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Abstract. The main result of this paper is that the isomorphism problem for ω-
automatic trees of finite height is at least as hard as second-order arithmetic and
therefore not analytical. This strengthens a recent result by Hjorth, Khoussainov,
Montalbán, and Nies [9] showing that the isomorphism problem for ω-automatic
structures is not Σ1

2 . Moreover, assuming the continuum hypothesis CH, we can
show that the isomorphism problem for ω-automatic trees of finite height is recur-
sively equivalent with second-order arithmetic. On the way to our main results,
we show lower and upper bounds for the isomorphism problem for ω-automatic
trees of every finite height: (i) It is decidable (Π0

1 -complete, resp.) for height 1
(2, resp.), (ii) Π1

1 -hard and in Π1
2 for height 3, and (iii) Π1

n−3- and Σ1
n−3-hard

and in Π1
2n−4 (assuming CH) for all n ≥ 4. All proofs are elementary and do

not rely on theorems from set theory. Complete proofs can be found in [18].

1 Introduction

A graph is computable if its domain is a computable set of natural numbers and the edge
relation is computable as well. Hence, one can compute effectively in the graph. On the
other hand, practically all other properties are undecidable for computable graphs (e.g.,
reachability, connectedness, and even the existence of isolated nodes). In particular,
the isomorphism problem is highly undecidable in the sense that it is complete for
Σ1

1 (the first existential level of the analytical hierarchy [21, Chapter IV.2]); see e.g.
[3, 8] for further investigations of the isomorphism problem for computable structures.
These algorithmic deficiencies have motivated in computer science the study of more
restricted classes of finitely presented infinite graphs. For instance, pushdown graphs,
equational graphs, and prefix recognizable graphs have a decidable monadic second-
order theory and for the former two the isomorphism problem is known to be decidable
[5] (for prefix recognizable graphs the status of the isomorphism problem seems to be
open).

Automatic graphs [13] are between prefix recognizable and computable graphs. In
essence, a graph is automatic if the elements of the universe can be represented as
strings from a regular language and the edge relation can be recognized by a finite state
automaton with several heads that proceed synchronously. Automatic graphs (and more
general, automatic structures) received increasing interest over the last years [2, 10,
? The second and third author are supported by the DFG research project GELO.



14, 15, 24]. One of the main motivations for investigating automatic graphs is that their
first-order theories can be decided uniformly (i.e., the input is an automatic presentation
and a first-order sentence). On the other hand, the isomorphism problem for automatic
graphs is Σ1

1 -complete [14] and hence as complex as for computable graphs.
In our recent paper [17], we studied the isomorphism problem for restricted classes

of automatic graphs. Among other results, we proved that (i) the isomorphism problem
for automatic trees of height at most n ≥ 2 is complete for the level Π0

2n−3 of the arith-
metical hierarchy and (ii) that the isomorphism problem for automatic trees of finite
height is recursively equivalent to true arithmetic. In this paper, we extend our tech-
niques from [17] to ω-automatic trees. The class of ω-automatic structures was intro-
duced in [1]. It generalizes automatic structures by replacing ordinary finite automata by
Büchi automata on ω-words. In this way, uncountable graphs can be specified. Some re-
cent results on ω-automatic structures can be found in [9,11,16,19]. On the logical side,
many of the positive results for automatic structures carry over to ω-automatic struc-
tures [1, 11]. On the other hand, the isomorphism problem of ω-automatic structures
is more complicated than that of automatic structures (which is Σ1

1 -complete). Hjorth
et al. [9] constructed two ω-automatic structures for which the existence of an isomor-
phism depends on the axioms of set theory. Using Shoenfield’s absoluteness theorem,
they infer that isomorphism of ω-automatic structures does not belong to Σ1

2 . Also us-
ing Shoenfield’s absoluteness theorem, Finkel and Todorčević [7] recently showed that
the isomorphism problems of ω-tree-automatic1 partial orders, Boolean algebras, rings,
and non-commutative groups are not in the class Σ1

2 .
The extension of our elementary techniques from [17] to ω-automatic trees allows

us to show directly (without a “detour” through set theory) that the isomorphism prob-
lem for ω-automatic trees of finite height is not analytical (i.e., does not belong to any of
the levels Σ1

n). For this, we prove that the isomorphism problem for ω-automatic trees
of height n ≥ 4 is hard for both levels Σ1

n−3 and Π1
n−3 of the analytical hierarchy (our

proof is uniform in n). A more precise analysis reveals at which height the complex-
ity jump for ω-automatic trees occurs: For automatic as well as for ω-automatic trees
of height 2, the isomorphism problem is Π0

1 -complete and hence arithmetical. But the
isomorphism problem for ω-automatic trees of height 3 is hard for Π1

1 (and therefore
outside of the arithmetical hierarchy) while the isomorphism problem for automatic
trees of height 3 is Π0

3 -complete [17].
We prove our results by reductions from monadic second-order (fragments of) num-

ber theory. The first step in the proof is a normal form for analytical predicates. The ba-
sic idea of the reduction then is that a subset X ⊆ N can be encoded by an ω-word wX
over {0, 1}, where the ith symbol is 1 if and only if i ∈ X . The combination of this basic
observation with our techniques from [17] allows us to encode monadic second-order
formulas over (N,+,×) by ω-automatic trees of finite height. This yields the lower
bounds mentioned above. We also give an upper bound for the isomorphism problem:
for ω-automatic trees of height n, the isomorphism problem belongs to Π1

2n−4. While
the lower bound holds in the usual system ZFC of set theory, we can prove the upper
bound only assuming in addition the continuum hypothesis. The precise recursion the-

1 An ω-tree-automatic structure is a structure whose elements are coded as infinite trees and
whose universe and relations are accepted by Muller or Rabin tree automata.



oretic complexity of the isomorphism problem for ω-automatic trees remains open, it
might depend on the underlying axioms for set theory.

Related work Results on isomorphism problems for various subclasses of automatic
structures can be found in [7, 14, 15, 17, 23]. Some completeness results for low levels
of the analytical hierarchy for decision problems on infinitary rational relations were
shown in [6].

2 Preliminaries

Let N+ = {1, 2, 3, . . .}. With x we denote a tuple (x1, . . . , xm) of variables, whose
length m does not matter.

The arithmetical and analytical hierarchy: In this paper we follow the definitions
of the arithmetical and analytical hierarchy from [21, Chapter IV.1 and IV.2]. In order
to avoid some technical complications, it is useful to exclude 0 in the following, i.e.,
to consider subsets of N+. In the following, fi ranges over unary functions on N+, Xi

over subsets of N+, and u, x, y, z, xi, . . . over elements of N+. The class Σ0
n ⊆ 2N+ is

the collection of all sets A ⊆ N+ of the form

A = {x ∈ N+ | (N,+,×) |= ∃y1 ∀y2 · · ·Qyn : ϕ(x, y1, . . . , yn)},

where Q = ∀ (resp. Q = ∃) if n is even (resp. odd) and ϕ is a quantifier-free formula
over the signature containing + and ×. The class Π0

n is the class of all complements of
Σ0
n sets. The classes Σ0

n, Π
0
n (n ≥ 1) make up the arithmetical hierarchy.

The analytical hierarchy extends the arithmetical hierarchy and is defined analo-
gously using function quantifiers: The class Σ1

n ⊆ 2N+ is the collection of all sets
A ⊆ N+ of the form

A = {x ∈ N+ | (N,+,×) |= ∃f1 ∀f2 · · ·Qfn : ϕ(x, f1, . . . , fn)},

where Q = ∀ (resp. Q = ∃) if n is even (resp. odd) and ϕ is a first-order formula over
the signature containing +, ×, and the functions f1, . . . , fn. The class Π1

n is the class
of all complements of Σ1

n sets. The classes Σ1
n, Π

1
n (n ≥ 1) make up the analytical

hierarchy. The class of analytical sets2 is exactly
⋃
n≥1Σ

1
n ∪Π1

n.
As usual in computability theory, a Gödel numbering of all finite objects of interest

allows to quantify over, say, finite automata as well. We will always assume such a
numbering without mentioning it explicitly.

Büchi automata: For details on Büchi automata, see [22, 25]. Let Γ be a finite alpha-
bet. With Γ ∗ we denote the set of all finite words over the alphabet Γ . The set of all
nonempty finite words is Γ+. An ω-word over Γ is an infinite sequencew = a1a2a3 · · ·
with ai ∈ Γ . We set w[i] = ai for i ∈ N+. The set of all ω-words over Γ is denoted
by Γω .

2 Here the notion of analytical sets is defined for sets of natural numbers and is not to be con-
fused with the analytic sets studied in descriptive set theory [12].



A (nondeterministic) Büchi automaton is a tuple M = (Q,Γ,∆, I, F ), where Q is
a finite set of states, I, F ⊆ Q are resp. the sets of initial and final states, and ∆ ⊆ Q×
Γ ×Q is the transition relation. If Γ = Σn for some alphabet Σ, then we refer to M as
an n-dimensional Büchi automaton over Σ. A run of M on an ω-word w = a1a2a3 · · ·
is an ω-word r = (q1, a1, q2)(q2, a2, q3)(q3, a3, q4) · · · ∈ ∆ω such that q1 ∈ I . The
run r is accepting if there exists a final state from F that occurs infinitely often in r.
The language L(M) ⊆ Γω defined by M is the set of all ω-words for which there
exists an accepting run. An ω-language L ⊆ Γω is regular if there exists a Büchi
automaton M with L(M) = L. The class of all regular ω-languages is effectively
closed under Boolean operations and projections.

For ω-words w1, . . . , wn ∈ Γω , the convolution w1 ⊗ w2 ⊗ · · · ⊗ wn ∈ (Γn)ω is
defined by

w1 ⊗ w2 ⊗ · · · ⊗ wn = (w1[1], . . . , wn[1])(w1[2], . . . , wn[2])(w1[3], . . . , wn[3]) · · · .

For w = (w1, . . . , wn), we write ⊗(w) for w1 ⊗ · · · ⊗ wn.
An n-ary relation R ⊆ (Γω)n is called ω-automatic if ⊗R = {⊗(w) | w ∈ R} is a

regular ω-language, i.e., it is accepted by some n-dimensional Büchi automaton. We de-
note with R(M) ⊆ (Γω)n the relation defined by the n-dimensional Büchi automaton
M over the alphabet Γ .

To also define the convolution of finite words (and of finite words with infinite
words), we identify a finite word u ∈ Γ ∗ with the ω-word u�ω , where � is a new
symbol. Then, for u, v ∈ Γ ∗, w ∈ Γω , we write u ⊗ v for the ω-word u �ω ⊗v�ω and
u⊗ w (resp. w ⊗ u) for u �ω ⊗w (resp. w ⊗ u�ω).

ω-automatic structures: A signature is a finite set τ of relational symbols together
with an arity nS ∈ N+ for every relational symbol S ∈ τ . A τ -structure is a tuple A =
(A, (SA)S∈τ ), where A is a set (the universe of A) and SA ⊆ AnS . When the context
is clear, we simply denote SA by S, and we write a ∈ A for a ∈ A. Let E ⊆ A2 be an
equivalence relation on A. Then E is a congruence on A if (u1, v1), . . . , (unS , vnS ) ∈
E and (u1, . . . , unS ) ∈ S imply (v1, . . . , vnS ) ∈ S for all S ∈ τ . Then the quotient
structure A/E can be defined:

– The universe of A/E is the set of all E-equivalence classes [u] for u ∈ A.
– The interpretation of S ∈ τ is the relation {([u1], . . . , [unS ]) | (u1, . . . , unS ) ∈ S}.

Definition 2.1. An ω-automatic presentation over the signature τ is a tuple

P = (Γ,M,M≡, (MS)S∈τ )

with the following properties:

– Γ is a finite alphabet
– M is a Büchi automaton over the alphabet Γ .
– For every S ∈ τ , MS is an nS-dimensional Büchi automaton over the alphabet Γ

such that R(MS) ⊆ L(M)nS .
– M≡ is a 2-dimensional Büchi automaton over the alphabet Γ such that R(M≡) is

a congruence relation on (L(M), (R(MS))S∈τ ).



The τ -structure defined by the ω-automatic presentation P is the quotient structure

S(P ) = (L(M), (R(MS))S∈τ )/R(M≡) .

If R(M≡) is the identity relation on L(M), then P is called injective. A structure A
is (injectively) ω-automatic if there is an (injectively) ω-automatic presentation P with
A ∼= S(P ). There exist ω-automatic structures that are not injectively ω-automatic [9].
We simplify our statements by saying “given/compute an (injectively) ω-automatic
structureA” for “given/compute an (injectively) ω-automatic presentation P of a struc-
ture S(P ) ∼= A”. Automatic structures [13] are defined analogously to ω-automatic
structures, but instead of Büchi automata ordinary finite automata over finite words are
used. For this, one has to pad shorter strings with the padding symbol � when defining
the convolution of finite strings. More details on ω-automatic structures can be found
in [2, 9, 11].

Let FO[∃ℵ0 ,∃2ℵ0 ] be first-order logic extended by the quantifiers ∃κx . . . (κ ∈
{ℵ0, 2ℵ0}) saying that there exist exactly κ many x satisfying . . .. The following theo-
rem lays out the main motivation for investigating ω-automatic structures.

Theorem 2.2 ( [1,11]). From an ω-automatic presentationP = (Γ,M,M≡, (MS)S∈τ )
and a formula ϕ(x) ∈ FO[∃ℵ0 ,∃2ℵ0 ] in the signature τ with n free variables, one can
compute a Büchi automaton for the relation

{a ∈ L(M)n | S(P ) |= ϕ([a1], [a2], . . . , [an])} .

In particular, the FO[∃ℵ0 ,∃2ℵ0 ] theory of any ω-automatic structure A is (uniformly)
decidable.

Definition 2.3. Let K be a class of ω-automatic presentations. The isomorphism prob-
lem Iso(K) is the set of pairs (P1, P2) ∈ K2 of ω-automatic presentations from K with
S(P1) ∼= S(P2).

If A1 and A2 are two structures over the same signature, we write A1 ] A2 for the
disjoint union of the two structures. We use Aκ to denote the disjoint union of κ many
copies of the structure A (where κ is any cardinal).

Trees and dags: A forest is a partial order F = (V,≤) such that for every x ∈ V ,
the set {y | y ≤ x} of ancestors of x is finite and linearly ordered by ≤. The level of
a node x ∈ V is |{y | y < x}| ∈ N. The height of F is the supremum of the levels
of all nodes in V ; it may be infinite, but this paper deals with forests of finite height
only. For all u ∈ V , F (u) denotes the restriction of F to the set {v ∈ V | u ≤ v}
of successors of u. We will speak of the subtree rooted at u. A tree is a forest that has
a minimal element, called the root. For a forest F and r not belonging to the domain
of F , we denote with r ◦ F the tree that results from adding r to F as a new root. The
edge relation E of the forest F is the set of pairs (u, v) ∈ V 2 such that u is the largest
element in {x | x < v}. For any node u ∈ V , we use E(u) to denote the set of children
(or immediate successors) of u.

We use Tn (resp. T i
n) to denote the class of (injectively) ω-automatic presentations

of trees of height at most n. Note that it is decidable whether a given ω-automatic
presentation P belongs to Tn and T i

n, resp. (since the class of trees of height at most n
can be axiomatized in first-order logic).



3 ω-automatic trees of height 1 and 2

Two trees of height 1 are isomorphic if and only if they have the same size. Since the size
of an ω-automatic structure is computable from any presentation [11], the isomorphism
problem for ω-automatic trees of height 1 is decidable.

For ω-automatic trees of height 2 we need the following result:

Theorem 3.1 ( [11]). Let A be an ω-automatic structure and let ϕ(x1, . . . , xn, y) be
a formula of FO[∃ℵ0 ,∃2ℵ0 ]. Then, for all a1, . . . , an ∈ A, the cardinality of the set
{b ∈ A | A |= ϕ(a1, . . . , an, b)} belongs to N ∪ {ℵ0, 2ℵ0}.
Now, let us take two trees T1 and T2 of height 2 and let Ei be the edge relation of Ti
and ri its root. For i ∈ {1, 2} and a cardinal λ let κλ,i be the cardinality of the set of
all u ∈ Ei(ri) such that |Ei(u)| = λ. Then T1

∼= T2 if and only if κλ,1 = κλ,2 for any
cardinal λ. Now assume that T1 and T2 are both ω-automatic. By Theorem 3.1, for all
i ∈ {1, 2} and every u ∈ Ei(ri) we have |Ei(u)| ∈ N∪ {ℵ0, 2ℵ0}. Moreover, again by
Theorem 3.1, every cardinal κλ,i (λ ∈ N∪{ℵ0, 2ℵ0}) belongs to N∪{ℵ0, 2ℵ0} as well.
Hence, T1

∼= T2 if and only if: ∀λ, κ ∈ N ∪ {ℵ0, 2ℵ0} : κλ,1 = κ ⇔ κλ,2 = κ. By
Theorem 2.2, the statement κλ,1 = κ⇔ κλ,2 = κ is decidable, so the whole statement
belongs to Π0

1 . Hardness for Π0
1 follows from the corresponding result on automatic

trees of height 2 [17].

Theorem 3.2. The following holds:

– The isomorphism problem Iso(T1) for ω-automatic trees of height 1 is decidable.
– There exists a tree U such that {P ∈ T i

2 | S(P ) ∼= U} is Π0
1 -hard. The isomor-

phism problems Iso(T2) and Iso(T i
2 ) for (injectively) ω-automatic trees of height 2

are Π0
1 -complete.

4 A normal form for analytical sets

To prove our lower bound for the isomorphism problem of ω-automatic trees of height
n ≥ 3, we will use the following normal form of analytical sets. A formula of the form
x ∈ X or x 6∈ X is called a set constraint.

Proposition 4.1. For every odd (resp. even) n ∈ N+ and every Π1
n (resp. Σ1

n) relation
A ⊆ Nr+, there exist polynomials pi, qi ∈ N[x, y, z] and disjunctions ψi (1 ≤ i ≤ `) of
set constraints (on the set variables X1, . . . , Xn and individual variables x, y, z) such
that x ∈ A if and only if

Q1X1 Q2X2 · · ·QnXn ∃y ∀z :
∧̀
i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X1, . . . , Xn)

where Q1, Q2, . . . , Qn are alternating quantifiers with Qn = ∀.

The proof of this proposition uses standard arguments and Matiyasevich’s theorem on
the equivalence of recursively enumerable and Diophantine sets [20], but we could not
find it stated in precisely this form anywhere in the literature. It is known that the first-
order quantifier block ∃y∀z in Proposition 4.1 cannot be replaced by a block with only
one type of first-order quantifiers, see e.g. [21, p. 379].



5 ω-automatic trees of height at least 4

We prove the following theorem for injectively ω-automatic trees of height at least 4.

Theorem 5.1. Let n ≥ 1 and Θ ∈ {Σ,Π}. There exists a tree Un,Θ of height n + 3
such that {P ∈ T i

n+3 | S(P ) ∼= Un,Θ} is hard for Θ1
n. Hence,

– the isomorphism problem Iso(T i
n+3) for the class of injectively ω-automatic trees

of height n+ 3 is hard for both the classes Π1
n and Σ1

n,
– and the isomorphism problem Iso(T i) for the class of injectively ω-automatic trees

of finite height is not analytical.

Theorem 5.1 will be derived from the following proposition whose proof occupies Sec-
tions 5.1 and 5.2.

Proposition 5.2. Let n ≥ 1. There are trees U [0] and U [1] of height n+3 such that for
any set A that is Π1

n if n is odd and Σ1
n if n is even, one can compute from x ∈ N+ an

injectively ω-automatic tree T [x] of height n+ 3 with T [x] ∼= U [0] if and only if x ∈ A
and T [x] ∼= U [1] otherwise.

Note that this implies in particular that U [0] and U [1] are injectively ω-automatic.
Let n ≥ 1 and set Un,Σ = U [n mod 2] and Un,Π = U [(n + 1) mod 2]. Then

Proposition 5.2 implies the first statement of Theorem 5.1. The remaining statements
are consequences of this first statement.

The construction of the trees T [x], U [0], and U [1] is uniform in n and the formula
definingA. Hence the second-order theory of (N,+,×) can be reduced to

⋃
n∈N+

{n}×
Iso(T i

n) and therefore to the isomorphism problem Iso(
⋃
n∈N+

T i
n). This proves:

Corollary 5.3. The second-order theory of (N,+,×) can be reduced to the isomor-
phism problem Iso(

⋃
n∈N+

T i
n) for the class of all injectively ω-automatic trees of finite

height.

We now start to prove Proposition 5.2. Let A be a set that is Π1
n if n is odd and Σ1

n

otherwise. By Proposition 4.1 it can be written in the form

A = {x ∈ N+ | Q1X1 · · ·QnXn∃y ∀z :
∧̀
i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)}

where

– Q1, Q2, . . . , Qn are alternating quantifiers with Qn = ∀,
– pi, qi (1 ≤ i ≤ `) are polynomials in N[x, y, z] where z has length k, and
– every ψi is a disjunction of set constraints on the set variables X1, . . . , Xn and the

individual variables x, y, z.

For 0 ≤ m ≤ n, we will consider the formula ϕm(x,X1, . . . , Xn−m) defined by

Qn+1−mXn+1−m · · ·QnXn ∃y ∀z :
∧̀
i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)



such that ϕ0(x,X1, . . . , Xn) is a first-order formula and ϕn(x) holds if and only if
x ∈ A. In addition, let ϕ−1(x, y,X1, . . . , Xn) be the subformula starting with ∀z.

To prove Proposition 5.2, we construct by induction on 0 ≤ m ≤ n height-(m+ 3)
trees Tm[X1, . . . , Xn−m, x] and Um[i] where X1, . . . , Xn−m ⊆ N+, x ∈ N+, and
i ∈ {0, 1} such that the following holds:

∀X ∈ (2N+)n−m ∀x ∈ N+ : Tm[X,x] ∼=

{
Um[0] if ϕm(x,X) holds
Um[1] otherwise

(1)

Setting T [x] = Tn[x], U [0] = Un[0], and U [1] = Un[1] and constructing from x an
injectively ω-automatic presentation of T [x] then proves Proposition 5.2.

5.1 Construction of trees

Note that C : N2
+ → N+ with C(x, y) = (x+ y)2 + 3x+ y is an injective polynomial

function (C(x, y)/2 is the position of (x+y, x) in the lexicographic enumeration of N2).
For two numbers x, y ∈ N+, let S[x, y] denote the height-1 tree with C(x, y) many
leaves.

The trees are constructed by induction on m, m = 0 being the base case: For all
X ∈ (2N+)n, z ∈ Nk+, x, y, zk+1 ∈ N+, 1 ≤ i ≤ `, and κ ∈ N+∪{ω} define the trees3

T ′[X,x, y, z, zk+1, i] =

{
S[1, 2] if ψi(x, y, z,X)
S[pi(x, y, z) + zk+1, qi(x, y, z) + zk+1] otherwise

and

T ′′[X,x, y] = r ◦

(⊎
{S[e1, e2] | e1 6= e2} ]⊎
{T ′[X,x, y, z, zk+1, i] | z ∈ Nk+, zk+1 ∈ N+, 1 ≤ i ≤ `}

)ℵ0

U ′′[κ] = r ◦
(⊎
{S[e1, e2] | e1 6= e2} ]

⊎
{S[e, e] | κ ≤ e < ω}

)ℵ0

.

Note that all the trees T ′′[X,x, y] and U ′′[κ] are build from trees of the form S[e1, e2].
Furthermore, if S[e, e] appears as a building block, then S[e + a, e + a] also appears
as one for all a ∈ N. In addition, any building block S[e1, e2] appears either infinitely
often or not at all. These observations allow to prove the following:

(a) T ′′[X,x, y] ∼= U ′′[κ] for some κ ∈ N+ ∪ {ω}
(b) T ′′[X,x, y] ∼= U ′′[ω] if and only if ϕ−1(x, y,X) holds

3 The choice of S[1, 2] in the definition of T ′[X,x, y, z, zk+1, i] is arbitrary. Any S[a, b] with
a 6= b would be acceptable.



In a next step, we collect the trees T ′′[X,x, y] and U ′′[κ] into the trees T0[X,x], U0[0],
and U0[1] as follows:

T0[X,x] = r ◦
(⊎
{U ′′[m] | m ∈ N+} ]

⊎
{T ′′[X,x, y] | y ∈ N+}

)ℵ0

U0[0] = r ◦
(⊎
{U ′′[m] | m ∈ N+ ∪ {ω}}

)ℵ0

U0[1] = r ◦
(⊎
{U ′′[m] | m ∈ N+}

)ℵ0

By (a), these trees are build from copies of the treesU ′′[κ] (and are therefore of height 3),
each appearing infinitely often or not at all. Hence T0[X,x] is isomorphic to U0[0] or
to U0[1] (and these two trees are not isomorphic). Note that T0[X,x] ∼= U0[0] if and
only if there exists some y ∈ N+ with T ′′[X,x, y] ∼= U ′′[ω]. By (b) and the definition
of ϕ0(X,x), this is the case if and only if ϕ0(X,x) holds. Hence (1) holds for m = 0.

Suppose for some number 0 ≤ m < n we have trees Tm[X1, . . . , Xn−m, x], Um[0]
and Um[1] satisfying (1). Let X stand for (X1, . . . , Xn−m−1) and let α = m mod 2.
We define the following height-(m+ 4) trees:

Tm+1[X,x] = r ◦
(
Um[α] ]

⊎{
Tm[X,Xn−m, x] | Xn−m ⊆ N+

})2ℵ0

Um+1[i] = r ◦ (Um[α] ] Um[i])2
ℵ0

for i ∈ {0, 1}

Note that the trees Tm+1[X,x], Um+1[0], and Um+1[1] consist of 2ℵ0 many copies of
Um[α] and possibly 2ℵ0 many copies of Um[1 − α]. Hence Tm+1[X,x] is isomorphic
to one of the trees Um+1[0] or Um+1[1]. We show that Tm+1[X,x] ∼= Um+1[0] if and
only if ϕm+1(x,X) for the case that m even, i.e., α = 0 (the case m odd is similar):
The two trees are isomorphic if and only if Tm[X,Xn−m, x] ∼= Um[0] for all sets
Xn−m ⊆ N+. By the induction hypothesis, this is equivalent to saying that the formula
ϕm(x,X,Xn−m) holds for all sets Xn−m ⊆ N+. But since m is even, the formula
ϕm+1(x,X) equals ∀Xn−m : ϕm(x,X,Xn−m).

This finishes the construction of the trees Tm[X,x], Um[0], and Um[1] as well as
the verification of (1). For m = n we get:

Lemma 5.4. For all x ∈ N+, we have Tn[x] ∼= Un[0] if x ∈ A and Tn[x] ∼= Un[1]
otherwise.

5.2 Injective ω-automaticity

Injectively ω-automatic presentations of the trees Tm[X,x], Um[0], and Um[1] will be
constructed inductively. Note that the construction of Tm+1[X,x] involves all the trees
Tm[X,Xn−m, x] for Xn−m ⊆ N+. Hence we need one single injectively ω-automatic
presentation for the forest consisting of all these trees. Therefore, we will deal with
forests. To move from one forest to the next, we will always proceed as follows: add a
set of new roots and connect them to some of the old roots which results in a directed
acyclic graph (or dag) and not necessarily in a forest. The next forest will then be the
unfolding of this dag.



The height of a dag D is the length (number of edges) of a longest directed path
inD. We only consider dags of finite height. A root of a dag is a node without incoming
edges. A dag D = (V,E) can be unfold into a forest unfold(D) in the usual way:
Nodes of unfold(D) are directed paths in D that start in a root and the order relation
is the prefix relation between these paths. For a root v ∈ V of D, we define the tree
unfold(D, v) as the restriction of unfold(D) to those paths that start in v. We will make
use of the following lemma whose proof is based on the immediate observation that the
set of convolutions of paths in D is again a regular language.

Lemma 5.5. From a given k ∈ N and an injectively ω-automatic presentation for a
dag D of height at most k, one can construct effectively an injectively ω-automatic
presentation for unfold(D) such that the roots of unfold(D) coincide with the roots
of D and unfold(D, r) = (unfold(D))(r) for any root r.

For a symbol a and a tuple e = (e1, . . . , ek) ∈ Nk+, we write ae for the ω-word

ae1 ⊗ ae2 ⊗ · · · ⊗ aek = (ae1�ω)⊗ (ae2�ω)⊗ · · · ⊗ (aek�ω) .

For an ω-languageL, we write⊗k(L) for⊗(Lk). ForX ⊆ N+, letwX ∈ {0, 1}∗ be the
characteristic word (i.e., wX [i] = 1 if and only if i ∈ X) and, forX = (X1, . . . , Xn) ∈
(2N+)n, write wX for the convolution of the words wXi . The following lemma is the
key to the construction of ω-automatic presentations for Tn[x], Un[0], and Un[1]. We
refer to the definition of the set A from Section 5.

Lemma 5.6. For 1 ≤ i ≤ `, there exists a Büchi automaton Ai with the following
property: For all X ∈ (2N+)n, z ∈ Nk+, and x, y, zk+1 ∈ N+, the number of accepting
runs of Ai on the word wX ⊗ a(x,y,z,zk+1) equals C(1, 2) if ψi(x, y, z,X1, . . . , Xn)
holds and C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) otherwise.

Proof sketch. One first builds a Büchi automaton that, on the ω-word a(x,y,z,zk+1), has
preciselyC(pi(x, y, z)+zk+1, qi(x, y, z)+zk+1) many accepting runs. This is possible
using disjoint union of automata and the flag construction (cf. [4, 22, 25]) for addition
and multiplication of polynomials since C(pi(x, y, z) + zk+1, qi(x, y, z) + zk+1) is
a polynomial over N. Secondly, one builds deterministic Büchi automata accepting a
word wX⊗a(x,y,z,zk+1) if and only if the disjunction ψi(x, y, z,X) of set constraints is
satisfied (not satisfied, resp.) A straightforward combination of (several copies of) the
automata obtained in this way has the desired properties. ut

For a Büchi automaton A, let RunA denote the set of accepting runs. Note that this set
is a regular ω-language over the alphabet of transitions of A.

We now build a first injectively ω-automatic forest H′ = (L′, E′): its underlying
ω-language is (every 1 ≤ i ≤ ` is a new symbol in L′)

L′ =
⋃

1≤i≤`

i⊗ (L(Ai) ∪ RunAi)

and (i ⊗ v, j ⊗ w) forms an edge if and only if i = j and w is an accepting run of Ai
on v. Then H′ is a forest of height 1, the roots of H′ are the words from {1, . . . , `} ⊗



(⊗n({0, 1}ω)) ⊗ (⊗k+3(a+)), and for any root r = i ⊗ wX ⊗ a(x,y,z,zk+1), we have
H′(r) ∼= T ′[X,x, y, z, zk+1, i] by Lemma 5.6.

In a similar way, one can build an injectively ω-automatic forest F = (LF , EF )
whose roots are the words from b+ ⊗ b+ such that F(b(e1,e2)) ∼= S[e1, e2]. From H′
and F , we build an injectively ω-automatic dag D as follows:

– The domain of D is the set (⊗n({0, 1}ω)⊗ a+ ⊗ a+) ∪ b∗ ∪
(
$∗ ⊗ (L′ ∪LF )

)
.

– For u, v ∈ L′ ∪LF , the words $i ⊗ u and $j ⊗ v are connected if and only if i = j
and (u, v) ∈ E′ ∪ EF . In other words, the restriction of D to $∗ ⊗ (L′ ∪ LF ) is
isomorphic to (H′ ] F)ℵ0 .

– For all X ∈ (2N
+)n, x, y ∈ N+, the new root wX ⊗ a(x,y) is connected to all nodes

in

$∗ ⊗
(
({1, . . . , `} ⊗ wX ⊗ a

(x,y) ⊗ (⊗k+1(a+))) ∪ {b(e1,e2) | e1 6= e2}
)
.

– The new root ε is connected to all nodes in $∗ ⊗ {b(e1,e2) | e1 6= e2}.
– For all m ∈ N+, the new root bm is connected to all nodes in

$∗ ⊗ {b(e1,e2) | e1 6= e2 ∨ e1 = e2 ≥ m}.

It is easily seen that D is an injectively ω-automatic dag. Setting H′′ = unfold(D),
one can then verify H′′(wX ⊗ a(x,y)) ∼= T ′′[X,x, y], H′′(ε) ∼= U ′′[ω], and H′′(bm) ∼=
U ′′[m] for all m ∈ N+. Note that alsoH′′ is injectively ω-automatic by Lemma 5.5.

We now construct a new forestH0 from $∗ ⊗H′′ by adding new roots:

– For X ∈ (2N+)n, x ∈ N+, connect a new root wX ⊗ ax to all nodes in

$∗ ⊗
(
wX ⊗ a

x ⊗ a+ ∪ b+
)
.

– Connect a new root ε to all nodes in $∗ ⊗ b∗.
– Connect a new root b to all nodes in $∗ ⊗ b+.

The result is an injectively ω-automatic dag of height 3 whose unfolding we denote
by H0. This forest H0 is actually the base case of the following lemma. The induction
is done similarly: one adds to {$1$2}ω ⊗ Hm new roots wX ⊗ ax for x ∈ N+ and
X ∈ (2N+)n−m−1, ε, and b and one connects them to the appropriate words u⊗ v with
u ∈ {$1, $2}ω and v ∈ Hm (cf. the definition of the trees Tm+1[X,x] and Um+1[i] for
i ∈ {0, 1}).

Lemma 5.7. From each 0 ≤ m ≤ n, one can effectively construct an injectively ω-
automatic forestHm such that

– the set of roots ofHm is
(
⊗n−m({0, 1}ω)⊗ a+

)
∪ {ε, b},

– Hm(wX ⊗ ax) ∼= Tm[X,x] for all X ∈ (2N+)n−m and x ∈ N+,
– Hm(ε) ∼= Um[0], and
– Hm(b) ∼= Um[1].

Note that Tn[x] is the tree inHn rooted at ax. Hence Tn[x] is (effectively) an injectively
ω-automatic tree. Now Lemma 5.4 finishes the proof of Proposition 5.2 and therefore
of Theorem 5.1.



6 ω-automatic trees of height 3

Recall that the isomorphism problem Iso(T2) is arithmetical by Theorem 3.2 and that
Iso(T i

4 ) is not by Theorem 5.1. In this section, we modify the proof of Theorem 5.1 in
order to show:

Theorem 6.1. There exists a tree U such that {P ∈ T i
3 | S(P ) ∼= U} is Π1

1 -hard.
Hence the isomorphism problem Iso(T i

3 ) for injectively ω-automatic trees of height 3 is
Π1

1 -hard.

So let A ⊆ N+ be some set from Π1
1 . By Proposition 4.1, it can be written as

A = {x ∈ N+ : ∀X ∃y ∀z :
∧̀
i=1

pi(x, y, z) 6= qi(x, y, z) ∨ ψi(x, y, z,X)},

where pi and qi are polynomials with coefficients in N and ψi is a disjunction of set
constraints. As in Section 5, let ϕ0(x,X) denote the first-order kernel of this formula
(starting with ∃y) and let ϕ−1(x, y,X) denote the subformula starting with ∀z. We
reuse the trees T ′[X,x, y, z, zk+1, i] of height 1. Recall that they are all of the form
S[e1, e2] and therefore have an even number of leaves (since the range of the polynomial
C : N2 → N consists of even numbers). For e ∈ N+, let S[e] denote the height-1 tree
with 2e+ 1 leaves.

Recall that the tree T ′′[X,x, y] encodes the set of pairs (e1, e2) ∈ N2
+ such that e1 6=

e2 or there exist z, zk+1, and iwith e1 = pi(x, y, z)+zk+1 and e2 = qi(x, y, z)+zk+1.
We now modify the construction of this tree such that, in addition, it also encodes the
set X ⊆ N+:

T̂ [X,x, y] = r ◦

⊎{S[e] | e ∈ X} ]
⊎
{S[e1, e2] | e1 6= e2} ]⊎

{T ′[X,x, y, z, zk+1i] | z ∈ Nk+, zk+1 ∈ N+, 1 ≤ i ≤ `}

ℵ0

In a similar spirit, we define Û [κ,X] for X ⊆ N+ and κ ∈ N+ ∪ {ω}:

Û [κ,X] = r ◦

⊎{S[e] | e ∈ X} ]
⊎
{S[e1, e2] | e1 6= e2} ]⊎

{S[e, e] | κ ≤ e < ω}

ℵ0

Then T̂ [X,x, y] ∼= Û [ω, Y ] if and only if X = Y and T ′′[X,x, y] ∼= U ′′[ω], i.e., (by
(b) from Section 5.1) if and only if X = Y and ϕ−1(x, y,X) holds. Finally, we set

T [x] = r ◦

⊎{Û [κ,X] | X ⊆ N+, κ ∈ N+} ]⊎
{T̂ [X,x, y] | X ⊆ N+, y ∈ N+}

ℵ0

U = r ◦
(⊎
{Û [κ,X] | X ⊆ N+, κ ∈ N+ ∪ {ω}}

)ℵ0

.



Assume first that T [x] ∼= U . Thus, both trees have the same height-2 subtrees. The
crucial point is that, for any X ⊆ N+, Û [X,ω] appears in U , i.e., there must be some
Y ⊆ N+ and y ∈ N+ such that T̂ [Y, x, y] ∼= Û [ω,X] (implying X = Y ) and therefore
T ′′[X,x, y] ∼= U ′′[ω]. But this is equivalent to saying that ϕ−1(x, y,X) holds. Since
X ⊆ N+ is arbitrary, we showed x ∈ A. The other implication can be shown similarly.
Injective ω-automaticity can be shown similar to Section 5.2. This finishes our proof
sketch of Theorem 6.1.

7 Upper bounds assuming CH

We denote with CH the continuum hypothesis: Every infinite subset of 2N has either
cardinality ℵ0 or cardinality 2ℵ0 . By the seminal work of Cohen and Gödel, CH is
independent of the axiom system ZFC.

An ω-word w ∈ Γω can be identified with the function w : N+ → Γ (and hence
with a second-order object) where w(i) = w[i]. We need the following lemma:

Lemma 7.1. From a given Büchi automaton M over an alphabet Γ one can construct
an arithmetical predicate accM (u) (where u : N+ → Γ ) such that u ∈ L(M) if and
only if accM (u) holds.

Proof sketch. The idea is to transformM into an equivalent (deterministic and complete)
Muller automaton. Determinism then allows to express acceptance using the arithmeti-
cal predicate “the prefix of length n results in state q”. ut

Theorem 7.2. Assuming CH, the isomorphism problem Iso(Tn) belongs to Π1
2n−4 for

n ≥ 3.

Proof sketch. Consider trees Ti = S(Pi) for P1, P2 ∈ Tn. Define the forest F = (V,≤)
as F = T1 ] T2. Let us fix an ω-automatic presentation P = (Σ,M,M≡,M≤) for
F where M≤ recognizes the order relation ≤. In the following, for u ∈ L(M) we
write F (u) for the subtree F ([u]) rooted in the F -node [u] = [u]R(M≡) represented by
the ω-word u. Similarly, we write E(u) for the set of children of [u]. We will define
a Π1

2n−2k−4-predicate isok(u1, u2), where u1, u2 ∈ L(M) are on level k in F . This
predicate expresses that F (u1) ∼= F (u2).

As induction base, let k = n − 2. Then the trees F (u1) and F (u2) have height
at most 2. Then F (u1) ∼= F (u2) if and only if the following holds for all κ, λ ∈
N ∪ {ℵ0, 2ℵ0} (see Section 3):

F |=
(
∃κx ∈ V : (([u1], x) ∈ E ∧ ∃λy ∈ V : (x, y) ∈ E)

)
↔(

∃κx ∈ V : (([u2], x) ∈ E ∧ ∃λy ∈ V : (x, y) ∈ E)
)
.

Note that by Theorem 2.2, one can compute from κ, λ ∈ N ∪ {ℵ0, 2ℵ0} a Büchi au-
tomaton Mκ,λ accepting the set of convolutions of pairs of ω-words (u1, u2) satisfying
the above formula. Hence F (u1) ∼= F (u2) if and only if the following arithmetical
predicate holds: ∀κ, λ ∈ N ∪ {ℵ0, 2ℵ0} : accMκ,λ

(u1, u2).



Now let 0 ≤ k < n − 2. For a set A, let count(A) denote the set of all countable
(possibly finite) subsets of A. On an abstract level, the formula isok(u1, u2) is:(
∀x ∈ E(u1)∃y ∈ E(u2) : isok+1(x, y)

)
∧
(
∀x ∈ E(u2)∃y ∈ E(u1) : isok+1(x, y)

)
∧ ∀X1 ∈ count(E(u1))∀X2 ∈ count(E(u2)) :

|X1| = |X2| ∨ (∃x, y ∈ X1 ∪X2 : ¬isok+1(x, y)) ∨
(∃x ∈ X1 ∪X2 ∃y ∈ (E(u1) ∪ E(u2)) \ (X1 ∪X2) : isok+1(x, y))

The first line expresses that the children of u1 and u2 realize the same isomorphism
types of trees of height n − k − 1. The rest of the formula expresses that if a certain
isomorphism type τ of height-(n − k − 1) trees appears countably many times below
u1 then it appears with the same multiplicity below u2 and vice versa. Assuming CH
and the correctness of isok+1, one gets isok(u1, u2) if and only if F (u1) ∼= F (u2).

The sets Xi in the above formula can be coded as mappings fi : N2
+ → Σ. Then

the elements of Xi correspond to natural numbers j coding the word k 7→ fi(j, k). But
the ω-word y /∈ X1 ∪X2 is another second-order object. This results in two additional
second-order quantifier blocks in isok. Hence the formula iso0 belongs to Π1

2n−4. In
order to express that e.g. x ∈ E(ui) we use Lemma 7.1 with the automaton M≤. ut
Corollary 5.3 and Theorem 7.2 imply:

Corollary 7.3. Assuming CH, the isomorphism problem for (injectively) ω-automatic
trees of finite height is recursively equivalent to the second-order theory of (N,+,×).

Remark 7.4. For the case n = 3 we can avoid the use of CH in Theorem 7.2: Let us
consider the proof of Theorem 7.2 for n = 3. Then, the binary relation iso1 (which
holds between two ω-words u, v in F if and only if [u] and [v] are on level 1 and
F (u) ∼= F (v)) is a Π0

1 -predicate. It follows that this relation is Borel (see e.g. [12] for
background on Borel sets). Now let u be an ω-word on level 1 in F . It follows that the
set of all ω-words v on level 1 with iso1(u, v) is again Borel. Now, every uncountable
Borel set has cardinality 2ℵ0 (this holds even for analytic sets [12]). It follows that the
definition of iso0 in the proof of Theorem 7.2 is correct even without assuming CH.
Hence, Iso(T3) belongs to Π1

2 (recall that we proved Π1
1 -hardness for this problem in

Section 6), this can be shown in ZFC.

8 Open problems

The main open problem concerns upper bounds in case we assume the negation of the
continuum hypothesis. Assuming ¬CH, is the isomorphism problem for (injectively)
ω-automatic trees of height n still analytical? In our paper [17] we also proved that
the isomorphism problem for automatic linear orders is not arithmetical. This leads to
the question whether our techniques for ω-automatic trees can be also used for proving
lower bounds on the isomorphism problem for ω-automatic linear orders. More specifi-
cally, one might ask whether the isomorphism problem for ω-automatic linear orders is
analytical. A more general question asks for the complexity of the isomorphism prob-
lem for ω-automatic structures in general. On the face of it, it is an existential third-order
property (since any isomorphism has to map second-order objects to second-order ob-
jects). But it is not clear whether it is complete for this class.
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