
by a word of cycle type at v0 and construct the literal dual automaton A
over Σ from the proof of Proposition 3.1 recognizing Kg−1 (as a coset of
F (G, Y )). Then by construction g ∈ K if and only if there is a word of cycle
type at v0 representing 1 in F (G, Y ) and reading a path from ι to τ . We now
perform a saturation procedure to A to obtain a new dual automaton B over
Σ containing A with the same vertex set and the same initial and terminal
vertices. Moreover, B will have the property that ϕ(L(A )) = ϕ(L(B)) and
that g ∈ K if and only if there is an edge from ι to τ in B labeled by 1.

The saturation procedure continues as long as one of the following steps
can be performed. We assume that at each stage of the construction, we
have added no new vertices and that all edges are labeled by an element of
Σ̃∗v, for some v, or by an element of E(Y ).

Suppose that the automaton at the current phase of the saturation pro-
cedure is Ai. If Λ ⊆ Σ and p, q are vertices of a dual automaton C over Σ,
denote by C (Λ, p, q) the dual automaton consisting of all edges of C labeled
by elements of Λ̃∗, taking as initial vertex p and as terminal vertex q.
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Step 1. If there are vertices p 6= q so that 1 ∈ ϕ(Ai(Σv, p, q)) ⊆ Gv, then
add an edge p 1−→ q and an inverse edge q 1−→ p if there are not already such
edges. This step can be done effectively because of our assumption that Gv
has a decidable uniform generalized word problem.

Step 2. Let p
y−→ q and p′

y−→ q′ be edges in Ai with y ∈ E(Y ) (not necessarily
distinct). Let L be the coset ϕ(Ai(Σω(y), q, q

′)) and compute, using that the
graph of groups is benign, a finite generating set X for the (possibly empty)
coset L ∩ ωy(Gy) represented by words over Σ̃ω(y). For each x ∈ X, find a
word wx ∈ Σ̃∗α(y) representing αyω

−1
y (x) and add an edge p wx−−→ p′ and an

inverse edge p′ w
−1
x−−→ p if ϕ(w) /∈ ϕ(Ai(Σα(y), p, p

′)) (the latter can be checked
effectively, since Gα(y) has a decidable uniform generalized word problem).

This procedure is continued until none of the steps can be performed fur-
ther. Clearly this procedure does not change the accepted subset of F (G, Y ),
which is the coset Kg−1 ⊆ H.

We must show that our procedure stops. Step 1 can only be performed
finitely many times since we are adding no new vertices. Since the edge
groups are Noetherian, they satisfy ascending chain condition on cosets.
Step 2 can only be applied if the coset ϕ(Ai(Σα(y), p, p

′)) ∩ α(Gy) is made
into a bigger coset ϕ(Ai+1(Σα(y), p, p

′)) ∩ α(Gy) by adding the elements of
X (following the notation of Step 2) written in the alphabet Σα(y). Thus
Step 2 can only be applied a finite number of times.

Hence the procedure eventually terminates with a ‘saturated’ dual au-
tomaton B. The following lemma is crucial.

Lemma 4.3. Suppose that p
y−→ q and p′

y−→ q′ are edges in B and that
w ∈ Σ̃∗ω(y) labels a path from q to q′ in B and satisfies ϕ(w) = ωy(g). Then

there is a word u ∈ Σ̃∗α(y) labeling a path from p to p′ in B with ϕ(u) = αy(g).

Proof. The element ϕ(w) = ωy(g) belongs to the coset

C = ϕ(B(Σω(y), q, q
′)) ∩ ωy(Gy).

By saturation of B under Step 2, ϕ(B(Σα(y), p, p
′))∩αy(Gy) contains a gen-

erating set of the coset αy(ω−1
y (C)) (represented by words over the alphabet

Σ̃α(y)). Since in fact ϕ(B(Σα(y), p, p
′)) ∩ αy(Gy) is a coset, it thus contains

αy(ω−1
y (C)) and so there is a word u ∈ Σ̃∗α(y) such that ϕ(u) = αy(g) and u

labels a path in B from p to p′, as required. �

We now claim that g ∈ K if and only if 1 labels an edge from ι to τ in B.
If there is an edge from ι to τ labeled by 1, then trivially g ∈ K. Conversely,
if g ∈ K then there is a word w of cycle type at v0 reading from ι to τ in
A (and hence in B) with ϕ(w) = 1. Choose w = w0y1w1y2w2 . . . ynwn
satisfying (i)–(iv) with n minimal so that ϕ(w) = 1 and w labels a path
from ι to τ in B. If n = 0, then saturation under Step 1 shows that 1 labels
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an edge from ι to τ . Suppose n ≥ 1. We obtain a contradiction. It follows by
[14, Theorem I.11] that there exists i such that yi+1 = y−1

i and wi represents
an element ωyi(gi) for some gi ∈ Gyi . It now follows from Lemma 4.3 that we
can replace the factor yiwiyi+1 by a word w′i ∈ Σ̃∗α(yi)

= Σ̃∗ω(yi−1) = Σ̃∗α(yi+2)

to obtain a new word w0y1 · · · yi−1wi−1w
′
iwi+1yi+2 · · ·wn of cycle type at v0

labeling a path in B from ι to τ and mapping to 1 in F (G, Y ), again a
contradiction to minimality of n. This completes the proof. �
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[9] K. A. Mihăılova. The occurrence problem for direct products of groups. Math. USSR
Sbornik, 70:241–251, 1966. English translation.

[10] E. Rips. Subgroups of small cancellation groups. Bulletin of the London Mathematical
Society, 14:45–47, 1982.
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