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Abstract. In this paper we show that the membership problems for
finitely generated submonoids and for rational subsets are recursively
equivalent for groups with two or more ends.

1 Introduction

Let G be a finitely generated group with finite generating set Σ. Put Σ̃ =
Σ ∪ Σ−1 and let π : Σ̃∗ → G be the canonical projection from the free monoid
on Σ̃ to G. The (uniform) submonoid membership problem for G takes as input

words w,w1, . . . , wn ∈ Σ̃∗ and asks whether π(w) belongs to the submonoid
generated by π(w1), . . . , π(wn). Note that this problem generalizes the subgroup
membership problem (or generalized word problem) for G.

The (uniform) rational subset membership problem for G takes as input

a word w ∈ Σ̃∗ and a finite automaton A over Σ̃∗ and asks whether π(w) ∈

π(L(A )). Recall that a finite automaton A over Σ̃ is a tuple A = (Q, Σ̃, δ, q0, F )

where δ ⊆ Q × Σ̃ × Q, q0 ∈ Q is the initial state and F ⊆ Q is the set of final
states. The language L(A ) recognized by A is the set of all finite words from

Σ̃∗ that label a path from the initial state q0 to some state from F . A set of the
form π(L(A )) is called a rational subset of G.

Study of rational subsets of groups began with the pioneering work of Benois
on free groups [2] and Eilenberg and Schützenberger on abelian groups [6]. Ra-
tional subsets of groups were further studied in [1], where it was shown that a
subgroup is a rational subset if and only if it is finitely generated, from which one
obtains an easy proof of Howson’s Theorem (in essence the same as Stallings’
proof [22]). Recently, there has been renewed interest in the subject of ratio-
nal subsets of groups [7, 9, 11, 13, 14, 17, 18], especially in connection to solving
equations over groups [4, 5] and the isomorphism problem for toral relatively
hyperbolic groups [3]. On the other hand, work of Stephen [23] and Ivanov,
Margolis and Meakin [10] on the word problem for certain inverse monoids
has spurred some interest in the submonoid membership problem. In particu-
lar, the word problem for one-relator inverse monoids motivated the paper [16],
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where membership in positively generated submonoids of certain groups given
by monoid presentations is considered. Recently, the authors have shown that
the submonoid membership problem is undecidable in free metabelian groups of
rank 2 [15].

Trivially, decidability of the rational subset membership problem implies de-
cidability of the submonoid membership problem. In previous work [14], the
authors showed that these two problems are recursively equivalent for graph
groups (also known as right-angled Artin groups or free partially commutative
groups) and gave the precise class of graph groups for which these problems are
decidable. The authors were also able to prove that these problems are recur-
sively equivalent for certain amalgamated free products (including free products)
and HNN extensions with finite edge groups. This led the authors to conjecture
that the rational subset membership and submonoid membership problems are
recursively equivalent for groups with two or more ends. The main result of this
paper is to establish our conjecture.

Recall that if Γ is a locally finite graph, then the space of ends of Γ is the
projective limit lim

←−
π0(Γ \ F ) where F runs over all finite subgraphs of Γ and

π0(X) is the set of connected components of X. If G is a group with finite
generating set Σ, then the number of ends e(G) of G is the cardinality of the
space of ends of its Cayley graph Γ with respect to Σ; it is well known that
this number depends only on G and not Σ. Moreover, it is a result of Hopf that
e(G) is either 0, 1, 2 or is infinite. Clearly e(G) = 0 if and only if G is finite. It is
well known that e(G) = 2 if and only if G is virtually cyclic. Stallings’ famous
Ends Theorem [20,21] says that e(G) ≥ 2 if and only if G splits non-trivially as
an amalgamated free product or an HNN extension over a finite subgroup, or,
equivalently, G has an edge-transitive action without inversions on a simplicial
tree with no global fixed points and finite edge stabilizers.

Our main theorem is then the following result.

Theorem 1. Let G be a finitely generated group with two or more ends. Then
the submonoid membership and rational subset membership problems for G are
recursively equivalent. Moreover, there is a fixed rational subset of G with un-
decidable membership problem if and only if there is a fixed finitely generated
submonoid of G with undecidable membership problem.

We remark that the proof of the last statement in Theorem 1 is an exis-
tence argument: we do not give an algorithm that constructs a finitely generated
submonoid with undecidable membership problem from a rational subset with
undecidable membership problem.

The case that G in Theorem 1 has two ends is clear since a two-ended group is
virtually cyclic and hence has a decidable rational subset membership problem.
So the interesting case is a group with infinitely many ends.

The paper is organized as follows. Section 2 proves some results about groups
acting on trees that will allow us to reduce Theorem 1 to a special case. This
special case is then handled in Section 3.
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2 Groups acting on trees

The goal of this section is to reduce our considerations to a particular type of
HNN extension. The notion of a (simplicial) tree is understood in the sense of
Serre [19]. An edge e with initial vertex v and terminal vertex w is written as

v
e
−→ w. Then, there is an inverse edge w

e−1

−−−→ v, which never equals e. The pair
{e, e−1} is called a geometric edge, as it corresponds to an edge of the geometric
realization of the tree. Often we do not distinguish between an edge and the
corresponding geometric edge. Let T be a tree. If v, w are vertices of a tree
T , then [v, w] denotes the geodesic (or reduced) path from v to w in T . Note
that a path in T is geodesic if and only if it does not contain any backtracking,
i.e, an edge followed by its inverse edge. An automorphism g of T is without
inversions if, for each edge e of T , ge 6= e−1. Let G be a group acting on T (by
automorphisms of T ). Then G acts without inversions on T if every g ∈ G is
without inversions. Throughout this paper, we tacitly assume that all actions of
groups on trees are without inversions. We say that G acts edge-transitively on
T if G acts transitively on the set of geometric edges. The stabilizer in G of a
vertex or edge x of T will be denoted Gx. Of course, Ge = Ge−1 for any edge e.
A vertex v is called a global fixed point if G = Gv. The following lemma is well
known, but we include a proof for completeness.

Lemma 2. Let G be a finitely generated group acting edge-transitively on a tree
T without global fixed points and with finite edge stabilizers (thus G has more
than one end). Then the kernel of the action of G on T is the unique maximal
finite normal subgroup of G.

Proof. Let Ge be an edge stabilizer; it is finite by assumption. The kernel X
of the action of G on T is clearly contained in Ge and hence is a finite normal
subgroup. Let us show that every finite normal subgroup N of G is contained
in X. Since N is finite, it fixes some vertex v of T [19, p. 36]. Since G has no
global fixed point, we can find an element g ∈ G such that gv 6= v. Let [v, gv] be
the geodesic from v to gv in T . Then since N = gNg−1 fixes v and gv, it fixes
[v, gv] (since T is a tree) and hence it fixes some edge of this geodesic. Since G
acts edge-transitively on T and N is normal, it follows that N fixes every edge
of T and hence N ⊆ X. This completes the proof. ⊓⊔

The chief result in this section is a reduction to the case of an HNN extension
of a very special sort. Recall that if H is a group and ϕ : A → B is a partial
automorphism of H, i.e., an isomorphism between subgroups A and B of H, then
the corresponding HNN extension is the group ∗ϕ H given by the presentation
〈H, t | t−1at = ϕ(a) (a ∈ A)〉.

We first need some results concerning groups acting on trees, which may be
of interest in their own right. We recall a result of Tits (cf. [19, p. 63]) that an
automorphism g of a tree T (without inversions) either fixes a vertex, in which
case it is called elliptic, or it leaves invariant a unique line Tg, called its axis,
on which it acts via translation by some positive integer length. Elements of
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the latter sort are called hyperbolic. Of course, hyperbolic elements have infinite
order.

Our next lemma is a geometric version of a result proved combinatorially
(and separately) for amalgamated free products and HNN extensions with finite
edge groups [12].

Lemma 3. Let G be a finitely generated group acting edge-transitively on a
tree T without global fixed points and with finite edge stabilizers (thus G has

more than one end). Let v
e
−→ w be an edge of T and suppose that Ge is finite

proper subgroup of both Gv and Gw. Then there is an element s ∈ G such that
Ge ∩ sGes

−1 = X where X is the largest finite normal subgroup of G.

Proof. Since the pointwise stabilizer of a geodesic is the intersection of the stabi-
lizers of all its edges (and hence has size bounded by |Ge|), it follows that there
is a non-empty finite geodesic path p whose pointwise stabilizer H has smallest
cardinality amongst all geodesics in T . Without loss of generality, we may as-
sume that p starts with either e or e−1 (else translate it to do so). Moreover,
if p starts with e−1 we can replace e by e−1 and hence we may assume that p
starts with e. Let (se)ε with s ∈ G and ε = ±1 be the last edge traversed by
p. We claim that we can choose p so that ε = 1. If this is not the case, i.e.,
the last vertex of p is sv, then we can choose g ∈ Gsv \ Gse and consider the
path q = p(gse). We then have the situation in Figure 1. Any element of G that

v w sw sv

gsw

e
se gse

[w, sw]

Fig. 1. When sv is the last vertex of p.

fixes q must then fix p and hence the pointwise stabilizer of q coincides with
H by minimality. Thus replacing s by gs, we are in the desired situation. In
particular, it follows that we may take s to be a hyperbolic element with [v, sv]
a fundamental domain for the action of s on its axis Ts, as the edges e, se are
coherent in the sense of [19, p. 62]. Since every element that stabilizes e and se
stabilizes p, we have H = Ge ∩ sGes

−1. We will show that H = X, where X
is the largest finite normal subgroup of G. Recall from Lemma 2 that X is the
kernel of the action of G on T . Hence, X ⊆ H. It remains to show that H ⊆ X,
i.e., that H stabilizes every edge of T .

First we show that H is the pointwise stabilizer of Ts. Clearly, the pointwise
stabilizer of Ts is contained in H, since p is contained in Ts. If the pointwise
stabilizer of Ts is not equal to H, then some edge f of Ts is not stabilized by some
element of H. By extending p to a reduced path in the line Ts containing f , we
obtain a reduced path with a smaller pointwise stabilizer than p, a contradiction.
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Next, observe that H is closed under conjugation by all powers of s since Ts

is 〈s〉-invariant and H is the pointwise stabilizer of Ts. Suppose now that ge is
an edge of T \ Ts with g ∈ G. Let r be the geodesic path from ge to Ts. Clearly,
H stabilizes ge if and only if it stabilizes snge for some n since snHs−n =
H. Moreover, the geodesic path from snge to Ts is snr. Thus without loss of
generality, we may assume that r ends at a vertex u of sm[v, sv] with m > 2.
Then p[sw, u]r−1(ge)ε is a reduced path (see Figure 2) containing p as an initial
segment, for an appropriate choice of ε = ±1, and hence has pointwise stabilizer
contained in H. But by choice of p, the pointwise stabilizer of p[sw, u]r−1(ge)ε

cannot be properly contained in H. Thus H stabilizes ge, i.e, H stabilizes every
edge of T and hence H = X. This completes the proof. ⊓⊔

v w
e

sv sw
se

u
Ts

(ge)ε

r−1

p

z }| {

Fig. 2. The path p[sw, u]r−1(ge)ε .

Our next proposition uses the element s constructed above to create sub-
groups of a special form.

Proposition 4. Let G be a group acting on a tree T . Let v
e
−→ w be an edge of

T and put N =
⋂

g∈G gGeg
−1. Suppose that:

(a) [Gv : Ge] ≥ 3;
(b) [Gw : Ge] ≥ 2;
(c) There is an element s ∈ G with sGes

−1 ∩Ge = N .

Then G contains a subgroup isomorphic to an amalgamated free product of the
form Gv ∗N (N ⋊ Z). Moreover, if Ge is finite, then G contains a subgroup
isomorphic to Gv ∗N (N × Z) ∼= ∗1N

Gv, where 1N is the identity map on N .

Proof. We begin by observing that N consists of those element of G that stabilize
all translates of e. Our third hypothesis (c) then says that there is a translate
se so that the subgroup of elements fixing both e and se is exactly N . Our
initial goal is to show that we may assume that the geodesic [v, sv] from v to sv
contains both e and se. First suppose the geodesic contains exactly one of these
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edges. Replacing e by se and s by s−1 if necessary, we may assume without
loss of generality that it contains e. Since Gsw ) Gse by (b), we can choose
g ∈ Gsw \ Gse. Then we have the situation in Figure 3. Any element of G that

v w sv sw

gsv

e se

gse

[w, sv]

Fig. 3. When only e is in [v, sv].

fixes e and gse must then fix e and se and so gsGes
−1g−1∩Ge = N . Moreover, e

and gse belong to [v, gsv]. Thus replacing s by gs, we are in the desired situation.

Next suppose that neither e nor se belong to [v, sv]. Choose g ∈ Gsw \Gse.
Then we have the picture in Figure 4. Again any element of G which fixes e

w v sv sw

gsv

e se

gse

[v, sv]

Fig. 4. When neither e nor se is in [v, sv].

and gse must fix also se and hence belong to N . Thus gsGes
−1g−1 ∩ Ge = N .

Moreover, gse is an edge of [v, gsv] and so replacing s by gs leads us to the
previous case where exactly one of the edges is on the geodesic.

Thus we may now assume that e and se belong to [v, sv]. Choose g ∈ Gv \Ge.
Then we have the situation in Figure 5. The edges e and sge are coherent in the
sense of [19, p. 62]. Thus x = sg is a hyperbolic element with axis Tx = 〈x〉[v, sv]
and [v, sv] is a fundamental domain for the action of x on Tx (cf. [19, Sec. I.6]).
Let X1 be the connected component of T \ {se} containing sv and let X2 be the
connected component of T \ {se} containing sw.

Since [Gv : Ge] ≥ 3 by (a) and Tx contains only one other (geometric) edge
incident on v besides e, we can find h ∈ Gv\Ge so that he /∈ Tx. Then y = hxh−1

is a hyperbolic element with axis Ty = hTx. The axes Ty and Tx intersect at the
vertex v = hv, but do not coincide since he ∈ Ty \ Tx. Thus Ty ∩ Tx is either a
point, a segment or an infinite ray. Notice that X1∩Tx and X2∩Tx each contain
exactly one of the two ends of Tx. Interchanging e with se and s with s−1 in
the statement of the proposition if necessary, we may assume that Ty ∩ Tx does
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v w sw sv = xv

gw sgw = xw

e se

ge
sge = xe

[w, sw]

X1X2

Fig. 5. A part of the axis of x = sg

not contain the end of Tx determined by X2 ∩ Tx. Then, since x acts on Tx by
translations in the direction v to sv, by choosing n > 0 large enough, we can
guarantee that xnTy ∩Tx is contained in X1 and does not contain the vertex sv.
Putting u = xnyx−n yields a hyperbolic element u ∈ G with axis Tu = xnTy

such that Tu ∩ Tx 6= ∅ is contained in X1 and does not contain sv. The picture
is either as in Figure 6 or 7.

v w sw sv = xv
e se

[w, sw]

X1X2

Tx

Tu

Fig. 6. The axes Tx and Tu have bounded intersection.

Let H1 = 〈N,u〉 and H2 = Gv. Since u is hyperbolic and elements of N
are elliptic, it follows that 〈u〉 ∩ N = {1}. Consequently, H1

∼= N ⋊ Z via the
conjugation action of u on N . Also, if N is finite, then we can find a power n > 0
so that un acts trivially on N by conjugation. Then un is a hyperbolic element
with the same axis as u, but a larger translation length. Replacing u by un, we
may then assume that u commutes elementwise with N and so H1

∼= N × Z.
Also note that H1 ∩ H2 = N . Indeed, if h ∈ H1, we can write h = una with
a ∈ N . Then since a ∈ Gv, we have h ∈ Gv if and only if un ∈ Gv, if and only if
n = 0 since u is hyperbolic.

We claim that H1 and H2 generate a subgroup isomorphic to H1 ∗N H2. To
prove this, we use the so-called Ping Pong Lemma [8]. The Ping Pong Lemma
has the following setup: a group G acting on a set X, subgroups H1 and H2 of

7



v w sw sv = xv
e se

[w, sw]

X1X2

Tx

Tu

Fig. 7. The axes Tx and Tu have unbounded intersection.

G with [H1 : N ] ≥ 3, [H2 : N ] ≥ 2, where N = H1 ∩H2, and disjoint non-empty
subsets X1,X2 ⊆ X such that:

– h1X2 ⊆ X1 for all h1 ∈ H1 \N ;
– h2X1 ⊆ X2 for all h2 ∈ H2 \N .

The conclusion of the Ping Pong Lemma is that the subgroup of G generated by
H1 and H2 is isomorphic to the amalgamated free product H1 ∗N H2. We apply
the Ping Pong Lemma to our subgroups H1,H2. We take X to be T , whereas
X1 and X2 have already been defined above. One should think of the edge se as
the net of the ping pong table X. Note that in our case [H1 : N ] =∞, whereas
[H2 : N ] ≥ [Gv : Ge] ≥ 3.

So, let us show the two premises from the Ping Pong Lemma. For the first
premise, let k = uma ∈ H1 \N with a ∈ N . Then a fixes [v, sv] because it fixes
e and se. Let q be the geodesic from sv to Tu ∩ Tx; it is non-empty by choice of
u. As any non-trivial element um of 〈u〉 acts as a translation on the axis Tu, it
follows that the geodesic p = [ksv, sv] = [umsv, sv] must pass through a vertex
of Tu ∩ Tx as per Figure 8. Since Tu ∩ Tx is contained in X1, it follows that p is

sw sv ksv= umsv

X1X2

se

Tu

q
umq

Fig. 8. The geodesic p = [ksv, sv] = [umsv, sv]
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contained in X1. Let v0 ∈ X2. We claim that k[v0, sv]∪ [ksv, sv] = [kv0, ksv]∪ p
is the geodesic from kv0 to sv, which implies that this path (and hence kv0)
is contained in X1 since p is contained in X1. To show that k[v0, sv] ∪ [ksv, sv]
is a geodesic, note that k[v0, sv] ends with the edge (kse)−1. Hence, it suffices
to show that p does not begin with the edge kse. The geodesic p = [umsv, sv]
begins with the path umq, see Figure 8. Since q ⊆ X1 does not contain se, umq
does not contain kse = umse. We have thus shown kX2 ⊆ X1.

Finally, if k ∈ H2 \ N , then k stabilizes v but not se (since if it stabilizes
v and se, then it must also stabilize e and so belong to N by assumption on
s). Since kse 6= se and kv = v, there is a last vertex v0 on the geodesic [v, sv]
fixed by k and v0 6= sv. Let v1 ∈ X1. Then by definition of X1, it follows that
[v1, v0] = [v1, sv] ∪ [sv, v0] and hence [kv1, v0] = k[v1, v0] = k[v1, sv] ∪ k[sv, v0].
Notice that k[sv, v0] = [ksv, v0] cannot contain any edge of [v, sv] by choice of
v0. Therefore, k[v1, sv] ∪ k[sv, v0] ∪ [v0, sv] = [kv1, sv] (see Figure 9) and hence
[kv1, sv] contains the edge se. It follows that kv1 ∈ X2 and so kX1 ⊆ X2. The
Ping Pong Lemma now yields that 〈H1,H2〉 ∼= H1 ∗N H2, completing the proof.

⊓⊔

v svv0

ksv

v1

kv1

X1X2

Fig. 9. The inclusion kX1 ⊆ X2.

The proposition admits the following corollary.

Corollary 5. Let G be a finitely generated group splitting non-trivially over a
finite subgroup A. Suppose that H is an infinite vertex group of the corresponding
splitting. Then G has a subgroup isomorphic to the HNN extension ∗1X

H where
X is the largest finite normal subgroup of G and 1X : X → X is the identity
mapping.

Proof. Let T be the Bass-Serre tree associated to the splitting of G over A.
It follows that there is an edge v

e
−→ w of T so that Ge = A and Gv = H.
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Moreover, since the splitting is non-trivial and also G cannot be an ascending
HNN extension of H as H is infinite and A is finite, we must have Ge ( Gw.
The action of G on T is edge-transitive and has no global fixed point. Lemma 3
provides s ∈ S with

sGes
−1 ∩Ge = sAs−1 ∩A = X.

Observing that X =
⋂

g∈G gGeg
−1, Proposition 4 then allows us to conclude

that G contains a subgroup isomorphic to H ∗X (X ×Z), which is easily seen to
be isomorphic to the desired HNN extension. ⊓⊔

The following technical result, which is the heart of this paper, will be proved
in the next section.

Lemma 6. Let G = ∗1X
H be an HNN extension with X a finite proper nor-

mal subgroup of H. Then the rational subset membership problem for H can be
reduced to the submonoid membership problem for G. Moreover, if H has a fixed
rational subset with undecidable membership problem, then G has a fixed finitely
generated submonoid with undecidable membership problem.

Let us now prove Theorem 1 assuming Lemma 6.

Proof of Theorem 1 For the first statement of Theorem 1, the non-trivial
direction is to show that the rational subset membership problem for G reduces
to the submonoid membership problem for G. So assume that G has decidable
submonoid membership problem. We show that G has decidable rational subset
membership problem.

By Stallings’ Ends Theorem [20, 21] the group G splits non-trivially over a
finite subgroup A. By the results of [11, 13], the rational subset membership
problem for G reduces to the rational subset membership problem for the vertex
group(s) of the splitting. Hence, it suffices to show that if H is a vertex group of
the splitting, then H has decidable rational subset membership problem. If H is
finite, there is nothing to prove, so we may assume that H is infinite. Then by
Corollary 5, G contains a subgroup isomorphic to ∗1X

H. Clearly, also ∗1X
H

has a decidable submonoid membership problem. Lemma 6 implies that H has
decidable rational subset membership problem.

The non-trivial direction of the second statement is to show that if G has
a fixed rational subset with undecidable membership problem, then it has a
fixed finitely generated submonoid with undecidable membership problem. So
assume that G has a fixed rational subset with undecidable membership problem.
In [13] the membership problem for a fixed rational subset of G is reduced
to the membership problem of a finite number of fixed rational subsets of the
vertex groups (in the splitting over A). Hence one of the vertex groups H has
a fixed rational subset with undecidable membership problem; necessarily H
is infinite. Corollary 5 then applies to allow us to deduce that G has a fixed
subgroup of the form ∗1X

H where X is a finite proper normal subgroup of
H and H has a fixed rational subset with undecidable membership problem.
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Thus by Lemma 6, we conclude G has a fixed finitely generated submonoid with
undecidable membership problem. This completes the proof. ⊓⊔

3 The Proof of Lemma 6

Let us fix an HNN-extension G = 〈H, t | t−1xt = x (x ∈ X)〉, where X is a
proper finite normal subgroup of the finitely generated group H. Later, we will
assume that G has decidable submonoid membership problem. We can assume
that H is infinite, because otherwise H has decidable rational subset membership
problem and the statement of Lemma 6 trivially holds. The group H acts on X
by conjugation and since X is finite, the kernel N of this action has finite index
in H (and hence is finitely generated). In particular, N is infinite and so N ∩X
is a proper subgroup of N . Since decidability of rational subset membership is a
virtual property [9], to show that H has decidable rational subset membership,
it suffices to prove that N has decidable rational subset membership.

Let K = 〈N, t〉 ≤ G. Then K centralizes X and so in particular, K ∩ X is
contained in the center of K. Let us fix a finite group generating set Σ for N
and denote by π : Σ̃∗ → N the canonical projection. Without loss of generality
assume that N∩X ⊆ Σ̃. Suppose that A = (Q, Σ̃, δ, q0, F ) is a finite automaton,
For a state q ∈ Q, let X(q,A ) be the set of all elements from X ∩N represented
by a word labeling a loop at state q. Note that these elements form a submonoid
of X∩N and therefore (since X∩N is finite) a subgroup of X∩N . Let X(A ) ⊆ Σ̃
be the set

⋃
q∈Q X(q,A ).

The proof of the following lemma is quite similar to the proof of Lemma 11
and Theorem 7 in [14].

Lemma 7. From a given finite automaton A over Σ̃ and an element h ∈ N
(given as a word over Σ̃) we can construct effectively a finite subset ∆ ⊆ K and
an element g ∈ K such that h ∈ π(X(A )∗L(A )) if and only if g ∈ ∆∗.

Proof. Let A = (Q, Σ̃, δ, q0, F ). Without loss of generality assume that Q ⊆ N

and q ≥ 1 for all q ∈ Q. By introducing ε-transitions, we may also assume that
the set of final states F consists of a single state qf . We will construct a finite
subset ∆ ⊆ K and an element g ∈ K such that h ∈ π(X(A )∗L(A )) if and only
if g ∈ ∆∗.

Fix an element k ∈ N\X (hence also k−1 ∈ N\X). Without loss of generality
we may assume that k ∈ Σ. For every q ∈ Q ⊆ N, define [q] ∈ K by

[q] = tqkt−q.

Note that [q]x = x[q] for all x ∈ X since K centralizes X. Let

∆ = {[q]c[p]−1 | (q, c, p) ∈ δ} and g = [q0]h[qf ]−1. (1)

where we abuse notation by treating Σ̃ as if it were a subset of N . Observe that
in (1), we have c ∈ Σ̃∪{1} ⊆ N , since we introduced ε-transitions. Also ∆ ⊆ K.
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Note that X(A )∗ is contained in ∆∗. Indeed, if x ∈ X(q,A ), then we can write
x = a1 · · · am where there are transitions

(q, a1, q1), . . . , (qm−1, am, q) ∈ δ.

Then, since x commutes with [q], we have

x = [q]x[q]−1 = [q]a1[q1]
−1[q1]a2[q2]

−1 · · · [qm−1]am[q]−1 ∈ ∆∗.

It follows that X(A )∗ ⊆ ∆∗.
We claim that h ∈ π(X(A )∗L(A )) if and only if g ∈ ∆∗. Let Γ = Σ ∪ {t}.

Let us define a X-cycle to be word in Γ̃ ∗ of the form

[q1]h1[q2]
−1[q2]h2[q3]

−1 · · · [qℓ−1]hℓ−1[qℓ]
−1[qℓ]hℓ[q1]

−1

such that ℓ ≥ 1, q1, . . . , qℓ ∈ Q, h1, . . . , hℓ ∈ Σ̃∗, and h1 · · ·hℓ represents an
element from the subgroup X. Since all elements from X commute with all [q]
(q ∈ Q), an X-cycle equals an element from X in G (actually an element of
N ∩X).

A word in Γ̃ ∗ of the form

[q1]h1[p1]
−1 · · · [qm]hm[pm]−1,

where q1, p1, . . . , qm, pm ∈ Q and h1, . . . , hm ∈ Σ̃∗, is called X-cycle-free if it
does not contain an X-cycle as a factor.

Claim 1. Suppose that p1, . . . , pm, q1, . . . , qm ∈ Q with pi 6= qi (1 ≤ i ≤ m) and
qi 6= pi+1 (1 ≤ i < m). Then the element

g = [p1]
−1[q1][p2]

−1[q2] · · · [pm]−1[qm] (2)

has a reduced expression in the HNN extension G starting with t and ending
with t−1.

Proof of Claim 1. We have

m∏

i=1

[pi]
−1[qi] =

m∏

i=1

tpik−1t−pitqikt−qi

=
m∏

i=1

tpik−1tqi−pikt−qi

= tp1

(m−1∏

i=1

k−1tqi−piktpi+1−qi

)
k−1tqm−pmkt−qm .

The latter word is a reduced word for g of the required form. This establishes
Claim 1.

Let Y be the set of elements of the form (2). It follows immediately from the claim
that any element g′ of the form h0y1h1y2h2 · · · yrhr with r ≥ 1, y1, . . . , yr ∈ Y ,
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h1, . . . , hr−1 ∈ N \X, and h0, hr ∈ (N \X) ∪ {1} has a reduced expression for
the HNN extension G containing t and t−1 and hence does not belong to N .
Such elements g′ will be called good. I.e., g′ is good if it can be written as an
alternating word in elements of Y and N \X with at least one factor from Y .

Claim 2. Assume that in the HNN-extension G

[n]h[r]−1 = [q1]h1[p1]
−1 · · · [qm]hm[pm]−1 (3)

where n, r, q1, p1, . . . , qm, pm ∈ Q, h, h1, . . . , hm ∈ Σ̃∗. If
∏m

i=1
[qi]hi[pi]

−1 is X-
cycle-free, then either m = 0, n = r, and h = 1, or all of the following hold:

– m ≥ 1 and pi = qi+1 for all 1 ≤ i < m,
– q1 = n and pm = r, and
– h = h1 · · ·hm in N .

Proof of Claim 2. We prove Claim 2 by induction over m. If m = 0, then (3)
becomes

h = [n]−1[r].

Since h ∈ N , Claim 1 immediately yields n = r, and hence h = 1, as required.
Now assume that m ≥ 1.

Case 1. m ≥ 2 and there is 1 ≤ ℓ < m such that pℓ = qℓ+1. Then (3) implies

[n]h[r]−1 =

(ℓ−1∏

i=1

[qi]hi[pi]
−1

)
[qℓ](hℓhℓ+1)[pℓ+1]

−1

( m∏

i=ℓ+2

[qi]hi[pi]
−1

)

in G. Since
∏m

i=1
[qi]hi[pi]

−1 from (3) is X-cycle-free, also the right hand side of
this equality is X-cycle-free. Hence, we can apply the induction hypothesis and
obtain:

– pi = qi+1 for all 1 ≤ i ≤ ℓ− 1 and all ℓ + 1 ≤ i < m,
– q1 = n and pm = r, and
– h = h1 · · ·hm in N .

Since pℓ = qℓ+1 we obtain pi = qi+1 for all 1 ≤ i < m.

Case 2. pi 6= qi+1 for all 1 ≤ i < m. We have to show that m = 1, q1 = n,
pm = r, and h = h1 in N . Choose a set T of coset representatives for N/(N ∩X)
with 1 ∈ T and write hi = xih

′

i with h′

i ∈ T and xi ∈ N∩X, for 1 ≤ i ≤ m. From
this definition we get h1h2 · · ·hm = xh′

1h
′

2 · · ·h
′

m where x = x1 · · ·xm ∈ N ∩X
(since N centralizes X). Moreover, we also have

m∏

i=1

[qi]hi[pi]
−1 = x

m∏

i=1

[qi]h
′

i[pi]
−1

since N ∩X is central in K.
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Thus, again using that x is central in K, we have

x−1h = [n]−1

(
m∏

i=1

[qi]h
′

i[pi]
−1

)
[r]. (4)

Since the right hand side of (3) is X-cycle-free, if h′

i = 1 (i.e., hi ∈ X), then
qi 6= pi, for all 1 ≤ i ≤ m (else [qi]hi[pi]

−1 is an X-cycle). Also we are assuming
pi 6= qi+1. If h′

i 6= 1, then h′

i ∈ N \X. Therefore, if both n 6= q1 and r 6= pm, then
the right hand side of (4) represents a good element of G and so cannot belong
to N , as was observed just before the statement of Claim 2. This contradicts
x−1h ∈ N . Similarly, suppose n = q1 and pm 6= r. Then

x−1h = h′

1[p1]
−1

(
m∏

i=2

[qi]h
′

i[pi]
−1

)
[r]

which is again good, a contradiction. The case n 6= q1 and pm = r, is handled
analogously. If n = q1, pm = r and m ≥ 2, then

x−1h = h′

1[p1]
−1

(
m−1∏

i=2

[qi]h
′

i[pi]
−1

)
[qm]h′

m

and so is again good, a contradiction. The only remaining case is when n = p1,
r = pm and m = 1. Then [n]h[r]−1 = [n]h1[r]

−1 in G and so h = h1 in N , as
required. This proves Claim 2. An immediate consequence of Claim 2 is:

Claim 3. Assume that in the HNN-extension G

[q0]h[qf ]−1 = [q1]a1[p1]
−1 · · · [qm]am[pm]−1,

where (qi, ai, pi) ∈ δ (i.e., [qi]ai[pi]
−1 ∈ ∆) for 1 ≤ i ≤ m. If

∏m
i=1

[qi]ai[pi]
−1 is

X-cycle-free, then h ∈ π(L(A )).

The case m ≥ 1 follows immediately from Claim 2. In case m = 0, Claim 2 implies
q0 = qf and h = 1. But q0 = qf implies ε ∈ L(A ) and hence h ∈ π(L(A )).

Now we are ready to prove that h ∈ π(X(A )∗L(A )) if and only if g = [q0]h[qf ]−1 ∈
∆∗. First assume that h ∈ π(X(A )∗L(A )). Let h = xa1 · · · am in N , where
a1 · · · am ∈ L(A ) and x ∈ X(A )∗. Hence, there are states q0, . . . , qm with
(qi−1, ai, qi) ∈ δ for 1 ≤ i ≤ m, and qm = qf . It was observed earlier that
X(A )∗ ⊆ ∆∗. Moreover, since x commutes with [q0], we obtain in G:

g = [q0]h[qf ]−1 = x[q0]a1a2 · · · am[qf ]−1 = x
m∏

i=1

[qi−1]ai[qi]
−1 ∈ ∆∗.

Next assume that g = [q0]h[qf ]−1 ∈ ∆∗. Thus,

[q0]h[qf ]−1 = [q1]a1[p1]
−1 · · · [qm]am[pm]−1
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in G, where q1, p1, . . . , qm, pm ∈ Q, a1, . . . , am ∈ Σ̃ ∪ {ε}, and (qi, ai, pi) ∈ δ for
1 ≤ i ≤ m. Every X-cycle that occurs in

∏m
i=1

[qi]ai[pi]
−1 can be reduced in G

to an element from some subgroup of the form X(q,A ). Moreover, since X is
central in K, we can move each of these elements to the beginning and then to
the left-hand side [q0]h[qf ]−1 by taking inverses. Performing this reduction until
no further X-cycles remain, we obtain in G an equality

[q0]x
−1h[qf ]−1 = [n1]b1[r1]

−1[n2]b2[r2]
−1 · · · [nℓ]bℓ[rℓ]

−1 (5)

where (ni, bi, ri) ∈ δ and x ∈ X(A )∗. Since the right-hand side of (5) is X-cycle
free, Claim 3 implies x−1h ∈ π(L(A )), i.e., h ∈ π(X(A )∗L(A )). ⊓⊔

Let us consider again a finite automaton A = (Q, Σ̃, δ, q0, F ) over the alpha-

bet Σ̃. A subset P ⊆ Q is called admissible if q0 ∈ P and P ∩ F 6= ∅. For every
admissible subset P ⊆ Q we define the automaton AP as follows:

AP = (P × {R | R ⊆ P, q0 ∈ R}, Σ̃, δP , (q0, {q0}), {(q, P ) | q ∈ P ∩ F}),

where the transition relation δP is given by

δP = {((p,R), a, (q,R ∪ {q})) | p, q ∈ P, (p, a, q) ∈ δ}.

The automaton AP works as follows. The construction is such that there is a
run in AP of a word w from (q0, {q0}) to (p,R) if and only if there is a run from
q0 to p in A that visits precisely the states in R. In particular, L(AP ) consists of
all words w ∈ L(A ) that label an accepting path in A using exactly the vertices
from P .

Lemma 8. For every finite automaton A = (Q, Σ̃, δ, q0, F ) and h ∈ N , we
have: h ∈ π(L(A )) ⇐⇒ ∃P ⊆ Q admissible such that h ∈ π(L(AP )).

Proof. Since L(AP ) ⊆ L(A ) for all admissible subsets, to prove the lemma it
suffices to observe that if h = π(w) with w ∈ L(A ), then the set P of states
visited by a successful run of w is admissible and w ∈ L(AP ). ⊓⊔

We are now ready to prove Lemma 6.

Proof of Lemma 6 Assume that G = ∗1X
H, where X is a proper finite

normal subgroup of H, has a decidable submonoid membership problem. We
shall exhibit an algorithm for the rational subset membership problem for H.
If H is finite, there is nothing to prove. So assume that H is infinite. Let N be
the centralizer of X in H and let K = 〈N, t〉 ≤ G. Then N has finite index in
H and so it suffices to show that N has a decidable rational subset membership
problem by [9]. For this, let A = (Q, Σ̃, δ, q0, F ) be a finite automaton and let
h ∈ N . We show how to decide h ∈ L(A ). By Lemma 8 it suffices to decide
whether h ∈ π(L(AP )) for each admissible subset P ⊆ Q. Let us abbreviate the
automaton AP by B. Recall that the set of states of B is P ×{R ⊆ P | q0 ∈ R}.
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Now we apply Lemma 7 (with B in place of A ) and construct an element
g ∈ K and a finite subset ∆ ⊆ K such that

h ∈ π(X(B)∗L(B)) ⇐⇒ g ∈ ∆∗.

Hence it suffices to prove π(L(B)) = π(X(B)∗L(B)).
It is immediate that π(L(B)) ⊆ π(X(B)∗L(B)). So it remains to establish

that π(X(B)∗L(B)) ⊆ π(L(B)). To do this, it suffices to show that

π(xL(B)) ⊆ π(L(B))

for every x ∈ X(B) (then we can conclude by induction over the length of the
word from X(B)∗). Let us take x ∈ X((p,R),B) for some state (p,R) of B and
consider a word xa1a2 · · · am with a1a2 · · · am ∈ L(B). Hence, there exist states
(q0, R0), . . . , (qm, Rm) of B such that:

– R0 = {q0},
– ((qi, Ri), ai+1, (qi+1, Ri+1)) is a transition of B for 0 ≤ i ≤ m− 1, and
– Rm = P , qm ∈ P ∩ F .

Note that we have P = {q0, . . . , qm}. Hence, there exists an j such that qj = p
(recall that p ∈ P was such that x ∈ X((p,R),B)). Since X((p,R),B) ⊆ N ∩X
is central in N , we have

xa1a2 · · · am = a1 · · · ajxaj+1 · · · am

in N . Then there is a loop at state (p,R) = (qj , R) labeled with c1 · · · ck and
x = π(c1 · · · ck) by definition of X((p,R),B). In particular, c1 · · · ck reads a
loop in A at p visiting only states contained in R ⊆ P . Now, starting from
the initial state (q0, R0) we can read the word a1 · · · ajc1 · · · ckaj+1 · · · am on the
automaton B. The state reached after reading a1 · · · ajc1 · · · ckaj+1 · · · aℓ, for
ℓ ≥ j, is of the form (qℓ, Sℓ), where Rℓ ⊆ Sℓ. Hence, Sm = P . This shows that
a1 · · · ajc1 · · · ckaj+1 · · · am ∈ L(B). This completes the proof that N has decid-
able rational subset membership problem. Therefore, H has decidable rational
subset membership problem.

On the other hand, if H has a fixed rational subset with undecidable mem-
bership problem, then it follows from the construction in [9] that N has a fixed
rational subset π(L(A )) with undecidable membership problem. It follows from
Lemma 8 that L(AP ) has an undecidable membership problem for some P .
Consequently, Lemma 7 provides a fixed finitely generated submonoid of G with
undecidable membership problem.

This completes the proof of Lemma 6, thereby establishing Theorem 1. ⊓⊔

4 Concluding remarks and open problems

We have shown that, for every group with at least two ends, the rational subset
membership problem and the submonoid membership problem are recursively
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equivalent. Moreover, in a previous paper we proved that these two problems
are recursively equivalent for graph groups as well [14].

It is easy to see that there exists a group G with infinitely many ends for
which submonoid membership is undecidable but the generalized word problem
(i.e., membership in finitely generated subgroups) is decidable. Take any group H
for which the generalized word problem is decidable but submonoid membership
is undecidable (e.g., the free metabelian group of rank 2 [15] or the graph group
defined by a path with 4 nodes [14]). Then the same is true for H ∗Z, which has
infinitely many ends.

The obvious remaining open question is whether there exists a (necessarily
one-ended) finitely generated group for which rational subset membership is
undecidable but submonoid membership is decidable. We conjecture that such a
group exists. We also conjecture that decidability of submonoid membership is
not preserved by free products, because otherwise rational subset membership
and submonoid membership would be equivalent for all finitely generated groups.
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