
Compressed word problems in HNN-extensions

and amalgamated products

Niko Haubold and Markus Lohrey ⋆

Institut für Informatik, Universität Leipzig
{haubold,lohrey}@informatik.uni-leipzig.de

Abstract. It is shown that the compressed word problem for an HNN-
extension 〈H, t | t−1at = ϕ(a)(a ∈ A)〉 with A finite is polynomial time
Turing-reducible to the compressed word problem for the base group H.
An analogous result for amalgamated free products is shown as well.

1 Introduction

Since it was introduced by Dehn in 1910 [3], the word problem for groups has
emerged to a fundamental computational problem linking group theory, topol-
ogy, mathematical logic, and computer science. The word problem for a finitely
generated group G asks, whether a given word over the generators of G represents
the identity of G, see Section 2.1 for more details. Dehn proved the decidability
of the word problem for surface groups. On the other hand, 50 years after the
appearance of Dehn’s work, Novikov [19] and independently Boone [2] proved
the existence of a finitely presented group with undecidable word problem. How-
ever, many natural classes of groups with decidable word problem are known, as
for instance finitely generated linear groups, automatic groups and one-relator
groups. With the rise of computational complexity theory, also the complex-
ity of the word problem became an active research area. This development has
gained further attention by potential applications of combinatorial group theory
for secure cryptographic systems [18].

In order to prove upper bounds on the complexity of the word problem for a
certain group G, a “compressed” variant of the word problem for G was intro-
duced in [11, 12, 23]. In the compressed word problem for G, the input word over
the generators is not given explicitly but succinctly via a so called straight-line
program (SLP for short). This is a context free grammar that generates exactly
one word, see Section 2.2. Since the length of this word may grow exponentially
with the size (number of productions) of the SLP, SLPs can be seen indeed as a
succinct string representation. SLPs turned out to be a very flexible compressed
representation of strings, which are well suited for studying algorithms for com-
pressed data, see e.g. [1, 5, 10, 11, 17, 20, 21]. In [12, 23] it was shown that the
word problem for the automorphism group Aut(G) of G can be reduced in poly-
nomial time to the compressed word problem for G. In [23], it was shown that the

⋆ The work of the second author is supported by the DFG research project ALKODA.

compressed word problem for a finitely generated free group F can be solved in
polynomial time. Hence, the word problem for Aut(F) turned out to be solvable
in polynomial time [23], which solved an open problem from [9]. Generalizations
of this result can be found in [12, 16].

In this paper, we prove a transfer theorem for the compressed word problem
of HNN-extensions [7]. For a base group H with two isomorphic subgroups A
and B and an isomorphism ϕ : A → B, the corresponding HNN-extension is the
group

G = 〈H, t | t−1at = ϕ(a) (a ∈ A)〉. (1)

Intuitively, it is obtained by adding to H a new generator t (the stable letter) in
such a way that conjugation of A by t realizes ϕ. The subgroups A and B are also
called the associated subgroups. A related operation is that of the amalgamated
free product of two groups H1 and H2 with isomorphic subgroups A1 ≤ H1,
A2 ≤ H2 and an isomorphism ϕ : A1 → A2. The corresponding amalgamated
free product is the group

G = 〈H1 ∗ H2 | a = ϕ(a) (a ∈ A1)〉.

Intuitively, it results from the free product H1 ∗ H2 by identifying every ele-
ment a ∈ A1 with ϕ(a) ∈ A2. The subgroups A1 and A2 are also called the
amalgamated (or identified) subgroups.

HNN-extensions were introduced by Higman, Neumann, and Neumann in
1949 [7]. They proved that H embeds into the group G from (1). Modern proofs
of the above mentioned Novikov-Boone theorem use HNN-extensions as the main
tool for constructing finitely presented groups with an undecidable word problem
[15]. In particular, arbitrary HNN-extensions do not preserve good algorithmic
properties of groups like decidability of the word problem. In this paper, we
restrict to HNN-extensions (resp. amalgamated products) with finite associated
(resp. identified) subgroups, which is an important subcase. Stallings proved
[24] that a group has more than one end if and only if it is either an HNN-
extension with finite associated subgroups or an amalgamated free product with
finite identified subgroups. Moreover, a group is virtually-free (i.e., has a free
subgroup of finite index) if and only if it can be built up from finite groups using
amalgamated products with finite identified subgroups and HNN-extensions with
finite associated subgroups [4].

It is not hard to see that the word problem for an HNN-extension (1) with
A finite can be reduced in polynomial time to the word problem of the base
group H. The main result of this paper extends this transfer theorem to the
compressed setting: the compressed word problem for (1) with A finite can be
reduced in polynomial time to the compressed word problem for H. In fact,
we prove a slightly more general result, which deals with HNN-extensions with
several stable letters t1, . . . , tn, where the number n is part of the input. For
each stable letter ti the input contains a partial isomorphism ϕi from the fixed
finite subgroup A ≤ H to the fixed finite subgroup B ≤ H and we consider the
multiple HNN-extension

G = 〈H, t1, . . . , tn | t−1
i ati = ϕi(a) (1 ≤ i ≤ n, a ∈ dom(ϕi))〉.

2

Our polynomial time reduction consists of a sequence of polynomial time reduc-
tions. In a first step (Section 3.1), we reduce the compressed word problem for
G to the same problem for reduced sequences. These are strings (over the gener-
ators of H and the symbols t1, t

−1
1 , . . . , tn, t−1

n) that do not contain a substring
of the form t−1

i wti (resp. tiwt−1
i), where the string w represents a group element

from the domain (resp. range) of ϕi. In a second step (Section 3.2) we reduce
the number n of stable letters to a constant δ, which only depends on the size
of the fixed subgroup A. The main step of the paper reduces the compressed
word problem for reduced sequences over an HNN-extension with δ many sta-
ble letters (and associated partial isomorphisms from A to B) into two simpler
problems: (i) the same problem but with only δ − 1 many stable letters and
(ii) the same problem (with at most δ many stable letters) but with associated
subgroups that are strictly smaller than A. By iterating this procedure, we ar-
rive after a constant number of iterations (where each iteration is a polynomial
time reduction) at a compressed word problem for which we directly know the
existence of a polynomial time reduction to the compressed word problem for
the base group H. Since the composition of a constant number of polynomial
time reductions is again a polynomial time reduction, our main result follows.

The main reduction step in our algorithm uses techniques similar to those
from [13], where a transfer theorem for solving equations over HNN-extensions
with finite associated subgroups was shown.

From the close relationship of HNN-extensions with amalgamated free prod-
ucts, a polynomial time reduction from the compressed problem for an amal-
gamated free product 〈H1 ∗ H2 | a = ϕ(a) (a ∈ A1)〉 (with A1 finite) to the
compressed word problems of H1 and H2 is deduced in the final Section 4.

2 Preliminaries

Let Σ be a finite alphabet. The empty word is denoted by ε. With Σ+ = Σ∗\{ε}
we denote the set of non-empty words over Σ. For a word w = a1 · · · an let
|w| = n, alph(w) = {a1, . . . , an}, and w[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ n.
Moreover, let w[i :] = w[i : n] and w[: i] = w[1 : i].

2.1 Groups and the word problem

For background in combinatorial group theory see [15]. For a group G and two
elements x, y ∈ G we denote with xy = y−1xy the conjugation of x by y. Let G
be a finitely generated group and let Σ be a finite group generating set for G.
Hence, Σ̃ = Σ ∪ Σ−1 is a finite monoid generating set for G and there exists a
canonical monoid homomorphism h : Σ̃∗ → G, which maps a word w ∈ Σ̃∗ to
the group element represented by w. For u, v ∈ Σ̃∗ we will also say that u = v in
G in case h(u) = h(v). The word problem for G with respect to Σ is the following
decision problem:

INPUT: A word w ∈ Σ̃∗.

3

QUESTION: w = 1 in G?

It is well known that if Γ is another finite generating set for G, then the word
problem for G with respect to Σ is logspace many-one reducible to the word
problem for G with respect to Γ . This justifies one to speak just of the word
problem for the group G.

The free group F (Σ) generated by Σ can be defined as the quotient monoid

F (Σ) = Σ̃∗/{aa−1 = ε | a ∈ Σ̃}.

A group presentation is a pair (Σ,R), where Σ is an alphabet of symbols and R

is a set of relations of the form u = v, where u, v ∈ Σ̃∗. The group defined by this
presentation is denoted by 〈Σ | R〉. It is defined as the quotient F (Σ)/N(R),
where N(R) is the smallest normal subgroup of the free group F (Σ) that contains
all elements uv−1 with (u = v) ∈ R. In particular F (Σ) = 〈Σ | ∅〉. Of course,
one can assume that all relations are of the form r = 1. In fact, usually the set
of relations is given by a set of relators R ⊆ Σ̃+, which corresponds to the set
{r = 1 | r ∈ R} of relations.

The free product of two groups G1 and G2 is denoted by G1 ∗ G2. If Gi ≃
〈Σi | Ri〉 for i ∈ {1, 2} with Σ1 ∩ Σ2 = ∅, then G1 ∗ G2 ≃ 〈Σ1 ∪ Σ2 | R1 ∪ R2〉.

The following transformations on group presentations (in either direction)
are known as Tietze transformations:

(Σ,R) ↔ (Σ,R ∪ {u = v}) if uv−1 ∈ N(R)

(Σ,R) ↔ (Σ ∪ {a}, R ∪ {a = w}) if a 6∈ Σ̃, w ∈ Σ̃∗

If (Σ′, R′) can be obtained by a sequence of Tietze transformations from (Σ,R),
then 〈Σ | R〉 ≃ 〈Σ′ | R′〉 [15].

2.2 Straight-line programs

We are using straight-line programs as a compressed representation of strings
with reoccuring subpatterns [22]. A straight-line program (SLP) over the alphabet
Γ is a context free grammar A = (V, Γ, S, P), where V is the set of nonterminals,
Γ is the set of terminals, S ∈ V is the initial nonterminal, and P ⊆ V ×(V ∪Γ)∗

is the set of productions such that (i) for every X ∈ V there is exactly one
α ∈ (V ∪Γ)∗ with (X,α) ∈ P and (ii) there is no cycle in the relation {(X,Y) ∈
V × V | ∃α : (X,α) ∈ P, Y ∈ alph(α)}. A production (X,α) is also written
as X → α. The language generated by the SLP A contains exactly one word
val(A). Moreover, every nonterminal X ∈ V generates exactly one word that is
denoted by val(A,X), or briefly val(X), if A is clear from the context. The size
of A is |A| =

∑
(X,α)∈P |α|. It can be seen easily that an SLP can be transformed

in polynomial time into an SLP in Chomsky normal form, which means that all
productions have the form A → BC or A → a for A,B,C ∈ V and a ∈ Γ . The
following tasks can be solved in polynomial time. Except for the last one, proofs
are straightforward.

4

– Given an SLP A, calculate |val(A)|.
– Given an SLP A and a natural number i ≤ |val(A)|, calculate val(A)[i].
– Given SLPs A and B decide whether val(A) = val(B) [20].

A deterministic rational transducer is a 5-tuple T = (Σ,Γ,Q, δ, q0, F), where
Σ is the input alphabet, Γ is the output alphabet, Q is the set of states, δ :
Q × Σ → Q × Γ ∗ is the partial transition function, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final states. Let δ̂ : Q × Σ∗ → Q × Γ ∗ be the canonical
extension of δ. The partial mapping defined by T is [[T]] = {(u, v) ∈ Σ∗ × Γ ∗ |

δ̂(q0, u) ∈ F × {v}}. A proof of the following lemma can be found in [1].

Lemma 2.1. From a given SLP A and a given deterministic rational transducer
T we can compute in polynomial time an SLP for the string [[T]](val(A)) (if it is
defined).

Let G be a finitely generated group and Σ a finite generating set for G. The
compressed word problem for G with respect to Σ is the following decision prob-
lem:

INPUT: An SLP A over the terminal alphabet Σ̃.

OUTPUT: Does val(A) = 1 hold in G?

In this problem, the input size is |A|. As for the ordinary word problem, the
complexity of the compressed word problem does not depend on the chosen
generating set. This allows one to speak of the compressed word problem for the
group G. The compressed word problem for G is also denoted by CWP(G).

A composition system A = (V, Γ, S, P) is an SLP, which additionally allows
productions of the form A → B[i : j] where 1 ≤ i ≤ j ≤ |val(B)| [5]. For
such a production we define val(A) = val(B)[i : j]. In [6], Hagenah presented a
polynomial time algorithm that transforms a given composition system into an
SLP that generates the same word.

2.3 Polynomial time Turing-reductions

For two computational problems A and B, we write A ≤P
T B if A is polynomial

time Turing-reducible to B. This means that A can be decided by a deterministic
polynomial time Turing-machine that uses B as an oracle. Clearly, ≤P

T is transi-
tive, and A ≤P

T B ∈ P implies A ∈ P. More generally, if A,B1, . . . , Bn are com-
putational problems, then we write A ≤P

T {B1, . . . , Bn} if A ≤P
T

⋃n
i=1({i} ×Bi)

(the set
⋃n

i=1({i}×Bi) is basically the disjoint union of the Bi with every element
from Bi marked by i).

2.4 HNN-extensions

Let us fix throughout this section a base group H = 〈Σ | R〉. Let us also fix
isomorphic subgroups Ai, Bi ≤ H (1 ≤ i ≤ n) and isomorphisms ϕi : Ai → Bi.

5

Let h : Σ̃∗ → H be the canonical morphism, which maps a word w ∈ Σ̃∗ to the
element of H it represents. We consider the HNN-extension

G = 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ Ai)〉. (2)

This means that G = 〈Σ ∪ {t1, . . . , tn} | R ∪ {ati = ϕi(a) | 1 ≤ i ≤ n, a ∈ Ai}〉.
It is known that the base group H naturally embeds into G [7]. In this paper,
we will be only concerned with the case that all groups A1, . . . , An are finite and
that Σ is finite. In this situation, we may assume that

⋃n
i=1(Ai ∪ Bi) ⊆ Σ. We

say that Ai and Bi are associated subgroups in the HNN-extension G. For the
following, the notations Ai(+1) = Ai and Ai(−1) = Bi are useful. Note that
ϕα

i : Ai(α) → Ai(−α) for α ∈ {+1,−1}.

We say that a word u ∈ (Σ̃ ∪ {t1, t
−1
1 , . . . , tn, t−1

n })∗ is reduced if u does not

contain a factor of the form t−α
i wtαi for α ∈ {1,−1}, w ∈ Σ̃∗ and h(w) ∈ Ai(α).

With Red(H,ϕ1, . . . , ϕn) we denote the set of all reduced words. For a word

u ∈ (Σ̃ ∪ {t1, t
−1
1 , . . . , tn, t−1

n })∗ let us denote with πt(u) the projection of u
to the alphabet {t1, t

−1
1 , . . . , tn, t−1

n }. The following lemma provides a necessary
and sufficient condition for equality of reduced strings in an HNN-extension [14]:

Lemma 2.2. Let u = u0t
α1
i1

u1 · · · t
αℓ

iℓ
uℓ and v = v0t

β1

j1
v1 · · · t

βm

jm
vm be reduced

words with u0, . . . , uℓ, v0, . . . , vm ∈ Σ̃∗, α1, . . . , αℓ, β1, . . . , βm ∈ {1,−1}, and
i1, . . . , iℓ, j1, . . . , jm ∈ {1, . . . , n}. Then u = v in the HNN-extension G from (2)
if and only if the following hold:

– πt(u) = πt(v) (i.e., ℓ = m, ik = jk, and αk = βk for 1 ≤ k ≤ ℓ)
– there exist c1, . . . , c2m ∈

⋃n
k=1(Ak ∪ Bk) such that:

• ukc2k+1 = c2kvk in H for 0 ≤ k ≤ ℓ (here we set c0 = c2ℓ+1 = 1)
• c2k−1 ∈ Aik

(αk) and c2k = ϕαk

ik
(c2k−1) ∈ Aik

(−αk) for 1 ≤ k ≤ ℓ.

The second condition of the lemma can be visualized by a diagram of the follow-
ing form (also called a Van Kampen diagram, see [15] for more details), where
ℓ = m = 4. Light-shaded (resp. dark-shaded) faces represent relations in H
(resp. relations of the form ctαi = tαi ϕα

i (c) with c ∈ Ai(α)).

(†)

u0

tα1
i1

u1
tα2
i2 u2

tα3
i3 u3 tα4

i4

u4

v0

tα1
i1 v1 tα2

i2
v2 tα3

i3

v3 tα4
i4

v4

c1 c2 c3 c4 c5 c6 c7 c8

The elements c1, . . . , c2ℓ in such a diagram are also called connecting elements.
When solving the compressed word problem for HNN-extensions we will make

use of the following simple lemma, which allows us to transform an arbitrary
string over the generating set of an HNN-extension into a reduced one.

Lemma 2.3. Assume that u = u0t
α1
i1

u1 · · · t
αn

in
un and v = v0t

β1

j1
v1 · · · t

βm

jm
vm are

reduced strings. Let d(u, v) be the largest number d ≥ 0 such that

6

(a) Ain−d+1
(αn−d+1) = Ajd

(−βd) (we set Ain+1
(αn+1) = Aj0(−β0) = 1) and

(b) ∃c ∈ Ajd
(−βd) : t

αn−d+1

in−d+1
un−d+1 · · · t

αn

in
un v0 tβ1

j1
· · · vd−1 tβd

jd
= c in the group

G from (2) (note that this condition is satisfied for d = 0).

Moreover, let c(u, v) ∈ Ajd
(−βd) be the element c in (b) (for d = d(u, v)). Then

u0t
α1
i1

u1 · · · t
αn−d(u,v)

in−d(u,v)
(un−d(u,v) c(u, v) vd(u,v))t

βd(u,v)+1

jd(u,v)+1
vd(u,v)+1 · · · t

βm

jm
vm

is a reduced string equal to uv in G.

The above lemma can be visualized by the following diagram.

u0

tα1
i1

u1

· · ·

un−d

t
αn−d+1

in−d+1

· ·
·

tαn

in

un v0

tβ1

j1

· · ·

tβd

jd

vd

· · ·
vm−1

tβm

jm

vm

c(u, v)

2.5 Some simple compressed word problems

We will use the following theorem on free products G1 ∗ G2 that was shown in
[12].

Theorem 2.4. CWP(G1 ∗ G2) ≤
P
T {CWP(G1),CWP(G2)}.

For our reduction of the compressed word problem of an HNN-extension to the
compressed word problem of the base group, we need the special case that in
(2) we have H = A1 = · · · = An = B1 = · · · = Bn (in particular, H is finite).
In this case, we can even assume that the finite group H (represented by its
multiplication table) is part of the input:

7

Lemma 2.5. The following problem can be solved in polynomial time:

INPUT: A finite group H, automorphisms ϕi : H → H (1 ≤ i ≤ n), and an
SLP A over the alphabet H ∪ {t1, t

−1
1 , . . . tn, t−1

n }.

QUESTION: val(A) = 1 in 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉?

Proof. Let s ∈ (H ∪ {t1, t
−1
1 , . . . tn, t−1

n })∗. From the defining equations of the
group G = 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉 it follows that there
exists a unique h ∈ H with s = πt(s)h in G. Hence, s = 1 in G if and only if
πt(s) = 1 in the free group F (t1, . . . , tn) and h = 1 in H.

Now, let A be an SLP over the alphabet H ∪ {t1, t
−1
1 , . . . tn, t−1

n }. W.l.o.g.
assume that A is in Chomsky normal form. It is straightforward to compute an
SLP for the projection πt(val(A)). Since by Theorem 2.4 the word problem for the
free group F (t1, . . . , tn) can be solved in polynomial time, it suffices to compute
for every nonterminal A of A the unique hA ∈ H with val(A) = πt(val(A))hA in
G. We compute the elements hA bottom up. The case that the right-hand side
for A is a terminal symbol from H ∪ {t1, t

−1
1 , . . . tn, t−1

n } is clear. Hence, assume
that A → BC is a production of A and assume that hB , hC ∈ H are already
computed. Hence, in G we have:

val(A) = val(B)val(C) = πt(val(B))hBπt(val(C))hC .

Thus, it suffices to compute the unique h ∈ H with hBπt(val(C)) = πt(val(C))h
in G. Note that if πt(val(C)) = tα1

i1
tα2
i2

· · · tαn

in
, then

h = ϕαn

in
(· · ·ϕα2

i2
(ϕα1

i1
(hB)) · · ·) = (ϕα1

i1
◦ · · · ◦ ϕαn

in
)(hB).

The automorphism f = ϕα1
i1

◦ · · · ◦ ϕαn

in
can be easily computed from an SLP

C for the string πt(val(C)) by replacing in C the terminal symbol ti (resp. t−1
i)

by ϕi (resp. ϕ−1
i). This allows to compute f bottom-up and then to compute

f(hB). ⊓⊔

Note that the group 〈H, t1, . . . , tn | hti = ϕi(h) (1 ≤ i ≤ n, h ∈ H)〉 is the
semidirect product H ⋊ϕ F , where F = F (t1, . . . , tn) is the free group generated
by t1, . . . , tn and the homomorphism ϕ : F → Aut(H) is defined by ϕ(ti) = ϕi.

3 Compressed word problem of an HNN-extension

In this section we will prove that the compressed word problem for an HNN-
extension of the form (1) is polynomial time Turing-reducible to the compressed
word problem for H. In fact, we will prove the existence of such a reduction for
a slightly more general problem, which we introduce below.

For the further consideration, let us fix the finitely generated group H to-
gether with the finite subgroups A and B. Let Σ be a finite generating set for
H. These data are fixed, i.e., they will not belong to the input of computational
problems.

8

In the following, when writing down a multiple HNN-extension

〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉, (3)

we assume implicitly that every ϕi is in fact an isomorphism between subgroups
A1 ≤ A and B1 ≤ B. Hence, ϕi can be viewed as a partial isomorphism from
our fixed subgroup A to our fixed subgroup B, and (3) is in fact an abbreviation
for the group

〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ dom(ϕi))〉.

Note that there is only a fixed number of partial isomorphisms from A to B, but
we allow ϕi = ϕj for i 6= j in (3).

Let us introduce several restrictions and extensions of CWP(G). Our most
general problem is the following computational problem UCWP(H,A,B) (the
letter “U” stands for “uniform”, meaning that a list of partial isomorphisms
from A to B is part of the input):

INPUT: Partial isomorphisms ϕi : A → B (1 ≤ i ≤ n) and an SLP A over the

alphabet Σ̃ ∪ {t1, t
−1
1 , . . . , tn, t−1

n }.

QUESTION: val(A) = 1 in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?

The restriction of this problem UCWP(H,A,B) to reduced input strings is de-
noted by RUCWP(H,A,B). It is formally defined as the following problem:

INPUT: Partial isomorphisms ϕi : A → B (1 ≤ i ≤ n) and SLPs A, B over the

alphabet Σ̃∪{t1, t
−1
1 , . . . , tn, t−1

n } such that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).

QUESTION: val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?

Let us now consider a fixed list of partial isomorphisms ϕ1, . . . , ϕn : A → B.
Then RCWP(H,A,B, ϕ1, . . . , ϕn) is the following computational problem:

INPUT: Two SLPs A and B over the alphabet Σ̃ ∪ {t1, t
−1
1 , . . . , tn, t−1

n } such
that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).

QUESTION: val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉?

Our main result is:

Theorem 3.1. UCWP(H,A,B) ≤T
P CWP(H).

The rest of Section 3 is concerned with the proof of Theorem 3.1.

3.1 Reducing to reduced sequences

First we show that we may restrict ourselves to SLPs that evaluate to reduced
strings:

Lemma 3.2. UCWP(H,A,B) ≤T
P RUCWP(H,A,B). More precisely, there is

a polynomial time Turing-reduction from UCWP(H,A,B) to RUCWP(H,A,B)
that on input (ϕ1, . . . , ϕn, A) only asks RUCWP(H,A,B)-queries of the form
(ϕ1, . . . , ϕn, A′, B′) (thus, the list of partial isomorphisms is not changed).

9

Proof. Consider partial isomorphisms ϕi : A → B (1 ≤ i ≤ n) and let

G = 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉.

Moreover, let A be an SLP in Chomsky normal form over the alphabet Σ̃ ∪
{t1, t

−1
1 , . . . , tn, t−1

n }. Using oracle access to RUCWP(H,A,B), we will construct
bottom-up a composition system A

′ with val(A′) = val(A) in G and val(A′)
reduced, on which finally the RUCWP(H,A,B)-oracle can be asked whether
val(A′) = 1 in G. The system A

′ has the same variables as A but for every
variable X, val(A′,X) is reduced and val(A′,X) = val(A,X) in G.

Assume that X → Y Z is a production of A, where Y and Z were already
processed during our bottom-up reduction process. Hence, val(Y) and val(Z)
are reduced. Let

val(Y) = u0t
α1
i1

u1 · · · t
αℓ

iℓ
uℓ and val(Z) = v0t

β1

j1
v1 · · · t

βm

jm
vm.

with u0, . . . , uℓ, v0, . . . , vm ∈ Σ̃∗. For 1 ≤ k ≤ ℓ (resp. 1 ≤ k ≤ m) let p(k) (resp.
q(k)) be the unique position within val(Y) (resp. val(Z)) such that val(Y)[:

p(k)] = u0t
α1
i1

u1 · · · t
αk

ik
(resp. val(Z)[: q(k)] = v0t

β1

j1
v1 · · · t

βk

jk
). These positions

can be computed in polynomial time from k using simple arithmetic.
According to Lemma 2.3 it suffices to find d = d(val(Y), val(Z)) ∈ N and

c = c(val(Y), val(Z)) ∈ A ∪ B in polynomial time. This can be done, using
binary search: First, compute min{l,m}. For a given number k ≤ min{ℓ,m} we
want to check whether

t
αℓ−k+1

iℓ−k+1
uℓ−k+1 · · · t

αℓ

iℓ
uℓ v0 tβ1

j1
· · · vk−1t

βk

jk
∈ Aiℓ−k+1

(αℓ−k+1) = Ajk
(−βk) (4)

in the group G. Note that (4) is equivalent to t
αℓ−k+1

iℓ−k+1
= t−βk

jk
and

∨

c∈Ajk
(−βk)

val(Y)[p(ℓ − k + 1) :]−1c = val(Z)[: q(k)]. (5)

The two sides of this equation are reduced strings and the number of possible
values c ∈ Ajk

(−βk) is bounded by a constant. Hence, (5) is equivalent to a
constant number of RUCWP(H,A,B)-instances that can be computed in poly-
nomial time.

In order to find with binary search the value d (i.e. the largest k ≥ 0 such
that (4) holds), one has to observe that (4) implies that (4) also holds for every
smaller value k (this follows from Lemma 2.2). From d, we can compute in
polynomial time positions p(ℓ− d+1) and q(d). Then, according to Lemma 2.3,
the string

val(Y)[: p(ℓ − d + 1) − 1] c val(Z)[q(d) + 1 :]

is reduced and equal to val(Y)val(Z) in G. Hence, we can replace the production
X → Y Z by X → Y [: p(ℓ − d + 1) − 1] cZ[q(d) + 1 :]. ⊓⊔

The above proof can be also used in order to derive:

Lemma 3.3. Let ϕ1, . . . , ϕn : A → B be fixed partial isomorphisms. Then
CWP(〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉) is polynomial time
Turing-reducible to RCWP(H,A,B, ϕ1, . . . , ϕn).

10

3.2 Reduction to a constant number of stable letters

In this section, we show that the number of different stable letters can be reduced
to a constant. For this, it is important to note that the associated subgroups
A,B ≤ H do not belong to the input; so their size is a fixed constant.

Fix the constant δ = 2 · |A|! ·2|A| for the rest of the paper. Note that the num-
ber of HNN-extensions of the form 〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉
with k ≤ δ is constant. The following lemma says that RUCWP(H,A,B) can be
reduced in polynomial time to one of the problems RCWP(H,A,B, ψ1, . . . , ψk).
Moreover, we can determine in polynomial time, which of these problems arises.

Lemma 3.4. There exists a polynomial time algorithm for the following:

INPUT: Partial isomorphisms ϕ1, . . . , ϕn : A → B and SLPs A, B over the
alphabet Σ̃ ∪ {t1, t

−1
1 , . . . tn, t−1

n } such that val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn).

OUTPUT: Partial isomorphisms ψ1, . . . , ψk : A → B where k ≤ δ and SLPs A
′,

B
′ over the alphabet Σ̃ ∪ {t1, t

−1
1 , . . . tk, t−1

k } such that:

– For every 1 ≤ i ≤ k there exists 1 ≤ j ≤ n with ψi = ϕj.
– val(A′), val(B′) ∈ Red(H,ψ1, . . . , ψk)
– val(A) = val(B) in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉 if and

only if val(A′) = val(B′) in 〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉.

Proof. Fix an input (ϕ1, . . . , ϕn, A, B) for the problem RUCWP(H,A,B). In par-
ticular, val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕn). Define the function τ : {1, . . . , n} →
{1, . . . , n} by

τ(i) = min{k | ϕk = ϕi}.

This mapping can be easily computed in polynomial time from the sequence
ϕ1, . . . , ϕn. Assume w.l.o.g. that ran(τ) = {1, . . . , γ} for some γ ≤ n. Note that
γ ≤ |A|! · 2|A| = δ

2 . For every ti (1 ≤ i ≤ γ) we take two stable letters ti,0 and
ti,1. Hence, the total number of stable letters is at most δ. Moreover, we define
a sequential transducer T which, reading as input the word u0t

α1
i1

u1 · · · t
αm

im
um

(with u0, . . . , um ∈ Σ̃+ and 1 ≤ i1, . . . , im ≤ n) returns

[[T]](w) = u0 tα1

τ(i1),1
u1 tα2

τ(i2),0
u2 tα3

τ(i3),1
u3 · · · t

αm

τ(im),m mod 2 um.

Finally, we define the HNN-extension

G′ = 〈H, t1,0, t1,1, . . . , tγ,0, tγ,1 | ati,k = ϕi(a) (1 ≤ i ≤ γ, k ∈ {0, 1}, a ∈ A)〉.

This HNN-extension has 2γ ≤ δ many stable letters; it is the HNN-extension
〈H, t1, . . . , tk | ati = ψi(a) (1 ≤ i ≤ k, a ∈ A)〉 from the lemma.

Claim: Let u, v ∈ Red(H,ϕ1, . . . , ϕn) be reduced. Then also [[T]](u) and [[T]](v)
are reduced. Moreover, the following are equivalent:

(a) u = v in 〈H, t1, . . . , tn | ati = ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉
(b) [[T]](u) = [[T]](v) in the HNN-extension G′ and πt(u) = πt(v).

11

Proof of the claim. Let u = u0t
α1
i1

u1 · · · t
αℓ

iℓ
uℓ and v = v0t

β1

j1
v1 · · · t

βm

jm
vm. The first

statement is obvious due to the fact that [[T]](u) does not contain a subword of

the form tαi,kwtβj,k for k ∈ {0, 1}, and similarly for [[T]](v).

For (a) ⇒ (b) note that by Lemma 2.2, u = v in 〈H, t1, . . . , tn | ati =
ϕi(a) (1 ≤ i ≤ n, a ∈ A)〉 implies πt(u) = πt(v) (i.e. ℓ = m, α1 = β1, . . . , αm =
βm, i1 = j1, . . . , im = jm), and that there exists a Van Kampen diagram of the
following form:

(†)

u0

tα1
i1

u1
tα2
i2 u2 tαm

im

um

v0

tα1
i1 v1 tα2

i2
v2

tαm

im

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

The defining equations of G′ imply that the following is a valid Van Kampen
diagram in G′:

(‡)

u0

tα1

τ(i1),1
u1

tα2

τ(i2),0 u2 tαm

τ(im),m mod 2

um

v0

tα1

τ(i1),1
v1 tα2

τ(i2),0
v2 tαm

τ(im),m mod 2

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

Hence, [[T]](u) = [[T]](v) in G′.
For (b) ⇒ (a) note that we have already seen that [[T]](u) and [[T]](v) are

reduced. Hence, [[T]](u) = [[T]](v) in G′ together with πt(u) = πt(v) implies
that there exists a Van Kampen diagram of the form (‡). Again, we can replace
the dark-shaded t-faces by the corresponding t-faces of G in order to obtain a
diagram of the form (†). This proofs the claim.

By the previous claim, [[T]](val(A)) and [[T]](val(B)) are reduced. Moreover, SLPs
A

′ and B
′ for these strings can be computed in polynomial time by Lemma 2.1.

In case πt(val(A)) 6= πt(val(B)) we choose these SLPs such that e.g. val(A′) = t1
and val(B′) = t−1

1 . Hence, val(A′) = val(B′) in G′ if and only if val(A) = val(B)
in 〈H, t1, . . . , tn | ati = ϕi(a)(1 ≤ i ≤ n, a ∈ A)〉. This proves the lemma. ⊓⊔

Due to Lemma 3.4 it suffices to concentrate our effort on problems of the form
RCWP(H,A,B, ϕ1, . . . , ϕk), where k ≤ δ. Let

G0 = 〈H, t1, . . . , tk | ati = ϕi(a) (1 ≤ i ≤ k, a ∈ A)〉 (6)

and let us choose i ∈ {1, . . . , k} such that |dom(ϕi)| is maximal. W.l.o.g. assume
that i = 1. Let dom(ϕ1) = A1 ≤ A and ran(ϕ1) = B1 ≤ B. We write t for t1 in
the following and define

Γ = Σ ∪ {t2, . . . , tk}.

12

We can write our HNN-extension G0 from (6) as

G0 = 〈K, t | at = ϕ1(a) (a ∈ A1)〉, (7)

where
K = 〈H, t2, . . . , tk | ati = ϕi(a) (2 ≤ i ≤ k, a ∈ A)〉. (8)

The latter group K is generated by Γ . The goal of the next three Sections 3.3–3.5
is to prove:

Lemma 3.5. RCWP(H,A,B, ϕ1, . . . , ϕk) is polynomial time Turing-reducible
to the problems RCWP(H,A,B, ϕ2, . . . , ϕk) and RUCWP(A1, A1, A1).

3.3 Abstracting from the base group K

Our aim in this subsection will be to reduce the compressed word problem for G0

to the compressed word problem for another group, where we have abstracted
from most of the concrete structure of the base group K in (8).

Let us consider an input (A, B) for RCWP(H,A,B, ϕ1, . . . , ϕk) with k ≤
δ. W.l.o.g. assume that k = δ. Thus, A and B are SLPs over the alphabet
Σ̃∪{t1, t

−1
1 , . . . , tδ, t

−1
δ } = Γ̃ ∪{t, t−1} with val(A), val(B) ∈ Red(H,ϕ1, . . . , ϕδ).

Hence, we also have val(A), val(B) ∈ Red(K,ϕ1).
W.l.o.g. we may assume that πt(val(A)) = πt(val(B)). This property can

be checked in polynomial time using Plandowski’s algorithm [20], and if it is
not satisfied then we have val(A) 6= val(B) in G0. Hence, there are m ≥ 0,

α1, . . . , αm ∈ {1,−1}, and strings u0, v0 . . . , um, vm ∈ Γ̃ ∗ such that

val(A) = u0t
α1u1 · · · t

αmum and (9)

val(B) = v0t
α1v1 · · · t

αmvm. (10)

One might think that the number of different words ui (resp. vi) may grow
exponentially in the size of A (resp. B). But we will see that this is actually not
the case.

Let us replace every occurrence of tα (α ∈ {1,−1}) in A and B by aa−1tαaa−1,
where a ∈ Γ is arbitrary. This is to ensure that any two occurrences of symbols
from {t, t−1} are separated by a non-empty word over Γ̃ , i.e., we can assume

that u0, v0, . . . , um, vm ∈ Γ̃+ in (9) and (10).
Our first goal is to transform A (and similarly B) into an equivalent SLP that

generates in a first phase a string of the form X0t
α1X1 · · · t

αmXm, where Xi is
a further variable that generates in a second phase the string ui ∈ Γ̃+. Assume
that A = (U, {t, t−1} ∪ Γ̃ , S, P) is in Chomsky normal form.

In a first step, we remove every variable X ∈ U from A such that X → t or
X → t−1 is a production of A by replacing X in all right-hand sides of A by t or
t−1, respectively. Now, all productions of A are of the form X → Y Z, X → tαZ,
X → Y tα, or X → x ∈ Γ̃ , where Y,Z ∈ U .

Next we split the set U of variables of A into two parts:

U0
K = {X ∈ U | val(X) ∈ Γ̃+} and U0

t = U \ U0
K .

13

Let P 0
K (resp. P 0

t) be the set of all productions from P with a left-hand side in
U0

K (resp. U0
t). The subscript K refers to the fact that every nonterminal from

U0
K defines an element from the new base group K ≤ G0, whereas the subscript

t refers to the fact that every nonterminal from U0
t generates a string where

K-generators as well as t or t−1 occurs.
Now we manipulate all productions from P 0

t in a bottom-up process, which
adds further variables and productions to U0

K and P 0
K , respectively. The set U0

t

will not change in the process. After stage i, we have production sets P i
t and

P i
K , and the set of left-hand sides of P i

t (resp. P i
K) is U0

t (resp. U i
K). The system

A
i
t := (U0

t , {t, t−1} ∪ U i
K , S, P i

t) is a composition system that generates a string
from (U i

K)+tα1(U i
K)+ · · · tαm(U i

K)+.
In stage i+1 we do the following: Consider a production (X → u) ∈ P i

t such
that every variable in u is already processed, but X is not yet processed. If u is of
the form tαZ or Y tα, then there is nothing to do. Now assume that u = Y Z such
that Y and Z are already processed. Consider the last symbol ω ∈ {t, t−1}∪U i

K

of val(Ai
t, Y) and the first symbol α ∈ {t, t−1}∪U i

K of val(Ai
t, Z) (these symbols

can be computed in polynomial time after stage i). If either ω ∈ {t, t−1} or
α ∈ {t, t−1}, then again nothing is to do. Otherwise, ω, α ∈ U i

K . We now set
U i+1

K = U i
K ∪ {X ′}, where X ′ is a fresh variable, and P i+1

K = P i
K ∪ {X ′ → ωα}.

Finally, we obtain P i+1
t from P i

t by replacing the production X → Y Z by
X → Y [: ℓ − 1]X ′Z[2 :]. Here ℓ = |val(Ai

t, Y)|.
After the last stage, we transform the final composition system A

k
t (where k

is the number of stages) into an equivalent SLP, let us denote this SLP by At.
Moreover, write UK and PK for Uk

K and P k
K . The construction implies that

val(At) = X0t
α1X1 · · · t

αmXm (11)

with X0, . . . ,Xm ∈ UK and val(UK , Γ̃ ,Xi, PK) = ui. Note that the number of
different Xi is polynomially bounded, simply because the set UK was computed
in polynomial time. Hence, also the number of different ui in (9) is polynomially
bounded.

For the SLP B the same procedure yields the following data:

– An SLP Bt such that

val(Bt) = Y0t
α1Y1 · · · t

αmYm.

– A set of productions QK with left-hand sides VK , where {Y1, . . . , Ym} ⊆ VK

and val(VK , Γ̃ , Yi, QK) = vi.

W.l.o.g. assume that UK ∩VK = ∅. Let WK = UK ∪VK and RK = PK ∪QK . In
the following, for Z ∈ WK we write val(Z) for val(WK , Γ̃ , Z,RK) ∈ Γ̃+.

Let us next consider the free product F (WK)∗A1 ∗B1. Recall that A1 (resp.
B1) is the domain (resp. range) of the partial isomorphism ϕ1. Clearly, in this
free product, A1 and B1 have trivial intersection (even if A1 ∩B1 > 1 in H). We
now define a set of defining relations E by

E = {Z1c1 = c2Z2 | Z1, Z2 ∈ WK , c1, c2 ∈ A1 ∪ B1,

val(Z1) c1 = c2 val(Z2) in the group K}. (12)

14

We can compute the set E in polynomial time using oracle access to CWP(K) or
alternatively, by Lemma 3.3, using oracle access to RCWP(H,A,B, ϕ2, . . . , ϕk).
This is the only time, where we need oracle access to RCWP(H,A,B, ϕ2, . . . , ϕk)
in Lemma 3.5.

Consider the group

G1 = 〈(F (WK) ∗ A1 ∗ B1)/N(E), t | at = ϕ1(a) (a ∈ A1)〉

= 〈F (WK) ∗ A1 ∗ B1, t | E , t−1at = ϕ1(a) (a ∈ A1)〉.

Recall that N(E) ≤ F (WK)∗A1∗B1 is the smallest normal subgroup of F (WK)∗
A1 ∗ B1 that contains all elements xy−1 with (x = y) ∈ E . We can define a
morphism

ψ : F (WK) ∗ A1 ∗ B1 → K

by ψ(Z) = val(Z) for Z ∈ WK , ψ(a) = a for a ∈ A1, and ψ(b) = b for b ∈ B1. Of
course, the restrictions of ψ to A1 as well as B1 are injective. Moreover, each of
the defining relations in E is preserved under ψ: for (Z1c1 = c2Z2) ∈ E we have
ψ(Z1c1) = val(Z1) c1 = c2 val(Z2) = ψ(c2Z2) in K. Thus, ψ defines a morphism

ψ̂ : (F (WK) ∗ A1 ∗ B1)/N(E) → K.

Moreover, A1∩N(E) = 1: if a ∈ N(E)∩A1 then ψ(a) ∈ ψ(N(E)) = 1; thus a = 1,
since ψ is injective on A1. Similarly, B1 ∩ N(E) = 1. This means that A1 and
B1 can be naturally embedded in (F (WK) ∗ A1 ∗ B1)/N(E) and ϕ1 : A1 → B1

can be considered as an isomorphism between the images of this embedding in
(F (WK)∗A1∗B1)/N(E). Therefore, the group G1 is an HNN-extension with base

group (F (WK)∗A1 ∗B1)/N(E) ≤ G1. Moreover, ψ̂ : (F (WK)∗A1 ∗B1)/N(E) →
K can be lifted to a morphism

ψ̂ : G1 → G0 = 〈K, t | at = ϕ1(a) (a ∈ A1)〉.

The idea for the construction of G1 is to abstract as far as possible from the
concrete structure of the original base group K. We only keep those K-relations
that are necessary to prove (or disprove) that val(A) = val(B) in the group G0.

Note that since val(A), val(B) ∈ Red(K,ϕ1), we have val(At), val(Bt) ∈
Red((F (WK) ∗ A1 ∗ B1)/N(E), ϕ1): Consider for instance a factor t−1Xit of
val(At) from (11). If Xi = a in (F (WK) ∗ A1 ∗ B1)/N(E) for some a ∈ A1, then

after applying ψ̂ we have val(Xi) = ui = a in K. Hence, val(A) from (9) would
not be reduced.

Lemma 3.6. The following are equivalent:

(a) val(A) = val(B) in G0 from (7).
(b) val(At) = val(Bt) in G1

Proof. For (b) ⇒ (a) assume that val(At) = val(Bt) in G1. We obtain in G0:

val(A) = ψ̂(val(At)) = ψ̂(val(Bt)) = val(B).
For (a) ⇒ (b) assume that val(A) = val(B) in the group G0. Since val(A)

and val(B) are reduced and πt(val(A)) = πt(val(B)), we obtain a Van Kampen
diagram of the form:

15

u0

tα1
u1 tα2 u2

tαm

um

v0

tα1 v1 tα2 v2
tαm

vm

c1 c2 c3 c4 c5 · · · c2m−1 c2m

In this diagram, we can replace every light-shaded face, representing the K-
relation uic2i+1 = c2ivi, by a face representing the valid E-relation Xic2i+1 =
c2iYi, see (12). We obtain the following Van Kampen diagram, which shows that
val(At) = val(Bt) in G1:

(⋆)

X0

tα1
X1 tα2 X2

tαm

Xm

Y0
tα1

Y1 tα2 Y2
tαm

Ym

c1 c2 c3 c4 c5 · · · c2m−1 c2m

⊓⊔

By Lemma 3.6, it remains to check, whether val(At) = val(Bt) in the HNN-
extension G1, where val(At) and val(Bt) are both reduced.

3.4 Eliminating B1 and t

By using the identities b = t−1ϕ−1
1 (b)t (b ∈ B1 \ {1}) as Tietze transforma-

tions we can eliminate in the group G1 the generators from B1 \ {1}. After this
transformation, we may have apart from relations of the form

Z1a1 = a2Z2 with a1, a2 ∈ A1 (13)

also defining relations of the forms

Z1t
−1a1t = a2Z2

Z1a1 = t−1a2tZ2

Z1t
−1a1t = t−1a2tZ2,

where a1, a2 ∈ A1. We can replace these relations by relations of the following
types

Z1t
−1a1 = a2Z2t

−1 (14)

tZ1a1 = a2tZ2 (15)

tZ1t
−1a1 = a2tZ2t

−1 (16)

and end up with the isomorphic group

G2 = 〈F (WK) ∗ A, t | (13) − (16)〉.

16

Let us now introduce for every Z ∈ WK the new generators

[Zt−1], [tZ], [tZt−1]

together with the defining relations

[Zt−1] = Zt−1, [tZ] = tZ, [tZt−1] = tZt−1. (17)

This allows to replace the defining relations (14)–(16) by

[Z1t
−1]a1 = a2[Z2t

−1] (18)

[tZ1]a1 = a2[tZ2] (19)

[tZ1t
−1]a1 = a2[tZ2t

−1] (20)

leading to the group

G3 = 〈F ({Z, [Zt−1], [tZ], [tZt−1]|Z ∈ WK}) ∗ A1, t | (13), (17) − (20)〉. (21)

Finally, we can eliminate t and t−1 by replacing (17) by

[tZ] = [Zt−1]−1Z2, [tZt−1] = [tZ]Z−1[Zt−1]. (22)

Doing this replacement we end up with the group

G4 = 〈F ({Z, [Zt−1], [tZ], [tZt−1] | Z ∈ WK}) ∗ A1 | (13), (18)-(20), (22)〉. (23)

Since each transformation from G1 to G4 is a Tietze transformation, G1 is iso-
morphic to G4. We now want to rewrite the SLPs At and Bt into new SLPs over
the generators of G4. For this, we can define a deterministic rational transducer
T that reads a word X0t

α1X1t
α2X2 · · · t

αmXm from the input tape and

– replaces every occurrence of a factor tXi with αi+1 6= −1 by the symbol
[tXi],

– replaces every occurrence of a factor Xit
−1 with αi 6= 1 by the symbol

[Xit
−1], and finally

– replaces every occurrence of a factor tXit
−1 by the symbol [tXit

−1].

The state set of the transducer T is {ε, t}∪{Z, tZ | Z ∈ WK} and the transitions
are the following (for all Z,Z ′ ∈ Wk), where $ is an end marker:

ε Z

tZ ′ t

Z | ε

t−1 | [Zt−1]
t | Z

$ | Z

t−1 | [tZ ′t−1]

$ | [tZ ′]

Z ′ | ε

t | [tZ ′]

17

By Lemma 2.1 we can construct in polynomial time SLPs that generate the
strings [[T]](val(At)$) and [[T]](val(Bt)$).

Let G5 be the group that is obtained by removing the relations (22) from the
presentation of G4 in (23), i.e.,

G5 = 〈F ({Z, [Zt−1], [tZ], [tZt−1] | Z ∈ WK}) ∗ A1 | (13), (18)–(20)〉. (24)

Lemma 3.7. The following are equivalent:

(a) val(A) = val(B) in G0

(b) val(At) = val(Bt) in G1

(c) [[T]](val(At)$) = [[T]](val(Bt)$) in G4

(d) [[T]](val(At)$) = [[T]](val(Bt)$) in G5

Proof. The equivalence of (a) and (b) was stated in Lemma 3.6. The equivalence
of (b) and (c) is clear since G1 and G4 are isomorphic and the transducer T
rewrites a string over the generators G1 into a string over the generators of G4.
Moreover, (d) implies (c) because we omit one type of relations, namely (22),
when going from G5 to G4. It remains to prove that (a) implies (d). If val(A) =
val(B) in G0, then, as argued in the proof of Lemma 3.6, we obtain a Van
Kampen diagram of the form (⋆) in the group G1. The boundary of every light-
shaded face is labeled with a relation from E . We obtain a Van Kampen diagram
for [[T]](val(At)$) = [[T]](val(Bt)$) in G5, basically by removing all vertical edges
that connect (i) target nodes of t-labeled edges or (ii) source nodes of t−1-labeled
edges (there are B1-labeled edges in (⋆)), see the following example. ⊓⊔

Example 3.8. Let us give an example of the transformation from a diagram of
the form (⋆) into a Van Kampen diagram for the group G5. Assume that the
diagram in G1 is:

X0

t
X1 t−1 X2 t−1 X3

t
X4

Y0
t

Y1 t−1 Y2 t−1 Y3
t

Y4

a1 b1 b2 a2 b3 a3 a4 b4

Then we obtain the following Van Kampen diagram in the group G5:

X0

[tX1t
−1] [X2t

−1] X3
[tX4]

Y0

[tY1t
−1] [Y2t

−1] Y3

[tY4]

a1 a2 a3 a4

Only the relations (13) and (18)–(20) are used in this diagram.

18

For the further considerations, we denote the SLPs for the strings [[T]](val(At)$)
and [[T]](val(Bt)$) again with A and B, respectively. It remains to check whether
val(A) = val(B) in G5. Let

Z = {Z, [Zt−1], [tZ], [tZt−1] | Z ∈ WK}

and let us redefine the set of defining relations E as the set of all defining relations
of the form (13), (18)–(20). Thus,

G5 = 〈F (Z) ∗ A1 | E〉,

where every defining relation in E is of the form Z1a1 = a2Z2 for Z1, Z2 ∈ Z
and a1, a2 ∈ A1.

3.5 Transforming 〈F (Z) ∗ A1 | E〉 into an HNN-extension

By further Tietze transformations we will show that G5 is actually an HNN-
extension with base group A1 and associated subgroups A1 and A1. This will
prove Lemma 3.5. To this end, let us take a relation Z1a1 = a2Z2 with Z1 6=
Z2. We can eliminate Z2 by replacing it with a−1

2 Z1a1. Subwords of the form
aa′ with a, a′ ∈ A1 that arise after this Tietze transformation can of course
be multiplied out in the finite group A1. We carry out the same replacement
Z2 7→ a−1

2 Z1a1 also in the SLPs A and B which increases the size only by
an additive constant and repeat these steps. After polynomially many Tietze
transformations we arrive at a presentation, where all defining relations are of
the form Z = a1Za2, i.e. a2 = Z−1a−1

1 Z. Let us write the resulting presentation
as

G6 = 〈A1, Z1, . . . , Zm | Z−1
i aZi = ψi(a) (1 ≤ i ≤ m,a ∈ dom(ψi))〉.

Note that every mapping ψi is a partial automorphism on A1 since it results
from the conjugation by some element in our initial group. Hence, we obtained
an HNN-extension over A1.

We can now finish the proof of Lemma 3.5, which states that the problem
RCWP(H,A,B, ϕ1, . . . , ϕk) is polynomial time Turing-reducible to the problems
RCWP(H,A,B, ϕ2, . . . , ϕk) and RUCWP(A1, A1, A1). Using oracle access to
RCWP(H,A,B, ϕ2, . . . , ϕk) (which was necessary for computing the set of defin-
ing relations E from (12)), we have computed in polynomial time from a given
RCWP(H,A,B, ϕ1, . . . , ϕk)-instance an UCWP(A1, A1, A1)-instance, which is a
positive instance if and only if the original RCWP(H,A,B, ϕ1, . . . , ϕk)-instance
is positive. A final application of Lemma 3.2 allows to reduce UCWP(A1, A1, A1)
to RUCWP(A1, A1, A1). This finishes the proof of Lemma 3.5.

3.6 Finishing the proof of Theorem 3.1

We now apply Lemma 3.4 to the problem RUCWP(A1, A1, A1) (one of the two
target problems in Lemma 3.5). An input for this problem can be reduced in

19

polynomial time to an instance of a problem RCWP(A1, A1, A1, ψ1, . . . , ψk),
where ψ1, . . . , ψk : A1 → A1 and k ≤ δ (we even have k ≤ 2|A1|! · 2|A1| ≤
2|A|! · 2|A| = δ).

We now separate the (constantly many) stable letters t1, . . . , tk that occur in
the RCWP(A1, A1, A1, ψ1, . . . , ψk)-instance into two sets: {t1, . . . , tk} = S1 ∪ S2

where S1 = {ti | dom(ψi) = A1} and S2 = {t1, . . . , tk}\S1. W.l.o.g. assume that
S2 = {t1, . . . , tℓ}. Then we can write our HNN-extension G6 as

G6 = 〈H ′, t1, . . . , tℓ | ati = ψi(a) (1 ≤ i ≤ ℓ, a ∈ dom(ψi)〉, (25)

where

H ′ = 〈A1, tℓ+1, . . . , tk | ati = ψi(a) (ℓ + 1 ≤ i ≤ k, a ∈ A1)〉.

Note that |dom(ψi)| < |A1| for every 1 ≤ i ≤ ℓ and that A1 = dom(ψi) for every
ℓ+1 ≤ i ≤ k. By Lemma 2.5, CWP(H ′) can be solved in polynomial time; H ′ is in
fact the semidirect product A1 ⋊ϕ F (tℓ+1, . . . , tk), where ϕ : F (tℓ+1, . . . , tk) →
Aut(A1) is defined by ϕ(ti) = ψi. Recall also that at the end of Section 3.2,
A1 was chosen to be of maximal cardinality among the domains of all partial
isomorphisms ϕ1, . . . , ϕk. The following proposition summarizes what we have
shown so far:

Proposition 3.9. Let ϕ1, . . . , ϕk : A → B be partial isomorphisms, where k ≤
δ, A1 = dom(ϕ1), and w.l.o.g |A1| ≥ |dom(ϕi)| for 1 ≤ i ≤ k. From an instance
(A, B) of the problem RCWP(H,A,B, ϕ1, . . . , ϕk) we can compute in polynomial
time with oracle access to the problem RCWP(H,A,B, ϕ2, . . . , ϕk)

(1) a semidirect product A1 ⋊ϕ F , where F is a free group of rank at most δ,
(2) partial automorphisms ψ1, . . . , ψℓ : A1 → A1 with ℓ ≤ δ and |dom(ψi)| <

|A1| for all 1 ≤ i ≤ ℓ, and
(3) an RCWP(A1⋊ϕF,A1, A1, ψ1, . . . , ψℓ)-instance, which is positive if and only

if the initial RCWP(H,A,B, ϕ1, . . . , ϕk)-instance (A, B) is positive.

Note that in (1) there are only constantly many semidirect products of the
form A1 ⋊ϕ F and that CWP(A1 ⋊ϕ F) can be solved in polynomial time by
Lemma 2.5.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 3.1. By Lemma 3.2 and Lemma 3.4 it suffices to solve a problem
RCWP(H,A,B, ϕ1, . . . , ϕk) (with k ≤ δ) in polynomial time. For this we apply
Proposition 3.9 repeatedly. We obtain a computation tree, where the root is
labeled with an RCWP(H,A,B, ϕ1, . . . , ϕk)-instance and every other node is
labeled with an instance of a problem RCWP(C ⋊ϕ F,C,C, θ1, . . . , θp), where
F is a free group of rank at most δ, C is a subgroup of our finite group A, and
p ≤ δ. The number of these problems is bounded by some fixed constant. Since
along each edge in the tree, either the number of stable letters reduces by one, or
the maximal size of an associated subgroup becomes strictly smaller, the height
of the tree is bounded by a constant (it is at most |A| · δ = 2 · |A| · |A|! · 2|A|).

20

Moreover, along each tree edge, the size of a problem instance can grow only
polynomially. Hence, each problem instance that appears in the computation
tree has polynomial size w.r.t. the input size. Hence, the total running time is
bounded polynomially. ⊓⊔

4 Amalgamated Products

In this section we prove a transfer theorem for the compressed word problem for
an amalgamated free product, where the amalgamated subgroups are finite. We
will deduce this result from our transfer theorem for HNN-extensions.

Let H1 and H2 be two finitely generated groups. Let A1 ≤ H1 and A2 ≤ H2

be finite and ϕ : A1 7→ A2 an isomorphism. The amalgamated free product of H1

and H2, amalgamating the subgroups A1 and A2 by the isomorphism ϕ, is the
group

G = 〈H1 ∗ H2 | a = ϕ(a) (a ∈ A1)〉.

Theorem 4.1. Let G = 〈H1 ∗ H2 | a = ϕ(a) (a ∈ A1)〉 be an amalgamated free
product with A1 finite. Then CWP(G) ≤P

T {CWP(H1),CWP(H2)}.

Proof. It is well known [15, Theorem 2.6, p. 187] that G can be embedded into
the HNN-extension

G′ := 〈H1 ∗ H2, t | at = ϕ(a) (a ∈ A1)〉

by the homomorphism Φ with

Φ(x) =

{
t−1xt if x ∈ H1

x if x ∈ H2.

Given an SLP A we can easily compute an SLP B with val(B) = Φ(val(A)). We
obtain

val(A) = 1 in G ⇐⇒ Φ(val(A)) = 1 in Φ(G)

⇐⇒ val(B) = 1 in G′.

By Theorem 3.1 and Theorem 2.4, CWP(G′) can be solved in polynomial time
with oracle access to CWP(H1) and CWP(H2). ⊓⊔

5 Open Problems

We have shown that the compressed word problem for an HNN-extension with
finite associated subgroups is polynomial time Turing-reducible to the com-
pressed word problem for the base group. Here, the base group and the as-
sociated subgroups are fixed, i.e. are not part of the input. One might also
consider the uniform compressed word problem for HNN-extensions of the form
〈H, t | at = ϕ(a) (a ∈ A)〉, where H is a finite group that is part of the input. It
is not clear, whether this problem can be solved in polynomial time.

One might also consider the compressed word problem for HNN-extensions
of semigroups [8].

21

References

1. A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words.
In Proceeding of the 5th IFIP International Conference on Theoretical Computer
Science (IFIP TCS 2008), Milano (Italy), pages 87–100. Springer, 2008.

2. W. W. Boone. The word problem. Annals of Mathematics (2), 70:207–265, 1959.

3. M. Dehn. Über die Toplogie des dreidimensionalen Raumes. Mathematische An-
nalen, 69:137–168, 1910. In German.

4. W. Dicks and M. J. Dunwoody. Groups Acting on Graphs. Cambridge University
Press, 1989.

5. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for
Lempel-Ziv encoding (extended abstract). In R. G. Karlsson and A. Lingas, editors,
Proceedings of the 5th Scandinavian Workshop on Algorithm Theory (SWAT 1996),
Reykjav́ık (Iceland), number 1097 in Lecture Notes in Computer Science, pages
392–403. Springer, 1996.

6. C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen.
PhD thesis, University of Stuttgart, Institut für Informatik, 2000.

7. G. Higman, B. H. Neumann, and H. Neumann. Embedding theorems for groups.
Journal of the London Mathematical Society. Second Series, 24:247–254, 1949.

8. J. M. Howie. Embedding theorems for semigroups. The Quarterly Journal of
Mathematics. Oxford. Second Series, 14:254–258, 1963.

9. I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Generic-case complex-
ity, decision problems in group theory, and random walks. Journal of Algebra,
264(2):665–694, 2003.

10. Y. Lifshits. Processing compressed texts: A tractability border. In B. Ma and
K. Zhang, editors, Proceedings of the 18th Annual Symposium on Combinatorial
Pattern Matching (CPM 2007), London (Canada), number 4580 in Lecture Notes
in Computer Science. Springer, 2007.

11. M. Lohrey. Word problems and membership problems on compressed words. SIAM
Journal on Computing, 35(5):1210 – 1240, 2006.

12. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In
Proceedings of Computer Science in Russia (CSR 2007), Ekatarinburg (Russia),
number 4649 in Lecture Notes in Computer Science, pages 249–258. Springer, 2007.

13. M. Lohrey and G. Sénizergues. Theories of HNN-extensions and amalgamated
products. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Proceed-
ings of the 33st International Colloquium on Automata, Languages and Program-
ming (ICALP 2006), Venice (Italy), number 4052 in Lecture Notes in Computer
Science, pages 681–692. Springer, 2006.

14. M. Lohrey and G. Sénizergues. Rational subsets in HNN-extensions and amalga-
mated products. International Journal of Algebra and Computation, 18(1):111–163,
2008.

15. R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.

16. J. Macdonald. Compressed words and automorphisms in fully residually free
groups. International Journal of Algebra and Computation, 20(3):343–355, 2010.

17. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching
algorithm for strings in terms of straight-line programs. In A. Apostolico and
J. Hein, editors, Proceedings of the 8th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 97), Aarhus (Denmark), Lecture Notes in Computer Science,
pages 1–11. Springer, 1997.

22

18. A. Myasnikov, V. Shpilrain, and A. Ushakov. Group-based Cryptography.
Birkhäuser, 2008.

19. P. S. Novikov. On the algorithmic unsolvability of the word problem in group
theory. American Mathematical Society, Translations, II. Series, 9:1–122, 1958.

20. W. Plandowski. Testing equivalence of morphisms on context-free languages.
In J. van Leeuwen, editor, Second Annual European Symposium on Algorithms
(ESA’94), Utrecht (The Netherlands), number 855 in Lecture Notes in Computer
Science, pages 460–470. Springer, 1994.

21. W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the so-
lution of word equations. In Proceedings of the 25th International Colloquium on
Automata, Languages and Programming (ICALP 1998), number 1443 in Lecture
Notes in Computer Science, pages 731–742. Springer, 1998.

22. W. Plandowski and W. Rytter. Complexity of language recognition problems for
compressed words. In J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozen-
berg, editors, Jewels are Forever, Contributions on Theoretical Computer Science
in Honor of Arto Salomaa, pages 262–272. Springer, 1999.

23. S. Schleimer. Polynomial-time word problems. Commentarii Mathematici Hel-
vetici, 83(4):741–765, 2008.

24. J. R. Stallings. Group Theory and Three-Dimensional Manifolds. Number 4 in
Yale Mathematical Monographs. Yale University Press, 1971.

23

