
Tree Structure Compression with RePair

Markus Lohrey Sebastian Maneth Roy Mennicke
Univ. Leipzig, Germany NICTA & UNSW, Australia TU Ilmenau, Germany

Abstract

Larsson and Moffat’s RePair algorithm is generalized from strings to trees. The new
algorithm (TreeRePair) produces straight-line linear context-free tree (SLT) gram-
mars which are smaller than those produced by previous grammar-based compres-
sors such as BPLEX. Experiments show that a Huffman-based coding of the resulting
grammars gives compression ratios comparable to the best known XML file com-
pressors. Moreover, SLT grammars can be used as efficient memory representation
of trees. Our investigations show that tree traversals over TreeRePair grammars are
14 times slower than over pointer structures and 5 times slower than over succinct
trees, while memory consumption is only 1/43 and 1/6, respectively.

1 Introduction
Grammar-based compression [7] offers an interesting alternative to other compression
methods such as entropy-based compression (e.g., arithmetic coding). It exploits repeti-
tions of substrings rather than frequencies, and works particularly well for highly repet-
itive strings. The idea is to find a small straight-line context-free (SL) grammar that
generates the given string. Intuitively, each nonterminal of the grammar represents a re-
peated substring. The output of dictionary-based compressors (e.g., LZ77, LZ78) can
be seen as a small grammar for the input string. Besides their use for file compression,
grammars have the advantage that for particular tasks, they can be processed without de-
compression. For instance, it is possible to run a finite-state automaton over a grammar in
time proportional to the size of the grammar (which can be exponentially smaller than the
original string); other efficient tasks for SL grammars include equivalence checking and
pattern matching, see, e.g., [18] for references. Recently a self-index for SL grammars
was proposed [9] which achieves linear extracting and linear substring search time.

XML documents are highly repetitive w.r.t. their markup. The latter describes an or-
dered (unranked) tree. For instance, the unique minimal directed acyclic graph (DAG),
which can be constructed in linear time, only exhibits about 10% of the edges of common
XML document trees [5]. While DAGs can be seen as regular tree grammars, there is
also a generalization of SL grammars to trees: straight-line linear context-free tree (SLT)
grammars [6, 15]. SLT grammars have similarly nice properties as SL grammars; for in-
stance, executing tree automata (or even certain XPath queries) can be done in linear time
in the size of the grammar [13, 15] and equivalence can be decided in cubic time [6]. On
the other hand, finding a minimal SLT grammar is NP-complete; this already holds for SL
grammars [7]. The first approximation algorithm for SLT grammars is the sliding-window
based BPLEX [6]. For common XML document trees, BPLEX produces grammars with
50% less edges than the minimal DAG. In this paper we present a new approximation al-
gorithm for SLT grammars. Our algorithm is a generalization of RePair [11] from strings
to trees. For strings, several approximation algorithms exist, e.g., LZ78 or Sequitur [17].

RePair is one of the stronger such algorithms, and most of all, its idea is intriguingly sim-
ple: (1) find the most frequent pair of adjacent symbols in the input string, (2) replace it
by a new nonterminal and add the corresponding production, and (3) repeat this process
until no repeated pair exists. RePair is an off-line compression algorithm, see e.g. [1] for
further discussions of off-line text compression based on textual substitution.

The input to our algorithm is a node-labeled, ordered tree. Instead of adjacent pairs
of symbols as in RePair we replace adjacent nodes in the tree, that is, a node together
with one of its child nodes (this is called a digram). For the tree f(a(e, e), f(a(e, e), e)),
the most frequent digrams are f(a, xy), a(e, xy), and a(xy, e). Replacing f(a, xy) gives the
tree A(e, e, A(e, e, e)) and the new production A(y1, y2, y3)→ f(a(y1, y2), y3). After two
more iterations we get the grammar G1 = {S → C(C(e)), C(y1)→ B(e, y1), B(y1, y2)→
A(e, y1, y2), A(y1, y2, y3) → f(a(y1, y2), y3)} (S is the start nonterminal). The symbols
y1, y2, . . . are formal parameters and indicate how to embed the right-hand side of the
production when applying it. Each parameter yi occurs at most once in a right-hand
side (such tree grammars are called linear). Of course, also other grammars could have
been derived. For instance, if we first replace the diagram a(e, xy), we get the grammar
G2 = {S → C(C(e)), C(y1) → f(B, y1), B → A(e), A(y1) → a(e, y1)}. The size of G2

(which is the sum over the number of edges in all right-hand sides of the grammar) is only
7, as opposed to 11 for G1 (and 9 for the original tree). Moreover, the maximal number of
parameters yj , called the rank of the grammar, is one for G2, while it is three for G1. In
our implementation of TreeRePair, the user can specify the maximal allowed rank of the
output grammar as a parameter m. It turns out that the compression ratio of TreeRePair is
affected by m: for certain families of trees, setting m = 1 is optimal, while for other fam-
ilies leaving m = ∞ is optimal, see Sec. 2.3. Interestingly, for our XML corpus, m = 4
gives the smallest grammars. Another phenomenon due to parameters is that new produc-
tions may increase the size of the grammar. For instance, removing the productions for
A and B from G2 above results in the grammar {S → C(C(e)), C(y1)→ f(a(e, e), y1)},
whose size is only 6. The removal of inefficient productions is called pruning, and is
carried out in our implementation at the end.

Our implementation uses similar data structures as the one for strings [11] which guar-
antee that the whole algorithm runs in linear time. To save memory, we do not store the
original tree but instead work over its minimal DAG. Our experiments show that the imple-
mentation outperforms previous tree grammar compressors: on average we are 32 times
faster and use 1/10 of the memory of BPLEX [6], and are 6 times faster with 1/8 of the
memory of CluX [4]. The latter compressor is another tree adaptation of RePair, which
was recently and independently developed. CluX differs from TreeRePair in several im-
portant details, see Sec. 2.4. The size of our grammars (in total number of edges in all
right-hand sides of the grammar) is 20% less than BPLEX and 40% less than CluX.

We implemented a Huffman-based coding of our grammars, which allows to use
TreeRePair as an XML file compressor. Our experiments show that the resulting files
are smaller than most previous XML compressors such as XMill [12], SCMPPM [2],
SCMHuff [2], BPLEX [16], or running gzip or bzip2 over the XML markup file. A
notable exception is XMLPPM [8] which compresses on average 12% better than our
TreeRePair, all averaged over our corpus of 24 XML documents. Note that we work on
XML tree structures only, i.e., we remove all text and attribute values from the XML docu-

ment prior to running experiments. Most of the compressors mentioned above are mainly
concerned with compressing those text values which we ignore in this work. Moreover,
SCMPPM and SCMHuff use different PPM models and Huffman trees, resp., for the text
within different XML tags. But this only causes space overhead, when text values are re-
moved from the documents. This partly explains the poor compression ratio of SCMPPM
and SCMHuff in our experiments.

We implemented a memory mapping of our grammars which allows to traverse the
original tree, (essentially) without decompression of the grammar. This mapping offers a
good trade-off between space and time: the (iterative) tree traversal speed over TreeRePair
grammars is 14 times slower than over pointer structures and 5 times slower than over
succinct trees [19], while memory consumption is 1/43 and 1/6, respectively. Compared
to DAGs and BPLEX, traversals over TreeRePair grammars are approximately 4-times as
fast and about 30% slower, while using 1/7 and 1/2 of the memory, respectively.

Let us remark that TreeRePair is not restricted to XML tree structure compression. It
is a general purpose compressor for ordered trees, which works well if the input tree has
a regular structure. Due to space restrictions, most concepts in this paper are only intro-
duced informally, see the full version [14] for more details. The source code of our im-
plementation is available (under GPL 3.0 license) at http://code.google.com/p/treerepair.

2 TreeRePair
We work with ordered, ranked trees (or equivalently terms), where every node is labeled
by a symbol a of fixed rank rank(a) (equal to the number of children of the node). In fact,
we use binary trees to represent XML structure trees: the left child represents the first child
and the right child the next sibling; this is called the first-child/next-sibling encoding. The
TreeRePair algorithm consists of two steps: digram replacement and pruning. A digram
is a triple α = (a, i, b), where a and b are node labels and i is a number. It denotes an
edge between an a labeled node and its b-labeled i-th child. The node v of the tree t is an
occurrence of the digram α if v is labeled a and v’s i-th child is labeled b. For instance,
the tree t1 = f(a, f(c, f(a, f(a, b)))) contains the digrams (f, 1, a), (f, 2, f), (f, 1, c),
and (f, 2, b). The occurrences of (f, 2, f) are ε, 2, and 2.2, where tree nodes are denoted
by their Dewey numbers. Two occurrences of α are overlapping, if they share a common
tree node; this is only possible if a = b. A set of occurrences of α in t is overlapping,
if it contains two overlapping occurrences. For instance, in t1, {ε, 2} is overlapping for
(f, 2, f). A non-overlapping set of occurrences of α in t can be computed in time O(|t|):
during a post-order traversal through t we keep a set S of non-overlapping occurrence of
α and add a new occurrence to S if it does not overlap any previous occurrence in S. We
denote this set of occurrences by occt(α). It can be shown that no other non-overlapping
set of occurrences of α is strictly smaller than occt(α).

2.1 Replacement of digrams
In an SLT grammar, the digram α = (a, i, b) is represented by a nonterminal A with
production A(y1, . . . , yk) → a(y1, . . . , yi−1, b(yi, . . . , yj−1), yj, . . . , yk), where j = i +

rank(b). We denote the right-hand side of this production by tα. The number k equals
rank(a) + rank(b) − 1 and is called the rank of α. It denotes the number of “dangling
edges” of α. In A’s production, the j-th dangling edge, from left-to-right, is denoted by
the parameter yj . Since the rank of a grammar can influence algorithms that execute over
the grammar, TreeRePair takes as input a user-defined number, the maximal rank m, and
produces a grammar of rank ≤ m. We often omit the parameters in the left-hand side of
productions and simply write A→ tα.

We describe a run of TreeRePair on input tree t by a sequence of SLT tree grammars
G0,G1, . . . ,Gh. The first grammar G0 has exactly one production: S0 → t. For a grammar
Gj with start production S → s we choose a digram α = (a, i, b) of rank ≤ m for which
|occs(α)| is maximal (and at least two) among all digrams of rank≤ m. If multiple such α
exist, then the algorithm has to choose one of them for replacement. Our implementation
maintains a list of digrams with maximal |occs(α)|-value, and takes the first one in this
list for replacement. In the examples that follow we choose (for simplicity) the first one in
pre-order of s. If |occs(α)| ≤ 1 for all digrams α, then the replacement phase terminates
and h = j. Otherwise, we construct Gj+1 from Gj by changing the start production to
S → s′ and adding the production A → tα, where A is a new nonterminal not present in
Gj . The tree s′ is obtained from s by replacing each occurrence v ∈ occs(α) of the digram
α by the nonterminal A. This means that in s′, v is labeled A and has the following
subtrees from left to right: the first (i− 1) subtrees of v from s, followed by the subtrees
of the i-th child of v from s, followed by the (i+ 1)-th to last subtree of v from s.

The SLT grammar Gh is only an intermediate result. It may contain productions that
actually increase the grammar size. Such productions are removed through pruning.

2.2 Pruning
The size |t| of a tree t is its number of edges, and the size |G| of an SLT grammar G is
the sum of sizes of its productions’ right-hand sides. We denote by refG(A) the number
of occurrences of the nonterminal A in the right-hand sides of the productions of G. We
define for a production A → s its save-value, denoted by savG(A), as |refG(A)| · (|s| −
rank(A)) − |s|, which can be negative. This is the number of edges that is “saved” by
the production A→ s. It is simple to eliminate A from the SLT grammar G: remove A’s
production A→ s and replace every occurrence of A in the remaining productions by s.

In a first pruning phase, we eliminate every nonterminal A with |refG(A)| = 1. Such
nonterminals can arise, when a new digram contains all occurrences of a previously in-
troduced nonterminal and that digram is replaced by a new nonterminal. This first prun-
ing phase possibly reduces the size of G (because |refG(A)| = 1 implies savG(A) =
−rank(A)) and also decrements the number of nonterminals. See the example in the in-
troduction, where B2 and B1 are removed which reduces the size of the grammar by one.

A nonterminal A is called inefficient, if savG(A) ≤ 0. The goal of the second prun-
ing phase is to eliminate inefficient nonterminals. This turns out to be a rather complex
optimization problem, because the save-values of nonterminals may increase when elim-
inating other nonterminals. For instance, consider the SLT grammar G1 with productions
{S → f(A(a, a), B(A(a, a))), A → f(B(y1), y2), B → f(y1, a)}. Hence, savG1(A) =
−1 and savG1(B) = 0. Case (1): We eliminate A and obtain the grammar G2 = {S →

f(f(B(a), a), B(f(B(a), a))), B → f(y1, a)} of size 11. Now, we have savG2(B) = 1.
Case (2): We eliminate B and obtain the grammar {S → f(A(a, a), f(A(a, a), a)), A→
f(f(y1, a), y2)}. We further eliminate A because its save-value is now zero. The resulting
grammar consists of the single production S → f(f(f(a, a), a), f(f(f(a, a), a), a)), and
its size is 12. This case distinction shows that the order in which inefficient productions
are eliminated influences the size of the final grammar.

An SLT grammar defines a hierarchical order on its nonterminals: if a nonterminal Y
appears in X’s production, then Y follows X in this order. Our heuristic for eliminating
inefficient nonterminals is to follow their reverse hierarchical order. Note that in the
example above, this heuristic leads to the larger grammar. In fact our example might
suggest that a better compression ratio is obtained by eliminating inefficient nonterminals
in order of increasing save-values. However, our experiments showed that this strategy
leads to unappealing final grammars on our test corpus: the final grammars exhibit nearly
the same number of edges but many more nonterminals (about 50% more) when compared
to our “reverse hierarchical order heuristic”. Note that it is not possible to already detect
digrams leading to inefficient productions during the replacement step, since the value
savG(A) may grow during the pruning step.

2.3 Influence of the maximal rank m

As mentioned before, the user of TreeRePair may specify the maximal number m of
parameters in the output grammar as a parameter. In this section, we show that the size of
the generated grammar subtly depends on the choice of m. We present two examples for
tree families. In the first example, setting m = ∞ leads to to the best compression ratio,
whereas in the second example setting m = 1 leads to the best compression ratio.
Example 1: Let ti be a complete binary tree of height 2i with each inner nodes la-
beled f , and each leaf labeled by a distinct symbol. As an example, consider t3. It
has 28-many leaves. We first replace the digram (f, 1, f) and introduce the produc-
tion A1 → f(f(y1, y2), y3). Now the most frequent digram is (A1, 2, f), which ap-
pears as many times as (f, 1, f) did before. We replace it by A2 and add the produc-
tion A2 → A1(y1, y2, f(y3, y4)). This production is changed in the pruning step to
A2 → f(f(y1, y2), f(y3, y4)), because A1 is only referenced once. The right-hand side
of the start production is now a full 4-ary tree of height 4. Finally, we obtain a 16-ary
tree with two levels of A6-labeled inner nodes. In this tree, no digram appears more than
once. The size of this final grammar is 298. It can be shown that running TreeRePair on
ti (i > 3) with m = 4 always produces larger grammars than for m = ∞. For instance,
setting m = 4 for t3 results in a grammar of size 346.
Example 2: Let sn be a comb of f ’s of the form f(a, f(b, f(c, f(d, f(e, f(a, f(b, . . .) of
height 2n. Thus, the sequence of leaf labels is a repetition of abcde of length 2n + 1. For
m =∞, TreeRePair first replaces the digram (f, 2, f) by A1. Next, it replaces (A1, 2, A1)
by A2 of rank 5, etc. For instance, for s4, TreeRePair produces after three iterations a
grammar with start production S → A3(a, b, c, d, e, a, b, c, A3(d, e, a, b, c, d, e, a, b)). In
fact, for any sn, the right-hand side of the start production of the final grammar contains
all initial leaf labels. Thus, it is of size at least 2n. In contrast, if we limit the maximal

rank to m = 1, then in the first two iterations TreeRePair replaces the digrams (f, 1, a)
and (f, 1, b), resulting in the tree A1(A2(f(c, f(d, f(e, A1(A2(f(c, . . .). Now (A1, 1, A2)
is replaced, resulting inA3(f(c, f(d, f(e, A3(f(c, . . .). In the next two iterations, (f, 1, c),
and (f, 1, d) are replaced. This process continues (when starting with the tree sn) forO(n)
iterations and results in a tree of size O(1). Hence, the size of the final grammar is O(n).

2.4 Implementation details
In order to save memory, we transform, on the fly during parsing, the given input tree into
the minimal DAG for the binary first-child/next-sibling encoding of the input tree. In [5]
it has been demonstrated that for common XML tree structures, the minimal (unranked)
DAG has ≈ 10% of the original tree’s edges, (in [6] the average over their 13 documents
is 11.2%, as compared to 17% for binary DAGs). Moreover, transforming the initial tree
into the minimal DAG for the binary first-child/next-sibling encoding saves CPU time as
well, because repetitive computations are avoided.

The data structures we use in TreeRePair for the replacement of digrams are similar
to those used in [11] (mainly hash tables, doubly linked lists, and priority queues) and
ensure a linear running time of the replacement step. The crucial point is that if we replace
a digram then only the occurrence numbers of digrams overlapping the replaced digrams
change, see [14] for details. CluX, which is also based on the RePair string compressor,
differs from TreeRePair in several important implementation details. To the knowledge
of the authors, it does not use pruning. Moreover, CluX splits the input tree into several
packages, which arise from the DAG structure of the input tree. For each of these packages
a separate grammar is generated. This excludes the possibility of exploiting dependencies
between different packages for compression. We conjecture that these differences are
responsible for the poorer compression ratio of CluX, see Sec. 3.

2.5 Succinct grammar coding
In order to get a compact representation of XML structure trees, we further compress the
generated SLT grammar by a binary succinct coding. The technique we use is loosely
based on the DEFLATE algorithm described in [10]. In fact, we use a combination of a
fixed-length coding, multiple Huffman codings, and a run-length coding to encode differ-
ent aspects of the grammar. We encode all symbols of the generated grammar by integers.
Since the parameters always occur in the order y1, y2, . . . in right-hand sides, it suffices to
use one fixed place holder for parameters. Element names of the input XML tree structure
become terminal symbols of our tree grammar. Since under the first-child/next-sibling
encoding of unranked trees, a symbol can have (i) no children, (ii) only a left child, (iii)
only a right child, or (iv) both a left and a right child, each element type corresponds to
four terminal symbols; one for each of the four possibilities (i)-(iv).

We obtained the best compression ratio by using four different Huffman encodings
for different parts of the grammar. Three of them encode (a) the right-hand side of the
start production, (b) the remaining productions, the children characteristics of the terminal
symbols (i.e., which of the above 4 possibilities (i)-(iv) holds), and the number of terminal
and nonterminals, and finally (c) the names (element types) of the terminals. Moreover,

TreeRePair BPLEX CluX DAG bDAG

Edges (%) 2.8 3.5 4.4 12.7 18.2
Number of nonterminals 6 715 32 159 12 133 4 635 8 560
Size of start production (%) 72 61 — 89 93
Depth 24 78 — 4 24
Time (seconds) 19 934 101 15 9
Memory (MB) 72 550 395 123 59

Table 1: Performance of different tree grammar compressors

the three Huffman trees for these encodings (the base Huffman encodings) are encoded
by a fourth Huffman encoding (the super Huffman encoding). As explained in [10], it is
sufficient to only write out the lengths of the generated Huffman codes to be able to recon-
struct the actual Huffman trees. The code lengths for the three base Huffman encodings
are further encoded using a run-length encoding, see [14] for more details.

An interesting aspect of the succinct encoding is that smaller file sizes are obtained
if we eliminate in the pruning step nonterminals with a save-value ≤ 2 (instead of ≤ 0,
which yields minimal edge numbers). In the implementation, this modification of the
pruning step is triggered by the switch “-optimize filesize”.

3 Experiments
We conduct three types of experiments: we compare our implementation of TreeRePair to
other SLT grammar based compressors, to other XML file compressors, and we compare
traversal speeds over memory representations of the generated grammars.
Testing environment: Our experiments were performed on a machine with an Intel Core2
Duo CPU T9400 processor, four gigabytes of RAM, and the Ubuntu Linux operating
system, kernel 2.6.32. TreeRePair and BPLEX were compiled with version 4.4.3 of gcc
using the “-O3” (compile time optimizations) and “-m32” (i.e., we generated them as
32bit-applications) switches. We were not able to compile the succ-tool of the BPLEX
distribution with compile time optimizations (i.e., using the “-O3” switch). This tool is
used to apply a succinct coding to a grammar generated by the BPLEX algorithm, as
described in [16]. However, this has no great influence on the runtime for BPLEX since
the succ-tool executes quite fast compared to BPLEX. In contrast, CluX is an application
written in Java for which we only had the bytecode at hand. We executed CluX using
the Java SE Runtime EnvironmentTM , version 1.6.0 20. We measure memory usage by
constantly polling the VmRSS-value under Linux.

We tested over 24 different XML documents, most of which are known from previous
articles about XML compression. For all tests, we first remove all text contents from each
document and only keep the start and end element tags (and empty element tags), thus
obtaining “stripped” documents. Details on our XML corpus can be found in [14].
Comparing tree grammar compressors: We compared BPLEX [6] (http://sourceforge.
net/projects/bplex), CluX [4] (supplied to us by the authors), DAG and bDAG [5], each
of which produces SLT grammars. The latter two generate minimal DAGs, either on the
unranked XML tree (DAG), or on the binary first-child/next-sibling encoded XML tree
(bDAG), cf. [6] where it was observed already that DAG gives better compression ratios

TreeRePair BPLEX CluX XMill XMLPPM SCMPPM SCMHuff gzip bzip2

File size (%) 0.44 0.59 0.63 0.49 0.41 0.74 4.39 1.41 0.60
Time (seconds) 19 946 296 128 4 6 16 1 25
Memory (peak/orig) 2.4 60.3 115 1.0 0.4 0.4 0.3 0.1 2.1

Table 2: Performance for XML file compression

than bDAG. Note that DAGs and bDAGs can bee seen as SLT grammars of rank zero
— nodes of the (b)DAG correspond to nonterminals of the grammar (for DAGs, different
copies of a symbol have to be introduced, in case that symbol occurs with different ranks).
We compare the grammars produced by the different compressors in terms of the number
of edges, number of nonterminals, size of the start production, and depth of the grammar.
The latter is the maximal nesting depth of nonterminals in a chain of productions, which,
as we see later, influences the traversal speed. TreeRePair was run with “-optimize edges”
(which prunes all nonterminals with a save value≤ 0) and its default settingm = 4 for the
maximal number of parameters (see the remarks below), CluX was run with configuration
“ConfEdges.xml”, and BPLEX was run with its standard parameters (and the gprint tool
was used to eliminate nonterminals that are referenced only once).

The results of our experiments are shown in Tab. 1 (all values are averages over our
XML corpus). Note that TreeRePair yields the best results w.r.t. compression ratio (in
terms of number of edges), running time, and memory consumption. Recall that the
number of edges of a grammar is the number of edges in all right-hand sides. The depth
and the size of start production are missing for CluX. The reason for this is that, as already
explained in Sec. 2.4, CluX splits the input tree into several packages and generates a
grammar for each package. Hence, it is difficult to come up with a measure for the whole
depth and the size of the start production of the CluX output.

It is interesting to note that on our XML corpus, TreeRePair achieves the best com-
pression ratio with valuem = 4 for the maximal number of parameters. Our two examples
from Sec. 2.3 offer a possible explanation for this fact: for deep binary trees, m = ∞ is
the best choice, whereas for comb-like trees (or long lists), a small m-value is a better
choice. The binary first-child/next-sibling encodings of real XML document trees tend to
be closer to the latter shape. Our XML documents are quite flat (depth ≈ 5, see [14]),
which results in long combs under the first-child/next-sibling encoding. On the other
hand, this is not true for treebank, which has a depth of 36. Indeed it turns out that for
treebankm = 42 yields the best compression ratio (20.445 % in contrast to 20.719 %
for m = 4 — this is also the worst compression ratio on our XML corpus).
Comparing XML file compressors: Besides the above mentioned tree grammar com-
pressors, we consider the following XML file compressors: XMill in version 0.8 with
bzip2 as backend compressor [12], XMLPPM in version 0.98.3 [8], see http://xmlppm.
sourceforge.net/, SCMPPM [2], see http://www.infor.uva.es/∼jadiego/download.php, and
SCHuff [2] (an implementation was kindly provided to us by the authors). As a yard-
stick we also include numbers for the general purpose compressors gzip and bzip2 in the
comparison. TreeRePair was run with “-optimize filesize”, which generates a succinct
grammar encoding, as described in Sec. 2.5. CluX was run with configuration “Conf-
Size.xml” and the “-s 4” switch. For BPLEX we used gprint with “--threshold 14” and
the succ-tool with “--type 68”, which generates a Huffman-based coding that was reported

TreeRePair BPLEX bDAG Succinct Pointer

Traversal speed (ms) 771 597 3 220 164 56
Index size (KB) 463 794 3 070 2 724 19 995

Table 3: Speeds for iterative pre-order traversals

to give the smallest output files [16]. Tab. 2 shows the outcomes of our experiments. As
“Memory” we show the ratio of the program’s peak memory usage over the size of the
original file. Thus, on average, TreeRePair’s memory consumption is 2.4-times the size
of the markup file. As can be seen, only XMLPPM achieves a slightly better compression
ratio than TreeRePair. A disadvantage of XMLPPM is that due to the adaptive nature of
the PPM algorithm, traversing the XML tree structure is not possible on the compressed
document. The latter has to be fully decompressed, see also [2]. The same holds for
SCMPPM, gzip, and bzip2. In contrast, navigating in the XML tree structure only needs
additional space O(depth of the grammar) on SLT grammar compressed trees using the
stack configurations from [6], see also the next paragraph.
Comparing grammar traversal speeds: In order to achieve fast tree traversals, we map
the output grammar of TreeRePair into memory as follows: the initial right-hand side of
the grammar is represented using an implementation of Sadakane and Navarro’s succinct
trees [19] (for moderate-size trees), which was generously supplied to us by Sadakane.
The rest of the grammar is transformed into Chomsky normal form (so that every right-
hand size has precisely two non-parameter symbols) and each such production is repre-
sented by a single 64-bit machine word. We then perform an iterative pre-order traversal
through the tree represented by the grammar, using down1 (go to first child), down2 (go
to second child), and up (go to parent) over nodes represented by the stack configurations
mentioned after Theorem 3 in [6]. These stack configurations are proportional to the depth
of the grammar, which in our examples has an average value of 24, see Tab. 1. We cal-
culated the size of the grammar memory representation (called index size in Tab. 3) and
measured traversal times (excluding the time needed to generate the grammar memory
representation) of our implementation. As a yardstick, we also give these values for the
succinct trees of [19], and for a simple pointer-based representation, where each tree node
has three machine pointers to its parent, first, and second child. Note that for arbitrary
root-node path traversals, machine pointers are much faster (about 100 times) than suc-
cinct trees [3], which in turn are faster than our grammar compressed trees. Tab. 3 shows
the results of our experiments. Our comparison does not include CluX, since its output
(consisting of a separate grammar for each package) cannot be processed by our tool for
measuring the traversal speed.
Acknowledgment: The second author is supported by German Research Foundation
(DFG) via the project ALKODA.

References
[1] A.Apostolico and S.Lonardi. Off-line compression by greedy textual substitution.

Proc. IEEE, 88(11):1733–1744, 2000.

[2] J. Adiego, G. Navarro, and P. de la Fuente. Using structural contexts to compress
semistructured text collections. Inf. Process. Manage., 43(3):769–790, 2007.

[3] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice.
Proc. ALENEX’10, 84–97. SIAM, 2010.

[4] S. Böttcher, R. Hartel, and C. Krislin. CluX: Clustering XML sub-trees. ICEIS’10.

[5] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML.
Proc. VLDB’03, 141–152. Morgan Kaufmann, 2003.

[6] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML
document trees. Inf. Syst., 33:456–474, 2008.

[7] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inform. Theory, 51(7):2554–
2576, 2005.

[8] J. Cheney. Compressing XML with multiplexed hierarchical PPM models.
Proc. DCC’01, 163–172. IEEE Computer Society, 2001.

[9] F. Claude and G. Navarro. Self-indexed grammar-based compression. 2010. To
appear in Fundamenta Informaticae.

[10] P. Deutsch. DEFLATE compressed data format specification version 1.3. 1996.

[11] N. J. Larsson and A. Moffat. Offline dictionary-based compression. Proc. DCC’99,
296–305. IEEE Computer Society, 1999.

[12] H. Liefke and D. Suciu. XMill: An efficient compressor for XML data. Proc. SIG-
MOD Conference 2000,153–164. ACM, 2000.

[13] M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theor. Comput. Sci., 363:196–210, 2006.

[14] M. Lohrey, S. Maneth, and R. Mennicke. Tree structure compression with RePair.
Technical report, http://arxiv.org/abs/1007.5406, arXiv.org, 2010.

[15] M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction in grammar-
compressed trees. Proc. FOSSACS’09, LNCS 5504, 212–226. Springer, 2009.

[16] S. Maneth, N. Mihaylov, and S. Sakr. XML tree structure compression. Proc. DEXA
Workshops 2008, 243–247. IEEE Computer Society, 2008.

[17] C. G. Nevill-Manning, I. H. Witten, and D. Maulsby. Compression by induction of
hierarchical grammars. Proc. DCC’94, 244–253. IEEE Computer Society, 1994.

[18] W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit
input. Proc. ICALP’04, LNCS 3142, 15–27. Springer, 2004.

[19] K. Sadakane and G. Navarro. Fully-functional succinct trees. Proc. SODA’10, 134–
149. SIAM, 2010.

