
Compressed Conjugacy and the Word Problem for
Outer Automorphism Groups of Graph Groups

Niko Haubold, Markus Lohrey, and Christian Mathissen

Institut für Informatik, Universiẗat Leipzig, Germany
{haubold,lohrey,mathissen}@informatik.uni-leipzig.de

Abstract. It is shown that for graph groups (right-angled Artin groups) the con-
jugacy problem as well as a restricted version of the simultaneous conjugacy
problem can be solved in polynomial time even if input words are represented in
a compressed form. As a consequence it follows that the word problemfor the
outer automorphism group of a graph group can be solved in polynomialtime.

1 Introduction

Automorphism groupsandouter automorphism groupsof graph groupsreceived a lot
of interest in the past few years. A graph groupG(Σ, I) is given by a finite undirected
graph(Σ, I) (without self-loops). The setΣ is the set of generators ofG(Σ, I) and ev-
ery edge(a, b) ∈ I gives rise to a commutation relationab = ba. Graph groups are also
known asright-angled Artin groupsor free partially commutative groups. Graph groups
interpolate between finitely generated free groups and finitely generated free Abelian
groups. The automorphism group of the free Abelian groupZ

n is GL(n, Z) and hence
finitely generated. By a classical result of Nielsen, also automorphism groups of free
groups are finitely generated, see e.g. [14]. For graph groups in general, it was shown by
Laurence [10] (building up on previous work by Servatius [19]) that their automorphism
groups are finitely generated. Only recently, Day [4] has shown thatAut(G(Σ, I)) is
always finitely presented. An overwiew on structural results on automorphism groups
of graph groups can be found in [1].

In this paper, we continue the investigation of algorithmicaspects of automorphism
groups of graph groups. In [13] it was shown that the word problem for Aut(G(Σ, I))
can be solved in polynomial time. The proof of this result used compression techniques.
It is well-known that the word problem forG(Σ, I) can be solved in linear time. In [13],
a compressed (or succinct) version of the word problem for graph groups was studied. In
this variant of the word problem, the input word is represented succinctly by a so-called
straight-line program. This is a context free grammarA that generates exactly one word
val(A), see Sec. 2.1. Since the length of this word may grow exponentially with the size
(number of productions) of the SLPA, SLPs can be seen indeed as a succinct string rep-
resentation. SLPs turned out to be a very flexible compressedrepresentation of strings,
which are well suited for studying algorithms for compressed data, see e.g. [6, 11, 17].
In [13, 18] it was shown that the word problem for the automorphism groupAut(G) of
a groupG can be reduced in polynomial time to thecompressed word problemfor G,

where the input word is succinctly given by an SLP. In [18], itwas shown that the com-
pressed word problem for a finitely generated free groupF can be solved in polynomial
time and in [13] this result was extended to graph groups. It follows that the word prob-
lem forAut(G(Σ, I)) can be solved in polynomial time. Recently, Macdonald [15] has
shown that also the compressed word problem for every fully residually free group can
be solved in polynomial time.

It is not obvious to carry over these complexity results fromAut(G(Σ, I)) to the
outerautomorphism groupOut(G(Σ, I)) = Aut(G(Σ, I))/Inn(G(Σ, I)) (see Sec. 2.3
for the definition). Nevertheless, Schleimer proved in [18]that the word problem for the
outer automorphism group of a finitely generated free group can be decided in polyno-
mial time. For this, he used a compressed variant of the simultaneous conjugacy prob-
lem in free groups. In this paper, we generalize Schleimer’sresult to graph groups: For
every graph(Σ, I), the word problem forOut(G(Σ, I)) can be solved in polynomial
time. Analogously to Schleimer’s approach for free groups,we reduce the word prob-
lem forOut(G(Σ, I)) to a compressed variant of the simultaneous conjugacy problem
in G(Σ, I). In this problem, we are given an SLPAa for every generatora ∈ Σ, and the
question is whether there existsx ∈ G(Σ, I) such thata = x val(Aa)x−1 for all a ∈ Σ.
A large part of this paper develops a polynomial time algorithm for this problem. More-
over, we also present a polynomial time algorithm for the compressed version of the
classical conjugacy problem in graph groups: In this problem, we are given two SLPsA
andB and we ask whether there existsx ∈ G(Σ, I) such thatval(A) = x val(B)x−1 in
G(Σ, I). For the non-compressed version of this problem, a linear time algorithm was
presented in [21] based on [12]. In [3] this result was generalized to various subgroups
of graph groups.

Missing proofs can be found in the full version [9] of this extended abstract.

2 Preliminaries

Let Σ be a finite alphabet. For a words = a1 · · · am (ai ∈ Σ) let |s| = m, alph(s) =
{a1, . . . , am}, s[i] = ai for 1 ≤ i ≤ m, and|s|a = |{k | s[k] = a}| for a ∈ Σ. We use
Σ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy ofΣ and letΣ±1 = Σ ∪Σ−1. Define
(a−1)−1 = a. This defines an involution−1 : Σ±1 → Σ±1, which can be extended to
an involution on(Σ±1)∗ by setting(a1 · · · an)−1 = a−1

n · · · a−1
1 .

2.1 Straight-line programs

We are using straight-line programs as a succinct representation of strings with reoccur-
ring subpatterns. Astraight-line program (SLP) over the alphabetΓ is a context free
grammarA = (V, Γ, S, P), whereV is the set ofnonterminals, Γ is the set oftermi-
nals, S ∈ V is theinitial nonterminal, andP ⊆ V × (V ∪Γ)∗ is the set ofproductions
such that (i) for everyX ∈ V there is exactly oneα ∈ (V ∪ Γ)∗ with (X,α) ∈ P and
(ii) there is no cycle in the relation{(X,Y) ∈ V ×V | ∃α : (X,α) ∈ P, Y ∈ alph(α)}.
These conditions ensure that the language generated by the straight-line programA con-
tains exactly one wordval(A). Moreover, every nonterminalX ∈ V generates exactly
one word that is denoted byvalA(X), or brieflyval(X), if A is clear from the context.

2

The size ofA is |A| =
∑

(X,α)∈P |α|. An SLP can be transformed in polynomial time
into an equivalent SLP inChomsky normal form, which means that all productions have
the formA → BC or A → a with A,B,C ∈ V anda ∈ Γ . For an SLPA overΣ±1

(w.l.o.g. in Chomsky normal form) we denote withA
−1 the SLP that has for each ter-

minal ruleA → a from A the terminal ruleA → a−1 and for each nonterminal rule
A → BC from A the nonterminal ruleA → CB. Clearly,val(A−1) = val(A)−1. Let
us state some simple algorithmic problems that can be easilysolved in polynomial time:

– Given an SLPA, calculate|val(A)| andalph(val(A)).
– Given an SLPA and a numberi ∈ {1, . . . , |val(A)|}, calculateval(A)[i].
– Given an SLPA (let val(A) = a1 · · · an) and two numbers1 ≤ i ≤ j ≤ n, compute

and SLPB with val(B) = ai · · · aj .

In [17], Plandowski presented a polynomial time algorithm for testing whetherval(A) =
val(B) for two given SLPsA andB. A cubic algorithm was presented by Lifshits [11].
In fact, Lifshits gave an algorithm for compressed pattern matching: given SLPsA and
B, is val(A) a factor ofval(B)? His algorithm runs in timeO(|A| · |B|2).

2.2 Trace monoids and graph groups

We introduce some notions from trace theory, see [5] for moredetails. Anindependence
alphabetis a pair(Σ, I) whereΣ is a finite alphabet andI ⊆ Σ × Σ is an irreflexive
and symmetric relation. The complementary graph(Σ,D) with D = (Σ × Σ) \ I is
called adependence alphabet. The trace monoidM(Σ, I) is defined as the quotient
M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I} with concatenation as operation and the empty
word as the neutral element. This monoid is cancellative andits elements are called
traces. The trace represented by the words ∈ Σ∗ is denoted by[s]I . For a ∈ Σ let
I(a) = {b ∈ Σ | (a, b) ∈ I} be the letters that commute witha. For tracesu, v
we denote withuIv the fact thatalph(u) × alph(v) ⊆ I. For Γ ⊆ Σ we say thatΓ
is connectedif the subgraph of(Σ,D) induced byΓ is connected. For a traceu let
max(u) = {a | u = va for a ∈ Σ, v ∈ M(Σ, I)} be the set of possible last letters ofu
andmin(u) = {a | u = av for a ∈ Σ, v ∈ M(Σ, I)} be the set of possible first letters.

A convenient representation for traces aredependence graphs, which are node-
labeled directed acyclic graphs. For a wordw ∈ Σ∗ the dependence graphDw has
vertex set{1, . . . , |w|} where the nodei is labeled withw[i]. There is an edge from
vertexi to j if and only if i < j and(w[i], w[j]) ∈ D. It is easy to see that for two
wordsw,w′ ∈ Σ∗ we have[w]I = [w′]I if and only if Dw andDw′ are isomorphic.
Hence, we can speak ofthedependence graph of a trace.

For background in combinatorial group theory see [14]. Thefree groupgenerated
by Σ can be defined as the quotient monoidF (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.
For an independence alphabet(Σ, I) the graph groupG(Σ, I) is the quotient group
G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}. From the independence alphabet(Σ, I)
we derive the independence alphabet(Σ±1, {(ai, bj) | i, j ∈ {−1, 1}, (a, b) ∈ I}).
Abusing notation, we denote the independence relation of this alphabet again withI.
Note that(a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, we haveG(Σ, I) =
M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}. Graph groups are also known as right-angled
Artin groups and free partially commutative groups.

3

2.3 (Outer) automorphism groups

The automorphism groupAut(G) of a groupG is the set of all automorphisms ofG
with composition as operation and the identity mapping as the neutral element. An
automorphismϕ is called inner if there isx ∈ G such thatϕ(y) = xyx−1 for all
y ∈ G. The set of all inner automorphisms ofG forms theinner automorphism group
Inn(G) of G. This is easily seen to be a normal subgroup ofAut(G) and the quotient
groupOut(G) = Aut(G)/Inn(G) is called theouter automorphism groupof G.

Assume thatAut(G) is finitely generated (which, in general, won’t be the case,
even ifG is finitely generated) and letΨ = {ψ1, . . . , ψk} be a monoid generating set for
Aut(G), i.e., every automorphism ofG can be composed from the automorphisms inΨ .
ThenΨ also generatesOut(G) where we identifyψi with its cosetψi·Inn(G) ∈ Out(G)
for i ∈ {1, . . . , k}. Then theword problemfor the outer automorphism group can be
viewed as the following decision problem:

INPUT: A wordw ∈ Ψ∗.
QUESTION: Doesw = 1 in Out(G)?

Since an automorphism belongs to the same coset (w.r.t.Inn(G)) as the identity if and
only if it is inner, we can rephrase the word problem forOut(G) as follows:

INPUT: A wordw ∈ Ψ∗.
QUESTION: Doesw represent an element ofInn(G) in Aut(G)?

Building on results from [19], Laurence has shown in [10] that automorphism groups of
graph groups are finitely generated. Recently, Day [4] proved that automorphism groups
of graph groups are in fact finitely presented. In this paper,we present a polynomial time
algorithm for the word problem forOut(G(Σ, I)).

3 Main results

In this section we will present the main results of this paper, the proofs of which are
subject to the rest of the paper. Our group theoretical main result is:

Theorem 1. Let (Σ, I) be a fixed independence alphabet. Then, the word problem for
the groupOut(G(Σ, I)) can be solved in polynomial time.

In order to solve the word problem forOut(G(Σ, I)) in polynomial time, we will
consider (following Schleimer’s approach for free groups [18]) compressed conjugacy
problems inG(Σ, I). The most general of these compressed conjugacy problems isthe
simultaneous compressed conjugacy problemfor G(Σ, I):

INPUT: SLPsA1, B1, . . . , An, Bn overΣ±1.
QUESTION:∃x ∈ (Σ±1)

∗
∀i ∈ {1, . . . , n} : val(Ai) = x val(Bi)x

−1 in G(Σ, I)?

The simultaneous (non-compressed) conjugacy problem alsoappears in connection
with group-based cryptography [16]. Unfortunately, we don’t know, whether the simul-
taneous compressed conjugacy problem can be solved in polynomial time. But, in order
to deal with the word problem forOut(G(Σ, I)), a restriction of this problem suffices,
where the SLPsB1, . . . , Bn from the simultaneous compressed conjugacy problem are

4

the letters fromΣ. We call this problem therestricted simultaneous compressed conju-
gacy problem, briefly RSCCP(Σ, I):

INPUT: SLPsAa (a ∈ Σ) overΣ±1.
QUESTION:∃x ∈ (Σ±1)

∗
∀a ∈ Σ : val(Aa) = xax−1 in G(Σ, I)?

An x such thatval(Aa) = xax−1 in G(Σ, I) for all a ∈ Σ is called asolutionof the
RSCCP(Σ, I)-instance. The following theorem will be shown in Sec. 5:

Theorem 2. Let (Σ, I) be a fixed independence alphabet. Then,RSCCP(Σ, I) can be
solved in polynomial time. Moreover, in case a solution exists, one can compute an SLP
for a solution in polynomial time.

Proof of Thm. 1 using Thm. 2.Fix a finite monoid generating setΦ for Aut(G(Σ, I)).
Let ϕ = ϕ1 · · ·ϕn with ϕ1, . . . , ϕn ∈ Φ be the input. By [18] we can compute in
polynomial time SLPsAa (a ∈ Σ) overΣ±1 with val(Aa) = ϕ(a) in G(Σ, I) for all
a ∈ Σ. The automorphismϕ is inner iff there existsx such thatval(Aa) = xax−1 in
G(Σ, I) for all a ∈ Σ. This can be decided in polynomial time by Thm. 2. ⊓⊔

Finally, we will also consider a compressed variant of the classical conjugacy problem
for G(Σ, I). Recall that theconjugacy problemfor a finitely generated groupG asks,
whether two given elementsg, h ∈ G areconjugated, i.e., whether there existsx ∈ G
with g = xhx−1. The compressed conjugacy problemfor the graph groupG(Σ, I),
CCP(Σ, I) for short, is the following problem:

INPUT: SLPsA andB overΣ±1.
QUESTION: Areval(A) andval(B) conjugated inG(Σ, I)?

Theorem 3. Let (Σ, I) be a fixed independence alphabet. Then,CCP(Σ, I) can be
solved in polynomial time.

We will prove Thm. 3 in Sec. 7. It is important in Thm. 1–3 that we fix the independence
alphabet(Σ, I). It is open whether these results also hold if(Σ, I) is part of the input.

4 Further facts for traces

In this section, we state some simple facts on trace monoids,which will be needed later.
Fix the trace monoidM(Σ, I). A traceu is said to be aprefix of a tracew, briefly
u ¹ w, if uv = w for some tracev. The prefixes of a tracew correspond to the
downward-closed node sets of the dependence graph ofw. Analogously, a tracev is a
suffixof a tracew if uv = w for some traceu. For two tracesu, v, theinfimumu ⊓ v is
the largest traces w.r.t. ¹ such thats ¹ u ands ¹ v; it always exists [2]. Withu \ v
we denote the unique tracet such thatu = (u ⊓ v)t; uniqueness follows from the fact
that M(Σ, I) is cancellative. Note thatu \ v = u \ (u ⊓ v). Thesupremumu ⊔ v of
two tracesu, v is the smallest traces w.r.t. ¹ such thatu ¹ s andv ¹ s if any such
trace exists. We can define the supremum of several tracesw1, . . . , wn by induction:
w1 ⊔ · · · ⊔ wn = (w1 ⊔ · · · ⊔ wn−1) ⊔ wn.

Lemma 4 ([2]). The traceu ⊔ v exists if and only if(u \ v) I (v \ u), in which case we
haveu ⊔ v = (u ⊓ v) (u \ v) (v \ u).

5

Example 5.We consider the following independence alphabet(Σ, I) and the corre-
sponding dependence alphabet(Σ,D):

(Σ, I)
c a

e d b
(Σ,D)

a e
b c d

Consider the wordsu = aeadbacdd andv = eaabdcaeb. The dependence graphsDu

andDv look as follows, where we label the vertexi with the letteru[i] (resp.v[i]):

Du

a
e

d

a

b

a

c d d

Dv

a
e

d

a

b

a

c

b
e

Then we haveu ⊓ v = aeadbac =: p. Sinceu \ p = dd andv \ p = eb we have
(u \ p)I(v \ p) and hence the supremums = u ⊔ v = aeadbacddeb is defined. The
dependence graphs forp ands are:

Dp

a
e

d

a

b

a

c

Ds

a
e

d

a

b

a

c

b
e

d d

The following lemma is a basic statement for traces, see for example [5, Sec. 1.3]:

Lemma 6 (Levi’s Lemma).Letu1, u2, v1, v2 be traces withu1u2 = v1v2. Then there
exist tracesx, y1, y2, z such thaty1Iy2, u1 = xy1, u2 = y2z, v1 = xy2, andv2 = y1z.

A trace rewriting systemR overM(Σ, I) is just a finite subset ofM(Σ, I) × M(Σ, I)
[5]. Theone-step rewrite relation→R ⊆ M(Σ, I) × M(Σ, I) is defined as:x →R y if
and only if there areu, v ∈ M(Σ, I) and(ℓ, r) ∈ R such thatx = uℓv andy = urv. A
traceu is R-irreducible if no tracev with u →R v exists. The set of allR-irreducible
traces is denoted byIRR(R). If R is Noetherian and confluent (see e.g. [5, Sec. 5.1]
for definitions), then for every traceu, there exists a uniquenormal formNFR(u) ∈

IRR(R) such thatu
∗
−→R NFR(u).

Let us now work in the trace monoidM(Σ±1, I). For a traceu = [a1 · · · an]I ∈
M(Σ±1, I) we denote withu−1 the traceu−1 = [a−1

n · · · a−1
1]I . It is easy to see that this

definition is independent of the chosen representativea1 · · · an of the traceu. It follows
that we have[val(A)]−1

I = [val(A−1)]I for an SLPA. For the rest of the paper, we
fix the trace rewriting systemR = {([aa−1]I , [ε]I) | a ∈ Σ±1} over the trace monoid
M(Σ±1, I). This system is Noetherian (trivial) and, by [5, 20], also confluent. For traces
u, v ∈ M(Σ±1, I) we haveu = v in G(Σ, I) if and only if NFR(u) = NFR(v). Using
these facts, it was shown in [5, 20] that the word problem forG(Σ, I) can be solved in
linear time (on the RAM model).

We close this section with some results concerning SLP-compressed traces. A sim-
ple observation is that for given SLPsA and B one can decide in polynomial time
whether[val(A)]I = [val(B)]I . The projection lemma for traces [5, Cor. 1.4.8] allows
to reduce this question to equality testing for SLP-compressed strings [17]. Much harder
to prove is:

Theorem 7 ([13]).For a given SLPA overΣ±1 one can compute in polynomial time
an SLPB with [val(B)]I = NFR([val(A)]I).

6

Thm. 7 implies that the compressed word problem for a graph group can be solved in
polynomial time.

Theorem 8 ([13]).For given SLPsA0 andA1 overΣ±1, we can compute in polyno-
mial time SLPsP, D0, D1 with [val(P)]I = [val(A0)]I ⊓ [val(A1)]I and [val(Di)]I =
[val(Ai)]I \ [val(A1−i)]I for i ∈ {0, 1}.

An immediate corollary of Thm. 8 and Lemma 4 is:

Corollary 9. Letr be a fixed constant. Then, for given SLPsV1, . . . , Vr overΣ±1, one
can check in polynomial time whether[val(V1)]I ⊔ · · · ⊔ [val(Vr)]I exists, and in case
it exists one can compute an SLPS with [val(S)]I = [val(V1)]I ⊔ · · · ⊔ [val(Vr)]I in
polynomial time.

It is important that we fix the numberr of SLPs in Cor. 9: Each application of Thm. 8
increase the size of the SLP polynomially. Hence, a non-fixednumber of applications
might lead to an exponential blow-up.

5 Restricted simultaneous compressed conjugacy

A doublea-cone(a ∈ Σ±1) is anR-irreducible trace of the formuau−1 with u ∈
M(Σ±1, I). We first state several results on doublea-cones, which will be used in the
proof of Thm. 2. The following characterization can be easily shown:

Lemma 10. A traceuau−1 is a doublea-cone if and only ifu ∈ IRR(R) andmax(u)∩
({a, a−1} ∪ I(a)) = ∅.

It follows that every letter in a doublea-cone either lies before or after the central letter
a. Its dependence graph always has the following form:

au u−1

By the following lemma, each doublea-cone has a unique factorization of the form
u1bu2 with |u1| = |u2|.

Lemma 11. Let v = uau−1 be a doublea-cone and letv = u1bu2 with b ∈ Σ±1 and
|u1| = |u2|. Thena = b, u1 = u andu2 = u−1.

Lemma 11 together with standard techniques for SLP-compressed strings (in particular,
the polynomial equality test for SLP-compressed strings [11, 17]) implies:

Lemma 12. For a given SLPA with [val(A)]I ∈ IRR(R) anda ∈ Σ±1, one can check
in polynomial time whether[val(A)]I is a doublea-cone, and in case it is, one can
compute in polynomial time an SLPV with [val(A)]I = [val(V) a val(V−1)]I .

Lemma 13. Let w ∈ M(Σ±1, I) be R-irreducible anda ∈ Σ±1. Then there exists
x ∈ M(Σ±1, I) with w = xax−1 in G(Σ, I) if and only ifw is a doublea-cone.

7

Lemma 13 can be shown by induction on the number ofR-rewrite steps fromxax−1 to
w ∈ IRR(R). Finally, our main lemma on doublea-cones is:

Lemma 14. Let wa, va ∈ M(Σ±1, I) (a ∈ Σ) be R-irreducible such thatwa =
vaav−1

a in M(Σ±1, I) for all a ∈ Σ (thus, everywa is a doublea-cone). If there is
a tracex ∈ M(Σ±1, I) with ∀a ∈ Σ : xax−1 = wa in G(Σ, I), thens =

⊔
a∈Σ va

exists andsas−1 = wa in G(Σ, I) for all a ∈ Σ.

Now we are in the position to prove Thm. 2: LetAa (a ∈ Σ) be the input SLPs. We
have to check whether there existsx such thatval(Aa) = xax−1 in G(Σ, I) for all
a ∈ Σ. Thm. 7 allows us to assume that[val(Aa)]I ∈ IRR(R) for all a ∈ Σ. We first
check whether every trace[val(Aa)]I is a doublea-cone. By Lemma 12 this is possible
in polynomial time. If there existsa ∈ Σ such that[val(Aa)]I is not a doublea-cone,
then we can reject by Lemma 13. Otherwise, we can compute (using again Lemma 12)
SLPsVa (a ∈ Σ) such that[val(Aa)]I = [val(Va) a val(V−1

a)]I in M(Σ±1, I). Finally,
by Lemma 14, it suffices to check whethers =

⊔
a∈Σ [val(Va)]I exists and whether

NFR(sas−1) = [val(Aa)]I for all a ∈ Σ. This is possible in polynomial time by Thm. 7
and Cor. 9 (recall that|Σ| is a constant in our consideration). Moreover, if the supremum
s exists, then we can compute in polynomial time an SLPS with [val(S)]I = s, which
is a solution for ourRSCCP(Σ, I)-instance. ⊓⊔

6 A pattern matching algorithm for connected patterns

For the proof of Thm. 3 we need a pattern matching algorithm for compressed traces.
For tracesv, w we say thatv is a factor ofw if there are tracesx, y with w = xvy. We
consider the following problem and show that it can be solvedin polynomial time if the
independence alphabet(Σ, I) satisfies certain conditions.

INPUT: An independence alphabet(Σ, I) and two SLPsT andP overΣ.
QUESTION: Is[val(P)]I a factor of[val(T)]I?

We writealph(T) andalph(P) for alph(val(T)) andalph(val(P)), respectively. We as-
sume in the following that the SLPsT = (V,Σ, S, P) and P are in Chomsky nor-
mal form. Let Γ ⊆ Σ. We denote byπΓ the homomorphismπΓ : M(Σ, I) →
M(Γ, I ∩ (Γ × Γ)) with πΓ (a) = a for a ∈ Γ and πΓ (a) = ε for a ∈ Σ \ Γ .
Let V Γ = {XΓ | X ∈ V } be a disjoint copy ofV . For each productionp ∈ P
define a new productionpΓ as follows. If p is of the formX → a (a ∈ Σ), then
let pΓ = (XΓ → πΓ (a)). If p ∈ P is of the formX → Y Z (Y,Z ∈ V) de-
fine pΓ = (XΓ → Y Γ ZΓ). We denote withTΓ the SLP(V Γ , Γ, SΓ , PΓ) where
PΓ = {pΓ | p ∈ P}. Obviously,val(TΓ) = πΓ (val(T)).

In order to develop a polynomial time algorithm for the problem stated above we
need a succinct representation for an occurrence ofP in T. Since[val(P)]I is a factor
of [val(T)]I iff there is a prefixu ¹ [val(T)]I such thatu[val(P)]I ¹ [val(T)]I , we will
in fact compute prefixes with the latter property and represent a prefixu by its Parikh
image(|u|a)a∈Σ . Hence, we say a sequenceO = (Oa)a∈Σ ∈ N

Σ is anoccurrenceof
a tracev in a tracew iff there is a prefixu ¹ w such thatuv ¹ w, andO = (|u|a)a∈Σ .
Note that our definition of an occurrence ofP in T does not exactly correspond to the in-
tuitive notion of an occurrence as a convex subset of the dependence graph of[val(T)]I .

8

In fact, to a convex subset of the dependence graph of[val(T)]I , which is isomorphic
to the dependence graph of[val(P)]I , there might correspond several occurrencesO,
since for ana ∈ Σ that is independent ofalph(P) we might have several possibilities
for the valueOa. However, if we restrict to letters that are dependent onalph(P), then
our definition of an occurrence coincides with the intuitivenotion. ForΓ ⊆ Σ we write
πΓ (O) for the restriction(Oa)a∈Γ . Furthermore, we say thatO is an occurrence ofP
in T if O is an occurrence of[val(P)]I in [val(T)]I .

Let X be a nonterminal ofT with productionX → Y Z and letO be an occurrence
of [val(P)]I in [val(X)]I . If there area, b ∈ alph(P) with Oa < |val(Y)|a andOb +
|val(P)|b > |val(Y)|b, then we say thatO is an occurrence ofP at the cutof X. Assume
w.l.o.g. that|val(P)| ≥ 2, otherwise we simply have to check whether a certain letter
occurs inval(T). By this assumption,[val(P)]I is a factor of[val(T)]I iff there is a
nonterminalX of T for which there is an occurrence ofP at the cut ofX.

Lemma 15 ([12]).Let v, w ∈ M(Σ, I). A sequence(na)a∈Σ ∈ N
Σ is an occurrence

of v in w iff (na, nb) is an occurrence ofπ{a,b}(v) in π{a,b}(w) for all (a, b) ∈ D.

An arithmetic progressionis a subset ofNΣ of the form{(ia)a∈Σ + k · (da)a∈Σ | 0 ≤
k ≤ ℓ}. This set can be represented by the triple((ia)a∈Σ , (da)a∈Σ , ℓ). Thedescrip-
tional size|((ia)a∈Σ , (da)a∈Σ , ℓ)| of the arithmetic progression((ia)a∈Σ , (da)a∈Σ , ℓ)
is log2(ℓ) +

∑
a∈Σ(log2(ia) + log2(da)). We will use Lemma 15 in order to compute

the occurrences ofP in T in form of a family of arithmetic progressions. To this aim,
we follow a similar approach as Genest and Muscholl for message sequence charts [7].
In particular Lemma 16 below was inspired by [7, Prop. 1]. Forthe rest of this section
we make the following assumption:

alph(P) = alph(T) = Σ is connected. (1)

Whereasalph(P) = alph(T) is a real restriction, the assumption thatΣ = alph(T) is
connected is not a real restriction; we simply solve severalpattern matching instances if
it is not satisfied. LetX be a nonterminal ofT and letO be an occurrence ofP at the cut
of X. Since the pattern is connected there must be some(a, b) ∈ D such thatπ{a,b}(O)

is at the cut ofX{a,b}. We will therefore compute occurrences ofπ{a,b}(val(P)) at
the cut ofX{a,b}. It is well known that the occurrences ofπ{a,b}(val(P)) at the cut of
X{a,b} form an arithmetic progression((ia, ib), (da, db), ℓ) and thatπ{a,b}(val(P)) is
of the formunv for somen ≥ ℓ and stringsu, v ∈ {a, b}∗ with v ¹ u, |u|a = da

and|u|b = db. Moreover, the arithmetic progression((ia, ib), (da, db), ℓ) can be com-
puted in time|T|2|P| (see [11]1). Now suppose we have computed the occurrences of
π{a,b}(val(P)) at the cut ofX{a,b} in form of an arithmetic progression. The problem
now is how to find (for the possibly exponentially many occurrences in the arithmetic
progression) matching occurrences of projections onto allother pairs inD. The fol-
lowing lemma states that either there is a pair(a, b) ∈ D such that the projection onto
{a, b} is the first or the last element of an arithmetic progression,or all projections lie
at the cut of the same nonterminal.

1 In fact, in [11] it was shown that the arithmetic progression(ia+ib, da+db, ℓ) can be computed
in polynomial time. From this the arithmetic progression,((ia, ib), (da, db), ℓ) can easily be
computed.

9

Lemma 16. LetX be a nonterminal ofT and letO be an occurrence ofP at the cut of
X. Then either (i)π{a,b}(O) is at the cut ofX{a,b} for all (a, b) ∈ D with a 6= b, or
(ii) there are(a, b) ∈ D such thatπ{a,b}(O) is the first or last element of the arithmetic
progression of occurrences ofπ{a,b}(val(P)) at the cut ofX{a,b}.

Lemma 16 motivates that we partition the set of occurrences into two sets. LetO be an
occurrence ofP in T at the cut ofX. We callO single(for X) if there is(a, b) ∈ D such
that the projectionπ{a,b}(O) is the first or the last element of the arithmetic progression
of occurrences ofπ{a,b}(val(P)) at the cut ofX{a,b}. Otherwise, we callO periodic
(for X). By Lemma 16, ifO is periodic, thenπ{a,b}(O) is an element of the arithmetic
progression of occurrences ofval(P{a,b}) at the cut ofX{a,b} for all (a, b) ∈ D (but
neither the first nor the last element). Prop. 17 below shows that we can decide in
polynomial time whether there are single occurrences ofP in T. The basic idea is that
due to assumption (1), an occurrence ofval(P) in val(T) is completely determined as
soon as we have determined the position of a single node of thedependence graph of
[val(P)]I in the dependence graph of[val(T)]I .

Proposition 17. Given(a, b) ∈ D, a nonterminalX of T and an occurrence(Oa, Ob)
of π{a,b}(val(P)) at the cut ofX{a,b}, one can decide in time(|T| + |P|)O(1) whether
this occurrence is a projection of an occurrence ofP at the cut ofX.

It remains to show that for every nonterminalX of T we can compute in polynomial
time the periodic occurrences. To this aim we define the amalgamation of arithmetic
progressions. LetΓ, Γ ′ ⊆ Σ with Γ ∩ Γ ′ 6= ∅. Consider two arithmetic progressions
p = ((ia)a∈Γ , (da)a∈Γ , ℓ) andp′ = ((i′a)a∈Γ ′ , (d′a)a∈Γ ′ , ℓ′). Theamalgamationof p
andp′ is p ⊗ p′ = {v = (va)a∈Γ∪Γ ′ | πΓ (v) ∈ p andπΓ ′(v) ∈ p′}. The following
lemma follows from elementary facts about simultaneous congruences:

Lemma 18. Let Γ, Γ ′ ⊆ Σ with Γ ∩ Γ ′ 6= ∅, and letp = ((ia)a∈Γ , (da)a∈Γ , ℓ)
and p′ = ((i′a)a∈Γ ′ , (d′a)a∈Γ ′ , ℓ′) be two arithmetic progressions. Thenp ⊗ p′ is an
arithmetic progression which can be computed in time(|p| + |p′|)O(1).

The next proposition can be shown using Lemma 15 and 18.

Proposition 19. LetX be a nonterminal ofT. The periodic occurrences ofP at the cut
of X form an arithmetic progression which can be computed in time(|T| + |P|)O(1).

We now get the following theorem easily.

Theorem 20. Given an independence alphabet(Σ, I), and two SLPsP andT overΣ
such thatalph(P) = alph(T), we can decide in polynomial time whether[val(P)]I is a
factor of[val(T)]I .

Proof. Let X be a nonterminal ofT. Using [11] we compute for each pair(a, b) ∈ D
the arithmetic progression of occurrences ofπa,b(val(P)) at the cut ofX{a,b}. By apply-
ing Prop. 17 to the first and to the last elements of each of these arithmetic progressions,
we compute in polynomial time the single occurrences at the cut of X. The periodic oc-
currences can be computed in polynomial time using Prop. 19.The result follows, since
[val(P)]I is a factor of[val(T)]I iff there is a nonterminalX of T for which there is a
single occurrence ofP at the cut ofX or a periodic occurrence ofP at the cut ofX. ⊓⊔

In [9], a slight generalization of Theorem 20 is shown.

10

7 Compressed conjugacy

In order to prove Thm. 3 we need some further concepts from [20]. If for a tracex we
haveNFR(x) = uyu−1 in M(Σ±1, I) for tracesy, u such thatmin(y)∩min(y−1) = ∅,
then we cally thecoreof x, core(x) for short; it is uniquely defined [20]. Note that a
tracet is a doublea-cone if and only ift ∈ IRR(R) andcore(t) = a. The following
result, which follows by combining results from [12] and [21], allows us to transfer the
conjugacy problem inG(Σ, I) to a problem on traces:

Theorem 21 ([12, 21]).Let u, v ∈ M(Σ±1, I). Thenu is conjugated tov in G(Σ, I)
if and only if: (i) |core(u)|a = |core(v)|a for all a ∈ Σ±1 and (ii) core(u) is a factor of
core(v)2|Σ|.

In order to apply Thm. 21 to SLP-compressed traces, we need a polynomial time al-
gorithm for computing an SLP that representscore([val(A)]I) for a given SLPA. The
following lemma is crucial:

Lemma 22. Letx ∈ IRR(R) andd = x ⊓ x−1. ThenNFR(d−1xd) = core(x).

Example 23.We take the independence alphabet from Example 5 and consider the
tracex = [c−1d−1a−1ba−1cabdc−1d−1a−1b−1dca]I ∈ M(Σ±1, I), whose depen-
dence graph looks as follows:

c−1 d−1 c d c−1 d−1 d c

a−1 b a−1 a b a−1 b−1 a

We haveNFR(x) = [c−1d−1a−1bcbdc−1a−1b−1ca]I :

c−1 d−1 c d c−1 c

a−1 b b a−1 b−1 a

Hence, the core ofx is core(x) = [d−1cbdc−1a−1]I (the middle part in the above
diagram). Note that we haveNFR(x) ⊓ NFR(x−1) = c−1a−1b. This trace occurs as a
prefix ofNFR(x) and its inverse occurs as a suffix ofNFR(x). By cyclically cancelling
c−1a−1b in NFR(x), we obtaind−1cbdc−1a−1 = core(x).

Thm. 7 and 8 and Lemma 22 imply:

Corollary 24. Fix an independence alphabet(Σ±1, I). Then, for a given SLPA over
the alphabetΣ±1 one can compute in polynomial time an SLPB with [val(B)]I =
core([val(A)]I).

We can now infer Thm. 3: LetA and B be two given SLPs overΣ±1. We want to
check, whetherval(A) andval(B) represent conjugated elements of the graph group
G(Σ, I). Using Cor. 24, we can compute in polynomial time SLPsC and D with
[val(C)]I = core([val(A)]I) and[val(D)]I = core([val(B)]I). By Thm. 21, it suffices
to check, whether (i)|core([val(C)]I)|a = |core([val(D)]I)|a for all a ∈ Σ±1 and (ii)
whethercore([val(C)]I) is a factor ofcore([val(D)]I)

2|Σ|. Condition (i) can be easily
checked in polynomial time, since the number of occurrencesof a symbol in a com-
pressed string can be computed in polynomial time. Moreover, condition (ii) can be
checked in polynomial time by Thm. 20, since (by condition (i)) we can assume that
alph(val(C)) = alph(val(D)). ⊓⊔

11

8 Open problems

Though we have shown that some cases of the simultaneous compressed conjugacy
problem for graph groups (see Sec. 3) can be decided in polynomial time, it remains
unclear whether this holds also for the general case. It is also unclear to the authors,
whether the general compressed pattern matching problem for traces, where we drop
restrictionalph(T) = alph(P), can be decided in polynomial time. Finally, it is not
clear, whether Thm. 1–3 also hold if the independence alphabet is part of the input.

References

1. R. Charney. An introduction to right-angled Artin groups.Geometriae Dedicata, 125:141–
158, 2007.

2. R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous cellular
automata.Information and Computation, 106(2):159–202, 1993.

3. J. Crisp, E. Godelle, and B. Wiest. The conjugacy problem in right-angled Artin groups and
their subgroups.Journal of Topology, 2(3), 2009.

4. M. B. Day. Peak reduction and finite presentations for automorphism groups of right-angled
Artin groups.Geometry & Topology, 13(2):817–855, 2009.

5. V. Diekert.Combinatorics on Traces. LNCS 454. Springer, 1990.
6. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-

Ziv encoding. InProc. SWAT 1996, LNCS 1097, 392–403. Springer, 1996.
7. B. Genest and A. Muscholl. Pattern matching and membership for hierarchical message

sequence charts.Theory of Computing Systems, 42(4):536–567, 2008.
8. C. Hagenah.Gleichungen mit regulären Randbedingungen̈uber freien Gruppen. PhD thesis,

University of Stuttgart, Institut f̈ur Informatik, 2000.
9. N. Haubold, M. Lohrey, and C. Mathissen. Compressed conjugacyand the word problem for

outer automorphism groups of graph groups.http://arxiv.org/abs/1003.1233,
2010.

10. M. R. Laurence. A generating set for the automorphism group of agraph group.Journal of
the London Mathematical Society. Second Series, 52(2):318–334, 1995.

11. Y. Lifshits. Processing compressed texts: A tractability border. InProc. CPM 2007, LNCS
4580, 228–240, Springer, 2007.

12. H.-N. Liu, C. Wrathall, and K. Zeger. Efficient solution to some problems in free partially
commutative monoids.Information and Computation, 89(2):180–198, 1990.

13. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. InProc. CSR
2007, LNCS 4649, 249–258. Springer, 2007.

14. R. C. Lyndon and P. E. Schupp.Combinatorial Group Theory. Springer, 1977.
15. J. Macdonald. Compressed words and automorphisms in fully residually free groups.Inter-

national Journal of Algebra and Computation, 2009. to appear.
16. A. Myasnikov, V. Shpilrain, and A. Ushakov.Group-based Cryptography. Birkhäuser, 2008.
17. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. InProc.

ESA’94, LNCS 855, 460–470. Springer, 1994.
18. S. Schleimer. Polynomial-time word problems.Commentarii Mathematici Helvetici,

83(4):741–765, 2008.
19. H. Servatius. Automorphisms of graph groups.Journal of Algebra, 126(1):34–60, 1989.
20. C. Wrathall. The word problem for free partially commutative groups. Journal of Symbolic

Computation, 6(1):99–104, 1988.
21. C. Wrathall. Free partially commutative groups. InCombinatorics, computing and complex-

ity, pages 195–216. Kluwer Academic Press, 1989.

12

