
Compressed Membership in Automata with
Compressed Labels

Markus Lohrey and Christian Mathissen

Institut für Informatik, Universiẗat Leipzig, Germany
{lohrey,mathissen}@informatik.uni-leipzig.de

Abstract. The algorithmic problem of whether a compressed string is accepted
by a (nondeterministic) finite state automaton with compressed transition labelsis
investigated. For string compression, straight-line programs (SLPs), i.e., context-
free grammars that generate exactly one string, are used. Two algorithms for
this problem are presented. The first one works in polynomial time, if all tran-
sition labels are nonperiodic strings (or more generally, the word length divided
by the period is bounded polynomially in the input size). This answers a ques-
tion of Plandowski and Rytter. The second (nondeterministic) algorithm is an
NP-algorithm under the assumption that for each transition label the period is
bounded polynomially in the input size. This generalizes theNP upper bound for
the case of a unary alphabet, shown by Plandowski and Rytter.

1 Introduction

The topic of this paper is algorithms on compressed strings.The goal of such algo-
rithms is to check properties of compressed strings and thereby beat a straightforward
“decompress-and-check” strategy. Potential applications for such algorithms can be
found for instance in genome databases, where massive volumes of string data are
stored and analyzed. When talking about algorithms on compressed strings, one has
to make precise the used compression scheme. Here, as in previous papers, we choose
straight-line programs(SLPs); these are context-free grammars that generate exactly
one string. Straight-line programs turned out to be a very flexible and mathematically
clean compressed representation of strings. Several otherdictionary-based compressed
representations, like for instance Lempel-Ziv (LZ) factorizations [15], can be converted
in polynomial time into SLPs and vice versa [13]. This implies that complexity results
can be transferred from SLP-encoded input strings to LZ-encoded input strings.

Several algorithmic problems for SLP-compressed input strings were considered in
the past, e.g. equivalence and pattern matching [5, 12], word problems for certain groups
and monoids [8, 9, 11, 14], and membership problems for various language classes [3,
7, 9, 13]. In this paper, we study the membership problem for compressed words in
automata with compressed labels. In this problem, the inputconsists of an SLPA and
a nondeterministic automaton, where each transition is labeled with an SLP. Such an
automaton generates a language in the obvious way, and it is asked whether the string
generated by the SLPA belongs to that language. This problem was first studied in
[13]; it is easily seen to be inPSPACE. Moreover, it was shown to beNP-complete for

a unary alphabet in [13]. In fact,NP-hardness in the unary case follows directly from
NP-hardness of the SUBSETSUM problem. To the knowledge of the authors no better
lower bound thanNP-hardness is known for the non-unary case. This paper contains
two algorithms for the membership problem for compressed words in automata with
compressed labels (letA be the input automaton with compressed labels).

The first algorithm is deterministic and works in polynomialtime if every SLP ap-
pearing inA generates a string with a small order (polynomial in the total input size).
Here the order of a string is its length divided by its smallest period. Hence, having a
small order means that the string looks quite aperiodic. In fact, as a corollary we obtain
a polynomial time algorithm for the case that every SLP inA generates a nonperiodic
word. This solves open problem 3 from [13]. The second algorithm is nondeterministic
and works in polynomial time if every SLP inA generates a string with a small period
(polynomial in the total input size). This generalizes theNP bound for the unary case
from [13] (a unary word has period1).

Hence, these two algorithms cover two extreme cases (almostnonperiodic versus
highly periodic). But they do not cover the general case. An SLP A may generate a
string, for which both the order and the period are exponential in the size ofA. Never-
theless, following [13], we conjecture that the general membership problem for com-
pressed words in automata with compressed labels belongs toNP. We conclude this
paper with another conjecture that implies the former one.

2 Preliminaries

We usepoly(n1, . . . , nk) as an abbreviation for(n1 + · · · + nk)O(1). Forn ≤ m, we
denote with[n,m] the interval{n, n + 1, . . . ,m}. An arithmetic progressionis a set of
natural numbers of the form{b+i ·p | i ∈ [0, ℓ]}. This set can be represented succinctly
by the triple(b, p, ℓ), where all three numbers are binary coded.

Let us fix a finite alphabetΣ. For a stringw ∈ Σ∗ and1 ≤ i ≤ |w| let w[i] denote
the i-th symbol inw. Moreover, for1 ≤ i, j ≤ |w| let w[i : j] = w[i] · · ·w[j] if
i ≤ j and letw[i : j] = ε if i > j. A number1 ≤ p ≤ |w| − 1 is a period of w if
w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p. With per(w) we denote the smallest period
of w, where we setper(w) = |w| if w has no period. Letord(w) = ⌊ |w|

per(w)⌋ be the

order of w. Thenw = uord(w)v, whereu is primitive (i.e., it is not of the formxn for
a stringx andn ≥ 2) andv is a proper prefix ofu (possibly empty). A stringw is
callednonperiodic, if ord(w) = 1. Two wordsu, v ∈ Σ∗ areconjugated, if there exist
x, y ∈ Σ∗ with u = xy andv = yx. An occurrence of a wordp in another wordt is a
numberi ∈ [0, |t| − |p|] such thatw[i + 1 : i + |p|] = p. We say that this occurrence
i coversall positions from the interval[i + 1, i + |p|], and that ittouchesall positions
from the interval[i, i + |p|].

Lemma 1 (cf. [5, Lemma 1]).Let t, p ∈ Σ∗ andj ∈ [0, |t|]. The set of all occurrences
of p in t that touch positionj is an arithmetic progression of size at mostord(p).

In Section 4.2 we need some basic concepts concerningstring rewriting systems, see [1]
for more details. A string rewriting systemR overΣ is a finite subset ofΣ∗×Σ∗. A pair

2

(ℓ, r) ∈ R is called a rule ofR and is often written asℓ → r. R defines a rewrite relation
→R as follows:u →R v for u, v ∈ Σ∗ if there existx, y ∈ Σ∗ and a rule(ℓ, r) ∈ R
such thatu = xℓy andv = xry. The systemR is terminatingif there does not exist
an infinite chainu0 →R u1 →R u2 →R · · · . Moreover,R is calledconfluent(resp.
locally confluent) if for all u, v, w ∈ Σ∗ such thatu →∗

R v andu →∗
R w (resp.u →R v

andu →R w) there existsx ∈ Σ∗ with v →∗
R x andw →∗

R x. By Newman’s lemma,
a terminating system is confluent if and only if it is locally confluent. Moreover, for
terminating systems, local confluence is decidable. For this one has to considercritical
pairs that result from overlapping left hand sides, see [1] for more details. Let us set
IRR(R) = Σ∗ \ {u | ∃v : u →R v}. If R is terminating and confluent, then for every
u ∈ Σ∗ there exists a uniquev ∈ IRR(R) such thatu →∗

R v; it is called theirreducible
normal formof u and is denoted byNFR(u).

A straight-line program (SLP)over the terminal alphabetΣ is a context-free gram-
marA = (N,Σ, S, P) (N is the set of nonterminals,Σ is the set of terminals,S ∈ N
is the initial nonterminal, andP ⊆ N × (N ∪ Σ)∗ is the set of productions) such that:
(i) for every A ∈ N there exists exactly one production of the form(A,α) ∈ P for
α ∈ (N ∪ Σ)∗, and (ii) the relation{(A,B) ∈ N × N | (A,α) ∈ P,B occurs inα} is
acyclic. The transitive closure of this relation is also called thehierarchical orderof A;
it is a partial order. A production(A,α) is also written asA → α. Clearly, the language
generated by the SLPA consists of exactly one word that is denoted byval(A). More
generally, from every nonterminalA ∈ N we can generate exactly one word that is
denoted byvalA(A) (thusval(A) = valA(S)). We omit the indexA if the underlying
SLP is clear from the context. The size ofA is |A| =

∑

(A,α)∈P |α|. Every SLPA with
val(A) 6= ε can be transformed in polynomial time into an equivalent SLPin Chomsky
normal form, i.e., all productions have the form(A, a) with a ∈ Σ or (A,BC) with
B,C ∈ N . In the sequel we assume that all SLPs are in Chomsky normal form.

Let us state some algorithmic problems that can be easily solved in polynomial time:

– Given an SLPA, calculate|val(A)|.
– Given an SLPA and a numberi ∈ {1, . . . , |val(A)|}, calculateval(A)[i]; this prob-

lem is in factP-complete [6].

Let A be an SLP with a production(A,BC). An occurrencei ∈ [0, |val(A)| − |p|] of
the wordp in val(A) touches the cut ofA, if this occurrence touches position|val(B)|.
The following result by Lifshits implies in particular, that for given SLPsA andB one
can check in timeO(|A| · |B|2), whetherval(A) occurs as a pattern inval(B).

Theorem 2 ([5]).For two given SLPsA andB we can compute in timeO(|A| · |B|2) a
table that contains for every nonterminalB of B an arithmetic progression (stored by
three binary encoded numbers) for the set of all occurrencesof val(A) in valB(B) that
are touching the cut ofB.

An automaton with compressed labelsis a tupleA = (Q,Σ, δ, q0, F), whereQ is a fi-
nite set of states,Σ is a finite alphabet,q0 ∈ Q is the initial state,F ⊆ Q is the set of fi-
nal states, andδ is a finite set of transitions of the form(p, A, q), wherep andq are states
andA is an SLP overΣ, for which we assumeval(A) 6= ε (ε-transitions can be elimi-
nated). A transition(p, A, q) with |val(A)| = 1 is calledatomic. The size ofA is |A| =

3

|Q| +
∑

(p,A,q)∈δ |A|. We say that a wordw labels a path from statep to stateq in A if
there exists a sequence of transitions(p0, A0, p1), (p1, A1, p2), . . . , (pn−1, An−1, pn) ∈
δ (n ≥ 0) such thatp0 = p, pn = q, andw = val(A0) · · · val(An−1). We say the
transition starting at position

∑ℓ−1
i=0 |val(Ai)| and ending at position

∑ℓ
i=0 |val(Ai)| is

(pℓ, Aℓ, pℓ+1). The languageL(A) ⊆ Σ∗ is the set of all words that label a path from
the initial stateq0 to some final stateqf ∈ F . We setord(A) = max{ord(val(A)) |
(p, A, q) ∈ δ} andper(A) = max{per(val(A)) | (p, A, q) ∈ δ}. Note that in general,
bothord(A) andper(A) are exponential in|A|.

3 A deterministic algorithm

The goal of this section is to prove the following theorem.

Theorem 3. Given an automaton with compressed labelsA and an SLPB, we can
checkval(B) ∈ L(A) in timepoly

(

|B|, |A|, ord(A)
)

.

Proof. Let A = (Q,Σ, δ, q0, F), B = (N,Σ, S, P), and letA1, . . . , An be a list of all
SLPs that occur as labels inA. By Theorem 2, we can compute in timeO(

∑n
i=1(|Ai| ·

|B|2)) ≤ O(|A| · |B|2) a table that contains for everyi ∈ [1, n] and every nonter-
minal B ∈ N an arithmetic progressionAP(i, B) for the set of all occurrences of
Ai in valB(B) that are touching the cut ofB. Moreover, by Lemma 1, this arithmetic
progression contains at mostord(val(Ai)) many numbers. In total, we have at most
|B| ·

∑n
i=1 ord(val(Ai)) ≤ |B| · |A| · ord(A) many numbers.

We now define a context-free grammarG with empty terminal alphabet. The two
major facts aboutG are:

– G can be computed in timepoly
(

|B|, |A|, ord(A)
)

.
– ε ∈ L(G) if and only if val(B) ∈ L(A).

Since the word problem for context-free grammars can be decided in polynomial time,
these two facts imply the theorem. The grammarG is constructed by a fixpoint process,
where we add more and more nonterminals. The set of nonterminals contains the start
nonterminalSG; all other nonterminals are 5-tuples of the form(p, k,B, ℓ, q), where
p, q ∈ Q, B ∈ N , andk, ℓ ∈ [0, |val(B)|] with k + ℓ ≤ |val(B)|. The intuition is
that this 5-tuple should be viewed as the following assertion: Let w be the word that
results fromval(B) by cutting off the prefix of lengthk and the suffix of lengthℓ, i.e.,
w = val(B)[k + 1 : |val(B)| − ℓ]. Then in the automatonA there exists a path from
statep to stateq labeled with the wordw.

ForG’s start nonterminalSG we introduce all productions of the form

SG → (0, q0, S, qf , 0), (1)

whereqf ∈ F is a final state ofA. Now assume that at some point we have introduced
a new nonterminal(k, p,B, q, ℓ). We distinguish 5 cases:

Case 1.(B → CD) ∈ P and|val(C)| ≤ k < |val(B)| − ℓ, see Figure 1. We introduce
the production

(k, p,B, q, ℓ) → (k − |val(C)|, p,D, q, ℓ).

4

B

C D

k ℓ

k − |val(C)|

Fig. 1. Case 1

B

C D

ℓk

ℓ − |val(D)|

Fig. 2. Case 2

Case 2.(B → CD) ∈ P and|val(D)| ≤ ℓ < |val(B)| − k, see Figure 2. We introduce
the production

(k, p,B, q, ℓ) → (k, p, C, q, ℓ − |val(D)|).

Case 3.(B → CD) ∈ P andk < |val(C)|, ℓ < |val(D)|, see Figure 3. We introduce a
production for every transition(r, Ai, s) of A and everyj ∈ AP(i, B) such thatj ≥ k
and|val(B)| − |val(Ai)| − j ≥ ℓ. For such a choice, we introduce the production

(k, p,B, q, ℓ) → (k, p, C, r, |val(C)| − j) (|val(Ai)| + j − |val(C)|, s,D, q, ℓ). (2)

Case 4.k + ℓ = |val(B)|. If p = q, then we introduce the production

(k, p,B, q, ℓ) → ε.

Case 5.(B → a) ∈ P andk = ℓ = 0. If in A there is a path from statep to stateq
labeled with the lettera, then we introduce the production

(0, p, B, q, 0) → ε.

This concludes the description ofG. It is straightforward to show thatε ∈ L(G) if and
only if val(B) ∈ L(A).

We claim thatG contains at mostO
(

|B|7 · |A|4 · ord(A)2
)

many nonterminals.
This clearly implies thatG can be constructed in timepoly

(

|B|, |A|, ord(A)
)

. For the
second, third and fourth component of aG-nonterminal (except ofSG) there are in total
|Q|2 · |N | ≤ |A|2 · |B| possibilities. Let us bound the number of positions that may
appear as a first component of aG-nonterminal (an analogous argument will apply to
the fifth component). LetM1 be the set of all positions that appear as a first component
of a nonterminal ofG. Moreover, let us define the set

J = {|val(Ai)|+j−|val(C)| | 1 ≤ i ≤ n,∃B,D ∈ N : (B,CD) ∈ P, j ∈ AP(i, B)}.

5

Ai

B

C D

k ℓ

|val(C)| − j |val(Ai)| + j − |val(C)|

j

Fig. 3. Case 3

Every first component of the secondG-nonterminal in the right-hand side of theG-
production (2) is fromJ . Note that

|J | ≤ |B| ·
n

∑

i=1

ord(val(Ai)) ≤ |B| · |A| · ord(A).

Let us now define a mappingf on [0, |val(B)|] × N as follows:

f(k,B) =

(k − |val(C)|,D) if (B,CD) ∈ P, |val(C)| ≤ k

(k,C) if (B,CD) ∈ P, |val(C)| > k

undefined otherwise

This mappingf describes the way the first and third component of aG-nonterminal
evolve when applying the productions from Case 1, 2, and 3 (for Case 3, we only
consider the firstG-nonterminal in the right-hand side of (2)). Note that for every
(k,B) ∈ [0, |val(B)|]×N , there isα ≤ |N |−1 such thatfα(k,B) = undefined. More-
over, if i ∈ M1, then there exists(k,B) ∈ {(0, S)} ∪ (J × N) and0 ≤ α ≤ |N | − 1
such thatfα(k,B) ∈ {i} × N . Hence, the size ofM1 is bounded by

(|J | · |N | + 1) · |N | ≤ (|B|2 · |A| · ord(A) + 1) · |B| ∈ O(|B|3 · |A| · ord(A)).

Hence, the number of nonterminals ofG can be bounded byO
(

|B|7|A|4ord(A)2
)

. This
concludes the proof of the theorem. ⊓⊔

4 A nondeterministic algorithm

The goal of this section is to prove the following theorem:

Theorem 4. Given an automaton with compressed labelsA and an SLPB, we can
checkval(B) ∈ L(A) nondeterministically in timepoly

(

|B|, |A|, per(A)
)

.

In a first step, we will deal with the special case thatper(A) = 1, which means that
every transition is labeled with a compressed unary word (Theorem 5 below). Note
that theNP bound in Theorem 5 already generalizes [13, Theorem 4], since the unary
alphabet for each transition is allowed to vary.

6

4.1 Compressed unary labels

Theorem 5. Given an automatonA with compressed labels over unary alphabets and
an SLPB, we can check whetherval(B) ∈ L(A) in NP.

Proof. We give an algorithm for the caseΣ = {0, 1}. The general case is similar.
W.l.o.g. we may assume thatval(B) ∈ 0{0, 1}∗1. Let A = (Q,Σ, δ, q0, F) andB =
(N, {0, 1}, S, P).

Step 1.Let m ≥ 2, β1, . . . , βm ≥ 1 such thatval(B) = 0β11β20β3 · · · 1βm . Note thatm
might be exponentially big, however the size of the setI = {β1, . . . , βm} is bounded
by the number of nonterminals ofB. The binary codings of the numbersβi can be com-
puted bottom-up. For each production(A,BC) ∈ P we get a new numberβi in case
valB(B) ends with the same symbol asvalB(C) starts. We transformB into an SLP
C over the alphabetΘ = {Xi, Yi | i ∈ I} such thatval(C) = Xβ1

Yβ2
Xβ3

· · ·Yβm
.

This can be done in deterministic polynomial time similar tothe construction from [8,
proof of Theorem 2]. The SLPC contains all nonterminals fromV plus some auxiliary
nonterminals. The right-hand side inC of an old variableA ∈ V will be of the formZ
or Z1A

′Z2, whereZ,Z1, Z2 ∈ Θ andA′ is an auxiliary nonterminal. Consider a pro-
duction(A,BC) ∈ P , and assume that theC-productions(B,Z1B

′Z2), (C,Z3C
′Z4)

are already computed (the case that the right-hand side ofB or C is a single symbol
from Θ is similar). In caseZ2 is of the formXi andZ3 is of the formYj (i, j ∈ I)
or vice versa, we introduce theC-productions(A,Z1A

′, Z4) and(A′, B′Z2Z3C
′). On

the other hand, if, e.g.,Z2 = Xi and Z3 = Xj (i, j ∈ I), then we introduce the
C-productions(A,Z1A

′Z4) and(A′, B′Xi+jC
′).

Step 2.We build nondeterministically a new automatonB = (Q,Θ, q0, δ
′, F) (with

noncompressed labels). For allq, p ∈ Q and for eachi ∈ I we guess whether there is a
path inA from q to p labeled with0i (resp.1i). If this is true, then we add a transition
(q,Xi, p) (resp.(q, Yi, p)) to δ′.

Step 3.For each pair(q, p) it can be checked nondeterministically in timepoly(|B|, |A|)
whether there is a path fromq to p in A with label0βi (resp.1βi) (see [13, Theorem 4]).
So for each transition(q,Xi, p) and(q, Yi, p) in B we can check whether there is in fact
a corresponding path inA.

Step 4.We can check deterministically in timepoly(|C|, |B|) whetherval(C) ∈ L(B)
(see [13, Theorem 2(a)]). Clearly,val(B) ∈ L(A) if and only if there is an automaton
B, obtained as described above, such thatval(C) ∈ L(B). ⊓⊔

In the rest of this paper, we will prove Theorem 4. First, we have to do some combina-
torics on words.

4.2 Some combinatorics on words

The following lemma is well known.

Lemma 6 (e.g. [10]).Let u ∈ Σ∗ be primitive andu2 = vuw for somev, w ∈ Σ∗.
Then eitherv = ε or w = ε.

7

The next lemma is an easy consequence of the well-known periodicity theorem of Fine
and Wilf.

Lemma 7 (cf. [2, Corollary 6.2]). Let u 6= v be two primitive words that are not
conjugate, and letn,m ∈ N. Thenun andvm do not have a common factor of length
|u| + |v|.

Let nowU = {u1, . . . , un} ⊆ Σ+ be a collection of primitive words that are pairwise
not conjugated. LaterU will consist of the primitive roots of labels occurring in an
automaton with compressed labels. For1 ≤ i ≤ n let αi = 1 + ⌈|v|/|ui|⌉ ≥ 2, where
v is a longest word inU . Lemma 7 implies:

Lemma 8. For i 6= j, uαi

i is not a factor of a word fromu∗
j .

Let X1, . . . ,Xn be fresh letters which are not inΣ. We now define a string rewriting
systemRU over the alphabetΣ ∪ {X1, . . . ,Xn}. First, for1 ≤ i ≤ n let Ri consist of
the following 4 rules:

u2αi+1
i → uαi

i Xiu
αi

i (3)

uαi+1
i Xi → uαi

i X2
i (4)

Xiu
αi+1
i → X2

i uαi

i (5)

Xiu
αi

i Xi → Xαi+2
i (6)

Finally, letRU =
⋃n

i=1 Ri. Let mU be the maximal length of a left-hand side ofRU .
The following obvious fact is useful in the further investigations:

Fact 9 If u →∗
RU

v, thenu can be obtained fromv by replacing some (but not neces-
sarily all) occurrences ofXi byui (1 ≤ i ≤ n).

Clearly,RU is terminating. Moreover, we have:

Lemma 10. RU is confluent.

Proof. No left-hand side ofRU is a factor of another left-hand side. Hence, we have
to check critical pairs that result from overlappings between left-hand sides. Rule (3)
replaces an occurrence ofui by Xi within the context(uαi

i , uαi

i). Similarly, (4) (resp.,
(5)) replaces an occurrence ofui by Xi within the context(uαi

i ,Xi) (resp.(Xi, u
αi

i)).
Finally, (6) replaces an occurrence ofuαi

i by Xαi

i within the context(Xi,Xi). These
observations imply that critical pairs that result from an overlapping between a left-
hand side ofRi and a left-hand side ofRj with i 6= j can be directly resolved: Lemma 8
implies that the replaced parts in the left-hand sides cannot overlap, i.e., the overlapping
is restricted to the context. It remains to consider overlappings between left-hand sides
of someRi. Again, those overlappings that are restricted to the context can be directly
resolved. Sinceui does not occur properly inu2

i (Lemma 6), the critical pairs from
Figure 4 (shown together with the resolving derivations) remain (arrows are labeled
with the applied rule and possibly a number indicating the number of rule applications).
This concludes the confluence proof. ⊓⊔

8

u
2αi+1

i
Xi

u
αi
i

Xiu
αi
i

Xi u
2αi
i

X2
i

(3) (4)

u
αi
i

X
αi+2

i

(6) (4)
αi

Xiu
2αi+1

i

Xiu
αi
i

Xiu
αi
i X2

i u
2αi
i

(3) (5)

X
αi+2

i
u

αi
i

(6) (5)
αi

u
2αi+1+k

i

u
αi
i

Xiu
αi+k

i
u

αi+k

i
Xiu

αi
i

(3) (3)

u
αi
i

Xk+1

i
u

αi
i

(5)
k

(4)
k

Xiu
αi+1

i
Xi

Xiu
αi
i

X2
i X2

i u
αi
i

Xi

(4) (5)

X
αi+3

i

(6) (6)

Fig. 4.Proving confluence ofRU

In the following, we writeNFU for NFRU
. The next lemma is needed in order to prove

the crucial Lemma 12 below.

Lemma 11. Assume thatx, y ∈ (Σ∪{X1, . . . ,Xn})
∗, xuαi+1

i ∈ IRR(RU), andy 6= ε
neither starts withui nor Xi. If xuαi+1

i y →∗
RU

v, thenv = xuαi+1
i z for somez 6= ε

that neither starts withui nor Xi.

Proof. Using induction, it suffices to prove the lemma for the case that the derivation
xuαi+1

i y →∗
RU

v has length one, i.e.,xuαi+1
i y →RU

v. The case thatv is obtained from
xuαi+1

i y by applying a rule within the suffixy (i.e.,y →RU
y′ andv = xuαi+1

i y′) is
clear; one can use Fact 9 to see thaty′ neither starts withui nor Xi. So, we have to
consider an occurrence of a left-hand sideℓ of RU that starts inxuαi+1

i and ends in
y. Assume thatℓ is a left-hand side ofRj ⊆ RU . If i 6= j, then Lemma 8 implies
that the occurrence ofℓ has to start in the suffixuαi+1

i of xuαi+1
i . So, only the rules

u
2αj+1
j → u

αj

j Xju
αj

j andu
αj+1
j Xj → u

αj

j X2
j have to be considered. By Lemma 8,

the length of an overlapping betweenuαi+1
i andu

2αj+1
j (resp.,uαj+1

j Xj) is bounded

by αj · |uj |. Hence, the prefixxuαi+1
i is not modified in the rewrite step. Moreover,

the rewrite step either does not modify the first|ui| many positions ofy or produces
an occurrence ofXj within one of the first|ui| many positions ofy. Hence, indeed,
v = xuαi+1

i z for somez 6= ε that neither starts withui nor Xi. Finally, consider the
casei = j. By Lemma 6 the occurrence of the left-hand sideℓ of Ri has to start in one
of the last|ui| many positions ofxuαi+1

i (otherwisey would start withui or Xi). But
then, the prefixxuαi+1

i as well as the first|ui| many positions ofy are not modified in
the rewrite step. ⊓⊔

Lemma 12. Let s, t ∈ IRR(RU), s = s1s2, andt = t1t2 with (|s2| = mU or s = s2)
and(|t1| = mU or t = t1). Then,NFU (st) = s1NFU (s2t1)t2.

9

Proof. We only consider the case|s2| = |t1| = mU . Sincest →∗
RU

s1NFU (s2t1)t2,
it suffices to show thats1NFU (s2t1)t2 ∈ IRR(RU). Assume for contradiction that
s1NFU (s2t1)t2 is reducible. Since,s1,NFU (s2t1), t2 ∈ IRR(RU), there has to be an
occurrence of a left-hand sideℓ that starts in the prefixs1 or that ends in the suffixt2.
By symmetry assume the former. Hence,ℓ = ℓ1ℓ2 with ℓ1 6= ε 6= ℓ2, ℓ1 is a suffix of
s1, andℓ2 is a prefix ofNFU (s2t1)t2. We distinguish the following cases:

Case 1.ℓ = u2αi+1
i for some1 ≤ i ≤ n. Then by Fact 9,ℓ2 ∈ Σ+ must be a prefix

of s2t as well. Since|s2| ≥ (2αi + 1) · |ui|, it follows thatℓ2 is in fact a prefix ofs2.
Hences = s1s2 is reducible, a contradiction.

Case 2.ℓ = Xiu
αi+1
i for some1 ≤ i ≤ n. Since againℓ2 ∈ Σ+, we can argue as in

Case 1.

Case 3.ℓ = uαi+1
i Xi. Let ℓ1 = um1

i u′ (it is a suffix ofs1) andℓ2 = u′′um2

i Xi with
ui = u′u′′ andαi + 1 = m1 + 1 + m2. Thenu′′um2

i is a prefix ofs2t. Note that|s2| ≥
(2αi + 1) · |ui|. Let m3 ≥ m2 maximal such thatu′′um3

i is a prefix ofs2t. We must
havem1 +1+m3 < 2αi +1, because otherwises = s1s2 would contain an occurrence
of u2αi+1

i and therefore would be reducible. Since|s2| ≥ (2αi + 1) · |ui|, u′′um3

i must
be a prefix ofs2. Let s1 = xum1

i u′ ands2 = u′′um3

i y. Sincem3 + 1 < 2αi + 1 and
|s2| ≥ (2αi + 1) · |ui|, we have|y| ≥ |ui| Now, consider the wordxum1+1+m3

i yt1 =
s1s2t1. We claim thatyt1 does not start withui or Xi. If it would do so, then, since
|y| ≥ |ui|, y would start withui or Xi. This contradicts either the maximality ofm3 (if
y starts withui) or implies thats = s1s2 contains an occurrence ofuαi+1

i Xi (if y starts
with Xi) and is therefore reducible. Henceyt1 neither starts withui nor Xi. We can
therefore apply Lemma 11 toxum1+1+m3

i yt1 = s1s2t1 →∗
RU

s1NFU (s2t1). It follows
thats1NFU (s2t1) has the formxum1+1+m3

i z, wherez 6= ε neither starts withui nor
Xi. But by our assumptions1NFU (s2t1)t2 starts withxℓ = xum1+1+m2

i Xi. This leads
to a contradiction, sincem3 ≥ m2.

Case 4.ℓ = Xiu
αi

i Xi. Can be shown analogously to Case 3. ⊓⊔

Lemma 12 allows us to prove Lemma 13 below. For this, an extension of SLPs is use-
ful. A composition systemB = (N,Σ, S, P) is defined analogously to an SLP, but
in addition to productions of the formA → α (A ∈ N,α ∈ (N ∪ Σ)∗) it may
also contain productions of the formA → B[i : j] for N ∈ V and i, j ∈ N. For
such a production we definevalB(A) = valB(B)[i : j]. The size of this production is
1 + ⌈log2(i)⌉ + ⌈log2(j)⌉. As for SLPs we defineval(B) = valB(S). In [4], Hagenah
presented a polynomial time algorithm, which transforms a given composition system
B into an SLPC such thatval(C) = val(B).1 Below, we allow more general kinds of
productions, where right-hand sides are arbitrary words, built up from terminals, non-
terminals and symbolsB[i : j] for a nonterminalB andi, j ∈ N. The semantics of such
productions is the obvious one. Clearly, productions of this more general form can be
transformed in polynomial time into the above standard form.

Lemma 13. From a given SLPA = (N,Σ, S, P) and a setU as above, we can com-
pute in timepoly(

∑n
i=1 |ui|, |A|) an SLPB such thatval(B) = NFU (val(A)).

1 The thesis [4] is written in German. An english presentation of Hagenah’s algorithm can be
found in [14].

10

Proof. Using Hagenah’s algorithm, it suffices to construct in polynomial time a com-
position systemB = (N,Σ ∪ {X1, . . . ,Xn}, S,R) such thatval(B) = NFU (val(A)).
To this aim we successively add productions toB. W.l.o.g. assume thatA is in Chom-
sky normal form. First, we put all productions(A → a) ∈ P with a ∈ Σ into R.
Now, consider a production(A → BC) ∈ P , and assume thatB contains already
enough productions so thatvalB(B) = NFU (valA(B)) andvalB(C) = NFU (valA(C)).
Let kB = |valB(B)| andkC = |valB(C)|, these numbers can be computed in time
poly(|A|). Moreover, in timepoly(

∑n
i=1 |ui|, |A|), we can compute the wordsx =

valB(B)[kB −mU + 1 : kB], y = valB(C)[1 : mU], andz = NFU (xy). By Lemma 12,
we have

NFU (valA(A)) = valB(B)[1 : kB − mU] z valB(C)[mU + 1 : kC].

Hence, we introduce the productionA → B[1 : kB − mU] z C[mU + 1 : kC]. This
concludes the construction of the composition systemB. ⊓⊔

4.3 Proof of Theorem 4

Assume thatA is an automaton with compressed labels. First we will transformA in
timepoly(|A|, per(A)) into an equivalent automaton with compressed labels with some
additional nice properties. For an SLPA let us writeord(A) andper(A) for ord(val(A))
andper(val(A)), respectively, in the following. For simplicity, we will denote the au-
tomaton resulting from each of Steps 1–3 below again withA.

Step 1.For eachA-transition(p, A, q), we can compute in timepoly(|A|) SLPsU andV

such that|val(V)| < |val(U)| = per(A) andval(A) = val(U)ord(A)val(V) (see e.g. [3]).
Moreover, in timeO(per(A)) , we can explicitly computeu = val(U) (it is primitive)
andv = val(V). We now replace the transition(p, A, q) by a path of|v| + 1 many
transitions: a transition labeled with an SLP foruord(A), followed by a sequence of|v|
atomic transitions, which give anv-labeled path ending in stateq. Hence, we can assume
that for every transition(p, A, q) of A we haveval(A) = un for a primitive wordu.
In the following, a transition(p, A, q) with val(A) = un (u primitive) is just written as
(p, u, n, q) (an atomic transition(p, a, q) can be viewed as(p, a, 1, q)). In fact, instead
of an SLP forun, we can store the pair(u, n), wheren is binary coded. All following
steps are polynomial w.r.t. this new representation.

Step 2.Next, assume that there are two transitions(p, u, n, q) and (r, v,m, s) such
that the primitive wordsu andv are conjugated. Hence, there are non-empty words
x, y ∈ Σ+ such thatu = xy andv = yx. We may assume thatm ≥ 2, as otherwise we
replace the transition(r, v,m, s) by a path of atomic transitions. We now replace the
transition(r, v,m, s) by a path of|v| + 1 many transitions: a path of|y| many atomic
transitions labeledy, followed by a transition labeled with the pair(u,m−1), followed
by a path of|x| many atomic transitions labeled withx.

Let U = {u1, . . . , un} be the set of primitive words that occur in transitions ofA.
W.l.o.g. we can assume thatΣ ⊆ U . By Step 2,ui anduj are not conjugated fori 6= j.
This allows us to construct the confluent and terminating systemRU from Section 4.2.
Let v be a longest word inU . Recall that we definedαi = 1+ ⌈|v|/|ui|⌉ for 1 ≤ i ≤ n.

11

q′

q

p

p′

(ui, n − 2αi) u
αi
i

u
αi
i

| {z }

atomic trans.

| {z }

atomic trans.

Fig. 5.

We can compute all these numbers (even in unary notation) within our preprocessing
time boundpoly(|A|, per(A)).

Step 3.The aim of this step is to ensure the following technical condition.

Each transition(q, ui, n, p) of A is either atomic or there are statesq′, p′ such that:
In A there is a pathπ of atomic transitions fromq′ to q labeled withuαi

i and there
is a pathπ′ of atomic transitions fromp to p′ labeled withuαi

i . Moreover, on the
pathπ the only state with indegree> 1 could beq′ and on the pathπ′ the only
state with outdegree> 1 could bep′.

To ensure this condition, we first split each transition(q′, ui, n, p′) with n ≤ 2αi into
a path of atomic transitions. After that, each transition(q′, ui, n, p′) with n > 2αi is
replaced by (see Figure 5):

– a path of atomic transitions fromq′ to some fresh stateq labeleduαi

i ,
– a transition(q, ui, n − 2αi, p) for some fresh statep and
– a path of atomic transitions fromp to p′ labeleduαi

i .

Observe that all our modifications preserveL(A) and that they can be executed within
the time boundpoly(|A|, per(A)). This ends the preprocessing of the automatonA.

Step 4.Let us introduce a new symbolXi for every primitive wordui (see also the
definition of RU). We now modify the automatonA as follows. For each primitive
word ui ∈ U we replace every non-atomic transition(p, ui,m, q) by (p,Xi,m, q).
Moreover for any two statesp, q of A we test whether there is a path of atomic tran-
sitions inA from p to q labeledui. If there is such a path we introduce a new transi-
tion (p,Xi, q). Let B denote our modified automaton. Now, consider an SLPC with
val(C) = NFU (val(B)); such an SLP can be computed in polynomial time fromB by
Lemma 13. We claim thatval(B) ∈ L(A) if and only if val(C) ∈ L(B). This concludes
the proof of Theorem 4 as the latter question belongs toNP by Theorem 5. So it remains
to prove that indeedval(B) ∈ L(A) if and only if val(C) ∈ L(B).

For the if-direction, consider a path from the initial stateq0 to some final stateqf in
B labeledval(C). Replacing every transition(q,Xi,m, p) by (q, ui,m, p) and replacing
every atomic transition(q,Xi, p) by an appropriateui-labeled path of atomic transitions
in A gives a path inA from q0 to qf labeledval(B).

For the other direction, consider a pathπ from q0 to some final stateqf in A labeled
val(B) and fix an occurrence ofuαi

i Xβ
i uαi

i in val(C) = NFU (val(B)) for someui ∈ U

12

(β > 0). Let j > 0 be the position ofval(B) such that the factoruβ
i corresponding to

the blockXβ
i occurs atj, i.e.,

val(B)[j − αi|ui| + 1 : j + β|ui|] = uαi+β
i .

Let (p, us,m, q) be the unique transition inπ that starts atk < j and ends atℓ ≥ j.
Thus,val(B)[k + 1 : ℓ] = um

s , i.e., k is an occurrence ofum
s in val(B). Assume for

contradiction thatℓ > j. Hence(p, us,m, q) is non-atomic and by the condition from
Step 3 above, the occurrencek of um

s in val(B) is preceded byuαs
s , i.e.,

val(B)[k − αs|us| + 1 : ℓ] = uαs+m
s .

If s = i, thenk < j < ℓ implies that the occurrencej −αi|ui| of uαi

i (which covers all
positions from[j − αi|ui| + 1, j]) is strictly contained in the occurrencek − αi|ui| of
uαi+m

i (which covers all positions from[k−αi|ui|+1, ℓ]). In particular, the occurrence
j − αi|ui| of ui is contained in an occurrence< j − αi|ui| of u2

i . Lemma 6 implies
that j − αi|ui| − |ui| = j − (αi + 1)|ui| is an occurrence ofui as well. Hence, we
haveval(B)[j − (αi + 1)|ui|+ 1 : j] = uαi+1

i . But then, inval(C) = NFU (val(B)) we
would obtain the factoruαi

i Xγ
i uαi

i for someγ > β instead ofuαi

i Xβ
i uαi

i , which is a
contradiction. Hences 6= i. But then eitheruαi

i is contained inuαs+m
s (if k−αs|us| ≤

j − αi|ui|) or uαs
s is contained inuαi

i (if j − αi|ui| ≤ k − αs|us|). This contradicts
Lemma 8.

Henceℓ = j, i.e., there is a transition inπ starting atj. A symmetric argument
shows that there is a transition ending atj + β|ui| and hence there is a subpathπ′

of π from p′ to q′ that corresponds exactly to the blockXβ
i . In fact, our argument

also shows that this subpathπ′ cannot contain a non-atomic transition(p′′, us,m, q′′)
with s 6= i (we would obtain again a contradiction to Lemma 8). Hence, byLemma 6
(ui is primitive), π′ can be decomposed into atomic paths labeledui and non-atomic
transitions of the form(p, ui,m, q). Hence,π′ has a correspondingXβ

i -labeled path
from p′ to q′ in B. By doing this argument for all factorsuαi

i Xβ
i uαi

i in val(C), we
obtain a path fromq0 to qf in B labeledval(C). This concludes the proof of Theorem 4.

5 Conclusion

We have considered the membership problem for a compressed string and an automaton
with compressed labels. Two algorithms for this problem were developed. The first
algorithm is deterministic and works in polynomial time if all transition labels have a
small order (polynomial in the input size). The second algorithm is nondeterministic
and works in polynomial time if all transition labels have a small period (polynomial in
the input size), i.e., are highly periodic. Hence, these twoalgorithms cover two extreme
cases (almost nonperiodic versus highly periodic). But thecomplexity of the general
case remains open. Following [13], we conjecture that the general membership problem
for compressed strings and automata with compressed labelsbelongs toNP. This would
follow from the truth of the following conjecture:

13

Conjecture 14.If val(A) ∈ L(A) for an SLPA and an automatonA with compressed
labels, then there exists an accepting run ofA onval(A) (viewed as a word over the set
of transition triples ofA), which can be generated by an SLP of sizepoly(|A|, |A|).

Indeed, if this conjecture is true, we simply can guess an SLPR of sizepoly(|A|, |A|)
over the set of transition tuples ofA. In polynomial time, we can check, whetherR

indeed generates an accepting run ofA for some word (this is a regular property).
Moreover, an SLPB for that word can be computed easily fromR. It remains to check
whetherval(A) = val(B), which can be done in polynomial time [12]. One might first
study Conjecture 14 for the case thatA is deterministic. Here, an automaton with com-
pressed labels is deterministic, if for each pair of transition triples(p, A, q), (p, B, r),
neitherval(A) is a prefix ofval(B) nor vice versa. In this case, if there is an accepting
run ofA on a wordw, there is a unique such run. Even for deterministic automatawith
compressed labels we are not aware of a better upper bound than PSPACE.

References

1. R. V. Book and F. Otto.String–Rewriting Systems. Springer, 1993.
2. C. Choffrut and J. Karhum̈aki. Combinatorics on words. In G. Rozenberg and A. Salomaa,

editors,Word, Language, Grammar, volume 1 ofHandbook of Formal Languages, chapter 6,
pages 329–438. Springer, 1997.

3. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-
Ziv encoding (extended abstract). InProc. SWAT 1996, LNCS 1097, pages 392–403.
Springer, 1996.

4. Ch. Hagenah.Gleichungen mit regulären Randbedingungen̈uber freien Gruppen. PhD
thesis, University of Stuttgart, Institut für Informatik, 2000.

5. Y. Lifshits. Processing compressed texts: A tractability border. InProc. CPM 2007, LNCS
4580, pages 228–240. Springer, 2007.

6. Y. Lifshits and M. Lohrey. Querying and embedding compressed texts. InProc. MFCS 2006,
LNCS 4162, pages 681–692. Springer, 2006.

7. M. Lohrey. Compressed membership problems for regular expressions and hierarchical au-
tomata.Internat. J. Found. Comput. Sci., 21(5):817–841, 2010.

8. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. InProc. CSR
2007, LNCS 4649, pages 249–258. Springer, 2007.

9. M. Lohrey. Word problems and membership problems on compressed words.SIAM J. Com-
put., 35(5):1210 – 1240, 2006.

10. M. Lothaire.Combinatorics on Words, volume 17 ofEncyclopedia of Mathematics and its
Applications. Addison-Wesley, Reading, MA, 1983.

11. J. Macdonald. Compressed words and automorphisms in fully residually free groups.Inter-
nat. J. Algebra Comput., 20(3):343–355, 2010.

12. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. In
Proc. ESA’94, LNCS 855, pages 460–470. Springer, 1994.

13. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed
words. InJewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 262–272. Springer, 1999.

14. S. Schleimer. Polynomial-time word problems.Comment. Math. Helv., 83(4):741–765,
2008.

15. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans-
actions on Information Theory, 23(3):337–343, 1977.

14

