
Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers
www.stacs-conf.org

BRANCHING-TIME MODEL CHECKING
OF ONE-COUNTER PROCESSES

STEFAN GÖLLER1 AND MARKUS LOHREY 2

1 Universiẗat Bremen, Fachbereich Mathematik und Informatik
E-mail address: goeller@informatik.uni-bremen.de

2 Universiẗat Leipzig, Institut f̈ur Informatik
E-mail address: lohrey@informatik.uni-leipzig.de

ABSTRACT. One-counter processes (OCPs) are pushdown processes which operate only on a unary
stack alphabet. We study the computational complexity of model checking computation tree logic
(CTL) over OCPs. APSPACE upper bound is inherited from the modalµ-calculus for this problem.
First, we analyze the periodic behaviour ofCTL over OCPs and derive a model checking algorithm
whose running time is exponential only in the number of control locations and a syntactic notion of
the formula that we call leftward until depth. Thus, model checking fixedOCPs againstCTL formu-
las with a fixed leftward until depth is inP. This generalizes a result of the first author, Mayr, and To
for the expression complexity ofCTL’s fragmentEF. Second, we prove that already over some fixed
OCP,CTL model checking isPSPACE-hard. Third, we show that there already exists a fixedCTL

formula for which model checking of OCPs isPSPACE-hard. For the latter, we employ two results
from complexity theory: (i) Converting a natural number in Chinese remainder presentation into bi-
nary presentation is in logspace-uniformNC

1 and (ii)PSPACE is AC
0-serializable. We demonstrate

that our approach can be used to answer further open questions.

1. Introduction

Pushdown automata (PDAs) (or recursive state machines) are a naturalmodel for sequential
programs with recursive procedure calls, and their verification problemshave been studied ex-
tensively. The complexity of model checking problems for PDAs is quite well understood: The
reachability problem for PDAs can be solved in polynomial time [4, 10]. Model checking modal
µ-calculus over PDAs was shown to beEXPTIME-complete in [29], and the global version of the
model checking problem has been considered in [7, 21, 22]. TheEXPTIME lower bound for model
checking PDAs also holds for the simpler logicCTL and its fragmentEG [28], even for a fixed
formula (data complexity) [5] or a fixed PDA (expression complexity). On theother hand, model
checking PDAs against the logicEF (another natural fragment ofCTL) is PSPACE-complete [28],
and again the lower bound still holds if either the formula or the PDA is fixed [4]. Model checking

1998 ACM Subject Classification:F.4.1; F.1.3.
Key words and phrases:model checking, computation tree logic, complexity theory.
The second author would like to acknowledge the support by DFG research project GELO.

c© S. Göller and M. Lohrey
CC© Creative Commons Attribution-NoDerivs License

2 S. GÖLLER AND M. LOHREY

problems for various fragments and extensions of PDL (Propositional Dynamic Logic) over PDAs
were studied in [12].

One-counter processes (OCPs) are Minsky counter machines with just one counter. They can
also be seen as a special case of PDAs with just one stack symbol, plus a non-removable bottom
symbol which indicates an empty stack (and thus allows to test the counter for zero) and hence con-
stitute a natural and fundamental computational model. In recent years, model checking problems
for OCPs received increasing attention [13, 15, 23, 25]. Clearly, all upper complexity bounds carry
over from PDAs. The question, whether these upper bounds can be matched by lower bounds was
just recently solved for several important logics: Model checking modalµ-calculus over OCPs is
PSPACE-complete. ThePSPACE upper bound was shown in [23], and a matching lower bound
can easily be shown by a reduction from emptiness of alternating unary finiteautomata, which was
shown to bePSPACE-complete in [18, 19]. This lower bound even holds if either the OCP or the
formula is fixed. The situation becomes different for the fragmentEF. In [13], it was shown that
model checkingEF over OCPs is in the complexity classPNP (the class of all problems that can be
solved on a deterministic polynomial time machine with access to an oracle fromNP). Moreover, if
the input formula is represented succinctly as a directed acyclic graph, then model checkingEF over
OCPs is also hard forPNP. For the standard (and less succinct) tree representation for formulas,
only hardness for the classPNP[log] (the class of all problems that can be solved on a deterministic
polynomial time machine which is allowed to makeO(log(n)) many queries to an oracle fromNP)
was shown in [13]. In fact, there already exists a fixedEF formula such that model checking this
formula over a given OCP is hard forPNP[log], i.e., the data complexity isPNP[log]-hard.

In this paper we consider the model checking problem forCTL over OCPs. By the known
upper bound for the modalµ-calculus [23] this problem belongs toPSPACE. First, we analyze
the combinatorics ofCTL model checking over OCPs. More precisely, we analyze the periodic
behaviour of the set of natural numbers that satisfy a givenCTL formula in a given control location
of the OCP (Thm. 4.1). By making use of Thm. 4.1, we can derive a model checking algorithm
whose running time is exponential only in the number of control locations and a syntactic measure
onCTL formulas that we call leftward until depth (Thm. 4.2). As a corollary, we obtain that model
checking a fixed OCP againstCTL formulas of fixed leftward until depth lies inP. This generalizes
a recent result from [13], where it was shown that the expression complexity of EF over OCPs
lies in P. Next, we focus on lower bounds. We show that model checkingCTL over OCPs is
PSPACE-complete, even if we fix either the OCP (Thm. 5.3) or theCTL formula (Thm. 7.2). The
proof of Thm. 5.3 uses a reduction from QBF. We have to construct a fixed OCP for which we
can construct for a given unary encoded numberi CTL formulas that express, when interpreted
over our fixed OCP, whether the current counter value is divisible by2i and whether theith bit in
the binary representation of the current counter value is1, respectively. For the proof of Thm. 7.2
(PSPACE-hardness of data complexity forCTL) we use two techniques from complexity theory,
which to our knowledge have not been applied in the context of verificationso far: (i) the existence
of small depth circuits for converting a number from Chinese remainder representation to binary
representation and (ii) the fact thatPSPACE-computations are serializable in a certain sense (see
Sec. 6 for details). One of the main obstructions in getting lower bounds for OCPs is the fact that
OCPs are well suited for testing divisibility properties of the counter value and hence can deal with
numbers in Chinese remainder representation, but it is not clear how to deal with numbers in binary
representation. Small depth circuits for converting a number from Chineseremainder representation
to binary representation are the key in order to overcome this obstruction.

We are confident that our new lower bound techniques described above can be used for proving
further lower bounds for OCPs. We present two other applications of our techniques in Sec. 8:

BRANCHING-TIME MODEL CHECKING OF ONE-COUNTER PROCESSES 3

(i) We show that model checkingEF over OCPs is complete forPNP even if the input formula is
represented by a tree (Thm. 8.1) and thereby solve an open problem from [13]. (ii) We improve a
lower bound on a decision problem for one-counter Markov decision processes from [6] (Thm. 8.2).
The following table summarizes the picture on the complexity of model checking for PDAs and
OCPs. Our new results are marked with (*).

Logic PDA OCP
modalµ-calculus EXPTIME-complete PSPACE-complete
modalµ-calculus, fixed formula EXPTIME-complete PSPACE-complete
modalµ-calculus, fixed system EXPTIME-complete PSPACE-complete
CTL, fixed formula EXPTIME-complete PSPACE-complete (*)
CTL, fixed system EXPTIME-complete PSPACE-complete (*)
CTL, fixed system, fixed leftward until depthEXPTIME-complete in P (*)
EF PSPACE-complete PNP-complete (*)
EF, fixed formula PSPACE-complete PNP[log]-hard, inPNP

EF, fixed system PSPACE-complete in P

Missing proofs due to space restrictions can be found in the full version of this paper [14].

2. Preliminaries

We denote the naturals byN = {0, 1, 2, . . .}. For i, j ∈ N let [i, j] = {k ∈ N | i ≤ k ≤ j} and
[j] = [1, j]. In particular[0] = ∅. Forn ∈ N andi ≥ 1, let biti(n) denote theith least significant
bit of the binary representation ofn, i.e.,n =

∑
i≥1 2i−1 · biti(n). For every finite and non-empty

subsetM ⊆ N \ {0}, define LCM(M) to be theleast common multipleof all numbers inM . It
is known that2k ≤ LCM([k]) ≤ 4k for all k ≥ 9 [20]. As usual, for a possibly infinite alphabet
A, A∗ (resp.Aω) denotes the set of all finite (resp. infinite) words overA. LetA∞ = A∗ ∪ Aω

andA+ = A∗ \ {ε}, whereε is the empty word. The length of a finite wordw is denoted by|w|.
For a wordw = a1a2 · · · an ∈ A∗ (resp. w = a1a2 · · · ∈ Aω) with ai ∈ A and i ∈ [n] (resp.
i ≥ 1), we denote bywi the ith letter ai. A nondeterministic finite automaton (NFA) is a tuple
A = (S,Σ, δ, s0, Sf), whereS is a finite set ofstates, Σ is afinite alphabet, δ ⊆ S × Σ × S is the
transition relation, s0 ∈ S is theinitial state, andSf ⊆ S is a set offinal states. We assume some
basic knowledge in complexity theory, see e.g. [1] for more details.

3. One-counter processes and computation tree logic

Fix a countable setP of propositions. A transition systemis a tripleT = (S, {Sp | p ∈ P},→),
whereS is the set ofstates, →⊆ S × S is the set oftransitionsandSp ⊆ S for all p ∈ P with
Sp = ∅ for all but finitely manyp ∈ P. We writes1 → s2 instead of(s1, s2) ∈→. The set of all
finite (resp. infinite) pathsin T is path+(T) = {π ∈ S+ | ∀i ∈ [|π| − 1] : πi → πi+1} (resp.
pathω(T) = {π ∈ Sω | ∀i ≥ 1 : πi → πi+1}). For a subsetU ⊆ S of states, a (finite or infinite)
pathπ is called aU -path if π ∈ U∞.

A one-counter process(OCP) is a tupleO = (Q, {Qp | p ∈ P}, δ0, δ>0), whereQ is a finite
set ofcontrol locations, Qp ⊆ Q for all p ∈ P with Qp = ∅ for all but finitely manyp ∈ P,
δ0 ⊆ Q× {0, 1} ×Q is a set ofzero transitions, andδ>0 ⊆ Q× {−1, 0, 1} ×Q is a set ofpositive
transitions. Thesizeof the OCPO is |O| = |Q|+

∑
p∈P |Qp|+ |δ0|+ |δ>0|. The transition system

defined byO is T (O) = (Q × N, {Qp × N | p ∈ P},→), where(q, n) → (q′, n + k) if and only

4 S. GÖLLER AND M. LOHREY

if eithern = 0 and(q, k, q′) ∈ δ0, or n > 0 and(q, k, q′) ∈ δ>0. A one-counter net(OCN) is an

OCP, whereδ0 ⊆ δ>0. For(q, k, q′) ∈ δ0 ∪ δ>0 we usually writeq
k
−→ q′.

More details on the temporal logicCTL can be found for instance in [2].Formulasϕ of CTL

are defined by the following grammar, wherep ∈ P:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃ϕUϕ | ∃ϕWUϕ.

Given a transition systemT = (S, {Sp | p ∈ P},→) and aCTL formulaϕ, we define the semantics
[[ϕ]]T ⊆ S by induction on the structure ofϕ as follows: [[p]]T = Sp for eachp ∈ P, [[¬ϕ]]T =
S \ [[ϕ]]T , [[ϕ1 ∧ϕ2]]T = [[ϕ1]]T ∩ [[ϕ2]]T , [[∃Xϕ]]T = {s ∈ S | ∃s′ ∈ [[ϕ]]T : s→ s′}, [[∃ϕ1Uϕ2]]T =
{s ∈ S | ∃π ∈ path+(T) : π1 = s, π|π| ∈ [[ϕ2]]T ,∀i ∈ [|π| − 1] : πi ∈ [[ϕ1]]T }, [[∃ϕ1WUϕ2]]T =
[[∃ϕ1Uϕ2]]T ∪ {s ∈ S | ∃π ∈ pathω(T) : π1 = s,∀i ≥ 1 : πi ∈ [[ϕ1]]T }. We also write(T, s) |= ϕ

(or brieflys |= ϕ if T is clear from the context) fors ∈ [[ϕ]]T . We introduce the usual abbreviations
ϕ1 ∨ϕ2 = ¬(¬ϕ1 ∧¬ϕ2), ∀Xϕ = ¬∃X¬ϕ, ∃Fϕ = ∃(p∨¬p)Uϕ, and∃Gϕ = ∃ϕWU(p∧¬p) for
somep ∈ P. Formulas of theCTL-fragmentEF are given by the following grammar, wherep ∈ P:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ∃Xϕ | ∃Fϕ. Thesizeof CTL formulas is defined as follows:|p| = 1,
|¬ϕ| = |∃Xϕ| = |ϕ|+1, |ϕ1 ∧ϕ2| = |ϕ1|+ |ϕ2|+1, |∃ϕ1Uϕ2| = |∃ϕ1WUϕ2| = |ϕ1|+ |ϕ2|+1.

4. CTL on OCPs: Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity property ofCTL over OCPs, which implies
an upper bound forCTL on OCPs, see Thm. 4.2. As a corollary, we state that for a fixed OCP,
CTL model checking restricted to formulas of fixed leftward until depth (see the definition below)
can be done in polynomial time. We define theleftward until depthlud of CTL formulas induc-
tively as follows: lud(p) = 0 for p ∈ P, lud(¬ϕ) = lud(∃Xϕ) = lud(ϕ), lud(ϕ1 ∧ ϕ2) =
max{lud(ϕ1), lud(ϕ2)}, lud(∃ϕ1Uϕ2) = lud(∃ϕ1WUϕ2) = max{lud(ϕ1) + 1, lud(ϕ2)}. A
similar definition of until depth can be found in [24], but there the until depth of ∃ϕ1Uϕ2 is 1 plus
the maximum of the until depths ofϕ1 andϕ2. Note thatlud(ϕ) ≤ 1 for everyEF formulaϕ.

Let us fix an OCPO = (Q, {Qp | p ∈ P}, δ0, δ>0) for the rest of this section. Let|Q| = k and
defineK = LCM([k]) andKϕ = K lud(ϕ) for eachCTL formulaϕ.

Theorem 4.1. For all CTL formulasϕ, all q ∈ Q and alln, n′ > 2·|ϕ|·k2·Kϕ withn ≡ n′ modKϕ:

(q, n) ∈ [[ϕ]]T (O) ⇐⇒ (q, n′) ∈ [[ϕ]]T (O). (4.1)

Proof sketch.We prove the theorem by induction on the structure ofϕ. We only treat the difficult
caseϕ = ∃ψ1Uψ2 here. LetT = max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}. Let us prove equivalence
(4.1). Note thatKϕ = LCM{K ·Kψ1

,Kψ2
} by definition. Let us fix an arbitrary control location

q ∈ Q and naturalsn, n′ ∈ N such that2 · |ϕ| · k2 ·Kϕ < n < n′ andn ≡ n′ modKϕ. We have
to prove that(q, n) ∈ [[ϕ]]T (O) if and only if (q, n′) ∈ [[ϕ]]T (O). For this, letd = n′ − n, which is a
multiple ofKϕ. We only treat the “if”-direction here and recommend the reader to consult[14] for
helpful illustrations. So let us assume that(q, n′) ∈ [[ϕ]]T (O). To prove that(q, n) ∈ [[ϕ]]T (O), we
will use the following claim.

Claim: Assume some[[ψ1]]T (O)-pathπ = [(q1, n1) → (q2, n2) → · · · → (ql, nl)] with ni > T

for all i ∈ [l] andn1 − nl ≥ k2 · K · Kψ1
. Then there exists a[[ψ1]]T (O)-path from(q1, n1) to

(ql, nl +K ·Kψ1
), whose counter values are all strictly aboveT +K ·Kψ1

.

The claim tells us that paths that lose height at leastk2 ·K ·Kψ1
and whose states all have counter

values strictly aboveT can be flattened (without changing the starting state) by heightK ·Kψ1
.

BRANCHING-TIME MODEL CHECKING OF ONE-COUNTER PROCESSES 5

Proof of the claim. For each counter valueh ∈ {ni | i ∈ [l]} that appears inπ, let µ(h) =
min{i ∈ [l] | ni = h} denote the minimal position inπ whose corresponding state has counter
valueh. Define∆ = k ·Kψ1

. We will be interested ink ·K many consecutive intervals (of counter
values) each of size∆. Define the bottomb = n1 − (k · K) · ∆. Formally, aninterval is a set
Ii = [b + (i − 1) · ∆, b + i · ∆] for somei ∈ [k ·K]. Since each interval has size∆ = k ·Kψ1

,
we can think of each intervalIi to consist ofk consecutivesub-intervalsof sizeKψ1

each. Note
that each sub-interval has two extremal elements, namely itsupperandlower boundary. Thus allk
sub-intervals havek + 1 boundaries in total. Hence, by the pigeonhole principle, for each interval
Ii, there exists someci ∈ [k] and two distinct boundariesβ(i, 1) > β(i, 2) of distanceci · Kψ1

such that the control location ofπ’s earliest state of counter valueβ(i, 1) agrees with the control
location ofπ’s earliest state of counter valueβ(i, 2), i.e., formallyqµ(β(i,1)) = qµ(β(i,2)). Observe
that flattening the pathπ by gluing togetherπ’s states at positionµ(β(i, 1)) andµ(β(i, 2)) (for this,
we addci · Kψ1

to each counter value at a position≥ β(i, 2)) still results in a[[ψ1]]T (O)-path by
induction hypothesis, since we reduced the height ofπ by a multiple ofKψ1

. Our overall goal is to
flattenπ by gluing together states only of certain intervals such that we obtain a path whose height
is in total by preciselyK · Kψ1

smaller thanπ’s. Recall that there arek · K many intervals. By
the pigeonhole principle there is somec ∈ [k] such thatci = c for at leastK many intervalsIi.
By gluing togetherK

c
∈ N pairs of states of distancec ·Kψ1

each, we reduceπ’s height by exactly
K
c
· c ·Kψ1

= K ·Kψ1
. This proves the claim.

Let us finish the proof the “if”-direction. Since by assumption(q, n′) ∈ [[ϕ]]T (O), there exists
a finite pathπ = (q1, n1) → (q2, n2) → · · · → (ql, nl), whereπ[1, l − 1] is a [[ψ1]]T (O)-path,
(q, n′) = (q1, n1), and where(ql, nl) ∈ [[ψ2]]T (O). To prove(q, n) ∈ [[ϕ]]T (O), we will assume that
nj > T for eachj ∈ [l]. The case whennj = T for somej ∈ [l] can be proven similarly. Assume
first that the pathπ[1, l−1] contains two states whose counter difference is at leastk2 ·K ·Kψ1

+Kϕ

which is (strictly) greater thank2 ·K ·Kψ1
. SinceKϕ is a multiple ofK ·Kψ1

by definition, we can

apply the above claim Kϕ
K·Kψ1

∈ N many times toπ[1, l − 1]. This reduces the height byKϕ. We

repeat this flattening process ofπ[1, l−1] by heightKϕ as long as possible, i.e., until any two states
have counter difference smaller thank2 ·K ·Kψ1

+Kϕ. Letσ denote the[[ψ1]]T (O)-path starting in
(q, n′) that we obtain fromπ[1, l − 1] by this process. Thus,σ ends in some state, whose counter
value is congruentnl−1 moduloKϕ (since we flattenedπ[1, l − 1] by a multiple ofKϕ). SinceKϕ

is in turn a multiple ofKψ2
, we can build a pathσ′ which extends the pathσ by a single transition

to some state that satisfiesψ2 by induction hypothesis. Moreover, by our flattening process, the
counter difference between any two states inσ′ is at mostk2 ·K ·Kψ1

+Kϕ ≤ 2 · k2 ·Kϕ. Recall
thatT = max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}. As

n > 2 · |ϕ| · k2 ·Kϕ = 2 · (|ϕ| − 1 + 1) · k2 ·Kϕ ≥ T + 2 · k2 ·Kϕ,

it follows that the path that results fromσ′ by subtractingd from each counter value (this path starts
in (q, n)) is strictly aboveT . Moreover, sinced is a multiple ofKψ1

andKψ2
, this path witnesses

(q, n) ∈ [[ϕ]]T (O) by induction hypothesis.

The following result can be obtained basically by using the standard model checking algorithm
for CTL on finite systems (see e.g. [2]) in combination with Thm. 4.1.

Theorem 4.2. For a given one-counter processO = (Q, {Qp | p ∈ P}, δ0, δ>0), a CTL formula
ϕ, a control locationq ∈ Q, andn ∈ N given in binary, one can decide(q, n) ∈ [[ϕ]]T (O) in time

O(log(n) + |Q|3 · |ϕ|2 · 4|Q|·lud(ϕ) · |δ0 ∪ δ>0|).

6 S. GÖLLER AND M. LOHREY

δ>0 :

t

t

q0

q2

q1 −1q3
−1

−1

−1−1

−1
f

g

0

0

0

0

0

0

−1

−1

p0 p1

+1

00

+1

δ0 :

t
t

q0

f

0

0

p0 p1

+1
0

Figure 1: The one-counter netO for whichCTL model checking isPSPACE-hard

As a corollary, we can deduce that for every fixed OCPO and every fixedk the question if for
a given states and a given CTL formulaϕ with lud(ϕ) ≤ k, we have(T (O), s) |= ϕ, is in P. This
generalizes a result from [13], stating that the expression complexity ofEF over OCPs is inP.

5. Expression complexity for CTL is hard for PSPACE

The goal of this section is to prove that model checkingCTL is PSPACE-hard already over a
fixed OCN. We show this via a reduction from the well-knownPSPACE-complete problem QBF.
Our lower bound proof is separated into three steps. In step one, we define a family ofCTL formulas
(ϕi)i≥1 such that over the fixed OCNO that is depicted in Fig. 1 we can express (non-)divisibility by
2i. In step two, we define a family ofCTL formulas(ψi)i≥1 such that overO we can express if the
ith bit in the binary representation of a natural is set to1. In our final step, we give the reduction from
QBF. For step one, we need the following simple fact which characterizes divisibility by powers of
two (recall that[n] = {1, . . . , n}, in particular[0] = ∅):

∀n ≥ 0, i ≥ 1 : 2i dividesn ⇔ (2i−1 dividesn ∧ |{n′ ∈ [n] | 2i−1 dividesn′}| is even) (5.1)

The set of propositions ofO in Fig. 1 coincides with its control locations. Recall thatO’s zero
transitions are denoted byδ0 andO’s positive transitions are denoted byδ>0. Sinceδ0 ⊆ δ>0, O is
indeed an OCN. Note that botht andt are control locations ofO. Now we define a family ofCTL

formulas(ϕi)i≥1 such that for eachn ∈ N we have: (i)(t, n) |= ϕi if and only if 2i dividesn and
(ii) (t, n) |= ϕi if and only if 2i doesnot dividen. On first sight, it might seem superfluous to let
the control locationt represent divisibility by powers of two and the control locationt to represent
non-divisibility by powers of two sinceCTL allows negation. However the fact that we haveonly
onefamily of formulas(ϕi)i≥1 to express both divisibility and non-divisibility is a crucial technical
subtlety that is necessary in order to avoid an exponential blowup in formulasize. By making use of
(5.1), we construct the formulasϕi inductively. First, let us define the auxiliary formulas test= t∨t
andϕ⋄ = q0∨q1∨q2∨q3. Think ofϕ⋄ to hold in those control locations that altogether are situated
in the “diamond” in Fig. 1. We define

ϕ1 = test∧ ∃X (f ∧ EF(f ∧ ¬∃Xg)) and

ϕi = test ∧ ∃X
(
∃(ϕ⋄ ∧ ∃Xϕi−1) U (q0 ∧ ¬∃Xq1)

)
for i > 1.

Sinceϕi−1 is only used once inϕi, we get|ϕi| ∈ O(i). The following lemma states the correctness
of the construction.

Lemma 5.1. Letn ≥ 0 andi ≥ 1. Then

• (t, n) |= ϕi if and only if2i dividesn.

BRANCHING-TIME MODEL CHECKING OF ONE-COUNTER PROCESSES 7

• (t, n) |= ϕi if and only if2i does not dividen.

Proof sketch.The lemma is proved by induction oni. The induction base fori = 1 is easy to check.
For i > 1, observe thatϕi can only be true either in control locationt or t. Note that the formula
right to the until symbol inϕi expresses that we are inq0 and that the current counter value is zero.
Also note that the formula left to the until symbol requires thatϕ⋄ holds, i.e., we are always in one
of the four “diamond control locations”. In other words, we decrement the counter by moving along
the diamond control locations (by possibly looping atq1 andq3) and always check if∃Xϕi−1 holds,
just until we are inq0 and the counter value is zero. Since there are transitions fromq1 andq3 to t
(but not tot), the induction hypothesis implies that the formula∃Xϕi−1 can be only true inq1 and
q3 as long as the current counter value is not divisible by2i−1. Similarly, since there are transitions
from q0 andq2 to t (but not tot), the induction hypothesis implies that the formula∃Xϕi−1 can be
only true inq0 andq2 if the current counter value is divisible by2i−1. With (5.1) this implies the
lemma.

For expressing if theith bit of a natural is set to1, we make use of the following simple fact:

∀n ≥ 0, i ≥ 1 : biti(n) = 1 ⇐⇒ |{n′ ∈ [n] | 2i−1 dividesn′}| is odd (5.2)

Let us now define a family ofCTL formulas(ψi)i≥1 such that for eachn ∈ N we have biti(n) = 1
if and only if (t, n) |= ψi. We setψ1 = ϕ1 andψi = t ∧ ∃X ((q1 ∨ q2) ∧ µi), whereµi =
∃(ϕ⋄∧∃Xϕi−1) U (q0∧¬∃Xq1) for eachi > 1. Due to the construction ofψi and since|ϕi| ∈ O(i),
we obtain that|ψi| ∈ O(i). The following lemma states the correctness of the construction.

Lemma 5.2. Letn ≥ 0 and leti ≥ 1. Then(t, n) |= ψi if and only if biti(n) = 1.

Let us sketch the final step of the reduction from QBF. For this, let us assume some quantified
Boolean formulaα = QkxkQk−1xk−1 · · ·Q1x1 : β(x1, . . . , xk), whereβ is a Boolean formula
over variables{x1, . . . , xk} andQi ∈ {∃,∀} is a quantifier for eachi ∈ [k]. Think of each truth
assignmentϑ : {x1, . . . , xk} → {0, 1} to correspond to the natural numbern(ϑ) ∈ [0, 2k−1], where
biti(n(ϑ)) = 1 if and only if ϑ(xi) = 1, for eachi ∈ [k]. Let β̂ be the CTL formula that is obtained
from β by replacing each occurrence ofxi by ψi, which corresponds to applying Lemma 5.2. It
remains to describe how we deal with quantification. Think of this as to consecutively incrementing
the counter from state(t, 0) as follows. First, setting the variablexk to 1 will correspond to adding
2k−1 to the counter and getting to state(t, 2k−1). Settingxk to 0 on the other hand will correspond
to adding0 to the counter and hence remaining in state(t, 0). Next, settingxk−1 to 1 corresponds
to adding to the current counter value2k−2, whereas settingxk−1 to 0 corresponds to adding0,
as expected. These incrementation steps can be achieved using the formulasϕi from Lemma 5.1.
Finally, after setting variablex1 either to0 or 1, we verify if the CTL formulaβ̂ holds. Formally, let
©i = ∧ if Qi = ∃ and©i =→ if Qi = ∀ for eachi ∈ [k] (recall thatQk, . . . , Q1 are the quantifiers
of our quantified Boolean formulaα). Let θ1 = Q1X ((p0 ∨ p1) ©1 ∃X β̂) and fori ∈ [2, k]:

θi = QiX

(
(p0 ∨ p1) ©i ∃

(
(p0 ∨ ∃X (t ∧ ϕi−1)) U (t ∧ ¬ϕi−1 ∧ θi−1))

))
.

Then, it can be show thatα is valid if and only if(t, 0) ∈ [[θk]]T (O).

Theorem 5.3. CTL model checking of the fixed OCNO from Fig. 1 isPSPACE-hard.

Note that the constructedCTL formula has leftward until depth that depends on the size of
α. By Thm. 4.2 this cannot be avoided unlessP = PSPACE. Observe that in order to express
divisibility by powers of two, ourCTL formulas(ϕi)i≥0 have linearly growing leftward until depth.

8 S. GÖLLER AND M. LOHREY

6. Tools from complexity theory

For Sec. 7 and 8 we need some concepts from complexity theory. ByPNP[log] we denote
the class of all problems that can be solved on a polynomially time bounded deterministic Turing
machines which can have access to anNP-oracle only logarithmically many times, and byPNP the
corresponding class without the restriction to logarithmically many queries. Let us briefly recall
the definition of the circuit complexity classNC

1, more details can be found in [26]. We consider
Boolean circuitsC = C(x1, . . . , xn) built up from AND- and OR-gates. Each input gate is labeled
with a variablexi or a negated variable¬xi. The output gates are linearly ordered. Such a circuit
computes a functionfC : {0, 1}n → {0, 1}m, wherem is the number of output gates, in the obvious
way. Thefan-in of a circuit is the maximal number of incoming wires of a gate in the circuit. The
depth of a circuitis the number of gates along a longest path from an input gate to an output gate. A
logspace-uniformNC

1-circuit family is a sequence(Cn)n≥1 of Boolean circuits such that for some
polynomialp(n) and constantc: (i) Cn contains at mostp(n) many gates, (ii) the depth ofCn is
at mostc · log(n), (iii) the fan-in ofCn is at most2, (iv) for eachm there is at most one circuit in
(Cn)n≥1 with exactlym input gates, and (v) there exists a logspace transducer that computes on
input 1n a representation (e.g. as a node-labeled graph) of the circuitCn. Such a circuit family
computes a partial mapping on{0, 1}∗ in the obvious way (note that we do not require to have for
everyn ≥ 0 a circuit with exactlyn input gates in the family, therefore the computed mapping is in
general only partially defined). In the literature on circuit complexity one can find more restrictive
notions of uniformity, see e.g. [26], but logspace uniformity suffices forour purposes. In fact,
polynomial time uniformity suffices for proving our lower bounds w.r.t. polynomial time reductions.

Form ≥ 1 and0 ≤ M ≤ 2m − 1 let BINm(M) = bitm(M) · · ·bit1(M) ∈ {0, 1}m denote
them-bit binary representation ofM . Let pi denote theith prime number. It is well-known that
the ith prime requiresO(log(i)) bits in its binary representation. For a number0 ≤ M <

∏m
i=1 pi

we define theChinese remainder representationCRRm(M) as the Boolean tupleCRRm(M) =
(xi,r)i∈[m],0≤r<pi with xi,r = 1 if M modpi = r andxi,r = 0 else. By the following theorem, one
can transform a Chinese remainder representation very efficiently into binary representation.

Theorem 6.1 ([9]). There is a logspace-uniformNC
1-circuit family (Bm((xi,r)i∈[m],0≤r<pi))m≥1

such that for everym ≥ 1, Bm hasm output gates and for every0 ≤ M <
∏m
i=1 pi we have that

Bm(CRRm(M)) = BINm(M mod2m).

By [17], we could replace logspace-uniformNC
1-circuits in Thm. 6.1 even byDLOGTIME-

uniformTC
0-circuits. The existence of aP-uniformNC

1-circuit family for converting from Chinese
remainder representation to binary representation was already shown in [3]. Usually the Chinese
remainder representation ofM is the tuple(ri)i∈[m], whereri = M modpi. Since the primespi
will be always given in unary notation, there is no essential difference between this representation
and our Chinese remainder representation. The latter is more suitable for our purpose.

The following definition ofNC
1-serializability is a variant of the more classical notion of se-

rializability [8, 16], which fits our purpose better. A languageL is NC
1-serializableif there exists

an NFAA over the alphabet{0, 1}, a polynomialp(n), and a logspace-uniformNC
1-circuit family

(Cn)n≥0, whereCn has exactlyn+p(n) many inputs and one output, such that for everyx ∈ {0, 1}n

we havex ∈ L if and only if Cn(x, 0p(n)) · · ·Cn(x, 1
p(n)) ∈ L(A), where “· · · ” refers to the lex-

icographic order on{0, 1}p(n). With this definition, it can be shown that all languages inPSPACE

areNC
1-serializable. A proof can be found in the appendix of [14]; it is just a slight adaptation of

the proofs from [8, 16].

BRANCHING-TIME MODEL CHECKING OF ONE-COUNTER PROCESSES 9

7. Data complexity for CTL is hard for PSPACE

In this section, we prove that also the data complexity ofCTL over OCNs is hard forPSPACE

and thereforePSPACE-complete by the known upper bounds for the modalµ-calculus [23]. Let
us fix the set of propositionsP = {α, β, γ} for this section. In the following, w.l.o.g. we allow
in δ0 (resp. inδ>0) transitions of the kind(q, k, q′), wherek ∈ N (resp.k ∈ Z) is given in unary
representation with the expected intuitive meaning.

Proposition 7.1. For the fixedEF formulaϕ = (α → ∃X(β ∧ EF(¬∃Xγ))) the following problem
can be solved with a logspace transducer:
INPUT: A listp1, . . . , pm of the firstm consecutive (unary encoded) prime numbers and a Boolean
formulaF = F ((xi,r)i∈[m],0≤r<pi)
OUTPUT: An OCNO(F) with distinguished control locationsin andout, such that for every num-
ber0 ≤M <

∏m
i=1 pi we have thatF (CRRm(M)) = 1 if and only if there exists a[[ϕ]]T (O(F))-path

from (in,M) to (out,M) in the transition systemT (O(F)).

Proof. W.l.o.g., negations occur inF only in front of variables. Then additionally, a negated variable
¬xi,r can be replaced by the disjunction

∨
{xi,k | 0 ≤ k < pi, r 6= k}. This can be done in logspace,

since the primespi are given in unary. Thus, we can assume thatF does not contain negations.
The idea is to traverse the Boolean formulaF with the OCNO(F) in a depth first manner. Each

time a variablexi,r is seen, the OCN may also enter another branch, where it is checked, whether the
current counter value is congruentr modulopi. Let O(F) = (Q, {Qα, Qβ , Qγ}, δ0, δ>0), where
Q = {in(G), out(G) | G is a subformula ofF} ∪ {div(p1), . . . ,div(pm),⊥}, Qα = {in(xi,r) |
i ∈ [m], 0 ≤ r < pi}, Qβ = {div(p1), . . . ,div(pm)}, andQγ = {⊥}. We setin = in(F) and
out = out(F). Let us now define the transition setsδ0 andδ>0. For every subformulaG1 ∧G2 or
G1 ∨G2 of F we add the following transitions toδ0 andδ>0:

in(G1 ∧G2)
0
−→ in(G1), out(G1)

0
−→ in(G2), out(G2)

0
−→ out(G1 ∧G2)

in(G1 ∨G2)
0
−→ in(Gi), out(Gi)

0
−→ out(G1 ∨G2) for all i ∈ {1, 2}

For every variablexi,r we add toδ0 andδ>0 the transitionin(xi,r)
0
−→ out(xi,r). Moreover, we

add toδ>0 the transitionsin(xi,r)
−r
−−→ div(pi). The transitionin(xi,0)

0
−→ div(pi) is also added

to δ0. For the control locationsdiv(pi) we add toδ>0 the transitionsdiv(pi)
−pi−−→ div(pi) and

div(pi)
−1
−−→⊥. This concludes the description of the OCNO(F). Correctness of the construction

can be easily checked by induction on the structure of the formulaF .

We are now ready to provePSPACE-hardness of the data complexity.

Theorem 7.2. There exists a fixedCTL formula of the form∃ϕ1Uϕ2, whereϕ1 andϕ2 are EF

formulas, for which it isPSPACE-complete to decide(T (O), (q, 0)) |= ∃ϕ1Uϕ2 for a given OCN
O and a control locationq of O.

Proof. Let us take an arbitrary languageL in PSPACE. Recall from Sec. 6 thatPSPACE is NC
1-

serializable. Thus, there exists an NFAA = (S, {0, 1}, δ, s0, Sf) over the alphabet{0, 1}, a poly-
nomialp(n), and a logspace-uniformNC

1-circuit family (Cn)n≥0, whereCn hasn + p(n) many
inputs and one output, such that for everyx ∈ {0, 1}n we have:

x ∈ L ⇐⇒ Cn(x, 0
p(n)) · · ·Cn(x, 1

p(n)) ∈ L(A), (7.1)

where “· · · ” refers to the lexicographic order on{0, 1}p(n). Fix an inputx ∈ {0, 1}n. Our reduction
can be split into the following five steps:

10 S. GÖLLER AND M. LOHREY

Step 1.Construct in logspace the circuitCn. Fix the the firstn inputs ofCn to the bits inx, and
denote the resulting circuit byC; it has onlym = p(n) many inputs. Then, (7.1) can be written as

x ∈ L ⇐⇒
2m−1∏

M=0

C(BINm(M)) ∈ L(A). (7.2)

Step 2.Compute the firstm consecutive primesp1, . . . , pm. This is possible in logspace, see e.g.
[9]. Everypi is bounded polynomially inn. Hence, everypi can be written down in unary notation.
Note that

∏m
i=1 pi > 2m (if m > 1).

Step 3. Compute in logspace the circuitB = Bm((xi,r)i∈[m],0≤r<pi) from Thm. 6.1. Thus,B
is a Boolean circuit of fan-in 2 and depthO(log(m)) = O(log(n)) with m output gates and
B(CRRm(M)) = BINm(M mod2m) for every0 ≤M <

∏m
i=1 pi.

Step 4. Now we compose the circuitsB andC: For everyi ∈ [m], connect theith input of
the circuitC(x1, . . . , xm) with the ith output of the circuitB. The result is a circuit with fan-
in 2 and depthO(log(n)). In logspace, we can unfold this circuit into a Boolean formulaF =
F ((xi,r)i∈[m],0≤r<pi). The resulting formula (or tree) has the same depth as the circuit, i.e., depth
O(log(n)) and every tree node has at most 2 children. Hence,F has polynomial size. For every
0 ≤M < 2m we haveF (CRRm(M)) = C(BINm(M)) and equivalence (7.2) can be written as

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A). (7.3)

Step 5. We now apply our construction from Prop. 7.1 to the formulaF . More precisely, letG
be the Boolean formula

∧
i∈[m] xi,ri whereri = 2m modpi for i ∈ [m] (these remainders can be

computed in logspace). For every1-labeled transitionτ ∈ δ of the NFAA let O(τ) be a copy of the
OCNO(F ∧¬G). For every0-labeled transitionτ ∈ δ let O(τ) be a copy of the OCNO(¬F ∧¬G).
In both cases we writeO(τ) as(Q(τ), {Qα(τ), Qβ(τ), Qγ(τ)}, δ0(τ), δ>0(τ)). Denote within(τ)
(resp.out(τ)) the control location of this copy that corresponds toin (resp.out) in O(F). Hence, for
everyb-labeled transitionτ ∈ δ (b ∈ {0, 1}) and every0 ≤M <

∏m
i=1 pi there exists a[[ϕ]]T (O(τ))-

path (ϕ is from Prop. 7.1) from(in(τ),M) to (out(τ),M) if and only if F (CRRm(M)) = b and
M 6= 2m.

We now define an OCNO = (Q, {Qα, Qβ, Qγ}, δ0, δ>0) as follows: We take the disjoint union
of all the OCNsO(τ) for τ ∈ δ. Moreover, every states ∈ S of the NFAA becomes a control
location ofO, i.e. Q = S ∪

⋃
τ∈δ Q(τ) andQp =

⋃
τ∈δ Qp(τ) for eachp ∈ {α, β, γ}. We add to

δ0 andδ>0 for everyτ = (s, b, t) ∈ δ the transitionss
0
−→ in(τ) andout(τ)

1
−→ t. Then, by Prop. 7.1

and (7.3) we havex ∈ L if and only if there exists a[[ϕ]]T (O)-path inT (O) from (s0, 0) to (s, 2m)
for somes ∈ Sf . Also note that there is no[[ϕ]]T (O)-path inT (O) from (s0, 0) to some configuration
(s,M) with s ∈ S andM > 2m. It remains to add toO some structure that enablesO to check that
the counter has reached the value2m. For this, use again Prop. 7.1 to construct the OCNO(G) (G

is from above) and add it disjointly toO. Moreover, add toδ>0 andδ0 the transitionss
0
−→ in for all

s ∈ Sf , wherein is thein control location ofO(G). Finally, introduce a new propositionρ and set
Qρ = {out}, whereout is theout control location ofO(G). By puttingq = s0 we obtain:x ∈ L if
and only if(T (O), (q, 0)) |= ∃(ϕ U ρ), whereϕ is from Prop. 7.1. This concludes the proof of the
theorem.

BRANCHING-TIME MODEL CHECKING OF ONE-COUNTER PROCESSES 11

By slightly modifying the proof of Thm. 7.2, one can also prove that the fixed CTL formula
can chosen to be of the form∃Gψ, whereψ is anEF formula.

8. Two further applications: EF and one-counter Markov decision processes

In this section, we present two further applications of Thm. 6.1 to OCPs. First, we state that the
combined complexity forEF over OCNs is hard forPNP. For formulas represented succinctly by
directed acyclic graphs this was already shown in [13]. The point here isthat we use the standard
tree representation for formulas.

Theorem 8.1. It is PNP-hard (and hencePNP-complete by[13]) to check(T (O), (q0, 0)) |= ϕ for
given OCNO, stateq0 of O, andEF formulaϕ.

The proof of Thm. 8.1 is very similar to the proof of Thm. 7.2, but does not use the concept of
serializability. We prove hardness by a reduction from the question whether the lexicographically
maximal satisfying assignment of a Boolean formula is even when interpreted as a natural number.
This problem isPNP-hard by [27]. At the moment we cannot prove that the data complexity of
EF over OCPs is hard forPNP (hardness forPNP[log] was shown in [13]). Analyzing the proof of
Thm. 8.1 in [14] shows that the main obstacle is the fact that converting from Chinese remainder
representation into binary representation is not possible by uniformAC

0 circuits (polynomial size
circuits of constant depth and unbounded fan-in); this is provably the case.

In the rest of the paper, we sketch a second application of our lower bound technique based
on Thm. 6.1, see [14] for more details. This application concerns one-counter Markov decision
processes.Markov decision processes(MDPs) extend classical Markov chains by allowing so called
nondeterministic vertices. In these vertices, no probability distribution on the outgoing transitions
is specified. The other vertices are calledprobabilistic vertices; in these vertices a probability
distribution on the outgoing transitions is given. The idea is that in an MDP a player Eve plays
against nature (represented by the probabilistic vertices). In each nondeterministic vertexv, Eve
chooses a probability distribution on the outgoing transitions ofv; this choice may depend on the
past of the play (which is a path in the underlying graph ending inv) and is formally represented by
a strategy for Eve. An MDP together with a strategy for Eve defines a Markov chain, whose state
space is the unfolding of the graph underlying the MDP. Here, we consider infinite MDPs, which
are finitely represented by OCPs; this formalism was introduced in [6] under the nameone-counter
Markov decision process(OC-MDP). With a given OC-MDPA and a setR of control locations
of the OCP underlyingA (a so calledreachability constraint), two sets were associated in [6]:
ValOne(R) is the set of all verticess of the MDP defined byA such that for everyǫ > 0 there
exists a strategyσ for Eve under which the probability of finally reaching froms a control location
in R and at the same time having counter value0 is at least1 − ε. OptValOne(R) is the set of all
verticess of the MDP defined byA for which there exists a specific strategy for Eve under which
this probability is1. It was shown in [6] that for a given OC-MDPA, a set of control locationsR,
and a vertexs of the MDP defined byA, the question ifs ∈ OptValOne(R) is PSPACE-hard and
in EXPTIME. The same question for ValOne(R) instead of OptValOne(R) was shown to be hard
for each level of the Boolean hierarchyBH, which is a hierarchy of complexity classes betweenNP

andPNP[log]. By applying our lower bound techniques (from Thm. 7.2) we can prove the following.

Theorem 8.2. Membership in ValOne(R) is PSPACE-hard.

As a byproduct of our proof, we also reprovePSPACE-hardness for OptValOne(R). It is
open, whether ValOne(R) is decidable; the corresponding problem for MDPs defined by pushdown
processes is undecidable [11].

12 S. GÖLLER AND M. LOHREY

References

[1] S. Arora and B. Barak.Computational Complexity: A Modern Approach. Cambridge University Press, 2009.
[2] C. Baier and J. P. Katoen.Principles of Model Checking. MIT Press, 2009.
[3] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits fordivision and related problems.SIAM J. Comput.,

15(4):994–1003, 1986.
[4] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to model-

checking. InProc. CONCUR’97, LNCS 1243, 135–150. Springer, 1997.
[5] L. Bozzelli. Complexity results on branching-time pushdown model checking.Theoret. Comput. Sci., 379:286–297,

2007.
[6] T. Brazdil, V. Brozek, K. Etessami, A. Kucera, and D. Wojtczak. One-counter markov decision processes.Proc.

SODA 2010, 863–874. SIAM, 2010.
[7] T. Cachat. Uniform solution of parity games on prefix-recognizablegraphs.ENTCS, 68(6):71–84, 2002.
[8] J.-Y. Cai and M. Furst. PSPACE survives constant-width bottlenecks. Internat. J. Found. Comput. Sci., 2(1):67–76,

1991.
[9] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniformNC

1. RAIRO Inform. Th́eor. Appl., 35(3):259–275,
2001.

[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model checking pushdown systems.
In Proc. CAV 2000, LNCS 1855, 232–247. Springer, 2000.

[11] K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive stochastic games. InProc.
ICALP 2005, LNCS 3580, 891–903. Springer, 2005.

[12] S. Göller and M. Lohrey. Infinite state model-checking of propositional dynamic logics. InProc. CSL 2006, LNCS
4207, 349–364. Springer, 2006.

[13] S. Göller, R. Mayr, and A. W. To. On the computational complexity of verifyingone-counter processes. InProc.
LICS 2009, 235–244. IEEE Computer Society Press, 2009.

[14] S. Göller, M. Lohrey. Branching-time model checking of one-counter processes.http://arxiv.org/abs/
0909.1102.

[15] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachabilityin succinct and parametric one-counter automata.
In Proc. CONCUR’09, LNCS 5710, 369–383. Springer, 2009.

[16] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time
bit-reductions. InProc. 8th Annual Structure in Complexity Theory Conference, 200–207. IEEE Computer Society
Press, 1993.

[17] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits for division and iterated
multiplication.J. Comput. System Sci., 65:695–716, 2002.

[18] M. Holzer. On emptiness and counting for alternating finite automata. In Proc. DLT 1995, 88–97. World Scientific,
1996.

[19] P. Jaňcar and Z. Sawa. A note on emptiness for alternating finite automata with a one-letter alphabet.Inform. Process.
Lett., 104(5):164–167, 2007.

[20] M. Nair. On Chebyshev-type inequalities for primes.Amer. Math. Monthly, 89(2):126–129, 1982.
[21] N. Piterman and M. Y. Vardi. Global model-checking of infinite-statesystems. InProc. CAV 2004, LNCS 3114,

387–400. Springer, 2004.
[22] O. Serre. Note on winning positions on pushdown games withω-regular conditions.Inf. Process. Lett., 85(6):285–

291, 2003.
[23] O. Serre. Parity games played on transition graphs of one-counter processes. InProc. FOSSACS 2006, LNCS 3921,

337–351. Springer, 2006.
[24] D. Thérien and T. Wilke. Temporal logic and semidirect products: An effective characterization of the until hierar-

chy. InProc. FOCS ’96, 256–263. IEEE Computer Society Press, 1996.
[25] A. W. To. Model checking FO(R) over one-counter processesand beyond. InProc. CSL 2009, LNCS 5771, 485–499.

Springer, 2009.
[26] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
[27] K. W. Wagner. More complicated questions about maxima and minima, and some closures of NP.Theoret. Comput.

Sci., 51:53–80, 1987.
[28] I. Walukiewicz. Model checking CTL properties of pushdown systems. InProc. FSTTCS 2000, LNCS 1974, 127–

138. Springer, 2000.
[29] I. Walukiewicz. Pushdown processes: games and model-checking. Inform. and Comput., 164(2):234–263, 2001.

