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ABSTRACT. One-counter processes (OCPs) are pushdown processes \phrelieoonly on a unary
stack alphabet. We study the computational complexity of model checkimputation tree logic
(CTL) over OCPs. APSPACE upper bound is inherited from the mogaialculus for this problem.
First, we analyze the periodic behaviour@fL over OCPs and derive a model checking algorithm
whose running time is exponential only in the number of control locatiodsaassyntactic notion of
the formula that we call leftward until depth. Thus, model checking f@€Ps againsETL formu-

las with a fixed leftward until depth is iB. This generalizes a result of the first author, Mayr, and To
for the expression complexity &TL'’s fragmentEF. Second, we prove that already over some fixed
OCP,CTL model checking i®SPACE-hard. Third, we show that there already exists a figdd
formula for which model checking of OCPsRSPACE-hard. For the latter, we employ two results
from complexity theory: (i) Converting a natural number in Chinese fed®a presentation into bi-
nary presentation is in logspace-unifo@* and (ii) PSPACE is AC°-serializable. We demonstrate
that our approach can be used to answer further open questions.

1. Introduction

Pushdown automata (PDAS) (or recursive state machines) are a matdgal for sequential
programs with recursive procedure calls, and their verification problesme been studied ex-
tensively. The complexity of model checking problems for PDAs is quite wedleustood: The
reachability problem for PDAs can be solved in polynomial time [4, 10]. Matiecking modal
u-calculus over PDAs was shown to BXPTIME-complete in [29], and the global version of the
model checking problem has been considered in [7, 21, 22] ERi®T IME lower bound for model
checking PDAs also holds for the simpler lodid L and its fragmeng&G [28], even for a fixed
formula (data complexity) [5] or a fixed PDA (expression complexity). Ondtieer hand, model
checking PDAs against the logitF (another natural fragment &fTL) is PSPACE-complete [28],
and again the lower bound still holds if either the formula or the PDA is fixed\#idel checking
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problems for various fragments and extensions of PDL (Propositiona&Dic Logic) over PDAs
were studied in [12].

One-counter processes (OCPs) are Minsky counter machines witmjisioointer. They can
also be seen as a special case of PDAs with just one stack symbol, plasramovable bottom
symbol which indicates an empty stack (and thus allows to test the counteréjrand hence con-
stitute a natural and fundamental computational model. In recent years] otatking problems
for OCPs received increasing attention [13, 15, 23, 25]. Clearlypgleucomplexity bounds carry
over from PDAs. The question, whether these upper bounds can bbaeddig lower bounds was
just recently solved for several important logics: Model checking modedlculus over OCPs is
PSPACE-complete. ThePSPACE upper bound was shown in [23], and a matching lower bound
can easily be shown by a reduction from emptiness of alternating unarydutidenata, which was
shown to bePSPACE-complete in [18, 19]. This lower bound even holds if either the OCP or the
formula is fixed. The situation becomes different for the fragnidnt In [13], it was shown that
model checkingcF over OCPs is in the complexity claB8'" (the class of all problems that can be
solved on a deterministic polynomial time machine with access to an oracldNR)nmMoreover, if
the input formula is represented succinctly as a directed acyclic graphntbael checkindeF over
OCPs is also hard foPNP. For the standard (and less succinct) tree representation for formulas,
only hardness for the clagd'Flog] (the class of all problems that can be solved on a deterministic
polynomial time machine which is allowed to maikélog(n)) many queries to an oracle froNP)
was shown in [13]. In fact, there already exists a fif#dformula such that model checking this
formula over a given OCP is hard fef'Flogl j.e., the data complexity BNPlogl-hard.

In this paper we consider the model checking problem@di. over OCPs. By the known
upper bound for the modal-calculus [23] this problem belongs R5PACE. First, we analyze
the combinatorics o£TL model checking over OCPs. More precisely, we analyze the periodic
behaviour of the set of natural numbers that satisfy a givEh formula in a given control location
of the OCP (Thm. 4.1). By making use of Thm. 4.1, we can derive a modekiigealgorithm
whose running time is exponential only in the number of control locations apdtacic measure
on CTL formulas that we call leftward until depth (Thm. 4.2). As a corollary, we iolitzat model
checking a fixed OCP againGT L formulas of fixed leftward until depth lies id. This generalizes
a recent result from [13], where it was shown that the expressiamplaxity of EF over OCPs
lies in P. Next, we focus on lower bounds. We show that model checkimg over OCPs is
PSPACE-complete, even if we fix either the OCP (Thm. 5.3) or @EL formula (Thm. 7.2). The
proof of Thm. 5.3 uses a reduction from QBF. We have to construct d fd€&P for which we
can construct for a given unary encoded numbé&L formulas that express, when interpreted
over our fixed OCP, whether the current counter value is divisiblg’@and whether the" bit in
the binary representation of the current counter value respectively. For the proof of Thm. 7.2
(PSPACE-hardness of data complexity faTL) we use two techniques from complexity theory,
which to our knowledge have not been applied in the context of verificatidar: (i) the existence
of small depth circuits for converting a number from Chinese remaindeeseptation to binary
representation and (ii) the fact thRbPACE-computations are serializable in a certain sense (see
Sec. 6 for details). One of the main obstructions in getting lower bounds@s0s the fact that
OCPs are well suited for testing divisibility properties of the counter valdehamce can deal with
numbers in Chinese remainder representation, but it is not clear howltwitttaumbers in binary
representation. Small depth circuits for converting a number from Chiees@nder representation
to binary representation are the key in order to overcome this obstruction.

We are confident that our new lower bound techniques describe@ abowe used for proving
further lower bounds for OCPs. We present two other applications ofemhniques in Sec. 8:
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(i) We show that model checkingF over OCPs is complete fa?N" even if the input formula is
represented by a tree (Thm. 8.1) and thereby solve an open problenji8d. (ii) We improve a
lower bound on a decision problem for one-counter Markov decisioogsses from [6] (Thm. 8.2).
The following table summarizes the picture on the complexity of model checkmBDés and
OCPs. Our new results are marked with (*).

Logic PDA OCP
modalu-calculus EXPTIME-complete| PSPACE-complete
modal-calculus, fixed formula EXPTIME-complete| PSPACE-complete
modaly-calculus, fixed system EXPTIME-complete| PSPACE-complete
CTL, fixed formula EXPTIME-complete| PSPACE-complete (*)
CTL, fixed system EXPTIME-complete| PSPACE-complete (*)
CTL, fixed system, fixed leftward until deptlEXPTIME-complete| in P (*)

EF PSPACE-complete | PNP-complete (*)

EF, fixed formula PSPACE-complete | PNPllogl_hard, inPNP
EF, fixed system PSPACE-complete |inP

Missing proofs due to space restrictions can be found in the full verditimsopaper [14].

2. Preliminaries

We denote the naturals by = {0,1,2,...}. Fori,j € Nlet[i,j] ={k e N|i <k < j} and
[5] = [1,4]. In particular[0] = §. Forn € N andi > 1, let bit;(n) denote the™ least significant
bit of the binary representation ef i.e.,n = Y, 2= - bit;(n). For every finite and non-empty
subsetM C N\ {0}, define LCM M) to be theleast common multiplef all numbers inM. It
is known that® < LCM([k]) < 4* for all k > 9 [20]. As usual, for a possibly infinite alphabet
A, A* (resp. A¥) denotes the set of all finite (resp. infinite) words oveerLet A® = A* U A¥
andA™T = A*\ {e}, wheree is the empty word. The length of a finite wotdis denoted byw|.
For a wordw = ajaz---a, € A* (resp.w = ajag--- € A¥) with a; € A andi € [n] (resp.
i > 1), we denote byw; thei" lettera;. A nondeterministic finite automaton (NFA) is a tuple
A= (S,%,0,s0,57), whereS is a finite set obtates ¥ is afinite alphabeté C .S x X x S'is the
transition relation sg € S is theinitial state, andS; C S is a set offinal states We assume some
basic knowledge in complexity theory, see e.g. [1] for more details.

3. One-counter processes and computation treelogic

Fix a countable s&® of propositions A transition systeris a tripleT” = (S, {S, | p € P}, —),
wheresS is the set ofstates — C S x S is the set oftransitionsand.S, C S for all p € P with
Sy = 0 for all but finitely manyp € P. We writes; — s, instead of(s;, s2) € —. The set of all
finite (resp. infinite) pathsin 7' is path  (T) = {7 € ST | Vi € [|n| — 1] : m; — w41} (resp.
path,(T) ={m € S¥ | Vi > 1:m — m4+1}). Forasubsell C S of states, a (finite or infinite)
pathr is called al/-pathif 7 € U*°.

A one-counter proces®©CP) is a tupled = (Q,{Q, | p € P}, o, d>0), WhereQ is a finite
set of control locations @, € @ for all p € P with @, = 0 for all but finitely manyp € P,
do C @ x {0,1} x @ is a set ofzero transitionsandd~o C @ x {—1,0,1} x Q is a set ofpositive
transitions Thesizeof the OCPO is |0| = |Q[+ >_,cp |@p| + |do| +[0>0]- The transition system
defined byO is T(0) = (Q x N,{Q, x N | p € P}, —), where(q,n) — (¢’,n + k) if and only
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if eithern = 0 and(q, k,¢') € dp, orn > 0 and(q, k,q") € d=9. A one-counter nefOCN) is an

OCP, whereyy C d~¢. For(q,k,q') € 09 U 0o we usually writeg LA q.
More details on the temporal log{€TL can be found for instance in [2Formulasy of CTL
are defined by the following grammar, where P:

¢ u= pl e[ eAe | IXe | FpUp | FpWUep.
Given a transition systeffi = (5, {S, | p € P}, —) and aCTL formulay, we define the semantics
[¢lr € S by induction on the structure af as follows: [p]r = S, for eachp € P, [~¢]r =
S\[elr, [er Ap2lr = [e1]r N [p2lr, [FXelr = {s € 5| 35" € [¢]r : s = '}, [FprUpo]r =
{s €S| 3r € path (T): m = 5,7 € [p]7,Vi € [|7] = 1] : m € [pr]r}, [Bp1WUga]r =
[BerUpa]r U{s € S| 3m € path,(T') : m1 = s,Vi > 1:m; € [p1]r}. We alsowrite(T', s) |= ¢
(or briefly s = ¢ if T'is clear from the context) for € [¢]r. We introduce the usual abbreviations
P1 V2 = (21 A p2), VX@ = 23X, IFp = 3(p V —p)Up, and3Gy = FpWU(p A —p) for
somep € P. Formulas of theCTL-fragmentEF are given by the following grammar, whepes P:
pu=p |7 | e Ay | IXe | IFp. Thesizeof CTL formulas is defined as followsp| = 1,
=] = [3Xe| = ||+ 1, [o1 Apa| = [p1] + |@2] + 1, [Fp1Ups| = [Fo1WUps| = |1 + [p2] + 1.

4. CTL on OCPs: Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity propertyCafL over OCPs, which implies
an upper bound fo€TL on OCPs, see Thm. 4.2. As a corollary, we state that for a fixed OCP,
CTL model checking restricted to formulas of fixed leftward until depth (see ¢fieition below)
can be done in polynomial time. We define feéward until depthlud of CTL formulas induc-
tively as follows: lud(p) = 0 for p € P, lud(—¢) = lud(IXe) = lud(p), lud(p; A p2) =
max{lud(¢1),lud(p2)}, lud(Fp1Ups) = lud(FpiWUgs) = max{lud(e1) + 1,lud(p2)}. A
similar definition of until depth can be found in [24], but there the until depthg Uy, is 1 plus
the maximum of the until depths ¢f; andys. Note thatlud(y) < 1 for everyEF formulap.

Let us fixan OCRD = (Q,{Q) | p € P}, do, 6>0) for the rest of this section. Léf)| = k£ and
defineK = LCM([k]) and K, = K™% for eachCTL formulap.

Theorem 4.1. Forall CTL formulasy, all g € Q and alln, n’ > 2-||-k*- K, withn = n’ mod K,
(¢;n) € [elroy <= (7)) € [elro)- (4.1)

Proof sketch.We prove the theorem by induction on the structureofe only treat the difficult
casep = Jip1Utpy here. Letl’ = max{2 - |¢;| - k? - Ky, | i € {1,2}}. Let us prove equivalence
(4.1). Note that, = LCM{K - K, , K, } by definition. Let us fix an arbitrary control location
g € Q and naturals;,n’ € N'such tha - [p| - k? - K, < n < n’ andn = n’ mod K,,. We have
to prove that(q, n) € [¢]r(o) if and only if (¢, n') € [¢] 7). For this, letd = n" —n, which is a
multiple of K,. We only treat the “if"-direction here and recommend the reader to cofisi]itor
helpful illustrations. So let us assume tliain’) € [p]7 ). To prove thatq,n) € [¢]r@), We
will use the following claim.

Claim: Assume soméir |7 g)-pathm = [(q1,n1) — (g2,n2) — -+ — (q,n)] withn; > T
foralli € [I] andny —n; > k* - K - Ky,. Then there exists fi)1]r(g)-path from(qi,n1) to
(@, + K - Ky, ), whose counter values are all strictly abdve- K - Ky, .

The claim tells us that paths that lose height at IéastK - K, and whose states all have counter
values strictly abové@’ can be flattened (without changing the starting state) by héighic,, .
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Proof of the claim. For each counter value € {n; | i € [} that appears imr, let u(h) =
min{i € [l] | n;, = h} denote the minimal position in whose corresponding state has counter
valueh. DefineA = k- K, . We will be interested ik - K many consecutive intervals (of counter
values) each of sizA. Define the bottond = n; — (k- K) - A. Formally, aninterval is a set
Ii=[b+(i—1)-Ab+i-A]for somei € [k - K]. Since each interval has siZe= k- K,
we can think of each intervdl; to consist ofk consecutivesub-intervalsof size K, each. Note
that each sub-interval has two extremal elements, namalpfisrandlower boundary Thus allk
sub-intervals havé + 1 boundaries in total. Hence, by the pigeonhole principle, for each interval
I;, there exists some; € [k] and two distinct boundaries(:,1) > (i, 2) of distancec; - Ky,
such that the control location afs earliest state of counter valugi, 1) agrees with the control
location ofr’s earliest state of counter valyki, 2), i.e., formallyg,si1)) = 4u(i,2))- Observe
that flattening the path by gluing together’s states at positiop(5(4, 1)) andu(3(z, 2)) (for this,
we addc; - Ky, to each counter value at a position (i, 2)) still results in afy1]r@)-path by
induction hypothesis, since we reduced the height by a multiple of K, . Our overall goal is to
flatten7 by gluing together states only of certain intervals such that we obtain a paiseviiteight
is in total by preciselyK - K,,, smaller thanr’s. Recall that there arg - K many intervals. By
the pigeonhole principle there is somec [k] such that; = ¢ for at leastK’ many intervalsl;.
By gluing together%( € N pairs of states of distanee K, each, we reduce’s height by exactly
K. ¢ Ky, =K - Ky,. This proves the claim.

Let us finish the proof the “if"-direction. Since by assumptignn’) € [¢]r (o), there exists
a finite pathr = (q1,71) — (q2,m2) — --- — (@, ), wheren([1,1 — 1] is a[¢1]ro)-path,
(g,n") = (q1,m1), and wher€q;, n;) € [¢2]7(0). To prove(q,n) € [¢]r@), we will assume that
n; > T for eachj € [l]. The case when; = T for somej € [I] can be proven similarly. Assume
first that the pathr[1, [ — 1] contains two states whose counter difference is at I€ast - K, + K,
which is (strictly) greater thah? - K - Ky, . SinceK,, is a multiple ofK - K, by definition, we can

apply the above clairq% € N many times tar[1,! — 1]. This reduces the height by,. We
1

repeat this flattening processfl, [ — 1] by heightK, as long as possible, i.e., until any two states
have counter difference smaller thiath- K - K, + K. Leto denote thdy]r(g)-path starting in
(¢,n’) that we obtain fromr[1,] — 1] by this process. Thus; ends in some state, whose counter
value is congruent;_; modulo K, (since we flattened 1,/ — 1] by a multiple ofK ). SinceK,
is in turn a multiple ofi{,,,, we can build a path’ which extends the path by a single transition
to some state that satisfigs by induction hypothesis. Moreover, by our flattening process, the
counter difference between any two states'iis at mostv? - K - K, + K, < 2-k? - K. Recall
that7 = max{2 - |¢;| - k? - Ky, | i € {1,2}}. As

n> 2ol kK, =2 (| -1+1)-k* K, > T+2 k* K,,
it follows that the path that results fros by subtractingl from each counter value (this path starts

in (¢,n)) is strictly abovel'. Moreover, sincel is a multiple of K, andKy,, this path witnesses
(¢,n) € [¥]r) by induction hypothesis. [

The following result can be obtained basically by using the standard mbédeking algorithm
for CTL on finite systems (see e.g. [2]) in combination with Thm. 4.1.

Theorem 4.2. For a given one-counter proce$s = (Q,{Q, | p € P}, do,0>0), @ CTL formula
¢, a control locationg € @, andn € N given in binary, one can decidg,n) € [¢]r(o) in time

O(log(n) +[Qf* - || - 4199 - |5y U 659]).
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Figure 1: The one-counter n@tfor which CTL model checking i®SPACE-hard

As a corollary, we can deduce that for every fixed Q@ Bnd every fixed: the question if for
a given states and a given CTL formulg with lud(¢) < k, we have(T'(0), s) = ¢, isinP. This
generalizes a result from [13], stating that the expression complexif over OCPs is irP.

5. Expression complexity for CTL ishard for PSPACE

The goal of this section is to prove that model checkifig- is PSPACE-hard already over a
fixed OCN. We show this via a reduction from the well-knoR&PACE-complete problem QBF.
Our lower bound proof is separated into three steps. In step one, we ddéimily ofCTL formulas
(pi)i>1 such that over the fixed OCHl that is depicted in Fig. 1 we can express (non-)divisibility by
2%, In step two, we define a family TL formulas(v;);>1 such that ovef) we can express if the
i bit in the binary representation of a natural is set.ttn our final step, we give the reduction from
QBF. For step one, we need the following simple fact which characterizis#bdity by powers of
two (recall thafn] = {1,...,n}, in particular[0] = 0):

Vn > 0,i>1: 2" dividesn < (27! dividesn A |{n/ € [n]| 27! dividesn'}| is even (5.1)
The set of propositions dd in Fig. 1 coincides with its control locations. Recall tliat zero
transitions are denoted By andQ’s positive transitions are denoted By,. Sincedg C d~g, O is
indeed an OCN. Note that bothand? are control locations o). Now we define a family o€TL
formulas(y;);>1 such that for each € N we have: (i)(t,n) |= ; if and only if 2¢ dividesn and
(i) (£,n) = ¢; if and only if 2! doesnot divide n. On first sight, it might seem superfluous to let
the control locatiort represent divisibility by powers of two and the control locatido represent
non-divisibility by powers of two sinc€TL allows negation. However the fact that we havdy
onefamily of formulas(y;);>1 to express both divisibility and non-divisibility is a crucial technical
subtlety that is necessary in order to avoid an exponential blowup in fosiagaBy making use of
(5.1), we construct the formulas inductively. First, let us define the auxiliary formulas testV¢
andy, = qo Vg1 Vg2V q3. Think of ¢, to hold in those control locations that altogether are situated
in the “diamond” in Fig. 1. We define

p1 = testAIX (f AEF(f A—=3Xg)) and
p; = testA IX (3(800 A ElX(pifl) U (qO VAN —E|qu)) fori > 1.

Sincey;_; is only used once ip;, we get|¢;| € O(i). The following lemma states the correctness
of the construction.

Lemmab.1l. Letn > 0 andi > 1. Then
e (t,n) = ; if and only if2¢ dividesn.
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e (t,n) = ¢, if and only if2* does not divide:.

Proof sketchThe lemma is proved by induction énThe induction base far= 1 is easy to check.
Fori > 1, observe thap; can only be true either in control locatieror z. Note that the formula
right to the until symbol inp; expresses that we aredp and that the current counter value is zero.
Also note that the formula left to the until symbol requires thatolds, i.e., we are always in one
of the four “diamond control locations”. In other words, we decremeattiunter by moving along
the diamond control locations (by possibly loopingratindgs) and always check #X; 1 holds,
just until we are ingy and the counter value is zero. Since there are transitionsfrandqgs to ¢
(but not tot), the induction hypothesis implies that the formdb&p; ; can be only true iy and
g3 as long as the current counter value is not divisibl@by . Similarly, since there are transitions
from ¢y andgs to ¢ (but not tot), the induction hypothesis implies that the formtdhp; | can be
only true ingg andgs if the current counter value is divisible /—!. With (5.1) this implies the
lemma. [

For expressing if thé" bit of a natural is set té, we make use of the following simple fact:

Vn >0,i>1:bit;(n) =1 <= |{n’ € [n] | 2" " dividesn'}| is odd (5.2)
Let us now define a family of TL formulas(¢;);>1 such that for each € N we have bit(n) = 1
if and only if (£,n) = v¢;. We setyy = ¢ andy; = t A IX((q1 V q2) A i), wherep; =
(o ATFXpi—1) U (goA—3Xq1) for eachi > 1. Due to the construction af; and sincéy;| € O(i),
we obtain thaty;| € O(i). The following lemma states the correctness of the construction.
Lemmab5.2. Letn > 0 and let: > 1. Then(¢,n) = ¢ if and only if bit(n) = 1.

Let us sketch the final step of the reduction from QBF. For this, let usn@ssome quantified

Boolean formulac = Qpxg Qr—12k—1 - Q121 : B(x1,...,21), Whereg is a Boolean formula
over variableg(zy, ...,z } and@; € {3,V} is a quantifier for each € [k]. Think of each truth
assignment : {z1,...,x;} — {0, 1} to correspond to the natural numbg) < [0,2—1], where

bit;(n(¢)) = 1if and only if ¥(x;) = 1, for eachi € [k]. Let 3 be the CTL formula that is obtained
from ( by replacing each occurrence @f by 1;, which corresponds to applying Lemma 5.2. It
remains to describe how we deal with quantification. Think of this as to catigely incrementing
the counter from statg, 0) as follows. First, setting the variahig to 1 will correspond to adding
2F=1 to the counter and getting to staie2*~1). Settingz; to 0 on the other hand will correspond
to adding0 to the counter and hence remaining in st@t®). Next, settingr;_; to 1 corresponds
to adding to the current counter valaé=2, whereas setting;,_; to 0 corresponds to adding,
as expected. These incrementation steps can be achieved using the $asprfuten Lemma 5.1.
Finally, after setting variable; either to0 or 1, we verify if the CTL formula[? holds. Formally, let
Oi = Aif Q; = Fand(),; = —if Q; = Vforeachi € [k] (recall that)y, ..., Q; are the quantifiers
of our quantified Boolean formula). Let#; = Q1X ((po V p1) O1 3X 3) and fori € [2, k]:

b, = QX (<po Vp) Oi3 (<po VX (FA gi1) U (FA iy Aei_m)) |

Then, it can be show thatis valid if and only if(Z,0) € [0x]r(0)-
Theorem 5.3. CTL model checking of the fixed OG@Mfrom Fig. 1 iSPSPACE-hard.

Note that the constructedTL formula has leftward until depth that depends on the size of
«. By Thm. 4.2 this cannot be avoided unldds= PSPACE. Observe that in order to express
divisibility by powers of two, oulCTL formulas(y;);>¢ have linearly growing leftward until depth.
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6. Toolsfrom complexity theory

For Sec. 7 and 8 we need some concepts from complexity theoryPMBY°el we denote
the class of all problems that can be solved on a polynomially time boundednitgttic Turing
machines which can have access td\@oracle only logarithmically many times, and BY'F the
corresponding class without the restriction to logarithmically many queriesug ériefly recall
the definition of the circuit complexity clag$éC', more details can be found in [26]. We consider
Boolean circuits” = C(x1, ..., zy) built up from AND- and OR-gates. Each input gate is labeled
with a variabler; or a negated variablex;. The output gates are linearly ordered. Such a circuit
computes a functiorfic : {0,1}" — {0,1}™, wherem is the number of output gates, in the obvious
way. Thefan-in of a circuitis the maximal number of incoming wires of a gate in the circuit. The
depth of a circuitis the number of gates along a longest path from an input gate to an outpufgate
logspace-unifornNC'-circuit family is a sequencéC,,),,>1 of Boolean circuits such that for some
polynomialp(n) and constant: (i) C,, contains at mosp(n) many gates, (ii) the depth af, is
at mostc - log(n), (iii) the fan-in of C,, is at most, (iv) for eachm there is at most one circuit in
(Cn)n>1 With exactlym input gates, and (v) there exists a logspace transducer that computes on
input 1™ a representation (e.g. as a node-labeled graph) of the citguitSuch a circuit family
computes a partial mapping d0, 1}* in the obvious way (note that we do not require to have for
everyn > 0 a circuit with exactlyn input gates in the family, therefore the computed mapping is in
general only partially defined). In the literature on circuit complexity orrefgal more restrictive
notions of uniformity, see e.g. [26], but logspace uniformity sufficesofiar purposes. In fact,
polynomial time uniformity suffices for proving our lower bounds w.r.t. polynal time reductions.

Form > 1and0 < M < 2™ — 1 let BIN,, (M) = bit,, (M) - - - bit; (M) € {0,1}™ denote
the m-bit binary representation aof/. Let p; denote the™ prime number. It is well-known that
thei™ prime require)(log(4)) bits in its binary representation. For a numbex M < [, pi
we define theChinese remainder representati@RR,,,(1/) as the Boolean tupl€RR,,, (M) =
(miﬂ.)ie[m},og@i with z; , = 1if M modp; = r andz; , = 0 else. By the following theorem, one
can transform a Chinese remainder representation very efficiently iraoyti@presentation.

Theorem 6.1 ([9]). There is a logspace-unifortdC!-circuit family (B (i )icim),0<r<p;))m>1
such that for everyn > 1, B,,, hasm output gates and for evefy < M < [, p; we have that
B (CRR,,(M)) = BIN,,,(M mod2™).

By [17], we could replace logspace-unifoldC!-circuits in Thm. 6.1 even bPLOGTIME-
uniform TC%-circuits. The existence off-uniform NC!-circuit family for converting from Chinese
remainder representation to binary representation was already sho@h idqually the Chinese
remainder representation of is the tuple(r;);c(,,,), wherer; = M modp;. Since the primeg;
will be always given in unary notation, there is no essential differeeteden this representation
and our Chinese remainder representation. The latter is more suitable fuirpose.

The following definition ofNC!-serializability is a variant of the more classical notion of se-
rializability [8, 16], which fits our purpose better. A languabés NC!-serializableif there exists
an NFA A over the alphabefo, 1}, a polynomialp(n), and a logspace-unifortdC!-circuit family
(Cn)n>0, WhereC,, has exactly:+p(n) many inputs and one output, such that for every {0, 1}"
we haver € L if and only if C,,(z, 0P() - .. C,, (2, 1P(™) € L(A), where - -” refers to the lex-
icographic order oq0, 1}7("). With this definition, it can be shown that all language®8$PACE
areNC!-serializable. A proof can be found in the appendix of [14]; it is just aslagaptation of
the proofs from [8, 16].
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7. Data complexity for CTL ishard for PSPACE

In this section, we prove that also the data complexit¢ 8t over OCNs is hard foPSPACE
and thereford®SPACE-complete by the known upper bounds for the madaalculus [23]. Let
us fix the set of proposition® = {«, 3,~} for this section. In the following, w.l.0.g. we allow
in &y (resp. ind~o) transitions of the kindg, k, ¢'), wherek € N (resp.k € Z) is given in unary
representation with the expected intuitive meaning.

Proposition 7.1. For the fixedEF formulay = (o — 3X(5 A EF(=3X7))) the following problem
can be solved with a logspace transducer:

INPUT: Alistp, ..., pm Of the firstm consecutive (unary encoded) prime numbers and a Boolean
formulaF” = F((xi77’)i€[m],0§r<pi)

OUTPUT: An OCNO(F) with distinguished control locationis andout, such that for every num-
ber0 < M < [[;, p; we have thaf'(CRR,,,(M)) = 1ifand only if there exists o] (o (r))-path
from (in, M) to (out, M) in the transition systerd’(O(F")).

Proof. W.l.0.g., negations occur if only in front of variables. Then additionally, a negated variable
—x;,,» can be replaced by the disjunctigf{z; » | 0 < k < p;,r # k}. This can be done in logspace,
since the primeg; are given in unary. Thus, we can assume fRaloes not contain negations.

The idea is to traverse the Boolean form#lavith the OCNO(F') in a depth first manner. Each
time a variabler; , is seen, the OCN may also enter another branch, where it is checketiewtie
current counter value is congruenmodulop;. Let O(F) = (Q,{Qa, @3, @~} d0,0>0), Where
Q = {in(G),out(G) | GisasubformulaoF'} U {div(p1),...,div(pm), L}, Qo = {in(zi,) |
i€ [ml,0 <r <p}, Qg = {div(p1),...,div(pm)}, and@, = {L}. We setin = in(F") and
out = out(F'). Let us now define the transition sétsandd~,. For every subformulé&’; A G4 or
G1 V G4 of F we add the following transitions ) andd~.q:

in(G1 A Gg) £> in(Gl), OUt(Gl) g in(Gg), OUt(Gg) g OUt(Gl AN Gg)
in(G1 V Ga) 9, in(G;), out(G;) LR out(Gy VvV Gy) foralli € {1,2}

For every variabler; , we add tody anddq the transitionin(x; ) 9, out(z;,). Moreover, we

add todg the transitionsn(z;,) — div(p;). The transitionin(z; ) N div(p;) is also added

to §p. For the control locationdiv(p;) we add tod the transitionsliv(p;) —= div(p;) and

div(p;) —L 1. This concludes the description of the OCNFE’). Correctness of the construction

can be easily checked by induction on the structure of the forfiula (]
We are now ready to prou@SPACE-hardness of the data complexity.

Theorem 7.2. There exists a fixedTL formula of the formdyp;Ups, wherep; and o, are EF
formulas, for which it iSPSPACE-complete to decidél’(0), (¢,0)) = Jp1Ups for a given OCN
O and a control locationy of Q.

Proof. Let us take an arbitrary languadein PSPACE. Recall from Sec. 6 tha®SPACE is NC!-
serializable. Thus, there exists an NBA= (S, {0, 1}, 4, so, Sf) over the alphabef0, 1}, a poly-
nomial p(n), and a logspace-unifortdC!-circuit family (Cy,),>0, whereC,, hasn + p(n) many
inputs and one output, such that for everg {0, 1} we have:

zeL <« Cpz,0PM)...C\(x,17™M) € L(A), (7.1)

where “ - . ” refers to the lexicographic order d, 117", Fix an inputz € {0, 1}". Our reduction
can be split into the following five steps:
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Step 1.Construct in logspace the circuit,. Fix the the firstn inputs of C,, to the bits inz, and
denote the resulting circuit by; it has onlym = p(n) many inputs. Then, (7.1) can be written as

2m—1
reL < [] CBIN,(M)) € L(A). (7.2)
M=0
Step 2.Compute the firstn consecutive primeg, ..., p,. This is possible in logspace, see e.g.

[9]. Everyp; is bounded polynomially im. Hence, every; can be written down in unary notation.
Note that[ [\, p; > 2™ (if m > 1).

Step 3. Compute in logspace the circul# = By, ((%i)icm],0<r<p;) from Thm. 6.1. Thus,B
is a Boolean circuit of fan-in 2 and depth(log(m)) = O(log(n)) with m output gates and
B(CRR;,,(M)) = BIN,, (M mod2™) for every0 < M < [, p;.

Step 4. Now we compose the circuit® and C: For everyi € [m], connect thei™ input of
the circuitC'(zy, ..., z,,) with the i output of the circuitB. The result is a circuit with fan-
in 2 and depthD(log(n)). In logspace, we can unfold this circuit into a Boolean formila=
F((%ir)iepm),0<r<p;)- The resulting formula (or tree) has the same depth as the circuit, i.e., depth
O(log(n)) and every tree node has at most 2 children. Hefithas polynomial size. For every
0 < M < 2™ we haveF'(CRR,,(M)) = C(BIN,,,(M)) and equivalence (7.2) can be written as
2m—1
zeL < [] F(CRR,(M)) € L(A). (7.3)
M=0

Step 5. We now apply our construction from Prop. 7.1 to the formbla More precisely, letZ
be the Boolean formula\ie[m} z;r, Wherer; = 2" modp; for i € [m] (these remainders can be
computed in logspace). For evefabeled transitionr € ¢ of the NFA A let O(7) be a copy of the
OCNQO(F A—@G). For everyo-labeled transitionr € ¢ letO(7) be a copy of the OCKD(—F A—G).
In both cases we writ®(7) as(Q(7), {Qa(7), Qs(7), Q+(7)},d0(7), 650(7)). Denote within(7)
(resp.out(7)) the control location of this copy that correspondaitresp.out) in O(F'). Hence, for
everyb-labeled transitionr € § (b € {0,1}) and every0 < M < [\, p; there exists o] (r))-
path (o is from Prop. 7.1) from(in(7), M) to (out(7), M) if and only if F(CRR,,,(M)) = b and
M # 2™,

We now define an OCID = (Q, {Qa, @3, Q~}, do, 0>0) as follows: We take the disjoint union
of all the OCNsO(r) for 7 € §. Moreover, every state € S of the NFA A becomes a control
location ofQ, i.e. Q = SUJ,¢; Q(7) andQ, = |, 5 Qp(7) for eachp € {a, 3,v}. We add to

dp anddq for everyr = (s,b,t) € ¢ the transitions 5 in(7) andout(7) L ¢ Then, by Prop. 7.1
and (7.3) we have € L if and only if there exists &p]r(q)-path in7T'(0) from (so,0) to (s, 2™)
for somes € S;. Also note that there is njgo] -(g)-path in7'(Q) from (s, 0) to some configuration
(s, M) with s € SandM > 2™. It remains to add t@ some structure that enabl@sto check that
the counter has reached the valfé For this, use again Prop. 7.1 to construct the CQN) (G

is from above) and add it disjointly 0. Moreover, add t@-, andd, the transitions 2, in for all

s € Sy, wherein is thein control location ofO(G). Finally, introduce a new propositignand set
Q, = {out}, whereout is theout control location ofO(G). By puttingg = so we obtain:xz € L if
and only if (7'(0), (¢,0)) = 3(¢ U p), whereyp is from Prop. 7.1. This concludes the proof of the
theorem. [
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By slightly modifying the proof of Thm. 7.2, one can also prove that the fixéd @rmula
can chosen to be of the foraGy, wherey is anEF formula.

8. Two further applications: EF and one-counter Markov decision processes

In this section, we present two further applications of Thm. 6.1 to OCP4, Wigsstate that the
combined complexity foEF over OCNs is hard foPNP. For formulas represented succinctly by
directed acyclic graphs this was already shown in [13]. The point hahaisve use the standard
tree representation for formulas.

Theorem 8.1. Itis PNP-hard (and henc@®NP-complete by13]) to check(T'(0), (g0, 0)) [= ¢ for
given OCNO), stateqy of O, andEF formulap.

The proof of Thm. 8.1 is very similar to the proof of Thm. 7.2, but does netths concept of
serializability. We prove hardness by a reduction from the question whitbdexicographically
maximal satisfying assignment of a Boolean formula is even when interpredatural number.
This problem isPNP-hard by [27]. At the moment we cannot prove that the data complexity of
EF over OCPs is hard foPNP (hardness foPNPl°gl was shown in [13]). Analyzing the proof of
Thm. 8.1 in [14] shows that the main obstacle is the fact that converting frioime€e remainder
representation into binary representation is not possible by unifatfncircuits (polynomial size
circuits of constant depth and unbounded fan-in); this is provably the ca

In the rest of the paper, we sketch a second application of our lowerdb@ehnique based
on Thm. 6.1, see [14] for more details. This application concerns onet@olvarkov decision
processesMarkov decision process€8IDPs) extend classical Markov chains by allowing so called
nondeterministic verticedn these vertices, no probability distribution on the outgoing transitions
is specified. The other vertices are call@ababilistic vertices in these vertices a probability
distribution on the outgoing transitions is given. The idea is that in an MDP a&playe plays
against nature (represented by the probabilistic vertices). In eaateteministic vertex), Eve
chooses a probability distribution on the outgoing transitions; dhis choice may depend on the
past of the play (which is a path in the underlying graph ending and is formally represented by
a strategy for Eve. An MDP together with a strategy for Eve defines a &atkain, whose state
space is the unfolding of the graph underlying the MDP. Here, we canisifleite MDPs, which
are finitely represented by OCPs; this formalism was introduced in [6]rithdenamedne-counter
Markov decision proces@®C-MDP). With a given OC-MDRA and a setR of control locations
of the OCP underlying4 (a so calledreachability constraint two sets were associated in [6]:
ValOng R) is the set of all vertices of the MDP defined byA such that for every > 0 there
exists a strategy for Eve under which the probability of finally reaching frana control location
in R and at the same time having counter valus at leastl — . OptValOngR) is the set of all
verticess of the MDP defined byA for which there exists a specific strategy for Eve under which
this probability isl. It was shown in [6] that for a given OC-MDA, a set of control locationg,
and a vertex of the MDP defined by4, the question its € OptValOné R) is PSPACE-hard and
in EXPTIME. The same question for ValOfR) instead of OptValOngz) was shown to be hard
for each level of the Boolean hierarcB¥, which is a hierarchy of complexity classes betwéih
andPNPllegl By applying our lower bound techniques (from Thm. 7.2) we can prozéaifowing.

Theorem 8.2. Membership in ValOngR) is PSPACE-hard.

As a byproduct of our proof, we also reproPSPACE-hardness for OptValOn&). It is
open, whether ValOrié?) is decidable; the corresponding problem for MDPs defined by pusidow
processes is undecidable [11].
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