Compressed Conjugacy and the Word Problem for
Outer Automorphism Groups of Graph Groups

Niko Haubold, Markus Lohrey, and Christian Mathissen

Institut fur Informatik, Universiét Leipzig, Germany
{haubol d, | ohr ey, nat hi ssen}@ nf or mati k. uni -1 ei pzi g. de

Abstract. It is shown that for graph groups (right-angled Artin groups) the con-
jugacy problem as well as a restricted version of the simultaneous cagjuga
problem can be solved in polynomial time even if input words are reptedén

a compressed form. As a consequence it follows that the word prdiolethe
outer automorphism group of a graph group can be solved in polyntimial

1 Introduction

Automorphism groupandouter automorphism groupsf graph groupsreceived a lot
of interest in the past few years. A graph grdaf>, I) is given by a finite undirected
graph(X, I (without self-loops). The seY is the set of generators &f(X, I) and ev-
ery edgg(a, b) € I gives rise to a commutation relatiah = ba. Graph groups are also
known agight-angled Artin group®r free partially commutative group&raph groups
interpolate between finitely generated free groups ancefingenerated free Abelian
groups. The automorphism group of the free Abelian grdtips GL(n,Z) and hence
finitely generated. By a classical result of Nielsen, alsm@uorphism groups of free
groups are finitely generated, see e.g. [14]. For graph grisugeneral, it was shown by
Laurence [10] (building up on previous work by Servatius|J18at their automorphism
groups are finitely generated. Only recently, Day [4] hasashthatAut(G(X, I)) is
always finitely presented. An overwiew on structural resol automorphism groups
of graph groups can be found in [1].

In this paper, we continue the investigation of algorithaspects of automorphism
groups of graph groups. In [13] it was shown that the word femolfor Aut(G (X, I))
can be solved in polynomial time. The proof of this resultdisempression techniques.
It is well-known that the word problem fd& (X, I') can be solved in linear time. In [13],
a compressed (or succinct) version of the word problem faplggroups was studied. In
this variant of the word problem, the input word is represdrguccinctly by a so-called
straight-line programThis is a context free grammarthat generates exactly one word
val(A), see Sec. 2.1. Since the length of this word may grow exp@ilgnith the size
(number of productions) of the SL4&, SLPs can be seen indeed as a succinct string rep-
resentation. SLPs turned out to be a very flexible compresgdsentation of strings,
which are well suited for studying algorithms for comprebsdata, see e.g. [6, 11, 17].
In [13, 18] it was shown that the word problem for the autorh@sm groupAut(G) of
a groupG can be reduced in polynomial time to thempressed word problefor G,

where the input word is succinctly given by an SLP. In [18yéts shown that the com-
pressed word problem for a finitely generated free grbugan be solved in polynomial
time and in [13] this result was extended to graph groupslihs that the word prob-
lem for Aut(G(X, I)) can be solved in polynomial time. Recently, Macdonald [1&] h
shown that also the compressed word problem for every falljdually free group can
be solved in polynomial time.

It is not obvious to carry over these complexity results fram(G(X, I)) to the
outerautomorphism grouPut(G(X, 1)) = Aut(G(X,1))/Inn(G(X, I)) (see Sec. 2.3
for the definition). Nevertheless, Schleimer proved in [th8}t the word problem for the
outer automorphism group of a finitely generated free grauphe decided in polyno-
mial time. For this, he used a compressed variant of the smebus conjugacy prob-
lem in free groups. In this paper, we generalize Schleinressilt to graph groups: For
every graph(X, I), the word problem foOut(G(X, I')) can be solved in polynomial
time. Analogously to Schleimer’s approach for free growps reduce the word prob-
lem for Out(G(X, I)) to a compressed variant of the simultaneous conjugacy gmobl
in G(X, I). Inthis problem, we are given an SR, for every generatar € X, and the
question is whether there exiats G(X, I) suchthat = xval(A,) z ! foralla € X.

A large part of this paper develops a polynomial time aldponifor this problem. More-
over, we also present a polynomial time algorithm for the peased version of the
classical conjugacy problem in graph groups: In this pnoblye are given two SLPA
andB and we ask whether there exists G(X, I) such thatal(A) = zval(B)z~! in
G(X, I). For the non-compressed version of this problem, a lineze lgorithm was
presented in [21] based on [12]. In [3] this result was gdimd to various subgroups
of graph groups.

Missing proofs can be found in the full version [9] of this extled abstract.

2 Preliminaries

Let X be a finite alphabet. For a word= a1 - - - a,, (a; € X) let |s| = m, alph(s) =
{a1,...,am}, sli] = a; for1 <i < m, and|s|, = [{k | s[k] = a}| for a € X. We use
Y=t ={a"!|a € X} todenote adisjoint copy of and letx*! = YU X ~!. Define
(a=1)~! = a. This defines an involution® : £+ — X+ which can be extended to

an involution on(2+1)* by setting(a; - --a,) ' = a; ' a7’

2.1 Straight-line programs

We are using straight-line programs as a succinct reprasemof strings with reoccur-
ring subpatterns. Atraight-line program (SLP) over the alphabBtis a context free
grammarA = (V, IS, P), whereV is the set olhonterminals I" is the set ottermi-
nals, S € V is theinitial nonterminal andP C V x (V U I")* is the set oproductions
such that (i) for evenX € V there is exactly one. € (V U I')* with (X, «) € P and
(i) there is no cycle inthe relatiof(X,Y) € VxV | Ja: (X,a) € P,Y € alph(a)}.
These conditions ensure that the language generated hydlghsline programi con-
tains exactly one wordal(A). Moreover, every nontermindf € V' generates exactly
one word that is denoted bwal, (X), or brieflyval(X), if A is clear from the context.

The size ofA is |[A] = 3y ,)cp |af- An SLP can be transformed in polynomial time
into an equivalent SLP i€homsky normal forpwhich means that all productions have
the formA — BC or A — awith A, B,C € V anda € I'. For an SLPA over X+!
(w.l.o.g. in Chomsky normal form) we denote witt ! the SLP that has for each ter-
minal ruleA — a from A the terminal ruleA — o' and for each nonterminal rule
A — BC from A the nonterminal ruled — CB. Clearly,val(A~') = val(A)~!. Let
us state some simple algorithmic problems that can be esdirgd in polynomial time:

— Given an SLPA, calculatgval(A)| andalph(val(A)).

— Given an SLPA and a number € {1,.. ., |val(A)|}, calculateval (A)[4].

— Givenan SLRA (letval(A) = a4 - - - a,,) and two numbers < i < j < n, compute
and SLPB with val(B) = a; - - - a;.

In [17], Plandowski presented a polynomial time algoritlomtésting whetheval(A) =
val(B) for two given SLPsA andB. A cubic algorithm was presented by Lifshits [11].
In fact, Lifshits gave an algorithm for compressed patteatahing: given SLP4 and
B, is val(A) a factor ofval(B)? His algorithm runs in imé(|A| - |B|?).

2.2 Trace monoids and graph groups

We introduce some notions from trace theory, see [5] for rdetails. Anindependence
alphabetis a pair(X, I') whereX is a finite alphabet andl C X' x X is an irreflexive
and symmetric relation. The complementary gréph D) with D = (X x)\ I is
called adependence alphabethe trace monoidM (X, I) is defined as the quotient
M(X,I) = X*/{ab = ba | (a,b) € I} with concatenation as operation and the empty
word as the neutral element. This monoid is cancellative indlements are called
traces The trace represented by the worde X* is denoted by(s];. Fora € X let
I(a) = {b € ¥ | (a,b) € I} be the letters that commute with For tracesu, v
we denote withulv the fact thatlph(u) x alph(v) C I. ForI" C X we say thatl”
is connectedf the subgraph of X, D) induced byI" is connected. For a trace let
max(u) = {a | u=wvafora € X,v € M(X,I)} be the set of possible last letterswof
andmin(u) = {a | u = avfora € X,v € M(X, I)} be the set of possible first letters.

A convenient representation for traces aependence graphsvhich are node-
labeled directed acyclic graphs. For a warde X* the dependence graph,, has
vertex set{1, ..., |w|} where the node is labeled withw[i]. There is an edge from
vertexi to j if and only if i < j and(w[é],w[j]) € D. ltis easy to see that for two
wordsw, w’ € X* we have[w]; = [v']; if and only if D,, and D, are isomorphic.
Hence, we can speak tifedependence graph of a trace.

For background in combinatorial group theory see [14]. free groupgenerated
by X can be defined as the quotient monsifly) = (X*+1)*/{aa"' =¢ | a € Z*1}.
For an independence alphaliet, I) the graph groupG(X, I) is the quotient group
G(X,I) = F(X)/{ab = ba | (a,b) € I}. From the independence alphalfét, I)
we derive the independence alphabBt!, {(a*, %) | i,5 € {~1,1},(a,b) € I}).
Abusing notation, we denote the independence relationisfaiphabet again witi.
Note that(a,b) € I impliesa=tb = ba~! in G(X,I). Thus, we haveG(X, 1) =
M(EX*L, 1) /{aa™ = ¢ | a € L*'}. Graph groups are also known as right-angled
Artin groups and free partially commutative groups.

2.3 (Outer) automorphism groups

The automorphism groug\ut(G) of a groupG is the set of all automorphisms 6f
with composition as operation and the identity mapping &srteutral element. An
automorphismy is calledinner if there isz € G such thatp(y) = zyz~! for all
y € G. The set of all inner automorphisms Gfforms theinner automorphism group
Inn(G) of G. This is easily seen to be a normal subgroup\of(G) and the quotient
groupOut(G) = Aut(G)/Inn(G) is called theouter automorphism groupf G.

Assume thatAut(G) is finitely generated (which, in general, won't be the case,
even ifG is finitely generated) and I8t = {«1, ..., ¢ } be amonoid generating set for
Aut(G), i.e., every automorphism @f can be composed from the automorphism&in
Then? also generateBut(G) where we identify); with its coset);-Inn(G) € Out(G)
fori € {1,...,k}. Then theword problemfor the outer automorphism group can be
viewed as the following decision problem:

INPUT: Awordw € ¥*.
QUESTION: Doesy = 1 in Out(G)?

Since an automorphism belongs to the same coset (\rr(i7)) as the identity if and
only if it is inner, we can rephrase the word problem@ort(G) as follows:

INPUT: Awordw € ¥*.
QUESTION: Doesw represent an element bin(G) in Aut(G)?

Building on results from [19], Laurence has shown in [10}#agtomorphism groups of
graph groups are finitely generated. Recently, Day [4] ptdkat automorphism groups
of graph groups are in fact finitely presented. In this papepresent a polynomial time
algorithm for the word problem fdDut(G(X, I)).

3 Main results

In this section we will present the main results of this pafies proofs of which are
subject to the rest of the paper. Our group theoretical mesnltis:

Theorem 1. Let (X, I) be a fixed independence alphabet. Then, the word problem for
the groupOut(G(X, I)) can be solved in polynomial time.

In order to solve the word problem f@®ut(G(X, I)) in polynomial time, we will
consider (following Schleimer’s approach for free group8]] compressed conjugacy
problems inG(X, I'). The most general of these compressed conjugacy problehes is
simultaneous compressed conjugacy problent: (X, I):

INPUT: SLPSA1,By,...,A,,B, over S+

QUESTION: 3z € (X1 Vi € {1,...,n} :val(A;) = zval(B;)z~ in G(X, 1)?

The simultaneous (non-compressed) conjugacy problemadpears in connection
with group-based cryptography [16]. Unfortunately, we ‘tlknow, whether the simul-
taneous compressed conjugacy problem can be solved ingrolghtime. But, in order

to deal with the word problem fddut(G(X, I)), a restriction of this problem suffices,
where the SLP8,, ... ,B,, from the simultaneous compressed conjugacy problem are

the letters from¥'. We call this problem theestricted simultaneous compressed conju-
gacy problembriefly RSCCP (X, I):

INPUT: SLPsA, (a € X) over L+,

QUESTION:3z € (¥*')" Va € X : val(A,) = zaz™ ' in G(X, 1)?

An z such thawval(A,) = zaz~!in G(X,I) for all a € X is called asolutionof the
RSCCP(X, I)-instance. The following theorem will be shown in Sec. 5:

Theorem 2. Let (X, I) be a fixed independence alphabet. TRSCCP (X, I) can be
solved in polynomial time. Moreover, in case a solutiontexisne can compute an SLP
for a solution in polynomial time.

Proof of Thm. 1 using Thm. Eix a finite monoid generating sétfor Aut(G(X, I)).
Letp = @1+, With ¢1,...,0, € @ be the input. By [18] we can compute in
polynomial time SLPs\, (a € X) over X*! with val(A,) = ¢(a) in G(X, I) for all
a € X. The automorphisny is inner iff there exists: such thatal(A,) = zaz=! in
G(X, 1) forall a € X. This can be decided in polynomial time by Thm. 2. O

Finally, we will also consider a compressed variant of tlessical conjugacy problem
for G(X, I). Recall that theconjugacy problenfor a finitely generated grou@ asks,
whether two given elements h € G areconjugatedi.e., whether there exists € G
with ¢ = xhz~!. The compressed conjugacy probleor the graph grou (X, 1),
CCP(X, I) for short, is the following problem:

INPUT: SLPsA andB over X *1.
QUESTION: Areval(A) andval(B) conjugated inG (X, I)?

Theorem 3. Let (X, I) be a fixed independence alphabet. ThéGP(X, I) can be
solved in polynomial time.

We will prove Thm. 3in Sec. 7. Itis important in Thm. 1-3 that fix the independence
alphabet X, I'). It is open whether these results also hol(lif, I) is part of the input.

4 Further facts for traces

In this section, we state some simple facts on trace moneitish will be needed later.
Fix the trace monoidVI(X, I). A tracew is said to be grefix of a tracew, briefly
v =X w, if uv = w for some tracev. The prefixes of a trace) correspond to the
downward-closed node sets of the dependence graph Ahalogously, a trace is a
suffixof a tracew if uv = w for some trace.. For two traces, v, theinfimumu Mo is
the largest trace w.r.t. < such thats < « ands = v; it always exists [2]. Withu \ v
we denote the unique tra¢esuch that = (u M v)t; uniqueness follows from the fact
thatM(X, I) is cancellative. Note that \ v = u \ (v M v). Thesupremumy U v of
two tracesu, v is the smallest trace w.r.t. < such thatu < s andv < s if any such
trace exists. We can define the supremum of several thages . , w,, by induction:
w U Uw, =(w U- - Uwp—1) Uwy,.

Lemma4 ([2]). The traceu U v exists if and only ifu \ v) I (v \ u), in which case we
haveu Uv = (uMo) (u\ v) (v\w).

Example 5.We consider the following independence alpha@®t/) and the corre-
sponding dependence alphabgt D):
c—Q

(X, 1) A (£,D)X

/6
é—d—b “e—

b d

Consider the words = aeadbacdd andv = eaabdcaeb. The dependence graphy,
andD, look as follows, where we label the vertewith the letteru[i] (resp.v[i]):

a—q a a—q a—p
Du e—:b/ D'u 64\:[)/ e/
i fcwdrd 4

Then we have. M v = aeadbac =: p. Sinceu \ p = dd andv \ p = eb we have
(u\ p)I(v\ p) and hence the supremum= u U v = aeadbacddeb is defined. The
dependence graphs fprands are:

aaa\ /a a»a\ /a»b
Dp e—»b\ D e——p e’
d——c d——Cc>d~d

The following lemma is a basic statement for traces, seexamgle [5, Sec. 1.3]:

Lemma 6 (Levi's Lemma).Letwuy,us,v1,ve be traces withu;us = vyvy. Then there
exist tracese, y1, y2, z such thaty, Iys, uy = xy1, us = Y22, v1 = Y2, andvs = y 2.

A trace rewriting systeni overM(X, I) is just a finite subset d¥1(X, I) x M(X,I)
[5]. The one-step rewrite relatior»r C M(X, I) x M(X,) is defined ast — g y if
and only if there are,, v € M(X, T) and(¢,r) € R such thate = wfv andy = urv. A
traceu is R-irreducibleif no tracev with u — g v exists. The set of alR-irreducible
traces is denoted b\RR(R). If R is Noetherian and confluent (see e.g. [5, Sec. 5.1]
for definitions), then for every trace, there exists a uniqueormal formNF g (u) €
IRR(R) such that: = NF g (u).

Let us now work in the trace monoddl(X*!,). For a traceu = [a; ---a,]r €
M(X*! I) we denote withu ! the traceu ! = [a,,; " - - - a] !];. Itis easy to see that this
definition is independent of the chosen representatjve - a,, of the traceu. It follows
that we haveval(A)];' = [val(A~1)]; for an SLPA. For the rest of the paper, we
fix the trace rewriting system® = {([aa™']r,[¢]7) | « € X*'} over the trace monoid
M(X*! I). This system is Noetherian (trivial) and, by [5, 20], alsofteent. For traces
u,v € M(X*L, I) we haveu = v in G(X, I) if and only if NFz(u) = NFz(v). Using
these facts, it was shown in [5, 20] that the word problemG@E, I) can be solved in
linear time (on the RAM model).

We close this section with some results concerning SLP-cessgd traces. A sim-
ple observation is that for given SLRs andB one can decide in polynomial time
whether[val(A)]; = [val(B)];. The projection lemma for traces [5, Cor. 1.4.8] allows
to reduce this question to equality testing for SLP-comgedstrings [17]. Much harder
to prove is:

Theorem 7 ([13]).For a given SLPA over ¥*! one can compute in polynomial time
an SLPB with [val(B)]; = NFg([val(A)]r).

Thm. 7 implies that the compressed word problem for a grapbprcan be solved in
polynomial time.

Theorem 8 ([13]).For given SLPs\, and A, over X*!, we can compute in polyno-
mial time SLP, Dy, D; with [Va|(]P>)][= [Va|(A0)][I [VQ|(A1)][and [VB'(]D)Z‘)][=
[Val(Ai)]] \ [VB'(Al_i)]] fori e {0, 1}

An immediate corollary of Thm. 8 and Lemma 4 is:

Corollary 9. Letr be a fixed constant. Then, for given S[¥Bs. . ., V,. over X+!, one
can check in polynomial time whethlgal(V1)]; U - - - U [val(V,.)]; exists, and in case
it exists one can compute an SBRwith [val(S)]; = [val(Vy)]; U - U [val(V,)]7 in
polynomial time.

It is important that we fix the numberof SLPs in Cor. 9: Each application of Thm. 8
increase the size of the SLP polynomially. Hence, a non-fixgdber of applications
might lead to an exponential blow-up.

5 Restricted simultaneous compressed conjugacy

A doublea-cone(a € X*1) is an R-irreducible trace of the formau =" with u €
M(X*+!, T). We first state several results on doubteones, which will be used in the
proof of Thm. 2. The following characterization can be gaskiown:

Lemma 10. A traceuau ! is a doublez-cone if and only if; € IRR(R) andmax ()N
({a,a™'}UI(a)) =0.

It follows that every letter in a double-cone either lies before or after the central letter
a. Its dependence graph always has the following form:

o]

By the following lemma, each doublecone has a unique factorization of the form
u1bug with "UJ1| = |’LL2|

Lemma 11. Letv = uau~" be a doublei-cone and lev = u;bus Withb € X*! and
|ur| = |uz]. Thena = b, u; = v anduy = u=t.

Lemma 11 together with standard techniques for SLP-corepdestrings (in particular,
the polynomial equality test for SLP-compressed strinds 1¥]) implies:

Lemma 12. For a given SLPA with [val(A)]; € IRR(R) anda € X*1, one can check
in polynomial time whethejval(A)]; is a doublea-cone, and in case it is, one can
compute in polynomial time an SEPwith [val(A)]; = [val(V) aval(V~1)];.

Lemma 13. Letw € M(X*!,I) be R-irreducible anda € Y*!. Then there exists
r € M(X*!L, I) withw = zaz~! in G(X, I) if and only ifw is a doublea-cone.

Lemma 13 can be shown by induction on the numbeR-aéwrite steps fronxaz ! to
w € IRR(R). Finally, our main lemma on doubtecones is:

Lemma 14. Let w,,v, € M(X*!, 1) (e« € X) be R-irreducible such thatw, =
veavytin M(X*LT) for all a € ¥ (thus, everyw, is a doublea-cone). If there is
atracer € M(X*!, I) withVa € X : zaz™! = w, in G(X, 1), thens = | |, v,
exists antkas ! = w, in G(X,I) foralla € X.

Now we are in the position to prove Thm. 2: L&t, (e € X) be the input SLPs. We
have to check whether there existsuch thatval(A,) = zaz~! in G(X,I) for all

a € X. Thm. 7 allows us to assume thaal(A,)]; € IRR(R) for all a € X. We first
check whether every tradeal(A,)]; is a doublez-cone. By Lemma 12 this is possible
in polynomial time. If there exists € X such thafval(A,)]; is not a double:-cone,
then we can reject by Lemma 13. Otherwise, we can computeg agjain Lemma 12)
SLPsV, (a € X) such thafval(A,)]; = [val(V,) aval(V;1)]; in M(X*1). Finally,
by Lemma 14, it suffices to check whether= | |,_.[val(V,)]; exists and whether
NFg(sas™t) = [val(A,)]; foralla € X. This is possible in polynomial time by Thm. 7
and Cor. 9 (recall thdt”| is a constant in our consideration). Moreover, if the supnem
s exists, then we can compute in polynomial time an SLwith [val(S)]; = s, which

is a solution for ouRSCCP (X, I)-instance. O

6 A pattern matching algorithm for connected patterns

For the proof of Thm. 3 we need a pattern matching algorithncéonpressed traces.
For traces, w we say thav is a factor ofw if there are traces, y with w = xvy. We
consider the following problem and show that it can be solmgzblynomial time if the
independence alphabg¥, I) satisfies certain conditions.

INPUT: An independence alphabef, I') and two SLPHI' andP over X.
QUESTION: Is|val(IP)]; a factor of[val(T)],;?

We writealph(T) andalph(P) for alph(val(T)) andalph(val(P)), respectively. We as-
sume in the following that the SLPB = (V, X, S, P) andP are in Chomsky nor-
mal form. LetI” C Y. We denote byry the homomorphismry : M(X, 1) —
M(,IN (I x I') with np(a) = afora € I'andnp(a) = efora € X\ T.
Let VI = {XI" | X € V} be a disjoint copy of/’. For each productiop € P
define a new productiop’ as follows. Ifp is of the formX — a (a € X), then
let p!" = (X' — 7r(a)). If p € Pis of the foomX — YZ (Y,Z € V) de-
fine p!” = (X' — YTZzZT). We denote withT?" the SLP(V!' I, ', PT") where
P = {p"" | p € P}. Obviously,val(TF) = 7 (val(T)).

In order to develop a polynomial time algorithm for the perhl stated above we
need a succinct representation for an occurrend®iof T. Sincelval(P)]; is a factor
of [val(T)] iff there is a prefixu < [val(T)]; such that[val(P)]; < [val(T)];, we will
in fact compute prefixes with the latter property and repreaeprefixu by its Parikh
image(|ulq)qcs- Hence, we say a sequen®e= (O,).cx € N¥ is anoccurrenceof
atracev in a tracew iff there is a prefixu < w such thatw < w, andO = (|u|4)aecx-
Note that our definition of an occurrencebin T does not exactly correspond to the in-
tuitive notion of an occurrence as a convex subset of therdiree graph dal(T)];.

In fact, to a convex subset of the dependence graghat(T)];, which is isomorphic
to the dependence graph p&l(P)|;, there might correspond several occurrenes
since for amu € X that is independent aflph(P) we might have several possibilities
for the valueO,. However, if we restrict to letters that are dependensiph(P), then
our definition of an occurrence coincides with the intuitigion. For” C X' we write
7w (O) for the restriction(O,).c . Furthermore, we say th& is an occurrence dp
in T if O is an occurrence dfal(P)]; in [val(T)];.

Let X be a nonterminal df with productionX — Y Z and letO be an occurrence
of [val(P)]; in [val(X)];. If there area,b € alph(P) with O, < |val(Y)|, andO; +
[val(P)|, > |val(Y)[s, then we say thaD is an occurrence d at the cutof X. Assume
w.l.o.g. that|val(P)| > 2, otherwise we simply have to check whether a certain letter
occurs inval(T). By this assumptionjval(P)]; is a factor of[val(T)]; iff there is a
nonterminalX of T for which there is an occurrence Bfat the cut ofX.

Lemma 15 ([12]).Letv,w € M(X,I). A sequencén,).cx € N¥ is an occurrence
of v inw iff (nq,ny) is an occurrence of ¢, 1y (v) i 7, 4y (w) for all (a,b) € D.

An arithmetic progressiois a subset oR* of the form{ (i,)aes + k- (da)acs | 0 <

k < ¢}. This set can be represented by the tri§&).c s, (dy)ac s, £). Thedescrip-
tional size|((ia)acs, (da)acs, £)| Of the arithmetic progressioftis)ac s, (da)acs, £)
islogy(€) 4+ >, c 5 (logs(ia) 4 logy(da)). We will use Lemma 15 in order to compute
the occurrences df in T in form of a family of arithmetic progressions. To this aim,
we follow a similar approach as Genest and Muscholl for mgessaquence charts [7].
In particular Lemma 16 below was inspired by [7, Prop. 1]. thar rest of this section
we make the following assumption:

alph(P) = alph(T) = X' is connected. 1)

Whereasalph(P) = alph(T) is a real restriction, the assumption tlat= alph(T) is
connected is not a real restriction; we simply solve seyeatiern matching instances if
itis not satisfied. LeX be a nonterminal df and letO be an occurrence @f at the cut
of X. Since the pattern is connected there must be gant¢ € D such thatr, 3, (O)

is at the cut ofX {**}. We will therefore compute occurrences of, ;, (val(P)) at
the cut of X {24} It is well known that the occurrences of, ;) (val(P)) at the cut of
X1a:} form an arithmetic progressiftia, is), (da, ds), ¢) and thatr,, ;) (val(P)) is

of the formw™v for somen > ¢ and stringsu,v € {a,b}* with v < u, |ul, = d,
and|u|, = dp. Moreover, the arithmetic progressiéfi,, is), (d., ds), £) can be com-
puted in time|T|?|P| (see [11}). Now suppose we have computed the occurrences of
T{a,p} (val(P)) at the cut ofX {**} in form of an arithmetic progression. The problem
now is how to find (for the possibly exponentially many oceunces in the arithmetic
progression) matching occurrences of projections ontotakr pairs inD. The fol-
lowing lemma states that either there is a gairb) € D such that the projection onto
{a, b} is the first or the last element of an arithmetic progressiorall projections lie
at the cut of the same nonterminal.

! Infact, in [11] it was shown that the arithmetic progressiontiy, d.+dy, £) can be computed
in polynomial time. From this the arithmetic progressiofi,, iv), (da, ds), £) can easily be
computed.

Lemma 16. Let X be a nonterminal off and letO be an occurrence d? at the cut of
X. Then either (iyr(, 3 (O) is at the cut ofX {**} for all (a,b) € D witha # b, or
(ii) there are(a, b) € D such thatr, 3, (O) is the first or last element of the arithmetic
progression of occurrences of, ; (val(IP)) at the cut ofx {:b},

Lemma 16 motivates that we partition the set of occurrenaestwo sets. LeO be an
occurrence oP in T at the cut ofX . We callO single(for X) if there is(a, b) € D such
that the projectionr;, ;1 (O) is the first or the last element of the arithmetic progression
of occurrences ofr, 1 (val(P)) at the cut of X {a:}, Otherwise, we calD periodic
(for X). By Lemma 16, ifO is periodic, thenry, 5, (O) is an element of the arithmetic
progression of occurrences ofl(P{:*}) at the cut ofX {1} for all (a,b) € D (but
neither the first nor the last element). Prop. 17 below shdwas we can decide in
polynomial time whether there are single occurrenceB iof T. The basic idea is that
due to assumption (1), an occurrencevalf{P) in val(T) is completely determined as
soon as we have determined the position of a single node afg¢pendence graph of
[val(P)]; in the dependence graph[etl(T)];.

Proposition 17. Given(a, b) € D, a nonterminalX of T and an occurrenc€O,, O;)
of w441 (val(P)) at the cut ofX {*:*}, one can decide in tim@T| + [P|)°)) whether
this occurrence is a projection of an occurrencePadt the cut ofX .

It remains to show that for every nontermingl of T we can compute in polynomial
time the periodic occurrences. To this aim we define the aanaddion of arithmetic
progressions. Lef’, 1" C X with I' N I’ # (). Consider two arithmetic progressions
p = ((ia)aer; (da)acr, £) andp’ = (()acrs, (d))acr,'). Theamalgamatiorof p
andp’ isp ® p' = {v = (Vo)aerur: | 7r(v) € pandrr (v) € p'}. The following
lemma follows from elementary facts about simultaneougogences:

Lemmal8. Let [, 1" C Y withI'Nn I’ # 0, and letp = ((ia)acr, (da)acr,£)
andp’ = ((¢))acrs, (d,)aecr,?') be two arithmetic progressions. Thenz p’ is an
arithmetic progression which can be computed in tifipg + |p’|) ™).

The next proposition can be shown using Lemma 15 and 18.

Proposition 19. Let X be a nonterminal off. The periodic occurrences @fat the cut
of X form an arithmetic progression which can be computed in {iffig+ |P|)°™).

We now get the following theorem easily.

Theorem 20. Given an independence alphal§et, I'), and two SLP® andT over X
such thatalph(P) = alph(T), we can decide in polynomial time whethesl(P)]; is a
factor of[val(T)];.

Proof. Let X be a nonterminal off. Using [11] we compute for each pdii, b) € D
the arithmetic progression of occurrences f (val(PP)) at the cut ofX {%:*}. By apply-
ing Prop. 17 to the first and to the last elements of each oétagmetic progressions,
we compute in polynomial time the single occurrences attheftX . The periodic oc-
currences can be computed in polynomial time using Propli@result follows, since
[val(P)]; is a factor ofjval(T)]; iff there is a nonterminakX of T for which there is a
single occurrence df at the cut ofX or a periodic occurrence @fat the cutofX. O

In [9], a slight generalization of Theorem 20 is shown.

10

7 Compressed conjugacy

In order to prove Thm. 3 we need some further concepts frot [Bfor a tracex we
haveNF (z) = uyu~! in M(X*!, T) for tracesy, u such thainin(y) Nmin(y) = 0,
then we cally the core of z, core(x) for short; it is uniquely defined [20]. Note that a
tracet is a doublea-cone if and only ift € IRR(R) andcore(t) = a. The following
result, which follows by combining results from [12] and [24llows us to transfer the
conjugacy problem iz(X, I') to a problem on traces:

Theorem 21 ([12,21]).Letu,v € M(X*!). Thenu is conjugated ta in G(X,)

if and only if: (i) |core(u)|, = |core(v)|, for all a € X+ and (ii) core(u) is a factor of
core(v)?*,

In order to apply Thm. 21 to SLP-compressed traces, we neadiyagmial time al-
gorithm for computing an SLP that represeatge([val(A)]r) for a given SLPA. The
following lemma is crucial:

Lemma 22. Letx € IRR(R) andd = x Mz~ 1. ThenNF g(d~1zd) = core(z).

Example 23.We take the independence alphabet from Example 5 and cortbiele
tracex = [c'd 'a"'ba " cabdc d"ta" b~ dea]; € M(X*,T), whose depen-
dence graph looks as follows:

S P VS AR T A H
C—\—:b \ /Ca_h‘ /

—1—>a,—>b b—1—>a
We haveNF z(z) = [¢~1d ! o~ Ybebde—a b1 alr:
1_>d loCc—» c
a- —>b \ / b L
Hence, the core of is core(z) = [d tcbdc™ta~]1 (the middle part in the above

diagram). Note that we haweF z(x) MNFg(z~!) = ¢ ta~1b. This trace occurs as a
prefix of NF g (z) and its inverse occurs as a suffixF (x). By cyclically cancelling
¢ ta=bin NFg(x), we obtaind~'cbdc=ta~t = core(x).

Thm. 7 and 8 and Lemma 22 imply:

Corollary 24. Fix an independence alphabeE*!, I). Then, for a given SLR over
the alphabetC*! one can compute in polynomial time an SBRwith [val(B)]; =
core([val(A)]r).

We can now infer Thm. 3: Lef andB be two given SLPs oveE*!. We want to
check, whetheral(A) andval(B) represent conjugated elements of the graph group
G(X,I). Using Cor. 24, we can compute in polynomial time SL®Psand D with
[val(C)]r = core([val(A)];) and[val(D)]; = core([val(B)];). By Thm. 21, it suffices

to check, whether (i)core([val(C)]r)|a = |core([val(D)];)|, for all a € X+ and (ii)
whethercore([val(C)];) is a factor ofcore([val(D)];)?!*!. Condition (i) can be easily
checked in polynomial time, since the number of occurremées symbol in a com-
pressed string can be computed in polynomial time. Morea@ndition (ii) can be
checked in polynomial time by Thm. 20, since (by conditio) {#e can assume that
alph(val(C)) = alph(val(DD)). O

11

8 Open problems

Though we have shown that some cases of the simultaneousre&ssed conjugacy
problem for graph groups (see Sec. 3) can be decided in poihdime, it remains
unclear whether this holds also for the general case. Itsis @ahclear to the authors,
whether the general compressed pattern matching probleinaftes, where we drop
restrictionalph(T) = alph(PP), can be decided in polynomial time. Finally, it is not
clear, whether Thm. 1-3 also hold if the independence aktHalpart of the input.

References

1. R. Charney. An introduction to right-angled Artin grou@eometriae Dedicatal25:141—
158, 2007.

2. R. Cori, Y. Metivier, and W. Zielonka. Asynchronous mappings and asynchsooellular
automatalnformation and Computatiqri06(2):159-202, 1993.

3. J. Crisp, E. Godelle, and B. Wiest. The conjugacy problem in rightedniyrtin groups and
their subgroupsJournal of Topology2(3), 2009.

4. M. B. Day. Peak reduction and finite presentations for automorphisapg of right-angled
Artin groups.Geometry & Topologyl3(2):817-855, 2009.

5. V. Diekert. Combinatorics on Traced.NCS 454. Springer, 1990.

6. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficidgbdathms for Lempel-
Ziv encoding. InProc. SWAT 1996.NCS 1097, 392-403. Springer, 1996.

7. B. Genest and A. Muscholl. Pattern matching and membership faarbiécal message
sequence chart3heory of Computing Systepd®(4):536-567, 2008.

8. C. HagenahGleichungen mit regélren Randbedingungéiber freien GruppenPhD thesis,
University of Stuttgart, Institutifr Informatik, 2000.

9. N. Haubold, M. Lohrey, and C. Mathissen. Compressed conjugradyhe word problem for
outer automorphism groups of graph groupst p: / / ar xi v. or g/ abs/ 1003. 1233,
2010.

10. M. R. Laurence. A generating set for the automorphism groupodph group.Journal of
the London Mathematical Society. Second SeB2§2):318-334, 1995.

11. Y. Lifshits. Processing compressed texts: A tractability bordePrac. CPM 2007LNCS
4580, 228-240, Springer, 2007.

12. H.-N. Liu, C. Wrathall, and K. Zeger. Efficient solution to some peais in free partially
commutative monoiddnformation and Computatiqrgd9(2):180-198, 1990.

13. M. Lohrey and S. Schleimer. Efficient computation in groups viagession. IrProc. CSR
2007 LNCS 4649, 249-258. Springer, 2007.

14. R. C. Lyndon and P. E. Schuppombinatorial Group TheorySpringer, 1977.

15. J. Macdonald. Compressed words and automorphisms in fullyuakidree groupsinter-
national Journal of Algebra and Computatio?009. to appear.

16. A. Myasnikov, V. Shpilrain, and A. Ushako@roup-based Cryptographyirkhauser, 2008.

17. W. Plandowski. Testing equivalence of morphisms on contextlfieguages. IrProc.
ESA'94 LNCS 855, 460—470. Springer, 1994.

18. S. Schleimer. Polynomial-time word problemsCommentarii Mathematici Helvetici
83(4):741-765, 2008.

19. H. Servatius. Automorphisms of graph groupsurnal of Algebra126(1):34—60, 1989.

20. C. Wrathall. The word problem for free partially commutative groulesirnal of Symbolic
Computation6(1):99-104, 1988.

21. C. Wrathall. Free partially commutative groupsClombinatorics, computing and complex-
ity, pages 195-216. Kluwer Academic Press, 1989.

12

