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Abstract

Tight connections between leaf languages and strings compressed by straight-
line programs (SLPs) are established. It is shown that the compressed mem-
bership problem for a language L is complete for the leaf language class de-
fined by L via logspace machines. A more difficult variant of the compressed
membership problem for L is shown to be complete for the leaf language
class defined by L via polynomial time machines. As a corollary, it is shown
that there exists a fixed linear visibly pushdown language for which the com-
pressed membership problem is PSPACE-complete. For XML languages, it is
shown that the compressed membership problem is coNP-complete. Further-
more it is shown that the embedding problem for SLP-compressed strings is
hard for PP (probabilistic polynomial time).

Keywords: Leaf languages, straight-line programs, compressed string,
complexity theory

1. Introduction

Leaf languages were introduced in [9, 37] and have become an important
concept in complexity theory. Let us consider a nondeterministic Turing
machine M . For a given input x, one considers the yield string of the ordered
computation tree (i.e., the string obtained by listing all leaves from left to
right), where accepting (resp. rejecting) leaf configurations yield the letter 1
(resp. 0). This string is called the leaf string corresponding to the input x.
For a given language K ⊆ {0, 1}∗ let LEAF(M,K) denote the set of all inputs
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for M such that the corresponding leaf string belongs to K. By fixing K and
taking for M all nondeterministic polynomial time machines, one obtains the
polynomial time leaf language class LEAF

P

a (K). The index a indicates that
we allow Turing machines with arbitrary (non-balanced) computation trees.
If we restrict to machines with balanced computation trees, we obtain the
class LEAF

P

b (K). See [17, 19, 21] for a discussion of the different shapes for
computation trees.

Many complexity classes can be defined in a uniform way with this con-
struction. For instance, NP = LEAF

P
x (0∗1{0, 1}∗) and coNP = LEAF

P
x (1∗) for

both x = a and x = b. In [18], it was shown that PSPACE = LEAF
P

b (K) for
a fixed regular language K. In [21], logspace leaf language classes LEAF

L

a(K)
and LEAF

L
b (K), where M varies over all (resp. all balanced) nondeterministic

logspace machines, were investigated. Among other results, a fixed determin-
istic context-free language K with PSPACE = LEAF

L

a(K) was presented. In
[10], it was shown that in fact a fixed deterministic one-counter language K
as well as a fixed linear deterministic context-free language [20] suffices in
order to obtain PSPACE. Here “linear” means that the pushdown automaton
makes only one turn.

In [8, 36], a tight connection between leaf languages and computational
problems for succinct input representations was established. More precisely,
it was shown that the membership problem for a language K ⊆ {0, 1}∗ is
complete (w.r.t. polynomial time reductions in [8] and projection reductions
in [36]) for the leaf language class LEAF

P

b (K), if the input string x is repre-
sented by a Boolean circuit. A Boolean circuit C(x1, . . . , xn) with n inputs
represents a string x of length 2n in the natural way: the i-th position in
x carries a 1 if and only if C(a1, . . . , an) = 1, where a1 · · · an is the n-bit
binary representation of i. In this paper we consider another compressed
representation for strings, namely straight-line programs (SLPs) [33], which
is compared to Boolean circuits more amenable to efficient algorithms. A
straight-line program is a context-free grammar A that generates exactly
one string val(A). In an SLP, repeated subpatterns in a string have to be
represented only once by introducing a nonterminal for the pattern. An SLP
with n productions can generate a string of length 2n by repeated doubling.
Hence, an SLP can be seen indeed as a compressed representation of the
string it generates. Several other dictionary-based compressed representa-
tions, like for instance Lempel-Ziv (LZ) factorizations [40], can be converted
in polynomial time into SLPs and vice versa [33]. This implies that complex-
ity results can be transferee from SLP-encoded input strings to LZ-encoded

2



input strings.
Algorithmic problems for SLP-compressed strings were studied e.g. in

[6, 25, 26, 28, 29, 32, 33]. A central problem in this context is the compressed
membership problem for a language K: it is asked whether val(A) ∈ K for a
given SLP A. In [26] it was shown that there exists a fixed linear determinis-
tic context-free language with a PSPACE-complete compressed membership
problem. A straightforward argument shows that for every language K, the
compressed membership problem for K is complete for the logspace leaf lan-
guage class LEAF

L

a(K) (Proposition 4). As a consequence, the existence of
a linear deterministic context-free language with a PSPACE-complete com-
pressed membership problem [26] can be deduced from the above mentioned
LEAF

L

a-characterization of PSPACE from [10], and vice versa. For polynomial
time leaf languages, we reveal a more subtle relationship to SLPs. Recall that
the convolution u⊗ v of two strings u, v ∈ Σ∗ is the string over the paired al-
phabet Σ×Σ that is obtained from gluing u and v in the natural way (we cut
off the longer string to the length of the shorter one). We define a fixed projec-
tion homomorphism ρ : {0, 1}× {0, 1} → {0, 1} such that for every language
K, the problem of checking ρ(val(A)⊗ val(B)) ∈ K for two given SLPs A, B

is complete for the class LEAF
P

b (K) (Corollary 6). By combining Corollary 6
with the main result from [18] (PSPACE = LEAF

P

b (K) for a certain regular
language K), we obtain a regular language L for which it is PSPACE-complete
to check whether the convolution of two SLP-compressed strings belongs to
L (Corollary 8). Recently, the convolution of SLP-compressed strings was
also studied in [6], where for every n ≥ 0, SLPs An, Bn of size nO(1) were
constructed such that every SLP for the convolution val(An) ⊗ val(Bn) has
size Ω(2n/2).

From Corollary 8 we obtain a strengthening of one of the above mentioned
results from [10] (PSPACE = LEAF

L

a(K) for a linear deterministic context-
free language K as well as a deterministic one-counter language K) to visibly
pushdown languages [1]. The latter constitute a subclass of the deterministic
context-free languages which received a lot of attention in recent years due to
its nice closure and decidability properties. Visibly pushdown languages can
be recognized by deterministic pushdown automata, where it depends only
on the input symbol whether the automaton pushes or pops. Visibly push-
down languages were already introduced in [39] as input-driven languages. In
[12] it was shown that every visibly pushdown language can be recognized in
NC

1; thus the complexity is the same as for regular languages [2]. In contrast
to this, there exist linear deterministic context-free languages as well as de-
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terministic one-counter languages with an L-complete membership problem
[20]. We show that there exists a linear visibly pushdown language with a
PSPACE-complete compressed membership problem (Theorem 9). Together
with Proposition 4, it follows that PSPACE = LEAF

L

a(K) for a linear visibly
pushdown language K (Corollary 10).

In [31], nondeterministic finite automata (instead of polynomial time
(resp. logspace) Turing-machines) were used as a device for generating leaf
strings. This leads to the definition of the leaf language class LEAF

FA(K).
It was shown that CFL ( LEAF

FA(CFL) ⊆ DSPACE(n2) ∩ DTIME(2O(n)),
and the question for sharper upper and lower bounds was posed. Here we
give a partial answer to this question. For the linear visibly pushdown lan-
guage mentioned in the previous paragraph, the class LEAF

FA(K) contains a
PSPACE-complete language (Theorem 11).

Another application of the connection between SLP-compression and leaf
languages is presented in Section 4.2. The compressed embedding problem
(briefly COMPRESSED-EMBEDDING) asks for two given SLPs A and B

whether val(A) is a subsequence of val(B), i.e., whether val(A) can be embed-
ded into val(B) where consecutive positions in val(A) can be mapped to non-
consecutive positions in val(B). In [25], it was shown that COMPRESSED-
EMBEDDING is hard for PNP

|| , which is the class of all problems that can be
solved on a deterministic Turing-machine with access to an NP-oracle, where
all queries are sent in parallel to the oracle (non-adaptive oracle access). A
simplified proof can be found in [28]. Here we will strengthen the lower bound
of PNP

|| to PP (Theorem 13). A language L belongs to the class PP (proba-

bilistic polynomial time) if there exists a polynomial time NTM M such that
w ∈ L if and only if on input w the number of accepting computations is
larger than the number of rejecting computations. In other words, the accep-
tance probability has to be larger than 1/2. It is known that PNP

|| ⊆ PP [4].

Moreover, Toda’s famous theorem [35] states that PPP contains the polyno-
mial time hierarchy. Hence, PP-hardness of COMPRESSED-EMBEDDING
implies that COMPRESSED-EMBEDDING is not contained in the polyno-
mial time hierarchy unless the latter collapses. The best known upper bound
for COMPRESSED-EMBEDDING is still PSPACE.

Finally, in Section 5 we consider XML-languages [5], which constitute a
subclass of the visibly pushdown languages. XML-languages are generated by
a special kind of context-free grammars (XML-grammars), where every right-
hand side of a production is enclosed by a matching pair of brackets. XML-
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grammars capture the syntactic features of XML document type definitions
(DTDs), see [5]. We prove that, unlike for visibly pushdown languages, for
every XML-language the compressed membership problem is in coNP and
that there are coNP-complete instances.

A short version of this paper appeared in [27].

2. Preliminaries

Let Γ be a finite alphabet. The empty word is denoted by ε. Let s =
a1 · · · an ∈ Γ∗ be a word over Γ (n ≥ 0, a1, . . . , an ∈ Γ). The length of
s is |s| = n. For 1 ≤ i ≤ n let s[i] = ai and for 1 ≤ i ≤ j ≤ n let
s[i : j] = aiai+1 · · · aj. If i > j we set s[i : j] = ε. Moreover s[: i] = s[1 : i]. If
s is a suffix of the word u, then u\s denotes the unique string v with u = vs.

We denote with Γ = {a | a ∈ Γ} a disjoint copy of Γ. For a ∈ Γ let a = a.
For w = a1 · · · an ∈ (Γ ∪ Γ)∗ let w = an · · · a1. For two strings u, v ∈ Γ∗ we
define the convolution u⊗v ∈ (Γ×Γ)∗ as the string of length ℓ = min{|u|, |v|}
with (u ⊗ v)[i] = (u[i], v[i]) for all 1 ≤ i ≤ ℓ.

A sequence (u1, . . . , un) of natural numbers is superdecreasing if ui >
ui+1 + · · · + un for all 1 ≤ i ≤ n. An instance of the subsetsum problem is a
tuple (t, w1, . . . , wk) of binary coded natural numbers. It is a positive instance
if there are x1, . . . , xk ∈ {0, 1} such that t = x1w1+· · ·+xkwk. Subsetsum is a
classical NP-complete problem, see e.g. [13]. The superdecreasing subsetsum
problem is the restriction of subsetsum to instances (t, w1, . . . , wk), where
(w1, . . . , wk) is superdecreasing. In [22] it was shown that superdecreasing
subsetsum is P-complete.1 In fact, something more general is shown in [22]:
Let C(x1, . . . , xm) be a Boolean circuit with variable input gates x1, . . . , xm

(and some additional input gates that are set to fixed Boolean values). Then
from C(x1, . . . , xm) an instance (t(x1, . . . , xm), w1, . . . , wk) of superdecreasing
subsetsum is constructed. Here, t(x1, . . . , xm) = t0 + x1t1 + · · · + xmtm is a
linear expression such that:

• t1 > t2 > · · · > tm and the ti are pairwise distinct powers of 4. Hence
also the sequence (t1, . . . , tm) is superdecreasing.

• For all a1, . . . , am ∈ {0, 1}: C(a1, . . . , am) evaluates to true if and only

1In fact, [22] deals with the superincreasing subsetsum problem. But this is only a
nonessential detail. For our purpose, superdecreasing sequences are more convenient.
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if there exist b1, . . . , bk ∈ {0, 1} such that t0 + a1t1 + · · · + amtm =
b1w1 + · · · + bkwk.

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk

We encode a superdecreasing sequence (w1, . . . , wk) of natural numbers by
the string S(w1, . . . , wk) ∈ {0, 1}∗ of length w1 + · · · + wk + 1 such that for
all 0 ≤ p ≤ w1 + · · · + wk:

S(w1, . . . , wk)[p + 1] =

{
1 if ∃x1, . . . , xk ∈ {0, 1} : p = x1w1 + · · · + xkwk

0 otherwise

(1)
Since (w1, . . . , wk) is a superdecreasing sequence, the number of 1’s in the
string S(w1, . . . , wk) is 2k.

The lexicographic order on N∗ is denoted by ¹, i.e. u ¹ v if either u
is a prefix of v or there exist w, x, y ∈ N∗ and i, j ∈ N such that u = wix,
v = wjy, and i < j. A finite ordered tree is a finite set T ⊆ N∗ such that for
all w ∈ N∗, i ∈ N: if wi ∈ T then w,wj ∈ T for every 0 ≤ j < i. The set of
children of u ∈ T is uN∩T . A node u ∈ T is a leaf of T if it has no children.
We say that T is a full binary tree if (i) every node has at most two children,
and (ii) every maximal path in T has the same number of branching nodes
(i.e., nodes with exactly two children). A left initial segment of a full binary
tree is a tree T such that there exists a full binary tree T ′ and a leaf v ∈ T ′

such that T = {u ∈ T ′ | u ¹ v}. We can assume that the path from the
root ε to the leaf v moves from the first branching node u on the path to its
right child u1 (otherwise we could replace T by a full binary tree with fewer
branching nodes).

Example 1. The whole tree T in Figure 1 is a full binary tree, whereas
the thick part T ′ is a left initial segment of T , which consists of all nodes
u ¹ 0001000.

2.1. Leaf languages

We assume some basic background in complexity theory [30]. In the fol-
lowing, we introduce basic concepts related to leaf languages, more details can
be found in [9, 17, 18, 19, 21]. A nondeterministic Turing-machine (NTM)
M is adequate, if (i) for every input w ∈ Σ∗, M does not have an infinite
computation on input w and (ii) the set of finitely many transition tuples
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Figure 1: A full binary tree T with a left initial segment T ′ (the thick part)

of M is linearly ordered. For an input w for M , we define the computation
tree by unfolding the configuration graph of M from the initial configura-
tion. By condition (i) and (ii), the computation tree can be identified with a
finite ordered tree T (w) ⊆ N∗. For u ∈ T (w) let q(u) be the M -state of the
configuration that is associated with the tree node u. Then, the leaf string
leaf(M,w) is the string α(q(v1)) · · ·α(q(vk)), where v1, . . . , vk are all leaves
of T (w) listed in lexicographic order, and α(q) = 1 (resp. α(q) = 0) if q is
an accepting (resp. rejecting) state.

An adequate NTM M is called balanced, if for every input w ∈ Σ∗, T (w)
is a left initial segment of a full binary tree. With a language K ⊆ {0, 1}∗

we associate the language

LEAF(M,K) = {w ∈ Σ∗ | leaf(M,w) ∈ K}.

Finally, we associate four complexity classes with K ⊆ {0, 1}∗:

LEAF
P

a (K) = {LEAF(M,K) | M is an adequate polynomial time NTM}

LEAF
P

b (K) = {LEAF(M,K) | M is a balanced polynomial time NTM}

LEAF
L

a(K) = {LEAF(M,K) | M is an adequate logarithmic space NTM}

LEAF
L

b (K) = {LEAF(M,K) | M is a balanced logarithmic space NTM}

The first two (resp. last two) classes are closed under polynomial time (resp.
logspace) reductions.
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2.2. Straight-line programs

Following [33], a straight-line program (SLP) over the terminal alphabet
Γ is a context-free grammar A = (V, Γ, S, P ) (V is the set of variables, Γ is
the set of terminals, S ∈ V is the initial variable, and P ⊆ V × (V ∪ Γ)∗

is the finite set of productions) such that: (i) for every A ∈ V there exists
exactly one production of the form (A,α) ∈ P for α ∈ (V ∪ Γ)∗, and (ii) the
relation {(A,B) ∈ V ×V | (A,α) ∈ P,B occurs in α} is acyclic. Clearly, the
language generated by the SLP A consists of exactly one word that is denoted
by val(A). More generally, from every variable A ∈ V we can generate exactly
one word that is denoted by valA(A) (thus val(A) = valA(S)). We omit the
index A if the underlying SLP is clear from the context. The size of A is
|A| =

∑
(A,α)∈P |α|. Every SLP can be transformed in polynomial time into

an equivalent SLP in Chomsky normal form, i.e., all productions have the
form (A, a) with a ∈ Γ or (A,BC) with B,C ∈ V .

Example 2. Consider the SLP A over {a, b} that consists of the productions
A1 → b, A2 → a, and Ai → Ai−1Ai−2 for 3 ≤ i ≤ 7. The start variable is
A7. Then val(A) = abaababaabaab, which is the 7-th Fibonacci word. The
SLP A is in Chomsky normal form and |A| = 12.

One may also allow exponential expressions of the form Ai for A ∈ V and
i ∈ N in right-hand sides of productions. Here the number i is coded binary.
Such an expression can be replaced by a sequence of ⌈log(i)⌉ many ordinary
productions.

A composition system A = (V, Γ, S, P ) is defined analogously to an SLP,
but in addition to productions of the form A → α (A ∈ V , α ∈ (V ∪ Γ)∗)
it may also contain productions of the form A → B[i : j] for B ∈ V and
i, j ∈ N [14]. For such a production we define valA(A) = valA(B)[i : j].2

The size of a production A → B[i : j] is ⌈log(i)⌉ + ⌈log(j)⌉. As for SLPs
we define val(A) = valA(S). In [16], Hagenah presented a polynomial time
algorithm, which transforms a given composition system A into an SLP B

with val(A) = val(B).
Let us state some simple algorithmic problems that can easily be solved

in polynomial time (but not in deterministic logspace under reasonable com-

2In [14], a slightly more restricted formalism, where all productions have the form
A → a ∈ Γ or A → B[j :]C[: i], was introduced. But this definition is easily seen to be
equivalent to our formalism.
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plexity theoretic assumptions: problem (a) is #L-complete, problems (b) and
(c) are complete for functional P [25]):

(a) Given an SLP A, compute |val(A)|.

(b) Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, compute val(A)[i].

(c) Given an SLP A, a terminal symbol a, and a number i, compute the
position in val(A) of the i-th a in val(A) (if it exists).

(d) Given an SLP A and two number i, j ∈ {1, . . . , |val(A)|} with i ≤ j,
compute an SLP B with val(B) = val(A)[i : j].

(e) Given an SLP A over the terminal alphabet Γ and a homomorphism
ρ : Γ∗ → Σ∗, compute an SLP B such that val(B) = ρ(val(A)).

Algorithms for producing a small SLP for a given input string can be found in
[11, 34]. On the other hand, it is NP-complete to decide whether for a given
string w and a number n there exists an SLP A with val(A) = w and |A| ≤ n
[11]. In [32], Plandowski presented a polynomial time algorithm for testing
whether val(A) = val(B) for two given SLPs A and B. A cubic algorithm
can be found in [24]. For a language L, we denote with CMP(L) (compressed
membership problem for L) the following computational problem:

INPUT: An SLP A over the terminal alphabet Σ
QUESTION: val(A) ∈ L?

The following result was shown in [3, 21, 29]:

Theorem 3. For every regular language L, CMP(L) can be decided in poly-
nomial time. Moreover, there exists a fixed regular language L such that
CMP(L) is P-complete.

In [25], we constructed in logspace from a given superdecreasing sequence
(w1, . . . , wk) an SLP A over {0, 1} such that val(A) = S(w1, . . . , wk), where
S(w1, . . . , wk) is the string-encoding from (1). Let us briefly repeat the con-
struction. For 1 ≤ i ≤ k let

di =

{
wk − 1 if i = k

wi − (wi+1 + · · · + wk) − 1 if 1 ≤ i ≤ k − 1
(2)
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Moreover define strings S1, . . . , Sk ∈ {0, 1}∗ by the recursion

Sk = 10dk1 Si = Si+10
diSi+1 (1 ≤ i ≤ k − 1). (3)

Then S(w1, . . . , wk) = S1. Note that the SLP that implements the recur-
sion (3) can be constructed in logspace from the binary encoded sequence
(w1, . . . , wk) (in [25] only the existence of an NC-construction is claimed).
The only nontrivial step is the calculation of all partial sums wi+1 + · · ·+ wk

for 1 ≤ i ≤ k − 1 in (2). This is possible with a logspace transducer. In
fact iterated addition (the problem of computing a given sum n1 + · · ·+nℓ of
binary coded integers ni) can be accomplished in uniform TC

0, see e.g. [38,
Theorem 1.37].

3. Straight-line programs versus leaf languages

In [8, 36], it was shown that the membership problem for a language K ⊆
{0, 1}∗ is complete (w.r.t. polynomial time reductions in [8] and projection
reductions in [36]) for the leaf language class LEAF

P

b (K), if the input string
is represented by a Boolean circuit. For SLP-compressed strings, we obtain
a similar result:

Proposition 4. For every language K ⊆ {0, 1}∗, the problem CMP(K) is
complete w.r.t. logspace reductions for the class LEAF

L

a(K).

Proof. For CMP(K) ∈ LEAF
L

a(K), it suffices to note that for an input SLP
A = (V, {0, 1}, S, P ), an adequate logspace NTM M can behave such that the
computation tree on this input is just the derivation tree of A. For hardness,
let L ∈ LEAF

L

a(K). Hence, there exists an adequate logspace NTM M such
that w ∈ L if and only if leaf(M,w) ∈ K. Let us take an input w with |w| = n
and assume that M operates in space c · log(n). We construct in logspace an
SLP A = (V, {0, 1}, S, P ) such that val(A) = leaf(M,w). Here, V is the set
of all configurations of length c · log(n) and S is the initial configuration on
input w. Finally, the set P consists of the following productions:

• c → c1 · · · ck, where c ∈ V and c1, . . . , ck are the successor configura-
tions of c in this order.

• c → 0, if c is a rejecting configuration.

• c → 1 if c is an accepting configuration.
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The construction ensures that val(A) = leaf(M,w). ¤

We now prove a more subtle relationship between SLP-compressed strings
and polynomial time leaf languages. Let ρ : ({0, 1} × {0, 1})∗ → {0, 1}∗ be
the morphism defined by

ρ(0, 0) = ρ(0, 1) = ε, ρ(1, 0) = 0, ρ(1, 1) = 1. (4)

Theorem 5. Let M be a balanced polynomial time NTM. From a given input
w ∈ Σ∗ for M we can construct in polynomial time two SLPs A and B such
that |val(A)| = |val(B)| and leaf(M,w) = ρ(val(A) ⊗ val(B)).

Proof. Let w be an input for M . Our construction consists of five steps:

Step 1. By simulating M along the left-most computation path, we can
compute in polynomial time the maximal number m of branching nodes
along a maximal path in the computation tree T (w). Since M is balanced,
there is a full binary T and a leaf v ∈ {0, 1}∗ of T such that T (w) consists
of exactly those nodes of T that are lexicographically less or equal to v. The
tree T has exactly m branching nodes on each maximal path. Hence, every
leaf of T can be addressed by a bit string u ∈ {0, 1}m. Let r ∈ {0, 1}m be the
bit string that addresses the leaf v (r results from v by removing those 0’s
that correspond to non-branching nodes of T ). The string r can be computed
in polynomial time as follows: We follow the right-most computation path of
T (w) and store a number b, which is initialized to m. Each time, we encounter
a branching node v in T (w), we compute the number b′ of branching nodes
along a maximal path in the subtree rooted at v0 (the left child of v). Note
that the subtree rooted at v0 is a full binary tree. Then we print 0b−b′−11,
set b := b′, move to the right child v1, and continue. Note that we always
print 1 at the first branching node of T (w). When we finally reach a leaf in
T (w), we print 0b′ and terminate.

Note that every leaf of T (w) can be specified by a bit string u ∈ {0, 1}m

with u ¹ r.
Before we continue with Step 2, let us consider as an example the full

binary tree T from Figure 1. The thick part T ′ is a left initial segment
that consists of all nodes u ¹ v, where v = 0001000. The tree T has m =
3 branching nodes on each maximal path. Hence, every leaf of T can be
addressed by a bit string of length 3. The leaf v is addressed by r = 100.
The right-most path of T ′ (which leads to the leaf v = 0001000) has only one
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branching node in T ′ (namely 000). When walking down this path, we print
1 at the branching node 000 and set b := 2 (the number of branching nodes
along a maximal path in the subtree rooted at 0000). Hence, when we reach
the leaf 0001000 we print 00. Thus, in total we output the string r = 100.
The 5 leafs of T ′ can be addressed by the bit strings 000, 001, 010, 011, 100.

Step 2. Note that given a bit string u ∈ {0, 1}m with u ¹ r, we can compute
in polynomial time the leaf of T (w) that is addressed by the bit string u. In
particular, we can check whether M accepts in the leaf that is addressed by
u. Hence, using the classical Cook-Levin construction (see e.g. [30]), we can
compute in logspace a Boolean circuit Cw(x1, . . . , xm) from w such that for
all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates to true if and only if the
machine M accepts at the leaf of T (w) that is addressed by the bit string
a1 · · · am (in case r ≺ a1 · · · am the concrete value Cw(a1, . . . , am) does not
matter). The circuit Cw(x1, . . . , xm) has input gates x1, . . . , xm together with
some additional input gates that carry fixed input bits.

Step 3. Using the construction from [22] (see Section 2), we now transform
the circuit Cw(x1, . . . , xm) in logspace into a superdecreasing subsetsum in-
stance (t(x1, . . . , xm), w1, . . . , wk), where w1, . . . , wk ∈ N and t(x1, . . . , xm) =
t0 + x1t1 + · · · + xmtm such that

• t1 > t2 > · · · > tm and the sequence (t1, . . . , tm) is superdecreasing,

• for all a1, . . . , am ∈ {0, 1}: Cw(a1, . . . , am) evaluates to true if and only
if there exist b1, . . . , bk ∈ {0, 1} such that t0 + a1t1 + · · · + amtm =
b1w1 + · · · + bkwk,

• t0 + t1 + · · · + tm ≤ w1 + · · · + wk.

Step 4. By [25] (see the end of Section 2.2 of this paper), we can construct
in logspace from the two superdecreasing sequences (t1, . . . , tm), (w1, . . . , wk)
SLPs A′ and B over {0, 1} such that val(A′) = S(t1, . . . , tm) and val(B) =
S(w1, . . . , wk) (see (1)). Note that t0 + |val(A′)| = t0 + t1 + · · · + tm + 1 ≤
w1 + · · · + wk + 1 = |val(B)|.

Step 5. Recall that r = r1 · · · rm addresses the right-most leaf of T (w). Let
p = r1t1+ · · ·+rmtm. Thus, if r is the lexicographically n-th string in {0, 1}m

(this means that T (w) has exactly n leaves), then p+1 is the position of the
n-th 1 in val(A′). From the SLP A′ we can finally compute in polynomial
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time an SLP A with

val(A) = 0t0 S(t1, . . . , tm)[1 : p + 1] 0w1+···+wk−t0−p.

Then |val(A)| = |val(B)| and for all positions q ∈ {0, . . . , |val(A)| − 1}:

val(A)[q + 1] = 1 ⇐⇒ ∃a1, . . . , am ∈ {0, 1} : a1 · · · am ¹ r ∧

q = t0 + a1t1 + · · · + amtm

val(B)[q + 1] = 1 ⇐⇒ ∃b1, . . . , bk ∈ {0, 1} : q = b1w1 + · · · + bkwk

Due to the definition of the projection ρ in (4), we finally have

ρ(val(A) ⊗ val(B)) =
∏

x∈{0,1}m, x¹r

α(x),

where α(x) ∈ {0, 1} and α(x1 · · ·xm) = 1 if and only if there exist b1, . . . , bk ∈
{0, 1} such that t0+x1t1+· · ·+xmtm = b1w1+· · ·+bkwk. Thus, α(x1 · · ·xm) =
1 if and only if M accepts at the leaf addressed by x1 · · ·xm ¹ r. Hence,
leaf(M,w) = ρ(val(A) ⊗ val(B)). ¤

Corollary 6. For every language K ⊆ {0, 1}∗, the following problem is com-
plete for the class LEAF

P

b (K) w.r.t. polynomial time reductions:

INPUT: Two SLPs A and B over {0, 1}
QUESTION: ρ(val(A) ⊗ val(B)) ∈ K?

Proof. Hardness w.r.t. polynomial time reductions for the class LEAF
P

b (K)
follows directly from Theorem 5. For containment in LEAF

P

b (K), we describe
a balanced NTM M such that leaf(〈A, B〉,M) = ρ(val(A) ⊗ val(B)) for two
given input SLPs A and B over {0, 1}:

• M first computes deterministically ℓ = min{|val(A)|, |val(B)|} and the
number m of occurrences of 1 in val(A)[1, ℓ].

• Next, M branches nondeterministically such that the computation tree
becomes a left initial segment of a full binary tree with m leaves. In
the configuration that corresponds to the i-th leaf we store the binary
representation of i.

• From the i-th leaf, M now computes deterministically the position p of
the i-th 1 in val(A).
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• Then, M computes deterministically a = val(B)[p]. If a = 1 then M
accepts, otherwise M rejects. ¤

In order to get completeness results w.r.t. logspace reductions in the next
section, we need a variant of Theorem 5. We say that an NTM is fully
balanced, if for every input w, T (w) is a full binary tree (and not just a left
initial segment of a full binary tree).

Theorem 7. Let M be a fully balanced polynomial time NTM such that for
some polynomial p(n) and for every w, every maximal path in the computa-
tion tree T (w) has exactly p(|w|) many branching nodes. From a given input
w ∈ Σ∗ for M we can construct in logspace two SLPs A and B such that
leaf(M,w) = ρ(val(A) ⊗ val(B)) and |val(A)| = |val(B)|.

Proof. The only steps in the proof of Theorem 5 that cannot be done
in logspace (unless L = P), are step 1 and step 5. Under the additional
assumptions of Theorem 7, we have to compute in step 1 only m = p(|w|),
which is possible in logspace, since p(n) is a fixed polynomial. In step 5, we
have to compute an SLP A with

val(A) = 0t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm).

This is possible in logspace, since S(t1, . . . , tm) can be constructed in logspace.
¤

4. Applications

In this section, we apply the techniques developed in the previous section
to (i) compressed membership problems and (ii) the compressed embedding
problem.

4.1. Compressed membership problems

Corollary 8. There exists a fixed regular language L ⊆ ({0, 1} × {0, 1})∗

such that the following problem is PSPACE-complete w.r.t. logspace reduc-
tions:

INPUT: Two SLPs A and B over {0, 1}
QUESTION: val(A) ⊗ val(B) ∈ L?
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Proof. Membership in PSPACE is obvious. Let us prove the lower bound.
By [18], there exists a regular language K ⊆ {0, 1}∗ and a balanced polyno-
mial time NTM M such that the language LEAF(M,K) is PSPACE-complete.
Using the padding technique from [21, Proposition 2.3], we can even assume
that M is fully balanced and that the number of branching nodes along
every maximal path of T (w) is exactly p(|w|) for a polynomial p(n). Let
L = ρ−1(K), which is a fixed regular language, since ρ from (4) is a fixed
morphism. Let w be an input for M . By Theorem 7, we can construct
in logspace two SLPs A and B such that ρ(val(A) ⊗ val(B)) = leaf(M,w).
Hence, the corollary follows from

w ∈ LEAF(M,K) ⇐⇒ leaf(M,w) = ρ(val(A) ⊗ val(B)) ∈ K

⇐⇒ val(A) ⊗ val(B) ∈ L

¤

From Theorem 7 it follows that even the set of all SLP-pairs 〈A, B〉 with
val(A) ⊗ val(B) ∈ L and |val(A)| = |val(B)| (or |val(A)| ≤ |val(B)|) is
PSPACE-complete w.r.t. logspace reductions. We need this technical detail
in the proof of the next theorem.

In [26] we have constructed a fixed linear deterministic context-free lan-
guage with a PSPACE-complete compressed membership problem. As noted
in the introduction, this result follows also from PSPACE = LEAF

L

a(K) for a
linear deterministic context-free language K [10] together with Proposition 4.
Here, we sharpen this result to linear visibly pushdown languages.

Let Σc and Σr be two disjoint finite alphabets (call symbols and return
symbols) and let Σ = Σc∪Σr. A visibly pushdown automaton (VPA) [1] over
(Σc, Σr) is a tuple V = (Q, q0, Γ,⊥, ∆, F ), where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Γ is the finite set
of stack symbols, ⊥ ∈ Γ is the initial stack symbol, and

∆ ⊆ (Q × Σc × Q × (Γ \ {⊥})) ∪ (Q × Σr × Γ × Q)

is the set of transitions.3 A configuration of V is a triple from the set Q ×
Σ∗ × (Γ \ {⊥})∗⊥. For two configurations (p, au, v) and (q, u, w) (with a ∈
Σ, u ∈ Σ∗) we write (p, au, v) ⇒V (q, u, w) if one of the following three cases
holds:

3In [1], the input alphabet may also contain internal symbols, on which the automaton
does not touch the stack at all. For our lower bound, we will not need internal symbols.
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• a ∈ Σc and w = γv for some γ ∈ Γ with (p, a, q, γ) ∈ ∆

• a ∈ Σr and v = γw for some γ ∈ Γ with (p, a, γ, q) ∈ ∆

• a ∈ Σr, u = v = ⊥, and (p, a,⊥, q) ∈ ∆

The language L(V ) is defined as

L(V ) = {w ∈ Σ∗ | ∃f ∈ F, u ∈ (Γ \ {⊥})∗⊥ : (q0, w,⊥) ⇒∗
V (f, ε, u)}.

The VPA V is deterministic if for every p ∈ Q and a ∈ Σ the following hold:

• If a ∈ Σc, then there exists at most one pair (q, γ) ∈ Q × Γ with
(p, a, q, γ) ∈ ∆.

• If a ∈ Σr, then for every γ ∈ Γ there exists at most one q ∈ Q with
(p, a, γ, q) ∈ ∆.

For every VPA V there exists a deterministic VPA V ′ with L(V ) = L(V ′)
[1]. A VPA V is called a 1-turn VPA, if L(V ) ⊆ Σ∗

cΣ
∗
r. In this case L(V ) is

called a linear visibly pushdown language.
By a classical result from [15], there exists a context-free language with a

LOGCFL-complete membership problem. For visibly pushdown languages the
complexity of the membership problem decreases to the circuit complexity
class NC

1 [12] and is therefore of the same complexity as for regular languages
[2]. In contrast to this, by the following theorem, compressed membership
is in general PSPACE-complete even for linear visibly pushdown languages,
whereas it is P-complete for regular languages (Theorem 3):

Theorem 9. There exists a linear visibly pushdown language K such that
CMP(K) is PSPACE-complete w.r.t. logspace reductions.

Proof. Membership in PSPACE holds even for an arbitrary context-free
language K [33]. For the lower bound, we reduce the problem from Corol-
lary 8 to CMP(K) for some linear visibly pushdown language K. Let L ⊆
({0, 1} × {0, 1})∗ be the regular language from Corollary 8 and let A =
(Q, {0, 1} × {0, 1}, δ, q0, F ) be a deterministic finite automaton with L(A) =
L. W.l.o.g. assume that the initial state q0 has no incoming transitions.

From two given SLPs A and B over {0, 1} we can easily construct in
logspace an SLP C over Σ = {0, 1, 0, 1} with val(C) = val(B) val(A). Let
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V = (Q, q0, {⊥, 0, 1},⊥, ∆, F ) be the 1-turn VPA over ({0, 1}, {0, 1}) with
the following transitions:

∆ = {(q0, x, q0, x) | x ∈ {0, 1}} ∪{(q, x, y, p) | x, y ∈ {0, 1}, δ(q, (x, y)) = p}.

Thus, V can only read words of the form vu with u, v ∈ {0, 1}∗ and |v| ≥ |u|
(recall that q0 has no incoming transitions). When reading such a word vu,
V first pushes the word v (reversed) on the stack and then simulates the
automaton A on the string u ⊗ v and thereby pops from the stack. Let
K = L(V ). From the construction of V , we obtain

val(C) = val(B) val(A) ∈ K ⇐⇒ val(A) ⊗ val(B) ∈ L(A) ∧

|val(A)| ≤ |val(B)|.

By Corollary 8 (and the remark after the proof), this concludes the proof.
¤

Proposition 4 and Theorem 9 imply:

Corollary 10. PSPACE = LEAF
L

a(K) for some linear visibly pushdown lan-
guage K.

In [31], a suitable variant of nondeterministic finite automata were used as
leaf string generating devices. A finite leaf automaton (FLA) is a tuple
A = (Q, Σ, Γ, δ, ρ, q0), where Q is a finite set of states, Σ and Γ are finite
alphabets, δ : Q × Σ → Q+ is the transition mapping, ρ : Q → Γ is the
output mapping, and q0 ∈ Q is the initial state. For every state q ∈ Q and
every input word w ∈ Σ∗, we define by induction the string δ̂(q, w) as follows:

δ̂(q, ε) = q and δ̂(q, au) = δ̂(q1, u) · · · δ̂(qn, u) if a ∈ Σ and δ(q, a) = q1 · · · qn.

Let leaf(A,w) = ρ(δ̂(q0, w)), where ρ : Q → Γ is extended to a morphism on
Q∗. For K ⊆ Γ∗ let LEAF(A,K) = {w ∈ Σ∗ | leaf(A,w) ∈ K}. Finally, let
LEAF

FA(K) = {LEAF(A,K) | A is an FLA }.

Theorem 11. There exists a fixed linear visibly pushdown language K and
an FLA A such that LEAF(A,K) is PSPACE-complete w.r.t. logspace reduc-
tions.

Proof. We use the linear visibly pushdown language K from the proof of
Theorem 9. Notice that the question whether val(C) ∈ K is already PSPACE-
complete for a quite restricted class of SLPs. By tracing the construction of
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the SLP C (starting from the proof of Theorem 7), we see that already the
following question is PSPACE-complete w.r.t. logspace reductions for the
language K:

INPUT: Two superdecreasing sequences (t1, . . . , tm), (w1, . . . , wk), and a
number t0 (all numbers are encoded binary)
QUESTION: Does the following string belong to K?

S(w1, . . . , wk) 0t0 S(t1, . . . , tm) 0w1+···+wk−(t0+···+tm) (5)

Here we use again the string encoding of superdecreasing sequences from (1).
So, it remains to find a fixed FLA A with the following property: from given
input data t0, (t1, . . . , tm), (w1, . . . , wk) as above we can construct in logspace
a string w such that leaf(A,w) is exactly the string (5).

We only present an FLA A and a logspace construction of a string w from
a superdecreasing sequence (w1, . . . , wk) such that

leaf(A,w) = S(w1, . . . , wk).

From this FLA, an FLA for producing the leaf string (5) can be easily derived.
We use the following (logspace computable) exponent-encoding of a natural
number d:

e(d) = ae1$ae2$ · · · aem−1$aem $̃ ∈ {a, $}∗$̃,

where the numbers e1, e2, . . . , em are uniquely determined by: e1 < e2 <
· · · < em and d = 2e1 +2e2 + · · ·+2em . Next, we derive (in logspace) from the
superdecreasing sequence (w1, . . . , wk) the sequence (d1, . . . , dk) of differences
as defined in (2) and encode it by the string

e(d1, . . . , dk) =

(k−1∏

i=1

#e(di)

)
#̃e(dk)

over the alphabet Σ = {a, $, $̃, #, #̃}. Our fixed FLA is

A = ({q0, pr, pℓ, r0, r1}, Σ, {0, 1}, δ, ρ, q0),
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where the transition function δ is defined as follows:

δ(q0, #) = q0prq0 δ(pr, a) = pℓpr

δ(q0, x) = q0 for x ∈ {a, $, $̃} δ(pr, $) = r0pr

δ(q0, #̃) = r1prr1 δ(pr, $̃) = r0

δ(pℓ, a) = pℓpℓ δ(ri, x) = ri for x ∈ Σ, i ∈ {0, 1}

δ(pℓ, x) = r0 for x ∈ {$, $̃}

The δ-values that are not explicitly defined can be defined arbitrarily. Finally,
let ρ(r0) = 0 and ρ(r1) = 1; all other ρ-values can be defined arbitrarily. We
claim that

leaf(A, e(d1, . . . , dk)) = S(w1, . . . , wk).

First note that δ̂(pr, a
e$) = r2e

0 pr and δ̂(pr, a
e$̃) = r2e

0 . Since δ(r0, x) = r0

for all input symbols x, we have δ̂(pr, e(d)) = rd
0 for every number d and

therefore:

δ̂(q0, #e(d)) = δ̂(q0, e(d)) δ̂(pr, e(d)) δ̂(q0, e(d)) = q0r
d
0q0

δ̂(q0, #̃e(d)) = δ̂(r1, e(d)) δ̂(pr, e(d)) δ̂(r1, e(d)) = r1r
d
0r1

Hence, the FLA A realizes the recurrence (3) when reading the input string
e(d1, . . . , dk). ¤

A precise characterization of the class
⋃
{LEAF

FA(K) | K is context-free}
remains open.

4.2. Compressed embedding problem

We say that a string u = a1a2 · · · an (ai ∈ Σ) is a subsequence of a string
v ∈ Σ∗ (or u embeds into v, briefly u →֒ v), if v ∈ Σ∗a1Σ

∗a2Σ
∗ · · · an−1Σ

∗anΣ∗.
The compressed embedding problem, briefly COMPRESSED-EMBEDDING,
is defined as follows:

INPUT: Two SLPs A and B over the alphabet {0, 1}
QUESTION: val(A) →֒ val(B)?

In [25], it was shown that COMPRESSED-EMBEDDING is hard for PNP

|| ,
which is the class of all problems that can be solved on a deterministic Turing-
machine with access to an NP-oracle, where all queries are sent in parallel
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to the oracle (non-adaptive oracle access). A simplified proof for this result
can be found in [28].

Here we will strengthen the lower bound of PNP

|| to PP. The class PP

(probabilistic polynomial time) consists of all languages L, for which there
exists a polynomial time NTM M such that w ∈ L if and only if on input w
the number of accepting computations is larger than the number of rejecting
computations. The latter means that the acceptance probability has to be
larger than 1/2, when M is viewed as a probabilistic Turing machine. It is
known that PNP

|| ⊆ PP [4]. Moreover, Toda’s seminal theorem [35] states that

PPP contains the polynomial time hierarchy. To the knowledge of the author,
the best known upper bound for COMPRESSED-EMBEDDING is PSPACE.

Clearly, for all strings u, v, w we have uw →֒ vw if and only if u →֒ v. We
will need a simple generalization of this fact. We say that a string u ∈ Σ+

just fits into a string v = av′ ∈ Σ+ (a ∈ Σ) if u →֒ v and u 6 →֒ v′. The proof
of the following lemma is straightforward.

Lemma 12. Let u, v, w, x be strings such that w just fits into x. Then uw →֒
vx if and only if u →֒ v.

Theorem 13. COMPRESSED-EMBEDDING is PP-hard under logspace re-
ductions.

Proof. It is easy to see that there exists a fixed fully balanced polynomial
time NTM M such that the following problem is PP-complete:

INPUT: An input w for M and a binary coded number m.
QUESTION: Is the number of accepting computations of M on input w at
least m?

For instance, we can use the fact that checking whether a given CNF-formula
has at least m (which is part of the input) satisfying assignments is a classical
PP-complete problem.

Let us fix an input w for M and a binary coded number m. By Theorem 7,
we can compute in logspace two SLPs A and B such that leaf(M,w) =
ρ(val(A) ⊗ val(B)) and |val(A)| = |val(B)|. Let n = |val(A)| = |val(B)| ≥ 1;
the binary encoding of this number can be computed in logspace in this
particular case. For the number m we can w.l.o.g. assume that m ≤ n
(otherwise, there cannot be m accepting computations on input w).
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We define two morphisms φ1 and φ2 as follows:

φ1(0) = 0n+1 φ1(1) = (10)n (6)

φ2(0) = 0(10)n φ2(1) = (10)n+1 (7)

It is straightforward to compute in logspace SLPs C and D such that val(C) =
φ1(val(A))(10)m and val(D) = φ2(val(B)). We claim that val(C) →֒ val(D)
if and only if the number of accepting computations of M on input w is at
least m. Note that the latter fact means that leaf(M,w) = ρ(val(A)⊗val(B))
contains at least m 1’s, i.e., that val(A) ⊗ val(B) contains at least m occur-
rences of the symbol (1, 1). Hence, we have to show that φ1(val(A))(10)m →֒
φ2(val(B)) if and only if val(A) ⊗ val(B) contains at least m occurrences of
(1, 1).

By induction over i ≥ 1, we will prove that the following two statements
are equivalent for every x ∈ {0, . . . , n}:

(A) φ1(val(A)[: i])(10)x →֒ φ2(val(B)[: i])

(B) val(A)[: i] ⊗ val(B)[: i] has at least x many occurrences of (1, 1).

An inspection of (6) and (7) shows that this is true for i = 1: (A) holds if
and only if x = 0 or (x = 1 and val(A)[1] = val(B)[1] = 1) if and only if (B)
holds. Now, assume that (A) and (B) are equivalent for some i ≥ 1. We will
prove the equivalence for i + 1. We can restrict to the case x > 0 since for
x = 0, (A) and (B) are both true (for (A) note that φ1(a) →֒ φ2(b) for all
a, b ∈ {0, 1}). Note that for every k ≥ 1 and x ≤ n, φ2(val(B)[: k]) has a
suffix of the form (10)x. Hence, we get

φ1(val(A)[: i + 1])(10)x →֒ φ2(val(B)[: i + 1])

if and only if

φ1(val(A)[: i + 1]) →֒ φ2(val(B)[: i + 1]) \ (10)x. (8)

We make a case distinction on the symbols val(A)[i + 1] and val(B)[i + 1].

Case 1. val(A)[i + 1] 6= 1 or val(B)[i + 1] 6= 1. We first show that (8) is
equivalent to

φ1(val(A)[: i]) →֒ φ2(val(B)[: i]) \ (10)x. (9)
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Case 1.1. val(A)[i + 1] = val(B)[i + 1] = 0. Then (8) is equivalent to

φ1(val(A)[: i])0n+1 →֒ φ2(val(B)[: i])0(10)n−x (10)

= (φ2(val(B)[: i]) \ (10)x)(10)x0(10)n−x.

Since 0n+1 just fits into 0(10)x−10(10)n−x, Lemma 12 implies that (10) is
equivalent to

φ1(val(A)[: i]) →֒ (φ2(val(B)[: i]) \ (10)x)1. (11)

Finally, since φ1(val(A)[: i]) ends with 0, (11) is indeed equivalent to (9).

Case 1.2. val(A)[i + 1] = 0 and val(B)[i + 1] = 1. Then (8) is equivalent to

φ1(val(A)[: i])0n+1 →֒ φ2(val(B)[: i])(10)n+1−x (12)

= (φ2(val(B)[: i]) \ (10)x)(10)x(10)n+1−x.

The same arguments as in Case 1.1 yield equivalence of (12) and (9).

Case 1.3. val(A)[i + 1] = 1 and val(B)[i + 1] = 0. Then (8) is equivalent to

φ1(val(A)[: i])(10)n →֒ φ2(val(B)[: i])0(10)n−x (13)

= (φ2(val(B)[: i]) \ (10)x)(10)x0(10)n−x.

The string (10)n just fits into (10)x0(10)n−x. Hence, by Lemma 12, (13) is
indeed equivalent to (9).

In all three subcases, we have shown that (8) is equivalent to (9).
By induction, (9) is equivalent to the fact that val(A)[: i]⊗val(B)[: i] con-

tains at least x occurrences of the symbol (1, 1). Since (val(A)[i+1], val(B)[i+
1]) 6= (1, 1), this is equivalent to the fact that val(A)[: i + 1] ⊗ val(B)[: i + 1]
contains at least x occurrences of (1, 1), and we are done.

Case 2. val(A)[i + 1] = val(B)[i + 1] = 1. Then (8) is equivalent to

φ1(val(A)[: i])(10)n →֒ φ2(val(B)[: i])(10)n+1−x

= (φ2(val(B)[: i]) \ (10)x)(10)x(10)n+1−x.

This is equivalent to

φ1(val(A)[: i]) →֒ (φ2(val(B)[: i]) \ (10)x)10. (14)
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Since x > 0, (14) is equivalent to

φ1(val(A)[: i]) →֒ φ2(val(B)[: i]) \ (10)x−1.

By induction, this is equivalent to the fact that val(A)[: i]⊗val(B)[: i] contains
at least x−1 occurrences of (1, 1). Since (val(A)[i+1], val(B)[i+1]) = (1, 1),
this is equivalent to the fact that val(A)[: i + 1] ⊗ val(B)[: i + 1] contains at
least x occurrences of (1, 1). This concludes the proof. ¤

Together with Toda’s theorem (PH ⊆ PPP), Theorem 13 implies that the
problem COMPRESSED-EMBEDDING is not contained in the polynomial
time hierarchy unless the latter collapses.

5. Compressed membership in XML languages

In this final section, we consider a subclass of the visibly pushdown lan-
guages, which is motivated in connection with XML. Let B be a finite set of
opening brackets and let B be the set of corresponding closing brackets. An
XML-grammar [5] is a tuple G = (B, (Rb)b∈B, a) where a ∈ B (the axiom)
and Rb is a regular language over the alphabet {Xc | c ∈ B}. We identify G
with the context-free grammar, where (i) {Xb | b ∈ B} is the set of variables,
(ii) B∪B is the set of terminals, (iii) Xa is the start variable, and (iv) the (in-
finite) set of productions is {Xb → bw b | b ∈ B,w ∈ Rb}. Clearly, since Rb is
regular, this set is equivalent to a finite set of productions. XML-grammars
capture the syntactic features of XML document type definitions (DTDs),
see [5] for more details. For every XML-grammar G, the language L(G) is a
visibly pushdown language [1]. The main result of this section is:

Theorem 14. For every XML-grammar G, CMP(L(G)) belongs to coNP.
Moreover, there is an XML-grammar G such that CMP(L(G)) is coNP-
complete w.r.t. logspace reductions.

For the proof of the upper bound in Theorem 14 we need a few definitions.
Let us fix an XML-grammar G = (B, (Rb)b∈B, a) until further notice. The set
DB ⊆ (B∪B)+ of all Dyck primes over B is the set of all well-formed strings
over B∪B that do not have a non-empty proper prefix, which is well-formed
as well. Formally, DB is the smallest set such that w1, . . . , wn ∈ DB (n ≥ 0)
and b ∈ B imply bw1 · · ·wnb ∈ DB. For b ∈ B let Db = DB ∩ b(B ∪ B)∗b.
The set of all Dyck words over B ∪ B is D∗

B. Note that L(G) ⊆ Da.
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Assume that w ∈ D∗
B and let 1 ≤ i ≤ |w| be a position in w such that

w[i] ∈ B, i.e., the i-th symbol in w is an opening bracket. Since w ∈ D∗
B,

there exists a unique position γ(w, i) > i such that w[i, γ(w, i)] ∈ DB. The
string w[i + 1 : γ(w, i) − 1] belongs to D∗

B. Since DB is a code, there exists
a unique factorization w[i + 1 : γ(w, i) − 1] = w1w2 · · ·wn such that n ≥ 0
and w1, w2, . . . , wn ∈ DB. Moreover, for every 1 ≤ i ≤ n let bi be the
unique opening bracket such that wi ∈ Dbi

. Finally, define surface(w, i) =
Xb1Xb2 · · ·Xbn

. We choose the term “surface” here, because this definition is
motivated by the surface of b ∈ B from [5].

Lemma 15. Let w ∈ (B∪B)∗. Then w ∈ L(G) if and only if (i) w ∈ Da and
(ii) surface(w, j) ∈ Rb for every position 1 ≤ j ≤ |w| such that w[j] = b ∈ B.

Proof. The only-if direction is easy to see. Let us prove the if-direction.
For b ∈ B let Lb be the set of all w ∈ Db that can be generated from the
variable Xb of G. It suffices to prove that for every b ∈ B and every w ∈ Db:

∀1 ≤ j ≤ |w| (w[j] ∈ B → surface(w, j) ∈ Rw[j]) =⇒ w ∈ Lb. (15)

We prove (15) by induction over the length of w (simultaneously for all
b ∈ B). Hence, let w ∈ Db such that surface(w, j) ∈ Rw[j] for every position
1 ≤ j ≤ |w| with w[j] ∈ B. Moreover, assume that (15) is true for all
strings strictly shorter than w. Since w ∈ Db, we can factorize w uniquely
as w = bw1 · · ·wnb such that n ≥ 0 and w1, . . . , wn ∈ DB. Assume that
wi ∈ Dbi

for 1 ≤ i ≤ n. Since |wi| < |w| and wi satisfies the precondition
in (15) (with b replaced by bi), we obtain wi ∈ Lbi

for all 1 ≤ i ≤ n by
induction. Together with Xb1 · · ·Xbn

= surface(w, 1) ∈ Rw[1] = Rb we obtain

w = bw1 · · ·wnb ∈ Lb. ¤

The next lemma was shown in [26, Lemma 5.6]:

Lemma 16. CMP(D∗
B) can be solved in polynomial time. Moreover, for a

given SLP A such that w := val(A) ∈ D∗
B and a given (binary coded) position

1 ≤ i ≤ |w| with w[i] ∈ B one can compute the position γ(w, i) in polynomial
time.

Lemma 16 and the fact that w ∈ DB ⇐⇒ (w ∈ D∗
B and γ(w, 1) = |w|)

imply:

Proposition 17. CMP(DB) can be solved in polynomial time.
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For the proof of Theorem 14 we need one more technical lemma:

Lemma 18. For a given SLP A such that w := val(A) ∈ D∗
B and a given

(binary coded) position 1 ≤ i ≤ |w| with w[i] ∈ B one can compute an SLP
for the string surface(w, i) in polynomial time.

Proof. By Lemma 16 we can compute the position γ(w, i) in polynomial
time. Next, we can compute in polynomial time an SLP B with val(B) =
w[i + 1 : γ(w, i) − 1] ∈ D∗

B.
Consider the following string rewriting system S over the alphabet B∪B:

S = {b c c → b | b, c ∈ B} ∪ {c c b → b | b, c ∈ B}

The system S is terminating and confluent. The latter can easily be checked
by considering critical pairs resulting from overlapping left-hand sides of S,
see e.g. [7]. Therefore every string v ∈ (B ∪ B)∗ has a unique normal form
NFS(v) w.r.t. S, i.e. v →∗

S NFS(v) and NFS(v) is irreducible w.r.t. S. The
main property of S is the following: Let wi ∈ Dai

(ai ∈ B) for 1 ≤ i ≤ n.
Then

NFS(w1 · · ·wn) = a1a1a2a2 · · · anan

This can easily be shown by induction on the length of the string w1 · · ·wn.
For the set of normal forms of factors of well-formed words, we have:

NFS({w ∈ (B ∪ B)∗ | ∃x, y ∈ (B ∪ B)∗ : xwy ∈ D∗
B}) = B

∗
{bb | b ∈ B}∗B∗.

From the SLP B (which, w.l.o.g., is in Chomsky normal form) we compute in
polynomial time a composition system C (see Section 2.2) such that val(C) =
NFS(val(B)). For this, C contains for every variable Bi of B variables Ci,
Ci,1, Ci,2, and Ci,3 such that

• val(Ci) = NFS(val(Bi)),

• val(Ci,1) ∈ B
∗
, val(Ci,2) ∈ {bb | b ∈ B}∗, val(Ci,3) ∈ B∗, and

• Ci → Ci,1Ci,2Ci,3 is a production of C.

We add productions to C with a bottom-up process. Assume that all pro-
ductions of B have the form Bi → x ∈ B ∪B or Bi → BjBk with j, k < i. If
Bi → b ∈ B is a production of B, then C contains the productions Ci,1 → ε,
Ci,2 → ε, Ci,3 → b, and Ci → Ci,1Ci,2Ci,3. For a production Bi → b ∈ B we

25



add to C the productions Ci,1 → b, Ci,2 → ε, Ci,3 → ε, and Ci → Ci,1Ci,2Ci,3.
Finally, if Bi → BjBk is a production of B (j, k < i) then all productions
for variables Cp, Cp,q (1 ≤ p ≤ i − 1, 1 ≤ q ≤ 3) are already constructed.
Since val(B) is well-formed (and hence, val(Bi), val(Bj), val(Bk) are factors
of well-formed words), one of the following four conditions must hold:

val(Cj,3) = val(Ck,1) = ε (16)

val(Cj,3) = val(Ck,1) ∈ B+ (17)

val(Ck,1) ∈ B∗ is a proper suffix of val(Cj,3) ∈ B+ (18)

val(Cj,3) ∈ B∗ is a proper suffix of val(Ck,1) ∈ B+ (19)

Using Plandowski’s polynomial time algorithm for testing equality of SLP-
represented strings [32], we can determine in polynomial time, which of the
four cases holds. Depending on the outcome, we add the following produc-
tions to C, where np,q = |val(Cp,q)| for p ∈ {j, k} and 1 ≤ q ≤ 3 (these
numbers can be computed in polynomial time as well):

• If (16) holds: Ci,1 → Cj,1, Ci,2 → Cj,2Ck,2, Ci,3 → Ck,3

• If (17) holds: Ci,1 → Cj,1, Ci,2 → Cj,2 b b Ck,2 with b the first symbol of
val(Cj,3), Ci,3 → Ck,3

• If (18) holds: Ci,1 → Cj,1, Ci,2 → Cj,2, Ci,3 → Cj,3[: nj,3 − nk,1]Ck,3

• If (19) holds: Ci,1 → Cj,1Ck,1[nj,3 + 1 : nk,1], Ci,2 → Ck,2, Ci,3 → Ck,3

Finally, we add the production Ci → Ci,1Ci,2Ci,3 to C. The correctness of this
construction follows immediately from the definition of the string rewriting
system S. For instance, if (19) holds, then by applying the “cut-operator”
[nj,3 + 1 : nk,1] to the variable Ck,1, we cut off the part that cancels in the
product val(Cj,3)val(Ck,1) when applying the rewriting system S. Note that
by (19) this is exactly the factor val(Cj,3)val(Ck,1)[: nj,3]. In other words,
we have NFS(val(Cj,3)val(Ck,1)) = val(Ck,1)[nj,3 + 1 : nk,1]. This word only
contains closing brackets and it is non-empty. Moreover, since val(Cj,2) is
a sequence of pairs of an opening bracket followed by the corresponding
closing bracket, the word val(Cj,2)val(Ck,1)[nj,3 + 1 : nk,1] reduces by S to
val(Ck,1)[nj,3 + 1 : nk,1]. Finally, we have to merge this word with the word
val(Cj,1) (which only contains closing brackets as well) in order to obtain
val(Ci,1). This is the reason for the production Ci,1 → Cj,1Ck,1[nj,3 +1 : nk,1].
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By Hagenah’s algorithm from [16], we can transform C in polynomial
time into an equivalent SLP D. From the SLP D it is now easy to compute
an SLP that generates the string surface(w, i): we just have to replace every
occurrence of a terminal b ∈ B (resp. B) by Xb (resp. ε). ¤

Now we are in the position to prove Theorem 14.

Proof of Theorem 14. Let us first prove the coNP upper bound. Let G =
(B, (Rb)b∈B, a) be an XML grammar, let A be an SLP over the terminal
alphabet B ∪ B, and let w = val(A). By Lemma 15 we have to check that:

(a) w ∈ Da = DB ∩ a(B ∪ B)∗a and

(b) surface(w, j) ∈ Rb for every position 1 ≤ j ≤ |w| with w[j] = b ∈ B.

Condition (a) can be checked in deterministic polynomial time by Proposi-
tion 17; condition (b) belongs to coNP by Lemma 18 and Theorem 3.

For the coNP lower bound, let G be the context-free grammar with the
only nonterminal X, terminal alphabet {0, 0, 1, 1, [, ] }, and the following pro-
ductions:

X → [ ], X → [ 0 0 X 0 0 ], X → [ 0 0 X 1 1 ], X → [ 1 1 X 1 1 ].

Thus, L(G) contains all strings of the form [u1[u2[· · · un[ ]vn · · · ]v2]v1], where
for all 1 ≤ i ≤ n: ui, vi ∈ {00, 11} and (ui = 00 or vi = 11). The language
L(G) can easily be generated by an XML-grammar with B = {0, 1, [ }.

Let M be a fully balanced polynomial time NTM such that LEAF(M, 1∗)
is coNP-complete (such a machine exists). From a given input w for M we
compute in logspace, as described in the proof of Theorem 7, two SLPs A and
B such that leaf(M,w) = ρ(val(A) ⊗ val(B)) and |val(A)| = |val(B)|. Hence,
w ∈ LEAF(M, 1∗) if and only if val(A) ⊗ val(B) ∈ {(0, 0), (0, 1), (1, 1)}∗. Let
C be an SLP with val(C) = val(A) [ ] val(B). Finally, let the SLP D result
from C be applying the following mapping to all terminal symbols:

0 7→ [ 0 0, 1 7→ [ 1 1, 0 7→ 0 0 ], 1 7→ 1 1 ].

Then, val(D) ∈ L(G) if and only if val(A)⊗ val(B) ∈ {(0, 0), (0, 1), (1, 1)}∗ if
and only if w ∈ LEAF(M, 1∗). ¤
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6. Open problems

The precise complexity of COMPRESSED-EMBEDDING remains open.
We conjecture that this problem is PSPACE-complete. Another interesting
problem is to obtain a precise characterization of the class LEAF

FA(CFL).
This class is contained in PSPACE and we have shown that it contains
PSPACE-complete problems (Theorem 11). Recently, a connection between
LEAF

FA(CFL) and second-order monadic monoidal and groupoidal quantifiers
was established [23].
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