Compressed Membership in Automata with
Compressed Labels

Markus Lohrey and Christian Mathissen

Institut fir Informatik, Universi&t Leipzig, Germany
{l ohr ey, mat hi ssen}@ nf or mati k. uni -1 ei pzi g. de

Abstract. The algorithmic problem of whether a compressed string is accepted
by a (nondeterministic) finite state automaton with compressed transitionisibels
investigated. For string compression, straight-line programs (SLEs);@ntext-

free grammars that generate exactly one string, are used. Two afgerftr

this problem are presented. The first one works in polynomial time, if afi-tr
sition labels are nonperiodic strings (or more generally, the word lenyithedi

by the period is bounded polynomially in the input size). This answers & que
tion of Plandowski and Rytter. The second (nondeterministic) algorithmmis a
NP-algorithm under the assumption that for each transition label the period is
bounded polynomially in the input size. This generalizesNReupper bound for

the case of a unary alphabet, shown by Plandowski and Rytter.

1 Introduction

The topic of this paper is algorithms on compressed strifipe. goal of such algo-
rithms is to check properties of compressed strings anellydoeat a straightforward
“decompress-and-check” strategy. Potential applicatifum such algorithms can be
found for instance in genome databases, where massive gslainstring data are
stored and analyzed. When talking about algorithms on cossprkstrings, one has
to make precise the used compression scheme. Here, as ioyg@apers, we choose
straight-line programqSLPSs); these are context-free grammars that generatéyexac
one string. Straight-line programs turned out to be a verjtfle and mathematically
clean compressed representation of strings. Several dittenary-based compressed
representations, like for instance Lempel-Ziv (LZ) factations [15], can be converted
in polynomial time into SLPs and vice versa [13]. This implthat complexity results
can be transferred from SLP-encoded input strings to L&ded input strings.

Several algorithmic problems for SLP-compressed inpirigetrwere considered in
the past, e.g. equivalence and pattern matching [5, 12} mablems for certain groups
and monoids [8, 9, 11, 14], and membership problems for uarianguage classes [3,
7,9,13]. In this paper, we study the membership problem fonpressed words in
automata with compressed labels. In this problem, the inposists of an SLRA and
a nondeterministic automaton, where each transition isléabwith an SLP. Such an
automaton generates a language in the obvious way, andskésiavhether the string
generated by the SLR belongs to that language. This problem was first studied in
[13]; itis easily seen to be IRSPACE. Moreover, it was shown to HgP-complete for

a unary alphabet in [13]. In faclyP-hardness in the unary case follows directly from
NP-hardness of the SUBSETSUM problem. To the knowledge of tiiecss no better
lower bound tharNP-hardness is known for the non-unary case. This paper cantai
two algorithms for the membership problem for compresseds/in automata with
compressed labels (let be the input automaton with compressed labels).

The first algorithm is deterministic and works in polynontiate if every SLP ap-
pearing inA generates a string with a small order (polynomial in thel togaut size).
Here the order of a string is its length divided by its smalfgiod. Hence, having a
small order means that the string looks quite aperiodicatm, fas a corollary we obtain
a polynomial time algorithm for the case that every SLRAigenerates a nonperiodic
word. This solves open problem 3 from [13]. The second aflgoris nondeterministic
and works in polynomial time if every SLP iA generates a string with a small period
(polynomial in the total input size). This generalizes Nfe bound for the unary case
from [13] (a unary word has periol).

Hence, these two algorithms cover two extreme cases (alnoogteriodic versus
highly periodic). But they do not cover the general case. AR & may generate a
string, for which both the order and the period are expoaéittithe size ofA. Never-
theless, following [13], we conjecture that the general bership problem for com-
pressed words in automata with compressed labels belong® .t&Ve conclude this
paper with another conjecture that implies the former one.

2 Preliminaries

We usepoly(n1, . ..,n;) as an abbreviation fon, + --- + n,)°M. Forn < m, we
denote within, m] the interval{n, n + 1, ..., m}. An arithmetic progressiois a set of
natural numbers of the fordb+i-p | ¢ € [0,¢]}. This set can be represented succinctly
by the triple(b, p, £), where all three numbers are binary coded.

Let us fix a finite alphabeX. For a stringw € X* andl < i < |w]| let w[i] denote
the i-th symbol inw. Moreover, forl < i,j < |w| letw(i : j] = w[i]---w[j] if
i < jandletw[i: j] =¢eifi > j. Anumberl < p < |w| — 1 is aperiod of w if
wli] = wli+p]foral 1 < i < |w| — p. With per(w) we denote the smallest period

of w, where we seper(w) = |w| if w has no period. Lebrd(w) = Lpe‘:’(’JU)J be the

order of w. Thenw = u°4(")y, whereuw is primitive (i.e., it is not of the formz™ for

a stringz andn > 2) andwv is a proper prefix of. (possibly empty). A stringv is
callednonperiodic if ord(w) = 1. Two wordsu, v € X* areconjugated if there exist
x,y € X* with u = zy andv = yx. An occurrence of a worgd in another word is a
number; € [0, |¢| — |p|] such thatw[i + 1 : 7 + |p|] = p. We say that this occurrence
i coversall positions from the intervdl + 1,7 + |p|], and that itouchesall positions
from the intervali, i + |p|].

Lemmal (cf. [5, Lemma 1]).Lett,p € X* andj € [0, |¢|]. The set of all occurrences
of p in ¢ that touch positiory is an arithmetic progression of size at mosad (p).

In Section 4.2 we need some basic concepts concestiiimg rewriting systemsee [1]
for more details. A string rewriting systefover Y is a finite subset oE™* x X*. A pair

(¢,7) € Ris called arule of? and is often written aé — r. R defines a rewrite relation
—g as follows:u — g v for u,v € X* if there existz,y € X* and arule¢,r) € R
such thatu = zfy andv = zry. The systemR is terminatingif there does not exist
an infinite chainugy —r u; —gr us —pg ---. Moreover,R is calledconfluent(resp.
locally confluenif for all v, v, w € X* such that, —3, v andu —3 w (resp.u —g v
andu —p w) there existsr € X* with v —% = andw —7, 2. By Newman’s lemma,
a terminating system is confluent if and only if it is locallgrdluent. Moreover, for
terminating systems, local confluence is decidable. Ferdhe has to consideritical
pairs that result from overlapping left hand sides, see [1] for endetails. Let us set
IRR(R) = X*\ {u | 3v : w —g v}. If Risterminating and confluent, then for every
u € X* there exists a unique € IRR(R) such thaw. —7, v; itis called theirreducible
normal formof » and is denoted bXF g (u).

A straight-line program (SLPyver the terminal alphabét is a context-free gram-
marA = (N, X, S, P) (N is the set of nonterminalg; is the set of terminals§ € N
is the initial nonterminal, and® C N x (N U X)* is the set of productions) such that:
(i) for every A € N there exists exactly one production of the fofr, o) € P for
a € (NUX)*, and (i) the relation (A, B) € N x N | (A, «) € P, B occurs ina} is
acyclic. The transitive closure of this relation is alsdedthehierarchical orderof A;
it is a partial order. A productiofA, «) is also written asi — «. Clearly, the language
generated by the SLR consists of exactly one word that is denotedvbi(A). More
generally, from every nonterminal € N we can generate exactly one word that is
denoted byaly (A) (thusval(A) = valy(5)). We omit the indexA if the underlying
SLP is clear from the context. The sizeffs [A[= 3_ , ,)cp |- Every SLPA with
val(A) # e can be transformed in polynomial time into an equivalent 8L.2homsky
normal form i.e., all productions have the forfM, a) with a € X or (A, BC) with
B,C € N.Inthe sequel we assume that all SLPs are in Chomsky nornmal fo

Let us state some algorithmic problems that can be easitgdah polynomial time:

— Given an SLPA, calculatgval(A)|.
— Given an SLPA and anumbef € {1, ..., |val(A)|}, calculateval (A)[i]; this prob-
lem is in factP-complete [6].

Let A be an SLP with a productiofd, BC'). An occurrence € [0, |val(A)| — |p|] of
the wordp in val(A) touches the cut of4, if this occurrence touches positioral(B)|.
The following result by Lifshits implies in particular, théor given SLPsA andB one
can check in time(|A| - |B|?), whetherval(A) occurs as a pattern iral(B).

Theorem 2 ([5]). For two given SLP%\ andB we can compute in tim@(|A| - |B|?) a
table that contains for every nonterminBl of B an arithmetic progression (stored by
three binary encoded numbers) for the set of all occurrenéesl(A) in valg(B) that
are touching the cut aB.

An automaton with compressed lab&s tupled = (Q, X, 4, qo, F'), whereQ is a fi-
nite set of states), is a finite alphabetyy € @ is the initial statef' C @ is the set of fi-
nal states, andlis a finite set of transitions of the forfp, A, ¢), wherep andq are states
andA is an SLP overr, for which we assumeal(A) # ¢ (e-transitions can be elimi-
nated). A transitiorip, A, ¢) with |val(A)| = 1 is calledatomic The size of4d is | 4| =

1Q + 32, 4.0)e5 |Al- We say that a word labels a path from stajeto stateg in A if
there exists a sequence of transitiong Ao, p1), (p1,A1,p2), -y (Pr—1,An—1,Dn) €

6 (n > 0) such thatpy = p, p, = ¢, andw = val(Ag) - - -val(A,_1). We say the
transition starting at positioEf;é |val(A;)| and ending at positio?Zf:0 [val(A;)] is
(pe, Ay, pes1). The languagd.(A) C X* is the set of all words that label a path from
the initial stateg, to some final statg; € F. We setord(A) = max{ord(val(A)) |
(p, A, q) € 6} andper(A) = max{per(val(A)) | (p,A,q) € §}. Note that in general,
bothord(.A) andper(.A) are exponential if4].

3 A deterministic algorithm

The goal of this section is to prove the following theorem.

Theorem 3. Given an automaton with compressed lahdlsand an SLPB, we can
checkval(B) € L(A) in timepoly (|BJ, |Al, ord(A)).

Proof. Let A = (Q, X, 8,q0, F), B = (N, X, S, P),and letA,, ..., A, be alist of all
SLPs that occur as labels i By Theorem 2, we can compute in tifg " (JA;] -
IB[?)) < O(|A] - |B|?) a table that contains for evely € [1,n] and every nonter-
minal B € N an arithmetic progressioAP(i, B) for the set of all occurrences of
A; in valg(B) that are touching the cut d8. Moreover, by Lemma 1, this arithmetic
progression contains at mostd(val(A;)) many numbers. In total, we have at most
IB| - >, ord(val(A;)) < |B| - |A| - ord(.A) many numbers.

We now define a context-free gramn@rwith empty terminal alphabet. The two
major facts aboutr are:

— G can be computed in timgoly (|B|, |.A|, ord(A)).
— ¢ € L(G) ifand only ifval(B) € L(.A).

Since the word problem for context-free grammars can bealdddin polynomial time,
these two facts imply the theorem. The gramifids constructed by a fixpoint process,
where we add more and more nonterminals. The set of nontelsrinntains the start
nonterminalS¢; all other nonterminals are 5-tuples of the fo(m k, B, ¢, q), where
p,q € @Q, B € N, andk,? € [0,|val(B)|] with k + ¢ < |val(B)|. The intuition is
that this 5-tuple should be viewed as the following assertieet w be the word that
results fromval(B) by cutting off the prefix of lengtlt and the suffix of lengtlt, i.e.,
w = val(B)[k + 1 : |val(B)| — £]. Then in the automatos there exists a path from
statep to stateg labeled with the wordo.

For G’s start nonterminabs we introduce all productions of the form

SG - (OaQOaqufaO)7 (1)
whereg; € F is a final state ofA. Now assume that at some point we have introduced
a new nonterminalk, p, B, ¢, ¢). We distinguish 5 cases:

Case 1(B — CD) € P and|val(C)| < k < |val(B)| — ¢, see Figure 1. We introduce
the production
(k7p7 B7 q7£) - (k - |VaI(C)|7p7 D7 q7‘€)'

“k—al(o)” :

Fig.1.Case 1

c | | D

S 4 — |val(D)|

Fig.2.Case 2

Case 2(B — CD) € P and|val(D)| < ¢ < |val(B)| — k, see Figure 2. We introduce
the production

(kvpa Ba q7€) - (kap7 Ca q7€ - |Va|(D)|)
Case 3(B — CD) € Pandk < |val(C)|, ¢ < |val(D)|, see Figure 3. We introduce a

production for every transitio(r, A;, s) of A and everyj € AP(i, B) such thatj > k
and|val(B)| — |val(A;)| — 7 > ¢. For such a choice, we introduce the production

(k,p, B,q,0) — (k,p,C,r,|val(C)| — 7) (Jval(Ay)| + j — |val(C)], s, D, q,£). (2)
Case 4k + ¢ = |val(B)|. If p = ¢, then we introduce the production
(kﬂp?B?q7£) — E.

Case 5(B — a) € P andk = ¢ = 0. Ifin A there is a path from stageto stateq
labeled with the lettet, then we introduce the production

(0,p,B,q,0) = e.

This concludes the description 6f It is straightforward to show thate L(G) if and
only if val(B) € L(A).

We claim thatG contains at mosO (|B|” - | A|* - ord(.A)?) many nonterminals.
This clearly implies that? can be constructed in timsoly (|B|, |.A|,ord(A)). For the
second, third and fourth component afzanonterminal (except of) there are in total
|Q|* - IN| < |AJ? - |B| possibilities. Let us bound the number of positions that may
appear as a first component ofzanonterminal (an analogous argument will apply to
the fifth component). Led/; be the set of all positions that appear as a first component
of a nonterminal of5. Moreover, let us define the set

J = {|val(A;)|+j—|val(C)| | 1 <i < n,3B,D € N : (B,CD) € P,j € AP(i, B)}.

B
c | D
Ival(C)] —j Ival(Aq)| + 7 — |val(C)]
Fig.3.Case 3

Every first component of the secoidgnonterminal in the right-hand side of thig
production (2) is from/. Note that

7] < |B|-) ord(val(A;)) < [B] - | Al - ord(A).

i=1

Let us now define a mappingon [0, |val(B)|] x N as follows:

(k — |val(C)|, D) if (B,CD) € P,val(C)| < k
f(k,B) =< (k,C) if (B,CD) € P,|val(C)| >k
undefined otherwise

This mappingf describes the way the first and third component ¢f-aonterminal
evolve when applying the productions from Case 1, 2, and B8 @@se 3, we only
consider the firstz-nonterminal in the right-hand side of (2)). Note that foely
(k,B) € [0, |val(B)|] x N, there is < |N|—1 such thatf*(k, B) = undefined. More-
over, ifi € My, then there existék, B) € {(0,5)} U(J x N)and0 < o < |N| —1
such thatf*(k, B) € {i} x N.Hence, the size di/; is bounded by

(7] INI+1) - IN| < (IB[* - |A] - ord(A) + 1) - [B] € O(B|* - | A| - ord (A)).
Hence, the number of nonterminals@fcan be bounded b§ (|B|”|.A|*ord(A)?). This

concludes the proof of the theorem. ad

4 A nondeterministic algorithm

The goal of this section is to prove the following theorem:

Theorem 4. Given an automaton with compressed lahdlsand an SLPB, we can
checkval(B) € L(.A) nondeterministically in timeoly (|B|, |.A|, per(A)).

In a first step, we will deal with the special case that(.4) = 1, which means that
every transition is labeled with a compressed unary worce¢fém 5 below). Note
that theNP bound in Theorem 5 already generalizes [13, Theorem 4]edime unary
alphabet for each transition is allowed to vary.

4.1 Compressed unary labels

Theorem 5. Given an automatoml with compressed labels over unary alphabets and
an SLPB, we can check whethenl(B) € L(.A) in NP.

Proof. We give an algorithm for the casE = {0,1}. The general case is similar.
W.l.o.g. we may assume thedl(B) € 0{0,1}*1. Let A = (Q, X, 4, qo, F) andB =
(N,{0,1}, S, P).

Step 1Letm > 2, 31,..., 3m > 1 such thaval(B) = 07117207 ... 1= Note thatm
might be exponentially big, however the size of the ket {1, ..., 5} is bounded
by the number of nonterminals Bf The binary codings of the numbesscan be com-
puted bottom-up. For each productioA, BC) € P we get a new numbes; in case
valg(B) ends with the same symbol aslz(C) starts. We transforr into an SLP
C over the alphabe® = {X,.,Y; | ¢ € I} such thatval(C) = X3,Ys,Xg, -+ Y3,,-
This can be done in deterministic polynomial time similattte construction from [8,
proof of Theorem 2]. The SLE contains all nonterminals froi plus some auxiliary
nonterminals. The right-hand side@of an old variabled € V' will be of the formZ
or Z1A'Z,, whereZ, Z,, Z, € © and A’ is an auxiliary nonterminal. Consider a pro-
duction(4, BC) € P, and assume that ti@&productions(B, Z1 B’ Z,), (C, Z5C' Z4)
are already computed (the case that the right-hand side afC is a single symbol
from O is similar). In caseZ; is of the formX; and Zs is of the formY; (i,j € I)
or vice versa, we introduce tli@-productiong A, Z1 A’, Z4) and(A’, B'Z,Z3C"). On
the other hand, if, e.g%Z, = X, andZ; = X; (i,j € I), then we introduce the
C-productions(A, Z,A'Z,) and(A’, B’ X, ;C").

Step 2.We build nondeterministically a new automatn= (Q, 0, qo,¢’, F) (with
noncompressed labels). For allh € @ and for eachi € I we guess whether there is a
path in A from ¢ to p labeled with0? (resp.1%). If this is true, then we add a transition

(g, Xs,p) (resp.(q,Ys, p)) tod’.

Step 3For each paifg, p) it can be checked nondeterministically in timely (|B|, |.A|)
whether there is a path frogto p in A with label0% (resp.17%) (see [13, Theorem 4]).
So for each transitioty, X;, p) and(g, Y;, p) in B we can check whether there is in fact
a corresponding path id.

Step 4 We can check deterministically in timely(|C|, |B|) whetherval(C) € L(B)
(see [13, Theorem 2(a)]). Clearkal(B) € L(A) if and only if there is an automaton
B, obtained as described above, such th&tC) € L(B). O

In the rest of this paper, we will prove Theorem 4. First, weeh do some combina-
torics on words.

4.2 Some combinatorics on words

The following lemma is well known.

Lemma6 (e.g. [10]).Letu € X* be primitive andu? = vuw for somev,w € X*.
Then eithew = ¢ or w = e.

The next lemma is an easy consequence of the well-knowndieityptheorem of Fine
and Wilf.

Lemma 7 (cf. [2, Corollary 6.2]). Let u # v be two primitive words that are not
conjugate, and let, m € N. Thenu™ andv™ do not have a common factor of length
|ul +[v].

LetnowU = {uy,...,u,} C XT be a collection of primitive words that are pairwise
not conjugated. Latet/ will consist of the primitive roots of labels occurring in an
automaton with compressed labels. Fo£ i < nleta; = 1+ [|v|/|u;|] > 2, where

v is alongest word i/. Lemma 7 implies:

Lemma 8. Fori # j, u;" is not a factor of a word from.

Let X4,..., X, be fresh letters which are not in. We now define a string rewriting
systemRy; over the alphabel' U { X1, ..., X,,}. First, forl <i < nlet R; consist of
the following 4 rules:

wZ T X u 3)
u?i"'lX@ — U?LX? 4)
Xuf it — XZuf (5)
Xiuf i X; — X2 (6)

Finally, let Ry = |J;_; R;. Let my be the maximal length of a left-hand side Bf;.
The following obvious fact is useful in the further investimpns:

Fact9 If u —% v, thenu can be obtained from by replacing some (but not neces-
sarily all) occurrences of; by u; (1 <1i < n).

Clearly, Ry; is terminating. Moreover, we have:
Lemma 10. Ry is confluent.

Proof. No left-hand side ofR;; is a factor of another left-hand side. Hence, we have
to check critical pairs that result from overlappings betwéeft-hand sides. Rule (3)
replaces an occurrence of by X; within the context(u;"*, u;"*). Similarly, (4) (resp.,
(5)) replaces an occurrence®f by X; within the context(u;"*, X;) (resp.(X;, u;")).
Finally, (6) replaces an occurrencew«f* by X* within the context(X, X;). These
observations imply that critical pairs that result from arerapping between a left-
hand side of?; and a left-hand side dt; with ¢ # j can be directly resolved: Lemma 8
implies that the replaced parts in the left-hand sides daoverlap, i.e., the overlapping
is restricted to the context. It remains to consider oveuilags between left-hand sides
of someR;. Again, those overlappings that are restricted to the abin be directly
resolved. Since:; does not occur properly in? (Lemma 6), the critical pairs from
Figure 4 (shown together with the resolving derivationshain (arrows are labeled
with the applied rule and possibly a number indicating thelber of rule applications).
This concludes the confluence proof. ad

2@ +1 X_u2a,i+l
2

/ (4)) Q)

it Xoudt X uli X2 Xiugt Xugt XPu2™
\ a;
(4) (6) (5)
uli X i it2 Xfli+2u‘?4i
2& i+1+k Xiu%_HXi
(3) 3) (4))
ugt Xugt itk O"JrkXiu?i Xuli X} X2uf X
(5) (4) (6) (6)
ozLXk-l»l Oz.L Xqi+3

Fig. 4. Proving confluence aRy

In the following, we writeNF; for NFg,,. The next lemma is needed in order to prove
the crucial Lemma 12 below.

Lemma 11. Assume that,y € (JU{X1,..., X, })*,zu®* ™' € IRR(Ry), andy # ¢
neither starts withu; nor X;. If zuf*'y —%, v, thenv = 2ul* ™'z for somez # ¢
that neither starts withi; nor X;.

Proof. Using induction, it suffices to prove the lemma for the case the derivation

zuftly =% vhaslengthone, i.eruft'y — g, v. The case thatis obtained from

Tu f *1y by applying a rule within the suffiy (i.e.,y —r, v andv = zu®*'y/) is

clear; one can use Fact 9 to see thaheither starts with:; nor X;. So, we have to
consider an occurrence of a left-hand sidef Ry that starts inz:uf”+1 and ends in
y. Assume that is a left-hand side o?; C Ry. If i # j, then Lemma 8 implies

that the occurrence df has to start in the suffix* ™' of zuf*'. So, only the rules
w5 Xul andu? X — S X? have to be considered. By Lemma 8,
the length of an overlapping betweefi ' andu?o‘frl (resp.,u?”“Xj) is bounded
by a; - |u;|. Hence, the prefixul ™! is not modified in the rewrite step. Moreover,
the rewrite step either does not modify the first| many positions ofy or produces
an occurrence of; within one of the firstu;| many positions of;. Hence, indeed,
v = xu?”‘lz for somez # ¢ that neither starts with; nor X;. Finally, consider the
case; = j. By Lemma 6 the occurrence of the left-hand sidd R; has to start in one
of the last|u;| many positions ofu{* " (otherwisey would start withu; or X;). But
then, the prefix-u® ™' as well as the firstu;| many positions of; are not modified in
the rewrite step. O

Lemma 12. Lets,t € IRR(Ry), s = s182, andt = tyto with (|se| = my or s = s3)
and(|t1] = my ort = t1). ThenNFy (st) = s1NFy (satq)ta.

Proof. We only consider the cages| = |t1| = my. Sincest Ry s1NFy (satq)ta,

it suffices to show that;NFy (sat1)t2 € IRR(Ry). Assume for contradiction that
s1NFy (sot1)ty is reducible. Sinces;, NFy(sat1),ts € IRR(Ry), there has to be an
occurrence of a left-hand sidethat starts in the prefix; or that ends in the suffik,.
By symmetry assume the former. Henées ¢,/ with ¢; £ ¢ # (5, {1 is a suffix of
s1, and/s is a prefix ofNFy (sat1)t2. We distinguish the following cases:

Case 1/ = u;**! for somel < i < n. Then by Fact 9¢, € X+ must be a prefix
of sot as well. Sincgsa| > (2a; + 1) - |uy], it follows that/s is in fact a prefix ofss.
Hences = s;s5 is reducible, a contradiction.

Case 2/ = Xiu?'i“ for somel < i < n. Since agairf, € X, we can argue as in
Case 1.

Case 3/ = u?i+1X7;. Let ¢, = u;"4/ (it is a suffix of s;) and4y = u”w"? X, with
u; = u'u” ando; + 1 = my + 1 + mo. Thenu"w;"? is a prefix ofs,t. Note thats,| >
(2a; + 1) - |uy|. Letms > mo maximal such that”«.*? is a prefix ofsyt. We must
havem; +1+ms3 < 2a; + 1, because otherwise= s;so would contain an occurrence
of u7*** and therefore would be reducible. Sirjeg| > (2a; + 1) - |u;], u”u!™* must
be a prefix ofs,. Let sy = zu; v’ ands, = v’u;*y. Sincems + 1 < 2a; + 1 and
|sa| > (20 + 1) - |uy], we havely| > |u;| Now, consider the wordu[" ™5yt =
s1sot1. We claim thatyt,; does not start withy; or X;. If it would do so, then, since
ly| > |u;|, vy would start withu,; or X;. This contradicts either the maximality of; (if

y starts withu;) or implies thats = s;s5 contains an occurrence ofi“Xi (if y starts
with X;) and is therefore reducible. Hengé, neither starts with:; nor X;. We can
therefore apply Lemma 11 tou" "1 T3 yt) = 5159t —}, $INFy(saty). It follows
that s,NFy (sot1) has the formeu] 71473 2, wherez # ¢ neither starts withs; nor
X;. But by our assumptios; NFy (sat)to starts withel = zu) 71472 X, This leads
to a contradiction, sincews > mo.

Case 4/ = X,;u;" X;. Can be shown analogously to Case 3. a

Lemma 12 allows us to prove Lemma 13 below. For this, an eidared SLPs is use-
ful. A composition systerB = (N, X, S, P) is defined analogously to an SLP, but
in addition to productions of the forml — o (A € N,a € (N U X)*) it may
also contain productions of the forsh — BJi : j] for N € V andi,j € N. For
such a production we definalg(A) = valg(B)[i : j]. The size of this production is
1+ [log,(7)] + [logs(4)]. As for SLPs we defineal(B) = valg(S). In [4], Hagenah
presented a polynomial time algorithm, which transformsvargcomposition system
B into an SLPC such thatal(C) = val(B).! Below, we allow more general kinds of
productions, where right-hand sides are arbitrary word#t bp from terminals, non-
terminals and symbolB[: : j] for a nonterminaB andi, j € N. The semantics of such
productions is the obvious one. Clearly, productions of thore general form can be
transformed in polynomial time into the above standard form

Lemma 13. From a given SLRA = (N, X, S, P) and a setU as above, we can com-
pute in timepoly (3", |u;|, |A]) an SLPB such thatval(B) = NFy (val(A)).

! The thesis [4] is written in German. An english presentation of Hagenédusithm can be
found in [14].

10

Proof. Using Hagenah's algorithm, it suffices to construct in polyrial time a com-
position systenB = (N, X' U {X1,..., X, }, S, R) such thawval(B) = NFy(val(A)).

To this aim we successively add production®tdV.l.0.g. assume that is in Chom-
sky normal form. First, we put all productiorisl — a) € P with a € X into R.
Now, consider a productiopd — BC) € P, and assume tha contains already
enough productions so thadlp(B) = NFy(valy(B)) andvalg(C) = NFy(vals (C)).

Let kg = |valg(B)| andkc = |valg(C)|, these numbers can be computed in time
poly(|A]). Moreover, in timepoly(}_:; |u;[,|A|), we can compute the words =
valg(B)[kp —my + 1: kp],y = valg(C)[1 : my], andz = NFy (xy). By Lemma 12,
we have

NFU(V3|A(A)) = vaIB(B)[l : kB — TTLU] ZV3|B(C)[mU +1: kc]

Hence, we introduce the productioch— B[l : kg — my|zC[my + 1 : k¢]. This
concludes the construction of the composition sysiem O

4.3 Proof of Theorem 4

Assume that4 is an automaton with compressed labels. First we will tramstA4 in
time poly(].A[, per(.A)) into an equivalent automaton with compressed labels witleso
additional nice properties. For an SIAHet us writeord(A) andper(A) for ord(val(A))
andper(val(A)), respectively, in the following. For simplicity, we will dete the au-
tomaton resulting from each of Steps 1-3 below again with

Step 1For eachA-transition(p, A, ¢), we can compute in timgoly(|A|) SLPsSU andV
such thatval(V)| < |val(U)| = per(A) andval(A) = val(U)*4®)val(V) (see e.g. [3]).
Moreover, in timeO(per(.A)) , we can explicitly compute = val(U) (it is primitive)
andv = val(V). We now replace the transitiofp, A, ¢) by a path of|v| + 1 many
transitions: a transition labeled with an SLP f6r4(*), followed by a sequence o0f|
atomic transitions, which give anlabeled path ending in stajeHence, we can assume
that for every transitiorp, A, q) of A we haveval(A) = «™ for a primitive wordu.
In the following, a transitior{p, A, ¢) with val(A) = «™ (u primitive) is just written as
(p,u,n,q) (an atomic transitiorp, a, ¢) can be viewed a&, a, 1, q)). In fact, instead
of an SLP foru™, we can store the paii:, n), wheren is binary coded. All following
steps are polynomial w.r.t. this new representation.

Step 2.Next, assume that there are two transitidpsu, n, ¢) and (r, v, m, s) such
that the primitive words: andv are conjugated. Hence, there are non-empty words
x,y € X7 such thau = xy andv = yx. We may assume that > 2, as otherwise we
replace the transitiofr, v, m, s) by a path of atomic transitions. We now replace the
transition(r, v, m, s) by a path ofju| + 1 many transitions: a path ¢ many atomic
transitions labeled, followed by a transition labeled with the péir, m — 1), followed
by a path ofiz| many atomic transitions labeled with

LetU = {uy,...,u,} be the set of primitive words that occur in transitions/f
W.l.o.g. we can assume thatC U. By Step 2u; andu; are not conjugated far# j.
This allows us to construct the confluent and terminatingesyg?;; from Section 4.2.
Letv be a longest word ify. Recall that we defined; = 1+ [|v|/|u;|] for1 < i < n.

11

atomic trans. atomic trans.

Fig. 5.

We can compute all these numbers (even in unary notatiomjmdtur preprocessing
time boundpoly(|.A|, per(A)).

Step 3.The aim of this step is to ensure the following technical ¢tol.

Each transitior{q, u;, n, p) of A is either atomic or there are statgsp’ such that:
In A there is a pathr of atomic transitions frony’ to ¢ labeled withu;"* and there
is a pathr’ of atomic transitions fronp to p’ labeled withu*. Moreover, on the
path the only state with indegree 1 could beq’ and on the patix’ the only
state with outdegree 1 could bep’.

To ensure this condition, we first split each transitigh u;, n, p’) with n < 2a; into
a path of atomic transitions. After that, each transitighu;, n, p’) with n > 2q; is
replaced by (see Figure 5):

— a path of atomic transitions frogt to some fresh statglabeledu;",
— atransition(q, u;, n — 2c;, p) for some fresh state and
— a path of atomic transitions fromto p’ labeledu;*.

Observe that all our modifications preseied) and that they can be executed within
the time boundgoly(|.A|, per(.A)). This ends the preprocessing of the automadon

Step 4.Let us introduce a new symbd{; for every primitive wordu, (see also the
definition of Ry). We now modify the automatorl as follows. For each primitive
word u; € U we replace every non-atomic transitidp, u;, m,q) by (p, X;,m, q).
Moreover for any two states, g of A we test whether there is a path of atomic tran-
sitions in.A from p to ¢ labeledu;. If there is such a path we introduce a new transi-
tion (p, X;, ¢). Let B denote our modified automaton. Now, consider an &LRith
val(C) = NFy (val(B)); such an SLP can be computed in polynomial time fi®rioy
Lemma 13. We claim thatal(B) € L(A) if and only if val(C) € L(B). This concludes
the proof of Theorem 4 as the latter question belong$tdy Theorem 5. So it remains
to prove that indeedal(B) € L(.A) if and only if val(C) € L(B).

For the if-direction, consider a path from the initial stageo some final state; in
B labeledval(C). Replacing every transitiofy, X;, m, p) by (¢, u;, m, p) and replacing
every atomic transitiofy, X, p) by an appropriate;-labeled path of atomic transitions
in A gives a path ind from g to ¢ labeledval(B).

For the other direction, consider a patifrom ¢, to some final statg; in A labeled
val(BB) and fix an occurrence af* X 4% in val(C) = NFy (val(B)) for someu; € U

12

(8 > 0). Letj > 0 be the position ofal(B) such that the factouf corresponding to
the blockx” occurs atj, i.e.,

val(B)[j — cvilug| + 1§ + Blui] = u?iJrﬁ'

Let (p, us, m, q) be the unique transition in that starts ak < j and ends at > j.
Thus,val(B)[k + 1 : ¢] = ul*, i.e., k is an occurrence of" in val(B). Assume for
contradiction that > j. Hence(p, us, m, ¢) is non-atomic and by the condition from
Step 3 above, the occurrene®f «2* in val(B) is preceded by.2-, i.e.,

val(B)[k — as|us| +1:] = ug=tm.

If s =1, thenk < j < ¢implies that the occurrenge— «; |u;| of u;** (which covers all
positions from[j — «;|u;| + 1, j]) is strictly contained in the occurrenée— «;|u;| of
uf ™ (which covers all positions froffk — o;|u;| +1, £]). In particular, the occurrence
j — a;|u;| of u; is contained in an occurrenee j — a;|u;| of u?. Lemma 6 implies
thatj — oy|u;| — |ui| = j — (oy + 1)|u,| is an occurrence of; as well. Hence, we
haveval(B)[j — (e + 1)|u;| + 1 : j] = u$. But then, inval(C) = NFy (val(B)) we
would obtain the facton®* X u® for somey > 3 instead ofu®* X 2", which is a
contradiction. Hence # i. But then eithew" is contained inu=+™ (if k — as|us| <

J — a;lw]) or uge is contained inu (if j — a;lu;| < k — as|us]). This contradicts
Lemma 8.

Hencel = j, i.e., there is a transition in starting atj. A symmetric argument
shows that there is a transition endingjat §|u;| and hence there is a subpath
of m from p’ to ¢’ that corresponds exactly to the bonX{j. In fact, our argument
also shows that this subpatti cannot contain a non-atomic transitigsl’, us, m, ¢")
with s # 7 (we would obtain again a contradiction to Lemma 8). Hence,.dayma 6
(u; is primitive), 7’ can be decomposed into atomic paths labelednd non-atomic
transitions of the form(p, u;, m,q). Hence,r’ has a corresponding’f-labeled path
from p’ to ¢’ in B. By doing this argument for all factom?’inu?” in val(C), we

K2

obtain a path frong, to g5 in B labeledval(C). This concludes the proof of Theorem 4.

5 Conclusion

We have considered the membership problem for a compresgegland an automaton
with compressed labels. Two algorithms for this problemengeveloped. The first
algorithm is deterministic and works in polynomial time If ansition labels have a
small order (polynomial in the input size). The second atgor is nondeterministic
and works in polynomial time if all transition labels havenaal period (polynomial in
the input size), i.e., are highly periodic. Hence, thesedigorithms cover two extreme
cases (almost nonperiodic versus highly periodic). Butatmmplexity of the general
case remains open. Following [13], we conjecture that tineige membership problem
for compressed strings and automata with compressed ladleisgs td\P. This would
follow from the truth of the following conjecture:

13

Conjecture 14.If val(A) € L(.A) for an SLPA and an automatos with compressed
labels, then there exists an accepting rutdain val(A) (viewed as a word over the set
of transition triples of4), which can be generated by an SLP of siaéy(|A|, |A]).

Indeed, if this conjecture is true, we simply can guess an BldPsizepoly(|A|, |A])
over the set of transition tuples of. In polynomial time, we can check, wheth&r
indeed generates an accepting runsffor some word (this is a regular property).
Moreover, an SLH for that word can be computed easily frd&n It remains to check
whetherval(A) = val(B), which can be done in polynomial time [12]. One might first
study Conjecture 14 for the case théis deterministic Here, an automaton with com-
pressed labels is deterministic, if for each pair of traositriples (p, A, q), (p, B, r),
neitherval(A) is a prefix ofval(B) nor vice versa. In this case, if there is an accepting
run of A on a wordw, there is a unique such run. Even for deterministic automwéta
compressed labels we are not aware of a better upper boum& $irACE.

References

1. R. V. Book and F. OttoString—Rewriting System$Springer, 1993.

2. C. Choffrut and J. Karhu#éki. Combinatorics on words. In G. Rozenberg and A. Salomaa,
editors Word, Language, Grammavolume 1 ofHandbook of Formal Languaggshapter 6,
pages 329-438. Springer, 1997.

3. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficidgbdathms for Lempel-
Ziv encoding (extended abstract). Rroc. SWAT 1996LNCS 1097, pages 392-403.
Springer, 1996.

4. Ch. Hagenah.Gleichungen mit regdren Randbedingungeitber freien Gruppen PhD
thesis, University of Stuttgart, Instituif Informatik, 2000.

5. Y. Lifshits. Processing compressed texts: A tractability bordePrat. CPM 2007LNCS
4580, pages 228-240. Springer, 2007.

6. Y. Lifshits and M. Lohrey. Querying and embedding compressdd.texProc. MFCS 2006
LNCS 4162, pages 681-692. Springer, 2006.

7. M. Lohrey. Compressed membership problems for regular sgjmes and hierarchical au-
tomata.Internat. J. Found. Comput. ScR1(5):817-841, 2010.

8. M. Lohrey and S. Schleimer. Efficient computation in groups via gesgon. IrProc. CSR
2007 LNCS 4649, pages 249-258. Springer, 2007.

9. M. Lohrey. Word problems and membership problems on comgaeserds.SIAM J. Com-
put, 35(5):1210 — 1240, 2006.

10. M. Lothaire. Combinatorics on Words/olume 17 ofEncyclopedia of Mathematics and its
Applications Addison-Wesley, Reading, MA, 1983.

11. J. Macdonald. Compressed words and automorphisms in fullyuakidree groupsinter-
nat. J. Algebra Compyt20(3):343-355, 2010.

12. W. Plandowski. Testing equivalence of morphisms on contextfseguages. In
Proc. ESA'94LNCS 855, pages 460-470. Springer, 1994.

13. W. Plandowski and W. Rytter. Complexity of language recognitioblpros for compressed
words. InJewels are Forever, Contributions on Theoretical Computer ScienceoHof
Arto Salomaapages 262—272. Springer, 1999.

14. S. Schleimer. Polynomial-time word problem&omment. Math. Hely83(4):741-765,
2008.

15. J. Ziv and A. Lempel. A universal algorithm for sequential damme@ssion.|EEE Trans-
actions on Information Theoy23(3):337-343, 1977.

14

