
January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

International Journal of Algebra and Computation
c© World Scientific Publishing Company

COMPRESSED DECISION PROBLEMS FOR GRAPH PRODUCTS

AND APPLICATIONS TO (OUTER) AUTOMORPHISM GROUPS

NIKO HAUBOLD

Institut für Informatik, Universität Leipzig, Germany

haubold@informatik.uni-leipzig.de

MARKUS LOHREY

Institut für Informatik, Universität Leipzig, Germany

lohrey@informatik.uni-leipzig.de

CHRISTIAN MATHISSEN

Institut für Informatik, Universität Leipzig, Germany

mathissen@informatik.uni-leipzig.de

Received (Day Month Year)
Revised (Day Month Year)

Communicated by [editor]

It is shown that the compressed word problem of a graph product of finitely generated

groups is polynomial time Turing-reducible to the compressed word problems of the
vertex groups. A direct corollary of this result is that the word problem for the automor-
phism group of a right-angled Artin group or a right-angled Coxeter group can be solved
in polynomial time. Moreover, it is shown that a restricted variant of the simultaneous

compressed conjugacy problem is polynomial time Turing-reducible to the same problem
for the vertex groups. A direct corollary of this result is that the word problem for the
outer automorphism group of a right-angled Artin group or a right-angled Coxeter group

can be solved in polynomial time. Finally, it is shown that the compressed variant of
the ordinary conjugacy problem can be solved in polynomial time for right-angled Artin
groups.

Keywords: graph products; decision problems for groups; algorithms for compressed
strings.

1. Introduction

Since it was introduced by Dehn in 1910, the word problem for groups has emerged

to a fundamental computational problem linking group theory, topology, mathe-

matical logic, and computer science, see [35] for references. The word problem for

a finitely generated group G asks, whether a given word over the generators of G

represents the identity of G. Dehn proved that the word problem is decidable for

surface groups. Another mile stone is the work of Magnus, showing that the word

1



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

2 Niko Haubold, Markus Lohrey, Christian Mathissen

problem is decidable for one-relator groups. On the other hand, almost 50 years after

the appearance of Dehn’s work, Novikov [39] and independently Boone [4] proved

the existence of a finitely presented group with undecidable word problem. Despite

this negative result, many natural classes of groups with decidable word problem

are known. We already mentioned one-relator groups. Other examples are finitely

generated linear groups and automatic groups. With the rise of computational com-

plexity theory, also the complexity of the word problem attracted attention. This

topic has gained further relevance by potential applications of combinatorial group

theory for secure cryptographic systems [38]. For finitely generated linear groups

and automatic groups, for instance, very efficient algorithms for the word problem

are known (logarithmic space for finitely generated linear groups [31] and quadratic

time for automatic groups [16]).

In this paper, we are mainly concerned with the word problem for (outer) au-

tomorphism groups of certain groups. In order to solve the word problem in these

groups efficiently, a “compressed” variant of the word problem was introduced in

[33,34,44]. In the compressed word problem for a group G, the input word over the

generators is not given explicitly but succinctly via a so called straight-line pro-

gram (SLP for short). This is a context free grammar A that generates exactly

one word val(A), see Section 2.2. Since the length of this word may grow expo-

nentially with the size (number of productions) of the SLP A, SLPs can be seen

indeed as a succinct string representation. SLPs turned out to be a very flexible

compressed representation of strings, which are well suited for studying algorithms

for compressed data, see e.g. [2,17,29,33,37,41,42]. In [34,44] it was shown that the

word problem for the automorphism group Aut(G) of a group G can be reduced in

polynomial time to the compressed word problem for G. In [44], it was shown that

the compressed word problem for a finitely generated free group F can be solved

in polynomial time. Hence, the word problem for Aut(F) turned out to be solvable

in polynomial time [44], which solved an open problem from [25]. This result was

generalized to graph groups (right-angled Artin groups) [34] and fully residually

free groups [36]. In [22], it was shown that the compressed word problem for an

HNN-extension 〈H, t | t−1at = ϕ(a)(a ∈ A)〉 with A a finite subgroup of the base

group H can be reduced in polynomial time to the compressed word problem for

H, and a corresponding result for amalgamated free products was shown as well.

The first main result of this paper states that a similar transfer result also holds

for the graph product construction. The graph product construction is a well-known

construction in mathematics, see e.g. [20,24], that generalizes both free products and

direct products: An independence relation on the vertex groups of the graph product

specifies, which groups are allowed to commute elementwise. Theorem 26 states

that the compressed word problem for a graph product of groups is polynomial

time Turing-reducible to the compressed word problems for the vertex groups. In

particular, if for each vertex group the compressed word problem can be solved in

polynomial time, then the same holds for a graph product of these groups. As a

corollary, it follows that the word problem for the automorphism group of a graph



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 3

group or a right-angled Coxeter group can be solved in polynomial time.

It is not straightforward to carry over these complexity results from automor-

phism groups to outer automorphism groups. Nevertheless, Schleimer was able to

prove in [44] that the word problem for the outer automorphism group of a finitely

generated free group can be decided in polynomial time. For this, he used a com-

pressed variant of the simultaneous conjugacy problem in free groups. We call this

problem the restricted simultaneous compressed conjugacy problem for the finitely

generated group G. This problem is parametrized by a finite subset B ⊆ G. The

input for the restricted simultaneous compressed conjugacy problem for G w.r.t. B

consists of an SLP Aa (over the generators of G) for each a ∈ B and it is asked

whether there exists a single x ∈ G such that a = x val(Aa)x−1 in G for all a ∈ B.

It is not difficult to show that the word problem for the outer automorphism group

of G can be reduced in polynomial time to the restricted simultaneous compressed

conjugacy problem for G w.r.t. an arbitrary finite generating set of G. Our second

main result states the following: If G is a graph product of groups G1, . . . , Gn and

for all 1 ≤ i ≤ n, Σi is a finite generating set of Gi, then the restricted simultaneous

compressed conjugacy problem for the graph product G w.r.t. the finite generating
⋃n

i=1 Σi is polynomial time Turing-reducible to the restricted simultaneous com-

pressed conjugacy problems for the vertex groups Gi w.r.t. Σi (Theorem 27). As a

corollary, it follows that the word problem for the outer automorphism group of a

graph group or a right-angled Coxeter group can be solved in polynomial time.

In the final part of the paper, we present a polynomial time algorithm for the

compressed version of the classical conjugacy problem in a graph group G: In this

problem, we have given two SLPs A and B and we ask whether there exists x ∈ G

such that val(A) = x val(B)x−1 in G. For our polynomial time algorithm, we have

to develop a pattern matching algorithm for SLP-compressed Mazurkiewicz traces,

which is inspired by a pattern matching algorithm for hierarchical message sequence

charts from [18]. For the non-compressed version of the conjugacy problem in a

graph group, a linear time algorithm was presented in [47] based on [32]. In [10]

this result was generalized to various subgroups of graph groups.

Some of the results in this paper were announced without proof in the extended

abstracts [23,34].

2. Preliminaries

Let Γ be a finite alphabet. With ε we denote the empty word. For a word s =

a1 · · · am (a1, . . . , am ∈ Γ) let

• |s| = m, alph(s) = {a1, . . . , am},

• s[i] = ai for 1 ≤ i ≤ m,

• s[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ m and s[i : j] = ε for i > j,

• s[: i] = s[1 : i] = a1 · · · ai for 0 ≤ i ≤ m,

• s[i :] = s[i : m] = ai · · · am for 1 ≤ i ≤ m + 1, and

• |s|a = |{k | s[k] = a}|.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

4 Niko Haubold, Markus Lohrey, Christian Mathissen

We use Γ−1 = {a−1 | a ∈ Γ} to denote a disjoint copy of Γ and let Γ±1 = Γ ∪ Γ−1.

Define (a−1)−1 = a; this defines an involution −1 : Γ±1 → Γ±1, which can be

extended to an involution on (Γ±1)∗ by setting (a1 · · · an)−1 = a−1
n · · · a−1

1 . For

∆ ⊆ Γ we define the projection morphism π∆ : Γ∗ → ∆∗ by π∆(a) = a for a ∈ ∆

and π∆(a) = ε for a ∈ Γ \ ∆. For a map f : A → B and A′ ⊆ A we denote with

f↾A′ the map f↾A′ : A′ → B such that f↾A′(x) = f(x) for all x ∈ A′.

2.1. Computational complexity

We assume that the reader is familiar with the basic concepts of complexity theory,

see e.g. [40] for more details. With P we denote the complexity class deterministic

polynomial time. Let A and B be two computational problems. We write A ≤log
m B

if A is (many-one) logspace reducible to B. This means that there exists a Turing

machine with a logarithmic working tape that computes a mapping f such that

for all inputs x we have: x ∈ A if and only if f(x) ∈ B. We write A ≤P
T B, if A

is polynomial time Turing-reducible to B. This means that A can be decided by a

deterministic polynomial time Turing machine that uses B as an oracle.

The relations ≤log
m and ≤P

T are transitive, and A ≤log
m B implies A ≤P

T B.

Moreover A ≤P
T B ∈ P implies A ∈ P.

If A,B1, . . . , Bn are computational problems and ≤ ∈ {≤log
m ,≤P

T }, then we write

A ≤ {B1, . . . , Bn} if A ≤
⋃n

i=1({i} × Bi) (the set
⋃n

i=1({i} × Bi) is the disjoint

union of the Bi with every element from Bi marked by i).

2.2. CCP-expressions and straight-line programs

In this section we introduce straight-line programs, which are used as a compressed

representation of strings with reoccurring subpatterns [43]. For our applications,

it will be useful to consider a generalization of straight-line programs: so called

CCP-systems.

Let V and Γ be disjoint finite alphabets. The set CCP(V,Γ) of CCP-expressions

over V and Γ (CCP stands for concatenation-cut-projection, which are the three

basic string operations involved in CCP-expressions) is inductively defined as fol-

lows:

(a) V ∪ Γ ∪ {ε} ⊆ CCP(V,Γ)

(b) If α, β ∈ CCP(V,Γ), then αβ ∈ CCP(V,Γ) (concatenation).

(c) If α ∈ CCP(V,Γ) and i, j ∈ N, then (α)[i : j] ∈ CCP(V,Γ) (cut).

(d) If α ∈ CCP(V,Γ) and ∆ ⊆ Γ, then π∆(α) ∈ CCP(V,Γ) (projection).

The set CC(V,Γ) of CC-expressions over V and Γ is defined in the same way, but

we omit rule (d) for projection. Note that (V ∪ Γ)∗ ⊆ CC(V,Γ) by (a) and (b). For

α ∈ CCP(V,Γ) we define the size |α| ∈ N inductively as follows:

• |α| = 1 for α ∈ V ∪ Γ ∪ {ε}

• |αβ| = |α| + |β|



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 5

• |(α)[i : j]| = |α| + ⌈log2(i)⌉ + ⌈log2(j)⌉ for i, j ∈ N

• |π∆(α)| = |α| + 1 for ∆ ⊆ Γ

A CCP-system is a tuple A = (V,Γ, rhsA, S) such that:

• V (the set of variables) and Γ (the terminal alphabet) are disjoint finite

alphabets.

• rhsA (for right-hand side) is a mapping from V to CCP(V,Γ) for which

there exists a linear order ≺ on V such that for all X,Y ∈ V : If Y occurs

in rhsA(X), then Y ≺ X.

• S ∈ V (the initial variable).

We define the evaluation mapping valA : CCP(V,Γ) → Γ∗ for a CCP-system A

inductively as follows, where α, β ∈ CCP(V,Γ):

• valA(ε) = ε

• valA(a) = a for a ∈ Γ

• valA(X) = valA(rhsA(X)) for X ∈ V

• valA(αβ) = valA(α)valA(β) (concatenation of words)

• valA((α)[i : j]) = (valA(α))[i : j] for i, j ∈ N

• valA(π∆(α)) = π∆(valA(α)) for ∆ ⊆ Γ

The property for rhsA ensures that the mapping valA is uniquely defined in this way.

Finally, let us set val(A) = valA(S). Occasionally, we will consider CCP-systems

without an initial variable. For such a system A, val(A) is not defined. If A is clear

from the context, then we will omit the index A in the notation valA and rhsA. We

define the size of A as |A| =
∑

X∈V |rhs(X)|.

Example 1. We consider the CCP-system A = ({A,B,C,D,E}, {a, b, c}, rhs, E)

with rhs defined as follows:

rhs(A) = ab rhs(B) = ac

rhs(C) = BA rhs(D) = π{a,c}(C)π{b,c}(C)

rhs(E) = D[2 : 4]

Then we have:

val(A) = ab val(B) = ac val(C) = acab

val(D) = acacb val(E) = val(A) = cac

The size of the CCP-system is the sum of the sizes of all right-hand sides:

|rhs(A)| = 2 |rhs(B)| = 2 |rhs(C)| = 2

|rhs(D)| = 4 |rhs(E)| = 1 + 1 + 2 = 4

and therefore |A| = 14.

If the mapping rhs in A is assumed to be a mapping from V to CC(V,Γ), then

A is called a CC-system. Finally, a CCP-system where rhs is a mapping from V



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

6 Niko Haubold, Markus Lohrey, Christian Mathissen

to (V ∪ Γ)∗ is called a straight-line program (SLP) [43]. Note that an SLP can be

viewed as a context-free grammar, which generates exactly one string.

A CCP-system A = (V,Γ, rhs, S) is in normal form if for all X ∈ V , rhs(X) is

of one of the following forms, where Y,Z ∈ V , i, j ∈ N and ∆ ⊆ Γ: ε, a ∈ Γ, Y Z,

Y [i : j], or π∆(Y ). It is straightforward to transform an arbitrary CCP-system A

into a CCP-system B in normal form such that val(A) = val(B). Note that for SLPs,

our normal form corresponds to Chomsky’s normal form.

For a CCP-system A in normal form over a terminal alphabet Γ±1 we define

the CCP-system A−1 inductively as follows: Let X be a nonterminal from A. If

rhsA(X) = a ∈ Γ±1 then rhsA−1(X) = a−1. If rhsA(X) = Y Z in A then rhsA−1(X) =

ZY . If rhsA(X) = Y [i : j] in A then rhsA−1(X) = [k − j + 1 : k − i + 1], where k =

|valA(X)|. If rhsA(X) = π∆(Y ) in A for some ∆ ⊆ Γ±1, then rhsA−1(X) = π∆−1(Y )

in A−1. It is easy to see that val(A−1) = val(A)−1.

CC-systems are called composition systems in [17]. Composition systems were

also heavily used in [34,44] in order to solve compressed word problems efficiently.

The following result was shown by Hagenah [21]:

Theorem 2 ([21]). There is a polynomial time algorithm, which transforms a

given CC-system A into an SLP B such that val(A) = val(B) (the input size is |A|

as defined above).

We need a generalization of Hagenah’s result.

Lemma 3. Let p be a constant. Then there exists a polynomial time algorithm for

the following problem:

INPUT: Finite alphabets Γ1, . . . ,Γp and a CCP-system A over Γ =
⋃p

i=1 Γi such

that ∆ ∈ {Γ1, . . . ,Γp} for every subexpression of the form π∆(α) that appears in a

right-hand side of A.

OUTPUT: An SLP B over Γ such that val(A) = val(B).

Proof. Let A = (VA,Γ, rhsA, S) be the given CCP-system. Since for a CC-system

an equivalent SLP can be constructed in polynomial time by Theorem 2, it suffices

to construct a CC-system B = (VB,Γ, rhsB, SB) equivalent to A in polynomial time.

Let

C =
{

⋂

i∈K

Γi | K ⊆ {1, . . . , p}
}

∪ {Γ}.

Note that C has constant size. Let VB = {X∆ | X ∈ VA,∆ ∈ C} be the set of

variables of B. The right-hand side mapping rhsB will be defined in such a way that

val(X∆) = π∆(val(X)). We set SB = SΓ (recall that S is the initial variable of A).

If rhsA(X) = a ∈ Γ, then we set rhsB(X∆) = π∆(a) ∈ {ε, a}. If rhsA(X) = Y Z,

then we set rhsB(X∆) = Y∆Z∆. If rhsA(X) = πΘ(Y ) with Θ ∈ {Γ1, . . . ,Γp}, then

we set rhsB(X∆) = Y∆∩Θ. Note that ∆ ∩ Θ ∈ C.

Finally, consider the case rhsA(X) = Y [i : j]. We set rhsB(X∆) = Y∆[k : ℓ],

where k = |π∆(val(Y )[: i − 1])| + 1 and ℓ = |π∆(val(Y )[: j])|. These lengths can be



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 7

computed in polynomial time as follows: Implicitly, we have already computed a

CC-system, which generates the string val(Y ). Hence, by adding a single definition,

we obtain a CC-system for the string val(Y )[: i−1]. Using Hagenah’s algorithm [21]

we can transform this CC-system in polynomial time into an equivalent SLP. From

this SLP, the length |π∆(val(Y )[: i−1])| can be easily computed bottom-up (the SLP

for the string val(Y )[: i− 1] is then not used anymore). The length |π∆(val(Y )[: j])|

can be computed similarly. Since the size of C is constant, the above construction

works in polynomial time.

In the proof of Lemma 3, it is crucial that p is a fixed constant, i.e., not part of

the input. Otherwise the construction would lead to an exponential blow-up. It is

not clear whether Lemma 3 remains true, when the terminal alphabet Γ is part of

the input.

The proofs for the following well known are straightforward:

Lemma 4. The following tasks can be solved in polynomial time:

(1) Given an SLP A, compute |val(A)| and alph(val(A)).

(2) Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, compute val(A)[i].a

(3) Given an SLP A and two numbers 1 ≤ i ≤ j ≤ |val(A)|, compute an SLP B

with val(B) = val(A)[i, j].

In [41], Plandowski presented a polynomial time algorithm for testing whether

val(A) = val(B) for two given SLPs A and B. A cubic algorithm was presented by

Lifshits [29]. In fact, Lifshits gave an algorithm for compressed pattern matching:

Given SLPs A and B, is val(A) a factor of val(B)? The running time of his algorithm

is O(|A| · |B|2).

By Theorem 2 all algorithmic tasks from Lemma 4 can be solved in polynomial

time for CC-systems (instead of SLPs) as well, and under the hypothesis of Lemma 3

they can be even solved for CCP-systems in polynomial time.

The next lemma will be crucial for our applications of SLPs.

Lemma 5. For a given sequence ϕ1, . . . , ϕn of homomorphisms ϕi : Γ∗ → Γ∗

(1 ≤ i ≤ n) and a symbol a ∈ Γ we can compute in logarithmic space an SLP A

such that val(A) = ϕ1 · · ·ϕn(a). Moreover, |A| = O(
∑

b∈Γ

∑n

i=1 |ϕi(b)|).

Proof. Let us take variables Ai,b, where 0 ≤ i ≤ n and b ∈ Γ, and define the

right-hand sides as follows:

rhs(A0,b) = b

rhs(Ai,b) = Ai−1,a1
· · ·Ai−1,am

, where ϕi(b) = a1 · · · am

By induction on i one can easily show that val(Ai,b) = ϕ1 · · ·ϕi(b).

aBy [30], this problem is P-complete.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

8 Niko Haubold, Markus Lohrey, Christian Mathissen

For our algorithms, it is useful to consider CCP-systems, which are divided into

two layers. A 2-level CCP-system is a tuple A = (Up, Lo,Γ, rhs, S) such that the

following holds:

• Up, Lo, and Γ are pairwise disjoint finite alphabets, S ∈ Up, and rhs :

Up ∪ Lo → CCP(Up ∪ Lo,Γ).

• The tuple (Up, Lo, rhs↾Up, S) is a CCP-system with terminal alphabet Lo.

• The tuple (Lo,Γ, rhs↾Lo) is an SLP (without initial variable) over the ter-

minal alphabet Γ.

The set Up (resp. Lo) is called the set of upper level variables (lower level variables)

of A. Moreover, we set V = Up∪ Lo and call it the set of variables of A. The CCP-

system (Up, Lo, rhs↾Up, S) is called the upper part of A, briefly up(A), and the SLP

(without initial variable) (Lo,Γ, rhs↾Lo) is the lower part of A, briefly, lo(A). The

upper level evaluation mapping uvalA : CCP(Up, Lo) → Lo∗ of A is defined as uvalA =

valup(A). The evaluation mapping valA is defined by valA(X) = vallo(A)(valup(A)(X))

for X ∈ Up and valA(X) = vallo(A)(X) for X ∈ Lo. Finally, we set val(A) = valA(S).

We define the size of A as |A| =
∑

X∈V |rhs(X)|.

Example 6. Let A = ({F,G,H}, {A,B,C,D,E}, {a, b, c}, rhs,H) be a two-level

CCP-system with rhs defined as follows:

rhs(A) = a rhs(B) = b rhs(C) = c

rhs(D) = AB rhs(E) = AC

rhs(F ) = EABCDEA

rhs(G) = F [2 : 6]

rhs(H) = π{A,C,D}(G)

Then up(A) = ({F,G,H}, {A,B,C,D,E}, rhs↾Up,H) with Up = {F,G,H} and

lo(A) = ({A,B,C,D,E}, {a, b, c}, rhs↾Lo) with Lo = {A,B,C,D,E}. The uvalA-

values for the upper level variables are:

uvalA(F ) = EABCDEA

uvalA(G) = ABCDE

uvalA(H) = ACD

The valA-values for all variables of A are:

valA(A) = a valA(B) = b valA(C) = c

valA(D) = ab valA(E) = ac

valA(F ) = valA(EABCDEA) = acabcabaca

valA(G) = valA(ABCDE) = abcabac

val(A) = valA(H) = valA(ACD) = acab



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 9

2.3. Decision problems for groups

For background in combinatorial group theory see [35]. Let G be a finitely generated

group and let Σ be a finite generating set for G. Recall that the word problem for

G with respect to Σ is the following decision problem:

INPUT: A word w ∈ (Σ±1)∗.

QUESTION: Does w = 1 hold in G?

The word problem for G is certainly the most important algorithmic problem for

the group G. It is a simple observation that if Σ1 and Σ2 are finite generating sets

for G, then the word problem for G with respect to Σ1 is logspace reducible to

the word problem for G with respect to Σ2. Hence, modulo logspace reducibility,

the computational complexity of the word problem does not depend on the chosen

generating set and is a property of the group G. Hence, we can speak of the word

problem WP(G) for the group G. By the seminal result of Novikov [39] and Boone

[4], there exist finitely presented groups with an undecidable word problem.

2.3.1. (Outer) automorphism groups.

In this paper, we are mainly interested in the complexity of the word problem for

certain (outer) automorphism groups. Recall that the automorphism group Aut(G)

of a group G is the set of all bijective homomorphisms from G to itself with compo-

sition as operation and the identity mapping as the identity element. An automor-

phism ϕ is called inner if there is a group element x ∈ G such that ϕ(y) = xyx−1

for all y ∈ G. The set of all inner automorphisms for a group G forms the inner

automorphism group of G denoted by Inn(G). This is easily seen to be a normal

subgroup of Aut(G) and the quotient group Out(G) = Aut(G)/Inn(G) is called the

outer automorphism group of G. In general the (outer) automorphism group of a

finitely generated group is not finitely generated.

Let Ψ be a finite subset of Aut(G) and consider the finitely generated subgroup

〈Ψ〉 ≤ Aut(G). Let H ≤ Out(G) be the image of 〈Ψ〉 under the canonical morphism

from Aut(G) to Out(G). Since an automorphism of G belongs to the same coset

(with respect to Inn(G)) as the identity if and only if it is inner, we can rephrase

the word problem for H ≤ Out(G) as follows:

INPUT: A word w ∈ (Ψ±1)∗.

QUESTION: Does w represent an element of Inn(G) in Aut(G)?

2.3.2. Compressed word problems and compressed conjugacy problems.

Our main tool for studying the complexity of the word problem for automorphism

groups is a variant of the word problem, where the input word is given succinctly

by an SLP. The compressed word problem for G with respect to Σ is the following

decision problem:

INPUT: An SLP A over the terminal alphabet Σ±1.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

10 Niko Haubold, Markus Lohrey, Christian Mathissen

QUESTION: Does val(A) = 1 hold in G?

Here, the input size is |A|. As for the ordinary word problem, it is easy to see

that for the compressed word problem the complexity does not depend on the

chosen generating set (modulo logspace reducibility), which allows to speak of the

compressed word problem for the group G. The compressed word problem for G is

also denoted by CWP(G).

It is clear that for a finite group G, CWP(G) can be solved in polynomial time.

In [33], it was shown that the compressed word problem for a finitely generated free

group can be solved in polynomial time. This result was generalized to graph groups

(see Section 2.5 for the definition) in [34]. Another class of groups with polynomial

time compressed word problem are finitely generated nilpotent groups:

Theorem 7. Let G be a finitely generated nilpotent group. Then CWP(G) can be

solved in polynomial time.

Proof. Let G be a finitely generated nilpotent group. Then G has a finitely gen-

erated torsion-free nilpotent subgroup H such that the index [G : H] is finite [26,

Theorem 17.2.2]. By Theorem 8(2) below, it suffices to solve CWP(H) in polynomial

time. There exists d ≥ 1 such that the finitely generated torsion-free nilpotent group

H can be embedded into the group UTd(Z) of upper triangular (d×d)-matrices over

Z [26, Theorem 17.2.5]. Let ϕ : H → UTd(Z) be this embedding. As remarked in

[19], if w is a word of length n over the generators of H, then the absolute value of

every entry in the integer matrix ϕ(w) is bounded by O(nd−1). If w is given by an

SLP in Chomsky normal form of size m, we can evaluate the SLP bottom-up in the

group UTd(Z) as follows: For every variable X, we compute the matrix ϕ(val(X)).

If rhs(X) = Y Z and the matrices ϕ(val(Y )), ϕ(val(Z)) are already computed, then

ϕ(val(X)) is set to the product of these two matrices. Since |val(X)| ≤ |w| ≤ 2m,

every entry in ϕ(val(X)) can be represented with O((d − 1)m) bits. Hence, the

evaluation can be accomplished in polynomial time.

The following theorem collects some preservation results for the complexity of

the compressed word problem (statement (1) and (3) are trivial):

Theorem 8. The following hold for all finitely generated groups G and H:

(1) If H ≤ G, then CWP(H) ≤log
m CWP(G).

(2) If G ≤ H and the index [H : G] is finite, then CWP(H) ≤P
T CWP(G) [34].

(3) CWP(G × H) ≤log
m {CWP(G),CWP(H)}

(4) If A is a finite subgroup of both G and H, then CWP(G ∗A H) ≤P
T

{CWP(G),CWP(H)} [22] (here, G ∗A H is the amalgamated free product of

G and H along A).

(5) If H is an HNN-extension of G with finite associated subgroups, then

CWP(H) ≤P
T CWP(G) [22].



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 11

In this paper, we will prove a similar preservation theorem for the compressed

word problem for graph products of groups, see Section 2.5. Graph products gen-

eralize free and direct products.

We are mainly interested in the compressed word problem for a group because

of the following application for the word problem for automorphism groups, which

was first shown by Schleimer in [44].

Proposition 9 (cf [44]). Let G be a finitely generated group and let H be a finitely

generated subgroup of Aut(G). Then WP(H) ≤log
m CWP(G).

The proof of Proposition 9 uses Lemma 5.

In order to solve the word problem for a finitely generated subgroup of Out(G),

we have to deal with compressed conjugacy problems in G. Recall that two elements

g and h of a group G are conjugated if and only if there exists x ∈ G such that

g = xhx−1. The classical conjugacy problem for G asks, whether two given elements

of G are conjugated. We will consider a compressed variant of this problem in G,

which we call the compressed conjugacy problem for G, CCP(G) b for short:

INPUT: SLPs A and B over the terminal alphabet Σ±1.

QUESTION: Are val(A) and val(B) conjugated in G?

In order to solve the word problem for finitely generated subgroups of Out(G) we

need an extension of CCP(G) to several pairs of input SLPs. Let us call this problem

the simultaneous compressed conjugacy problem for G:

INPUT: SLPs A1, B1, . . . , An, Bn over the terminal alphabet Σ±1.

QUESTION: Does there exist x ∈ (Σ±1)
∗

such that val(Ai) = x val(Bi)x
−1 in G for

all i ∈ {1, . . . , n}?

The simultaneous (non-compressed) conjugacy problem also appears in connection

with group-based cryptography [38]. Unfortunately, we do not know, whether the

simultaneous compressed conjugacy problem for graph groups (and hence for graph

products of finitely generated groups) can be solved in polynomial time. But, in

order to deal with the word problem for finitely generated subgroups of Out(G), a

restriction of this problem suffices, where the SLPs B1, . . . , Bn from the simultaneous

compressed conjugacy problem produce generators of the group G. Let B ⊆ G

be a fixed finite non-empty set. The restricted simultaneous compressed conjugacy

problem for G and B, briefly RSCCP(G, B), is the following computational problem:

INPUT: SLPs Aa (a ∈ B) over the terminal alphabet Σ±1.

QUESTION: Does there exist x ∈ (Σ±1)
∗

with val(Aa) = xax−1 in G for all a ∈ B?

An x such that val(Aa) = xax−1 in G for all a ∈ B is called a solution of the

RSCCP(G, B) instance. Note that the restricted simultaneous compressed conjugacy

bNote that we use the abbreviation CCP for the compressed conjugacy problem as well as for
CCP-expressions. We hope that the actual meaning will always be clear from the context.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

12 Niko Haubold, Markus Lohrey, Christian Mathissen

problem depends on the chosen set B. In our application for Out(G), B will be an

arbitrary finite generating set for G. The authors cannot disprove that that there

exist two different generating sets B1 and B2 for G such that RSCCP(G, B1) is

decidable while RSCCP(G, B2) is undecidable.

Proposition 10. Let G be a finitely generated group and let H be a finitely gen-

erated subgroup of Out(G). Then for every finite generating set Σ of G we have

WP(H) ≤log
m RSCCP(G,Σ).

Proof. Let Σ be a finite generating set for G and let Ψ be a finite subset of Aut(G)

such that the corresponding cosets (with respect to Inn(G)) generate H as a monoid.

Let ψ = ψ1 · · ·ψn with ψ1, . . . , ψn ∈ Ψ be the input for the word problem for H.

We have to check, whether the automorphism ψ is inner. Using Lemma 5 we can

compute in polynomial time SLPs Aa (a ∈ Σ) over Σ±1 with val(Aa) = ψ(a) in G

for all a ∈ Σ. The automorphism ψ is inner if and only if there exists x ∈ G such

that val(Aa) = xax−1 in G for all a ∈ Σ. This is an instance of RSCCP(G,Σ).

2.4. Traces

We are interested in graph products of groups. Our definition of graph products

will be based on traces (partially commutative words). In the following we intro-

duce some notions from trace theory, see [12,14] for more details. An independence

alphabet is an undirected graph (Σ, I) (without loops). Thus, I is a symmetric

and irreflexive relation on Σ. The set Σ may be infinite, but most of the time, it

will be finite in this paper. The trace monoid M(Σ, I) is defined as the quotient

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I} with concatenation as operation and the

empty word as the neutral element. This monoid is cancellative and its elements

are called traces. We denote by [w]I the trace represented by the word w ∈ Σ∗.

Let alph([w]I) = alph(w) and |[w]I | = |w|. The dependence alphabet associated with

(Σ, I) is (Σ,D), where D = (Σ × Σ) \ I. Note that the relation D is reflexive. For

a ∈ Σ let I(a) = {b ∈ Σ | (a, b) ∈ I} be the letters that commute with a and

D(a) = {b ∈ Σ | (a, b) ∈ D} be the letters that are dependent from a. For traces

u, v ∈ M(Σ, I) we denote with uIv the fact that alph(u) × alph(v) ⊆ I.

An independence clique is a subset ∆ ⊆ Σ such that (a, b) ∈ I for all a, b ∈ ∆ with

a 6= b. For a finite independence clique ∆, we write [∆]I for the trace [a1a2 · · · an]I ,

where a1, a2, . . . , an is an arbitrary enumeration of ∆.

The following lemma is one of the most fundamental facts for trace monoids,

see e.g. [14]:

Lemma 11 (Levi’s Lemma). Let u1, u2, v1, v2 ∈ M(Σ, I) such that u1u2 = v1v2.

Then there exist x, y1, y2, z ∈ M(Σ, I) such that y1Iy2 and u1 = xy1, u2 = y2z,

v1 = xy2, and v2 = y1z.

We use Levi’s Lemma to prove the following statement:



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 13

Lemma 12. Let a ∈ Σ. The decomposition of a trace w ∈ M(Σ, I) as w = u1u2

with u2Ia and |u2| maximal is unique in M(Σ, I).

Proof. Let u1u2 = w = v1v2 be such that u2Ia, v2Ia and |u2| and |v2| are both

maximal (hence |u2| = |v2|). By Levi’s Lemma there are traces x, y1, y2, z such that

y1Iy2 and u1 = xy1, u2 = y2z, v1 = xy2, and v2 = y1z. From u2Ia and v2Ia

we get y1Ia and y2Ia. Maximality of |u2| = |v2| and xy1u2 = w = xy2v2 implies

y1 = y2 = ε. Hence u1 = v1 and u2 = v2.

A convenient representation for traces are dependence graphs, which are node-

labeled directed acyclic graphs. For a word w ∈ Σ∗ the dependence graph Dw has

vertex set {1, . . . , |w|} where the node i is labeled with w[i]. There is an edge from

vertex i to j if and only if i < j and (w[i], w[j]) ∈ D. It is easy to see that for two

words w,w′ ∈ Σ∗ we have [w]I = [w′]I if and only if Dw and Dw′ are isomorphic

node-labelled graphs. Hence, we can speak of the dependence graph of a trace.

Example 13. We consider the following independence alphabet (Σ, I):

c a

e d b

Then the corresponding dependence alphabet is:

a e

b c d

We consider the words u = aeadbacdd and v = eaabdcaeb. Then the dependence

graphs Du of u and Dv of v look as follows, where we label the vertices i with the

letter u[i] (resp. v[i]):

Du

a

e

d

a

b a

c d d

Dv

a

e

d

a

b a

c

b

e

Note that we only show Hasse diagrams and hence omit for instance the edge from

the first d to the last d in Du.

Let Ew be the edge relation for the dependence graph Dw for a trace w. A subset

V ⊆ {1, . . . , |w|} is called downward-closed, if (i, j) ∈ Ew and j ∈ V implies i ∈ V .

A subset V ⊆ {1, . . . , |w|} is called convex, if (i, j), (j, k) ∈ E∗
w and i, k ∈ V implies

j ∈ V .



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

14 Niko Haubold, Markus Lohrey, Christian Mathissen

2.4.1. The prefix and suffix order on traces.

Let u, v ∈ M(Σ, I). Then u is a prefix (resp. suffix) of v if there exists some w ∈

M(Σ, I) such that uw = v (resp. wu = v) in M(Σ, I), for short u ¹p v (resp.

u ¹s v). Prefixes of a trace u exactly correspond to downward-closed subsets of

the dependence graph of u. The prefix infimum (resp. suffix infimum) u ⊓p v (resp.

u ⊓s v) is the largest trace w w.r.t. ¹p (resp. ¹s) such that w ¹p u and w ¹p v

(resp. w ¹s u and w ¹s v); it always exists [8]. With u \p v (resp. u \s v) we denote

the unique trace w such that u = (u ⊓p v)w (resp. u = w(u ⊓s v)); uniqueness

follows from the fact that M(Σ, I) is cancellative. Note that u \p v = u \p (u ⊓p v)

and u \s v = u \s (u ⊓s v). For u ∈ M(Σ, I), we denote with min(u) ⊆ Σ (resp.

max(u) ⊆ Σ) the set of all symbols a ∈ Σ such that a ¹p u (resp. a ¹s u).

Clearly, min(u) and max(u) are finite independence cliques and [min(u)]I ¹p u and

[max(u)]I ¹s u. Occasionally, we will identify the traces [min(u)]I and [max(u)]I
with the independence cliques min(u) and max(u), respectively.

Example 14. We continue Example 13 above. We have u ⊓p v = [aeadbac]I =: w

and its dependence graph is:

Dw

a

e

d

a

b a

c

Furthermore we have min(w) = {a, d, e} and max(w) = {a, c}.

In contrast to the prefix infimum and the suffix infimum, the prefix supremum

and the suffix supremum of two traces do not always exist. If it exists, the prefix

supremum (resp. suffix supremum) of two traces u, v ∈ M(Σ, I) is the smallest trace

w w.r.t. ¹p (resp. ¹s) such that u ¹p w and v ¹p w (resp. u ¹s w and v ¹s w); it

is denoted by u ⊔p v (resp. u ⊔s v).

We show in the following some simple facts for traces. The Lemmas 15, 17, and

18 also hold for suffixes and suffix suprema. The next result can be found in [8]:

Lemma 15 ([8]). The trace u⊔p v exists if and only if (u \p v) I (v \p u), in which

case we have u ⊔p v = (u ⊓p v) (u \p v) (v \p u) (which is u(v \p u) = v(u \p v)).

Example 16. We continue Example 14 above. Since u \p v = dd and v \p u = eb

we have (u \p v)I(v \p u) and hence the supremum s = u ⊔p v = [aeadbacddeb]I is

defined. The dependence graph for s is:

Ds

a

e

d

a

b a

c

b

e

d d



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 15

We can define the supremum of several traces u1, . . . , ur analogously by induc-

tion: u1⊔p · · ·⊔pur = (u1⊔p · · ·⊔pur−1)⊔pur. We mention a necessary and sufficient

condition for the existence of the supremum of several traces that follows directly

from the definition.

Lemma 17. Let u1, . . . , ur ∈ M(Σ, I). If u = u1⊔p · · ·⊔p ur−1 exists then the prefix

supremum s = u1 ⊔p · · · ⊔p ur exists if and only if (u \p ur) I (ur \p u). In this case

s = u (ur \p u).

We need the following lemma from [32]:

Lemma 18. For u, v ∈ M(Σ, I) we have u ¹p v if and only if the word π{a,b}(u)

is a prefix of the word π{a,b}(v) for all (a, b) ∈ D.

2.4.2. Simple facts for compressed traces.

The following four lemmas state that several operations can be performed in poly-

nomial time on traces, which are represented by SLPs.

Lemma 19. The following problem can be decided in polynomial time:

INPUT: A finite independence alphabet (Σ, I) and SLPs A and B with terminal

alphabet Σ.

QUESTION: Does [val(A)]I ¹p [val(B)]I hold?

Proof. From A and B we can compute in polynomial time for all (a, b) ∈ D SLPs

Aa,b and Ba,b with val(Aa,b) = π{a,b}(val(A)) and val(Ba,b) = π{a,b}(val(B)). By

Lemma 18, we have to check for all (a, b) ∈ D, whether the word π{a,b}(val(A))

is a prefix of the word π{a,b}(val(B)). But this can be easily reduced to an equiv-

alence check: Compute ℓa,b = |val(Aa,b)| (using Lemma 4(1)) and an SLP Ca,b

with val(Ca,b) = val(Ba,b)[: ℓa,b] (using Lemma 4(3)). Finally check whether

val(Ca,b) = val(Aa,b) for all (a, b) ∈ D using e.g. Plandowski’s algorithm [41].

An analogous statement can be shown for ¹s.

Lemma 20. The following problem can be decided in polynomial time:

INPUT: A finite independence alphabet (Σ, I) and SLPs A and B with terminal

alphabet Σ.

QUESTION: Does [val(A)]I = [val(B)]I hold?

Proof. The lemma follows from Lemma 19, since [val(A)]I = [val(B)]I if and only

if [val(A)]I ¹p [val(B)]I and [val(B)]I ¹p [val(A)]I .

Lemma 21. There is a polynomial time algorithm for the following problem:

INPUT: A finite independence alphabet (Σ, I) and an SLP A with terminal alphabet

Σ.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

16 Niko Haubold, Markus Lohrey, Christian Mathissen

OUTPUT: max([val(A)]I) and min([val(A)]I)

Proof. W.l.o.g. we can assume that A is in Chomsky normal form. We show how

to compute max([val(A)]I). First we compute alph(val(A)) in polynomial time using

Lemma 4(1). For a ∈ alph(val(A)) let ka ∈ {1, . . . , |val(A)|} maximal such that

val(A)[ka] = a. This number can be computed in polynomial time by the following

recursion:

For a nonterminal X with rhsA(X) = b with b ∈ Σ we set ka(X) = 1 if b = a

and ka(X) = 0 otherwise. For a nonterminal X with rhsA(X) = Y Z we set:

ka(X) =















0 if a 6∈ alph(valA(X))

ka(Y ) if a 6∈ alph(valA(Z))

|valA(Y )| + ka(Z) else.

We set ka = ka(S) where S is the initial nonterminal of A. Then a ∈ max([val(A)]I)

if and only if a I alph(val(A)[ka + 1 :]). This property can be checked in polynomial

time by first computing (using Lemma 4(3)) an SLP B for val(A)[ka + 1 :] and

then computing alph(val(B)) (using Lemma 4(1)). Repeating this procedure for

all a ∈ alph(val(A)) we get the set max([val(A)]I). The set min([val(A)]I) can be

determined similarly.

Lemma 22. There is a polynomial time algorithm for the following problem:

INPUT: A finite independence alphabet (Σ, I) and an SLP A with terminal alphabet

Σ.

OUTPUT: CC-expressions α, β with [valA(α)]I = [val(A)]I \s max([val(A)]I) and

[valA(β)]I = [val(A)]I \p min([val(A)]I)

Moreover, |α| (resp. |β|) can be bounded by O(|min([val(A)]I)| · log2(|val(A)|)) (resp.

O(|max([val(A)]I)| · log2(|val(A)|))).

Proof. We show how to compute the expression α in polynomial time. By

Lemma 21 we can find the set max([val(A)]I) in polynomial time. Let ka ∈

{1, . . . , |val(A)|} be maximal such that val(A)[ka] = a for a ∈ max([val(A)]I) and

{k1, . . . , km} = {ka | a ∈ max([val(A)]I)} with k1 < k2 < · · · < km. These numbers

can be computed in polynomial time as well, see the proof of Lemma 21. Let S be

the initial variable of A. We set

α = S[: k1 − 1]S[k1 + 1 : k2 − 1] · · ·S[km−1 + 1 : km − 1]S[km + 1 :].

Then [valA(α)]I = [val(A)]I \s max([val(A)]I). Since the positions k1, . . . , km are

represented in binary, each of them needs O(log2(|val(A)|)) many bits. Hence |α|

can be bounded by O(m · log2(|val(A)|)). Since m = |max([val(A)]I)| we have |α| ≤

O(|max([val(A)]I)| · log2(|val(A)|)). Similarly we can compute the expression β.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 17

2.4.3. Trace rewriting systems.

A trace rewriting system R over M(Σ, I) is just a finite subset of M(Σ, I)×M(Σ, I)

[12]. We define the one-step rewrite relation →R ⊆ M(Σ, I)×M(Σ, I) by: x →R y if

and only if there are u, v ∈ M(Σ, I) and (ℓ, r) ∈ R such that x = uℓv and y = urv.

With
∗
−→R we denote the reflexive transitive closure of →R. The notion of a confluent

and terminating trace rewriting system is defined as for other types of rewriting

systems [3]: A trace rewriting system R is called confluent if for all u, v, v′ ∈ M(Σ, I)

with u
∗
−→R v and u

∗
−→R v′ there exists a trace w with v

∗
−→R w and v′ ∗

−→R w. It is

called terminating if there does not exist an infinite chain u0 →R u1 →R u2 · · · . A

trace u is R-irreducible if no trace v with u →R v exists. The set of all R-irreducible

traces is denoted with IRR(R). If R is terminating and confluent, then for every trace

u, there exists a unique normal form NFR(u) ∈ IRR(R) such that u
∗
−→R NFR(u).

2.5. Graph groups

The free group F (Σ) generated by the set Σ can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.

Let us fix the independence alphabet (Σ, I) for this subsection. The graph group

G(Σ, I) is defined as the quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

Graph groups are also known as right-angled Artin groups and free partially com-

mutative groups. From (Σ, I) we derive the independence alphabet

(Σ±1, {(aε1 , bε2) | (a, b) ∈ I, ε1, ε2 ∈ {−1, 1}}).

Abusing notation, we denote the independence relation of this alphabet again with

I. We consider the trace monoid M(Σ±1, I). For a trace u = [a1 · · · an]I ∈ M(Σ±1, I)

we denote with u−1 the trace u−1 = [a−1
n · · · a−1

1 ]I . It is easy to see that this

definition is independent of the chosen representative a1 · · · an of the trace u. It

follows that we have [val(A)]−1
I = [val(A−1)]I for a CCP-system A in normal form.

Let us fix for the rest of this subsection the trace rewriting system

R = {([aa−1]I , [ε]I) | a ∈ Σ±1}

over the trace monoid M(Σ±1, I). Since R is length-reducing, R is terminating. By

[12,46], R is also confluent. Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I).

Thus, the graph group G(Σ, I) can be also defined as the quotient

G(Σ, I) = M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}.

Hence, for traces u, v ∈ M(Σ±1, I) we have u = v in G(Σ, I) if and only if NFR(u) =

NFR(v). Using this fact, it was shown in [12,46] that the word problem for G(Σ, I)

can be solved in linear time (on the RAM model).



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

18 Niko Haubold, Markus Lohrey, Christian Mathissen

Building on results from [45], Laurence has shown in [28] that automorphism

groups of graph groups are finitely generated. Recently, Day [11] proved that auto-

morphism groups of graph groups are in fact finitely presented. Structural results

on automorphism groups of graph groups can be found in [6,7]; for a survey see [5].

2.6. Graph products

Let us fix for this subsection a finite independence alphabet (W,E) with W =

{1, . . . , n} and finitely generated groups Gi for i ∈ {1, . . . , n}. Let 1Gi
be the iden-

tity element of Gi. For pairwise disjoint nonempty sets C1, . . . , Cn we define the

independence relation

E[C1, . . . , Cn] =
⋃

(i,j)∈E

Ci × Cj (1)

on the alphabet
⋃n

i=1 Ci. Every independence clique of (
⋃n

i=1 Ci, E[C1, . . . , Cn]) has

size at most n. We define a (possibly infinite) independence alphabet as in [13,27]:

Let

Ai = Gi \ {1Gi
} and A =

n
⋃

i=1

Ai.

We assume that A1, . . . , An are pairwise disjoint. We fix the independence relation

I = E[A1, . . . , An]

on A for the rest of this subsection. The independence alphabet (A, I) is the only

independence alphabet in this paper, which may be infinite. On M(A, I) we define

the trace rewriting system

R =

n
⋃

i=1

(

{([aa−1]I , [ε]I) | a ∈ Ai} ∪ {([ab]I , [c]I) | a, b, c ∈ Ai, ab = c in Gi}

)

. (2)

The following lemma was shown in [27]:

Lemma 23. The trace rewriting system R is confluent.

Since R is length-reducing, it is also terminating and hence defines unique nor-

mal forms. We define the graph product G(W,E, (Gi)i∈W ) of G1, . . . , Gn to be the

quotient monoid

G(W,E, (Gi)i∈W ) = M(A, I)/R.

It is easy to see that G(W,E, (Gi)i∈W ) is a group. If Gi is finitely generated by

Σi, where Σi ∩ Σi = ∅ for i 6= j, then G(W,E, (Gi)i∈W ) is finitely generated by
⋃

i∈W Σi. If E = ∅, then G(W,E, (Gi)i∈W ) is the free product G1 ∗G2 ∗ · · · ∗Gn and

if (W,E) is a complete graph, then G(W,E, (Gi)i∈W ) is the direct product
∏n

i=1 Gi.

In this sense, the graph product construction generalizes free and direct products.

The following lemma is important for solving the word problem in a graph

product G = G(W,E, (Gi)i∈W ):



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 19

Lemma 24. Let u, v ∈ A∗. Then u = v in G if and only if NFR([u]I) = NFR([v]I).

In particular we have u = 1 in G if and only if NFR([u]I) = ε.

Proof. The if-direction is trivial. Let on the other hand u, v ∈ A∗ and suppose that

u = v in G. By definition this is the case if and only if [u]I and [v]I represent the

same element from M(A, I)/R and are hence congruent. Since R produces a normal

form for elements from the same congruence class, this implies that NFR([u]I) =

NFR([v]I).

For the normal form of the product of two R-irreducible traces we have the

following lemma, which was shown in [13] (equation (21) in the proof of Lemma 22)

using a slightly different notation.

Lemma 25. Let u, v ∈ M(A, I) be R-irreducible. Let x = u \s v−1, y = v \p u−1,

x′ = x \s max(x) and y′ = y \p min(y). Then NFR(uv) = x′NFR(max(x)min(y))y′.

Note that in Lemma 25 |max(x)| as well as |min(y)| are bounded by n = |W |.

Hence, there are at most n rewrite step in the derivation of NFR(max(x)min(y))

from max(x)min(y).

Note that graph groups are exactly the graph products of copies of Z. Graph

products of copies of Z/2Z are known as right-angled Coxeter groups, see [15] for

more details. It is not clear, whether the automorphism group of a graph product

of finitely generated groups with finitely generated automorphism groups is itself

finitely generated. c Generalizing the main result from [28], it was shown in [9] that

the automorphism group of a graph product of finitely generated Abelian groups is

finitely generated. In particular, the automorphism group of a right-angled Coxeter

group is finitely generated.

3. Main results and applications

In this section we will present the main results of this paper, the proofs of

which are subject to the rest of the paper. Recall that the main goal of this

paper is to analyze the complexity of the word problem for finitely generated

subgroups of Aut(G(W,E, (Gi)i∈W )) and Out(G(W,E, (Gi)i∈W )). Using Propo-

sition 9 and 10, we have to study the problems CWP(G(W,E, (Gi)i∈W )) and

RSCCP(G(W,E, (Gi)i∈W ),Σ) (for a generating set Σ). The following two theorems

are our main results for these problems:

Theorem 26. Let (W,E) be a fixed finite independence alphabet and let Gi (i ∈

W ) be finitely generated groups. Then CWP(G(W,E, (Gi)i∈W )) is polynomial time

Turing reducible to the problems CWP(Gi) (i ∈ W ).

cWe conjecture that using the methods from [28] one can indeed show that the automorphism group
of a graph product of finitely generated groups with finitely generated automorphism groups is
itself finitely generated.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

20 Niko Haubold, Markus Lohrey, Christian Mathissen

Theorem 27. Let (W,E) be a fixed finite independence alphabet, Gi (i ∈ W ) be

finitely generated groups, and G = G(W,E, (Gi)i∈W ). Let Bi ⊆ Gi be finite non-

empty sets (i ∈ W ). Then RSCCP(G,
⋃

i∈W Bi) is polynomial time Turing reducible

to the problems CWP(Gi) and RSCCP(Gi, Bi) (i ∈ W ).

Theorem 26 will be shown in Section 4, whereas Theorem 27 will be shown in

Section 8. Theorem 26 (resp., Theorem 27) generalizes a corresponding result from

[34] (resp. [23]) for graph groups.

Remark 28. We can use Proposition 10 and Theorem 27 to infer the following

result about the word problem of the outer automorphism group of a graph product:

Let (W,E) be a fixed finite independence alphabet, let the group Gi be finitely

generated by Σi for i ∈ W and let G = G(W,E, (Gi)i∈W ). Let furthermore H be

a finitely generated subgroup of Out(G). Then WP(H) is polynomial time Turing

reducible to the problems CWP(Gi) and RSCCP(Gi,Σi) (i ∈ W ).

Since the compressed word problem as well as the restricted simultaneous com-

pressed conjugacy problem for Z and every finite group can be solved in polynomial

time, Theorem 26 and 27 imply:

Corollary 29. If G = G(W,E, (Gi)i∈W ) is a graph product, where each Gi is either

finite or isomorphic to Z, then the problems CWP(G) and RSCCP(G, B) (where

B =
⋃

i∈W Bi with Bi ⊆ Gi) can be solved in polynomial time. In particular, these

problems can be solved in polynomial time for

• right-angled Artin groups and

• right-angled Coxeter groups.

Corollary 29 and Proposition 9 and 10 imply:

Corollary 30. If G is a graph product of finite groups and copies of Z, then the

word problem for every finitely generated subgroup of Aut(G) or Out(G) can be solved

in polynomial time. In particular, the word problems for automorphism groups and

outer automorphism groups of

• right-angled Artin groups and

• right-angled Coxeter groups

can be solved in polynomial time.

Finally, in Section 11, we prove that the compressed conjugacy problem for a

graph group can be decided in polynomial time:

Theorem 31. Let (Σ, I) be a fixed finite independence alphabet. Then

CCP(G(Σ, I)) can be solved in polynomial time.

We conjecture the following generalization of Theorem 31:



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 21

Conjecture 32. Let (W,E) be a fixed finite independence alphabet and let Gi (i ∈

W ) be finitely generated groups. Then CCP(G(W,E, (Gi)i∈W )) is polynomial time

Turing reducible to the problems CCP(Gi) (i ∈ W ).

4. The compressed word problem for graph products

In this section, we will prove Theorem 26. For this, we combine methods used in [34]

and [13]. Let us fix the finite independence alphabet (W,E) with W = {1, . . . , n}

and finitely generated groups Gi for i ∈ {1, . . . , n} for the rest of this section. Let

furthermore Σi be a finite generating set for Gi for i ∈ {1, . . . , n}. W.l.o.g. we can

assume that Σi does not contain the identity element and that Σi ∩ Σj = ∅ for

i 6= j. We define Σ =
⋃n

i=1 Σi. Let G denote the graph product G(W,E, (Gi)i∈W )

for the rest of this section. Moreover, let Ai, A, I, and R have the same meaning

as in Section 2.6. Note that Σi ⊆ Ai for all 1 ≤ i ≤ n.

For the following discussion, let us fix a 2-level CCP-system

B = (Up, Lo,Σ±1, rhs, S)

over the terminal alphabet Σ±1 (the monoid generating set of our graph product

G). We introduce several properties for B.

Definition 33 (pure). B is pure if for every X ∈ Lo there exists i ∈ W such that

val(X) ∈ (Σ±1
i )

+
and val(X) 6= 1 in Gi (hence val(X) represents a group element

from the set A).

For the following notations, assume that B is pure. Then, we can define the

mapping typeB : Lo → W by typeB(X) = i if val(X) ∈ (Σ±1
i )

+
. For i ∈ W let

Lo(i) = {X ∈ Lo | typeB(X) = i}.

Then the sets Lo(1), . . . , Lo(n) form a partition of Lo. Moreover, using (1) on page

18 we can define an independence relation IB on Lo by

IB = E[Lo(1), . . . , Lo(n)].

Definition 34 (nicely projecting). B is nicely projecting if for every subexpres-

sion of the form π∆(α) (∆ ⊆ Lo) that appears in a right-hand side of up(B), there

exists K ⊆ W with ∆ =
⋃

i∈K Lo(i).

This condition will be needed in order to apply Lemma 3. Note that the number

of all sets
⋃

i∈K Lo(i) with K ⊆ W is bounded by 2n = O(1).

Definition 35 (irredundant). B is irredundant if for all X,Y ∈ Lo such that

X 6= Y and typeB(X) = typeB(Y ) = i, we have val(X) 6= val(Y ) in Gi.

One can think of a pure and irredundant 2-level CCP-system B as a CCP-system,

where the terminal alphabet is a finite subset B ⊆ A, with A =
⋃

i∈W Gi \ {1Gi
}

from Section 2.6. Moreover, each element from B ∩ Ai (i ∈ W ) is represented by

a unique SLP over the terminal alphabet Σ±1
i (namely the lower part lo(B) with



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

22 Niko Haubold, Markus Lohrey, Christian Mathissen

the appropriate initial variable). If B is pure but not irredundant then, using oracle

access to the compressed word problems for the groups Gi, one can compute a pure

and irredundant 2-level CCP-system C such that val(B) = val(C) in G as follows:

If B contains two variables X,Y ∈ Lo such that X 6= Y , typeB(X) = typeB(Y ) = i

and val(X) = val(Y ) in Gi, one has to replace Y in all right-hand sides by X. Note

that this process does not change the set of upper level variables of B.

Definition 36 (saturated). B is saturated if for every X ∈ Lo with typeB(X) = i,

there exists Y ∈ Lo with typeB(Y ) = i and valB(Y ) = valB(X)−1 in Gi.

If B is pure, irredundant and saturated, then for every X ∈ Lo with typeB(X) = i,

there must be a unique Y ∈ Lo with typeB(Y ) = i and valB(Y ) = valB(X)−1 in Gi

(we may have Y = X in case valB(X)2 = 1 in Gi). This Y is denoted with X−1,

and we define (X1 · · ·Xn)−1 = X−1
n · · ·X−1

1 for X1, . . . ,Xn ∈ Lo.

Definition 37 (well-formed). B is well-formed, if it is pure, irredundant, satu-

rated, and nicely projecting.

Assume that B is well-formed. We call a trace w ∈ M(Lo, IB) reduced if it contains

no factor [Y Z]IB
with Y,Z ∈ Lo and typeB(Y ) = typeB(Z). Note that [X1 · · ·Xm]IB

∈

M(Lo, IB) with X1, . . . ,Xm ∈ Lo is reduced if and only if [a1 · · · am]I ∈ IRR(R),

where aj ∈ A is the group element represented by val(Xj) for 1 ≤ j ≤ m. A variable

X ∈ Up ∪ Lo is reduced if either X ∈ Lo or X ∈ Up and the trace [uval(X)]IB
is

reduced. Finally, B is reduced, if every variable X of B is reduced. We have:

Lemma 38. Let B be a well-formed and reduced 2-level CCP-system. Then val(B) =

1 in G if and only if uval(B) = ε.

Proof. Clearly, if uval(B) = ε, then also val(B) = ε and hence val(B) = 1 in G.

For the other direction we assume for contradiction that uval(B) = X1 · · ·Xm for

some m > 0. Since B is pure there are a1, . . . , am ∈ A such that val(Xi) represents

the group element ai for i ∈ {1, . . . ,m}. Since B is reduced, we have [a1 · · · am]I ∈

IRR(R) and hence NFR([a1 · · · am]I) = [a1 · · · am]I 6= ε. From Lemma 24 it follows

that a1 · · · am 6= 1 in G and hence val(B) 6= 1 in G.

Together with Lemma 38, the following proposition can be used to solve the

compressed word problem for the graph product G.

Proposition 39. Given an SLP A over Σ±1 we can compute a reduced and well-

formed 2-level CCP-system B with val(A) = val(B) in G in polynomial time using

oracle access to the decision problems CWP(Gi) (1 ≤ i ≤ n).

Proof. Let A = (VA,Σ, rhsA, S) be the given input SLP over Σ±1. We assume

w.l.o.g. that A is in Chomsky normal form. Moreover, we exclude the triv-

ial case that rhsA(S) ∈ Σ±1. We construct a sequence of 2-level CCP-systems

Aj = (Upj , Loj ,Σ
±1, rhsj , S) (0 ≤ j ≤ r ≤ |VA|) such that the following holds

for all 0 ≤ j ≤ r:



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 23

(a) Aj is well-formed.

(b) |Aj | ≤ 2 · |A| + O(j · |A|) ≤ 2 · |A| + O(|VA| · |A|)

(c) val(A) = val(Aj) in G for all 0 ≤ j ≤ r.

(d) If X ∈ Upj is not reduced, then rhsj(X) ∈ (Upj ∪ Loj)
2.

(e) |uval(Aj)| ≤ |val(A)|

Moreover, the final 2-level CCP-system B = Ar will be reduced. Let us write typej

for typeAj
and Ij for IAj

in the following.

During the construction of Aj+1 from Aj , we will replace the right-hand side Y Z

(Y,Z ∈ Upj ∪ Loj) for a non-reduced (in Aj) variable X ∈ Upj by a new right-hand

side of size O(|A|), so that X is reduced in Aj+1 and valAj
(X) = valAj+1

(X) in

G. All other right-hand sides for upper level variables will be kept, and constantly

many new lower level variables will be added.

We start the construction with the 2-level CCP-system

({X ∈ VA | rhsA(X) ∈ V 2
A }, {X ∈ VA | rhsA(X) ∈ Σ±1}, Σ±1, rhsA, S).

Note that S is an upper level variable in this system (which is required for 2-

level CCP-systems) since we assume rhsA(S) 6∈ Σ±1. Moreover, the system is pure

and nicely projecting (there are no projection operations in right-hand sides), but

not necessarily irredundant and saturated. The latter two properties can be easily

enforced by adding for every variable X with rhsA(X) = a ∈ Σ±1 a variable X−1

for a−1 and then eliminating redundant lower level variables. The resulting 2-level

CCP-system A0 is well-formed and satisfies |A0| ≤ 2 · |A| and val(A0) = val(A).

Hence (a), (b), and (c) are satisfied and also (d) and (e) clearly hold.

For the inductive step of the construction, assume that we have constructed Aj =

(Upj , Loj ,Σ
±1, rhsj , S) and let X ∈ Upj , Y,Z ∈ Upj ∪ Loj such that rhsj(X) = Y Z,

X is not reduced, but Y and Z are already reduced. In order to make X reduced,

we will apply Lemma 25. The following proposition, whose proof is postponed to

the next Section 5, makes this application possible.

Proposition 40. Let (W,E) be a fixed independence alphabet with W = {1, . . . , n}.

The following problem can be solved in polynomial time:

INPUT: Pairwise disjoint finite alphabets Γ1, . . . ,Γn, an SLP B over the terminal

alphabet Γ =
⋃n

i=1 Γi, and two variables Y and Z from B.

OUTPUT: CCP-expressions α, β ∈ CCP({Y }, ∅) such that the following holds,

where J = E[Γ1, . . . ,Γn]:

(1) For every subexpression of the form π∆(γ) in α and β there exists K ⊆

{1, . . . , n} with ∆ =
⋃

i∈K Γi.

(2) [valB(α)]J = [valB(Y )]J \p [valB(Z)]J

(3) [valB(β)]J = [valB(Y )]J ⊓p [valB(Z)]J

(4) |α|, |β| ≤ O(log2(|val(B)|))



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

24 Niko Haubold, Markus Lohrey, Christian Mathissen

An analogous statement can be shown for the operations \s and ⊓s which refer

to the suffix order on traces.

In order to apply Proposition 40 to our situation we transform the upper level

part up(Aj) into an equivalent SLP C over Loj using Lemma 3. This is possible, since

Aj is nicely projecting by (a). The time for this step is polynomially bounded in

|up(Aj)| and hence in |A|. Note that we have |val(C)| = |uval(Aj)| ≤ |val(A)| ≤ 2|A|

by (e). Now we set Γi = Loj(i) and apply Proposition 40 to Γi (i ∈ W ) and C to

obtain two CCP-expressions α and β such that |α|, |β| ≤ O(|A|) and (uval denotes

uvalAj
)

[uval(α)]Ij
= [uval(Y )]Ij

\s [uval(Z)]−1
Ij

[uval(β)]Ij
= [uval(Z)]Ij

\p [uval(Y )]−1
Ij

.

Moreover, for every subexpression of the form π∆(γ) in α or β there exists K ⊆

{1, . . . , n} with ∆ =
⋃

i∈K Loj(i). Intuitively, α and β represent the parts of uval(Y )

and uval(Z) that remain after cancellation in the graph group generated by the

alphabet Loj . Hence, [uval(α)]Ij
[uval(β)]Ij

does not contain a factor of the form

[XX−1]Ij
for X ∈ Loj . Using Lemma 21 and 22 (in order to apply these lemmas, we

have to compute, using Lemma 3, SLPs for the strings uval(α) and uval(β)) we can

compute Vmax = max([uval(α)]Ij
), Vmin = min([uval(β)]Ij

), and CCP-expressions

α′, β′ such that

[uval(α′)]Ij
= [uval(α)]Ij

\s [Vmax]Ij

[uval(β′)]Ij
= [uval(β)]Ij

\p [Vmin]Ij
.

Recall that Vmax and Vmin are subsets of Loj . The form of the independence relation

Ij implies that |Vmax|, |Vmin| ≤ n = O(1). The length bound in Lemma 22 implies

that |α′|, |β′| ≤ O(|A|). Moreover, for every 1 ≤ i ≤ n we must have |Vmax∩Loj(i)| ≤

1 and |Vmin ∩ Loj(i)| ≤ 1. Let

V ′
max = {X ∈ Vmax | typej(X) 6∈ typej(Vmin)}

V ′
min = {X ∈ Vmin | typej(X) 6∈ typej(Vmax)}.

If (X1,X2) ∈ Vmax × Vmin is such that typej(X1) = typej(X2) = i, then by the

definition of [uval(α)]Ij
and [uval(β)]Ij

, we must have val(X1)val(X2) 6= 1 in Gi. For

each such pair we add a new lower level variable XX1,X2
to Loj with right-hand side

X1X2; let V ′ be the set of these new variables. Clearly, |V ′| ≤ n = O(1). Finally,

the right-hand side for X is changed to the CCP-expression

γ = α′ v′
max v′ v′

min β′

where v′
max (resp. v′, v′

min) is an arbitrary string that enumerates all variables from

V ′
max (resp. V ′, V ′

min). We have |γ| = |α′|+ |β′|+O(1) ≤ O(|A|). Clearly, γ evaluates

in G to the same group element as valAj
(X). By adding at most |V ′| = O(1) many

further lower level variables, we obtain a saturated system. The resulting 2-level

CCP-system is not necessarily irredundant, but this can be ensured, as explained



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 25

above, using oracle calls to the compressed word problems for the vertex groups Gi

(this does not increase the size of the 2-level CCP-system). The resulting system

is pure, irredundant, and saturated, but not necessarily nicely projecting, because

of the new lower level nonterminals from V ′. But note that these variables do not

occur in the scope of a projection operator π∆. Hence, we may add the new lower

level variables to the appropriate sets appearing in projection operators, so that

the 2-level CCP-system becomes nicely projecting as well. The resulting 2-level

CCP-system is Aj+1; it is well-formed. Its size can be bounded by |Aj | + O(|A|) ≤

2 · |A|+O(j · |A|) +O(|A|) ≤ 2 · |A|+O((j + 1) · |A|); hence (a) and (b) above hold

for Aj+1. Moreover, in the group G we have val(Aj+1) = val(Aj) = val(A), hence

(c) holds. Lemma 25 implies that X is reduced in Aj+1 which implies property (d)

for Aj+1. Finally, for (e) note that |uval(Aj+1)| ≤ |uval(Aj)| ≤ |val(A)|.

After r ≤ |VA| steps, our construction yields the well-formed and reduced 2-level

CCP-system Ar with val(Ar) = val(A) in G which proves Proposition 39.

Now the proof of Theorem 26 is straightforward: By Proposition 39 we can

translate a given SLP A into an equivalent, reduced and well-formed 2-level CCP-

system B with val(A) = val(B) in G in polynomial time using oracle access to

CWP(Gi) for i ∈ W . By Lemma 38, we have val(A) = 1 in G if and only if uval(B) =

ε. We can use Lemma 3 to translate up(B) into an equivalent SLP, for which it is

trivial to check whether the empty word is produced. This proves Theorem 26.

5. Proof of Proposition 40

We will prove Proposition 40 in this section. Recall that we fixed the finite undi-

rected graph (W,E) with W = {1, . . . , n}.

Proposition 40. Let (W,E) be a fixed independence alphabet with W = {1, . . . , n}.

The following problem can be solved in polynomial time:

INPUT: Pairwise disjoint finite alphabets Γ1, . . . ,Γn, an SLP B over the terminal

alphabet Γ =
⋃n

i=1 Γi, and two variables Y and Z from B.

OUTPUT: CCP-expressions α, β ∈ CCP({Y }, ∅) such that the following holds,

where I = E[Γ1, . . . ,Γn]:

(1) For every subexpression of the form π∆(γ) in α or β there exists K ⊆ W with

∆ =
⋃

i∈K Γi.

(2) [valB(α)]I = [valB(Y )]I \p [valB(Z)]I

(3) [valB(β)]I = [valB(Y )]I ⊓p [valB(Z)]I

(4) |α|, |β| ≤ O(log2(|val(B)|))

In the following, we will write \ and ⊓ for \p and ⊓p, respectively. Moreover, if

∆ =
⋃

i∈K Γi, we will write πK for the projection morphism π∆ : Γ∗ → Γ∗. Let us

fix Γ =
⋃n

i=1 Γi and let I = E[Γ1, . . . ,Γn].



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

26 Niko Haubold, Markus Lohrey, Christian Mathissen

Let s ∈ Γ∗ be a string and J ⊆ {1, . . . , |s|} a set of positions in s. Below, we will

identify the dependence graph Ds with the edge relation of Ds. We are looking for a

compact representation for the set of all positions p such that ∃j ∈ J : (j, p) ∈ D∗
s ,

i.e., there exists a path in the dependence graph Ds from some position j ∈ J to

position p. For i ∈ W define

pos(s, J, i) = min({|s| + 1} ∪ {p | 1 ≤ p ≤ |s|, s[p] ∈ Γi,∃j ∈ J : (j, p) ∈ D∗
s}).

Example 41. To ease the reading we will consider the set W = {a, b, c, d, e} instead

of W = {1, . . . , 5}. The dependence relation D is:

a e

b c d

Let Γx = {x} for x ∈ W . We consider the following string:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s = d b c d b a c d b d e a b d c

The dependence graph of s look as follows:

b

d
c

d

b
a

c
d

b

d

e

a b

d

c

Let J = {5, 6, 9}. We want to determine pos(s, J, 4). In the following picture we

mark positions from J with boxes and all positions p 6∈ J with (j, p) ∈ D∗
s for some

j ∈ J with circles.

b

d
c

d

b
a

c
d

b

d

e

a b

d

c

The positions with letters from Γ4 = {d} which depend from positions from J are

{8, 10, 14} with the minimum 8, hence pos(s, J, 4) = 8.

For the set J = {6, 9} we get the following picture for pos(s, J, 4):

b

d
c

d

b
a

c
d

b

d

e

a b

d

c



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 27

Since there are no positions with letters from Γ4 = {d} which depend from positions

from J , it follows that pos(s, J, 4) = |s| + 1 = 16.

Instead of pos(s, {p}, i), we simply write pos(s, p, i). Note that pos(s, ∅, i) =

|s| + 1. The definition of pos(s, J, i) and the fact that symbols from a set Γi are

pairwise dependent implies:

Lemma 42. Let s ∈ Γ∗ and J ⊆ {1, . . . , |s|}. Then for every position 1 ≤ p ≤ |s|

the following two properties are equivalent:

• ∃j ∈ J : (j, p) ∈ D∗
s

• If s[p] ∈ Γi then p ≥ pos(s, J, i).

We will also need the following lemma:

Lemma 43. For a given SLP A, a position 1 ≤ p ≤ |val(A)| and i ∈ W , we can

compute the position pos(val(A), p, i) in polynomial time.

Proof. We first need a few definitions: Let D = (W × W ) \ E be the dependence

relation for our fixed independence alphabet (W,E). A path in (W,D) (viewed as

an undirected graph) is called simple, if it does not visit a node twice. For j ∈ W

let Pj be the set of all simple paths in the dependence alphabet (W,D) that start

in the node j. The path, which only consists of the node j belongs to Pj . Note that

|Pj | ∈ O(1) since (W,E) is fixed.

Let us now fix A, p, and i as in the lemma. Assume that val(A)[p] ∈ Γj . By

Lemma 4(2), the node j ∈ W can be computed in polynomial time. For a simple

path ρ ∈ Pj let us define pos(p, ρ) ∈ {1, . . . , |val(A)|+1} inductively. If ρ = (j), then

pos(p, ρ) = p. If ρ = (ρ′, k), where ρ′ ∈ Pj and k ∈ W , then pos(p, ρ) is the smallest

position q > pos(p, ρ′) such that val(A)[q] ∈ Γk if such a position exists, otherwise

pos(p, ρ) = |val(A)| + 1. It follows that pos(p, ρ) can be computed in polynomial

time for every simple path ρ ∈ Pj . Finally, pos(val(A), p, i) is the minimum over all

these positions for all simple paths from j to i.

Let us now come back to the problem of constructing a CCP-expression, which

evaluates to [valB(Y )]I \ [valB(Z)]I and [valB(Y )]I ⊓ [valB(Z)]I . Let us first solve this

problem for uncompressed strings. Then we will argue that our algorithm leads to

a polynomial time algorithm for compressed input strings.

How can we compute for two given words s, t ∈ Γ∗ words inf, diff ∈ Γ∗ such that

[inf]I = [s]I ⊓ [t]I and [diff]I = [s]I \ [t]I? In the algorithm in Figure 1 we accumulate

the strings inf and diff by determining for every position from {1, . . . , |s|} (viewed

as a node of the dependence graph Ds) whether it belongs to [inf]I or [diff]I . For

this, we will store a current position ℓ in the string s, which will increase during

the computation. Initially, we set ℓ := 1 and inf := ε, diff := ε. At the end, we have

[inf]I = [s]I ⊓ [t]I and [diff]I = [s]I \ [t]I .

For a set of positions K ⊆ {1, . . . , |s|} let us define the string s↾K = s[ℓ1] · · · s[ℓk],

where ℓ1 < ℓ2 < · · · < ℓk and K = {ℓ1, . . . , ℓk}. Consider a specific iteration



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

28 Niko Haubold, Markus Lohrey, Christian Mathissen

ℓ := 1; (stores a position in s)

inf := ε; (stores a string)

diff := ε; (stores a string)

pos(i) := |s| + 1 for all i ∈ W ; (stores positions in s)

while ℓ ≤ |s| do

U := {i ∈ W | pos(i) < ℓ};

next := min({pos(i) | i ∈ W \ U} ∪ {|s| + 1});

j := max{i | ℓ − 1 ≤ i ≤ next − 1, [inf πW\U (s[ℓ : i])]I ¹ [t]I}; (*)

inf := inf πW\U (s[ℓ : j]);

diff := diff πU (s[ℓ : j]) s[j + 1]; (let us set s[|s| + 1] = ε)

for all i ∈ W do

pos(i) := min{pos(i), pos(s, j + 1, i)} (let us set pos(s, |s| + 1, i) = |s| + 1)

endfor

ℓ := j + 2;

endwhile

Fig. 1. An algorithm for computing [s]I ⊓ [t]I and [s]I \ [t]I

of the loop body in Figure 1 and let ℓ denote the value of the corresponding

program variable at the beginning of the iteration. Assume in the following that

Diffℓ ⊆ {1, . . . , ℓ − 1} is the set of all positions from {1, . . . , ℓ − 1}, which belong

to the difference [s]I \ [t]I , i.e., they do not belong to the common prefix [s]I ⊓ [t]I .

Moreover, let Infℓ = {1, . . . , ℓ−1}\Diffℓ be the set of all positions from {1, . . . , ℓ−1},

which belong to the trace prefix [s]I ⊓ [t]I . Thus, Infℓ is downward-closed in Ds and

[s↾Infℓ]I ¹ [s]I ⊓ [t]I . Note that the algorithm does neither store the set Diffℓ nor

Infℓ. This will be important later, when the input words s and t are represented by

SLPs. If ℓ, inf, diff, and pos(i) (i ∈ W ) denote the values of the corresponding pro-

gram variables at the beginning of the iteration, then the algorithm will maintain

the following two invariants:

(I1) inf = s↾Infℓ, diff = s↾Diffℓ,

(I2) pos(i) = pos(s,Diffℓ, i) for all i ∈ W

In each iteration of the while-loop, we investigate the subword of s from position

ℓ to the next position of the form pos(i), and we determine for each position from

some initial segment of this interval, whether it belongs to [s]I ⊓ [t]I or [s]I \ [t]I .

More precisely, we search for the largest position j ∈ {ℓ− 1, . . . , next− 1} such that

[inf πW\U (s[ℓ : j])]I is a prefix of [t]I . Recall that inf = s↾Infℓ is the already collected

part of the common trace prefix. We update inf and diff by inf := inf πW\U (s[ℓ : j])

and diff := diff πU (s[ℓ : j])s[j + 1].

Before we prove that the algorithm indeed preserves the invariants (I1) and (I2),

let us first consider a detailed example.

Example 44. To ease the reading we will consider the set W = {a, b, c, d, e, f, g}



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 29

instead of W = {1, . . . , 7} together with the following dependence relation D:

a b

c d

e f

g

Let Γx = {x} for all x ∈ W . We consider the following strings:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s = f b g c c g b c c e a g f e f d g

t = b c g c f g b e a g g f e d f b g

The dependence graphs of [s]I and [t]I look as follows:

Ds

f

b

g

c c

g

b
c c

e

a

g

f e f

d g

Dt

f

b

g

c c

g

b c

e

a

g

f e

d g

f

b

We want to determine s⊓p t and s \p t using the algorithm from Figure 1. Initially,

we set ℓ = 1, inf = diff = ε, and pos(x) = |s| + 1 = 18 for all x ∈ W . Since ℓ ≤ |s|

the while loop is executed.

First iteration: The algorithm first sets

U = ∅ and next = 18.

Hence, we have

inf πW\U (s[ℓ : next − 1]) = |f b g c c g b c c e a g f e f d g

1 2 3 4 5 6 7 8 9 1011121314151617 .

Here, we denote with ’|’ the position between inf and πW\U (s[ℓ : next − 1]). The

algorithm determines the largest number j such that 0 ≤ j ≤ 17 such that the trace

[inf πW\U (s[ℓ : j])]I is a prefix of [t]I . From the dependence graphs above it can be

easily seen that j = 7. We have

inf πW\U (s[ℓ : j]) = |f b g c c g b

diff πU (s[ℓ : j])s[j + 1] = c ,



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

30 Niko Haubold, Markus Lohrey, Christian Mathissen

which are the new values for inf and diff, respectively. Moreover, the pos-values are

reset as follows:

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16, pos(e) = pos(f) = 18, pos(g) = 17.

Finally, ℓ is set to 9. Since ℓ = 9 ≤ |s| the while loop is repeated.

Second iteration: The algorithm first sets

U = {c} and next = 16.

We have

inf πW\{c}(s[8 : 15]) = f b g c c g b | e a g f e f

1 2 3 4 5 6 7 8 9 101112131415 .

Searching for the largest ℓ − 1 = 8 ≤ j ≤ 15 = next − 1 such that the trace

[inf πW\U (s[ℓ : j])]I is a prefix of [t]I gives j = 15. We have

inf πW\{c}(s[9 : 15]) = f b g c c g b | e a g f e f

diff π{c}(s[9 : 15])s[16] = c c d ,

which are the new values for inf and diff. The pos-values do not change in the second

iteration, i.e., we still have

pos(a) = pos(b) = 18, pos(c) = 8, pos(d) = 16, pos(e) = pos(f) = 18, pos(g) = 17.

Finally, ℓ is set to 17. Since ℓ ≤ |s| the while loop is repeated.

Third iteration: The algorithm first sets

U = {c, d} and next = 17.

We have

inf πW\U (s[16 : 16]) = f b g c c g b e a g f e f|

1 2 3 4 5 6 7 8 9 10111213141516 .

We find j = 16. Hence, we have

inf πW\U (s[17 : 16]) = f b g c c g b e a g f e f|

diff πU (s[17 : 16])s[17] = c c d g .

Also in the third iteration, the pos-values do not change. Finally, ℓ is set to 18.

Since ℓ > |s| the algorithm stops and produces [inf]I = [fbgccgbeagfef ]I and

[diff]I = [ccdg]I . These traces are indeed [s]I ⊓ [t]I and [s]I \ [t]I . This is visualized

in the next picture with [s]I ⊓ [t]I on the left side of the dotted line and [s]I \ [t]I
on the right side.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 31

Ds

f

b

g

c c

g

b
c c

e

a

g

f e f

d g

Let us now prove the correctness of the algorithm. We start with invariant (I1):

Lemma 45. The algorithm from Figure 1 preserves invariant (I1).

Proof. Let us take ℓ ∈ {1, . . . , |s|} and assume that invariant (I1) and (I2) hold

currently. Hence,

• inf = s↾Infℓ, diff = s↾Diffℓ, and

• pos(i) = pos(s,Diffℓ, i) for all i ∈ W .

We have to show that invariant (I1) holds after the next execution of the loop body

as well. As in the algorithm, let:

U = {i ∈ W | pos(s,Diffℓ, i) < ℓ} (3)

next = min({pos(s,Diffℓ, i) | i ∈ W \ U} ∪ {|s| + 1}) (4)

j = max{i | ℓ − 1 ≤ i ≤ next − 1, [inf πW\U (s[ℓ : i])]I ¹ [t]I}. (5)

We have to show the following:

• A position p ∈ {ℓ, . . . , j} belongs to the common trace prefix [s]I ⊓ [t]I if

and only if s[p] ∈ Γi for some i ∈ W \ U .

• If j+1 ≤ |s|, then j+1 does not belong to the common trace prefix [s]I⊓[t]I .

For the first point, assume that s[p] ∈ Γi, where ℓ ≤ p ≤ j and i ∈ U . By definition

of U in (3), we have pos(s,Diffℓ, i) < ℓ ≤ p. Lemma 42 implies that there exists a

path in Ds from some position in Diffℓ to position p. Since positions in Diffℓ do not

belong to [s]I ⊓ [t]I , neither does p belong to [s]I ⊓ [t]I .

For the other direction, consider the set of positions

P = {p | ℓ ≤ p ≤ j, s[p] ∈ Γi for some i ∈ W \ U}.

We claim that Infℓ ∪ P is a downward-closed subset of Ds. Since [s↾(Infℓ ∪ P )]I =

[inf πW\U (s[ℓ : j])]I ¹ [t]I by (5), this implies that all positions from P indeed belong

to [s]I ⊓ [t]I . That Infℓ∪P is downward-closed in Ds follows from the following three

points:

• Infℓ is downward-closed.

• There does not exist a path from a node in Diffℓ to a node from P : Assume

that such a path, ending in p ∈ P , would exist. Let s[p] ∈ Γi with i ∈

W \ U . Lemma 42 implies pos(s,Diffℓ, i) ≤ p. Moreover, i ∈ W \ U implies



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

32 Niko Haubold, Markus Lohrey, Christian Mathissen

pos(s,Diffℓ, i) ≥ ℓ by (3). Hence, ℓ ≤ pos(s,Diffℓ, i) ≤ p ≤ j < next, where

the last inequality follows from (5). But this contradicts the definition of

next in (4).

• There does not exist a path from a node in {ℓ, . . . , j} \ P to a node of P :

By Lemma 42, every node from {ℓ, . . . , j} \ P can be reached via a path

starting in Diffℓ. Hence, the existence of a path from {ℓ, . . . , j} \ P to P

contradicts the previous point.

It remains to be shown that position j + 1 does not belong to the common trace

prefix [s]I ⊓ [t]I in case j +1 ≤ |s|. We distinguish several cases: If j = next−1, then

j +1 = pos(s,Diffℓ, i) for some i ∈ W . Hence, there exists a path from Diffℓ to j +1

in Ds; therefore j + 1 cannot belong to [s]I ⊓ [t]I . Now, assume that j < next − 1.

If s[j + 1] ∈ Γi for some i ∈ U , then Lemma 42 again yields the existence of a path

from Diffℓ to j + 1. Finally, let s[j + 1] ∈ Γi for some i ∈ W \ U . Maximality of j

in (5) implies that the trace

[inf πW\U (s[ℓ, j + 1])]I = [inf πW\U (s[ℓ : j])]Is[j + 1]

is not a prefix of [t]I . Since we already know that the trace [inf πW\U (s[ℓ : j])]I
consists exactly of those positions from {1, . . . , j} that belong to the common trace

prefix [s]I ⊓ [t]I , this implies that j + 1 does not belong to [s]I ⊓ [t]I .

Lemma 46. The algorithm from Figure 1 preserves invariant (I2).

Proof. We consider a specific iteration of the while loop and assume that (I1) and

(I2) hold at the beginning of the loop, i.e.,

• inf = s↾Infℓ, diff = s↾Diffℓ and

• pos(i) = pos(s,Diffℓ, i) for all i ∈ W .

We infer that (I2) holds after the execution of the loop. Let U , next, and j be defined

by (3)–(5). Let ℓ′ = j + 2 > ℓ be the new value of ℓ after the execution of the loop

body and let i ∈ W . We have to show that pos(s,Diffℓ′ , i) is the new value of pos(i)

after the execution of the loop body. This means that we have to prove

pos(s,Diffℓ′ , i) = min{pos(s, Diffℓ, i), pos(s, {j + 1}, i)}. (6)

From Lemma 45 and the way diff is updated in the loop body, we get

Diffℓ′ = Diffℓ ∪ {p | ℓ ≤ p ≤ j,∃k ∈ U : s[p] ∈ Γk} ∪ {j + 1} (7)

(in case j = |s|, we omit {j + 1} from the right-hand side). Hence, Diffℓ ∪{j + 1} ⊆

Diffℓ′ , which implies

pos(s,Diffℓ′ , i) ≤ min{pos(s,Diffℓ, i), pos(s, j + 1, i)}.

It remains to be shown that pos(s,Diffℓ′ , i) ≥ min{pos(s,Diffℓ, i), pos(s, j + 1, i)}.

The case that pos(s,Diffℓ′ , i) = |s|+1 is trivial. Hence, assume that pos(s,Diffℓ′ , i) ≤

|s| and consider a path in Ds from a position p ∈ Diffℓ′ to a position q ≤ |s| such that



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 33

ℓ := 1;

α := ε;

β := ε;

pos(i) := |val(Y )| + 1 for all i ∈ W ;

while ℓ ≤ |val(Y )| do

U := {i ∈ W | pos(i) < ℓ};

next := min({pos(i) | i ∈ W \ U} ∪ {|val(Y )| + 1});

j := max{i | ℓ − 1 ≤ i ≤ next − 1, [val(α ◦ πW\U (Y [ℓ : i]))]I ¹ [val(Z)]I}; (*)

α := α ◦ πW\U (Y [ℓ : j]);

β := β ◦ πU (Y [ℓ : j]) ◦ Y [j + 1]; (let us set here val(Y )[|val(Y )| + 1] = ε)

for all i ∈ W do

pos(i) := min{pos(i), pos(val(Y ), j + 1, i)} (**)

endfor

ℓ := j + 2;

endwhile

Fig. 2. An algorithm for computing [val(Y )]I ⊓ [val(Z)]I and [val(Y )]I \ [val(Z)]I

s[q] ∈ Γi. It suffices to show that there is a path from a position in Diffℓ ∪ {j + 1}

to p (then, there exists a path from Diffℓ ∪ {j + 1} to q too). By (7), we have

p ∈ Diffℓ ∪ {p | ℓ ≤ p ≤ j,∃k ∈ U : s[p] ∈ Γk} ∪ {j + 1}. The case p ∈ Diffℓ ∪ {j + 1}

is trivial. Hence, assume that ℓ ≤ p ≤ j and s[p] ∈ Γk for some k ∈ U . From (3), we

get pos(s,Diffℓ, k) < ℓ ≤ p. Lemma 42 implies that there exists a path from Diffℓ

to p.

Lemma 47. The number of iterations of the while-loop in Figure 1 is bounded by

|W | + 1 = n + 1 = O(1).

Proof. We claim that in each execution of the loop body except for the last one,

the set U = {i ∈ W | pos(i) < ℓ} strictly grows, which proves the lemma. Let

us consider an execution of the loop body. Note that the positions pos(i) cannot

increase. There are two cases to distinguish. If j < next−1, then the symbol s[j +1]

must belong to some alphabet Γi with i ∈ W \U due to the maximality of j in line

(*) of the algorithm. Clearly, pos(s, {j + 1}, i) = j + 1, hence pos(i) will be set to

a value ≤ j + 1 in the loop body. Since the new value ℓ will be j + 2, the new set

U will also contain i, i.e., it strictly grows. If j = next − 1 < |s|, then again, since

j + 1 = next = pos(i) for some i ∈ W \U and the new value ℓ will be j + 2, the set

U strictly grows. Finally, if j = next − 1 = |s|, then ℓ will be set to |s| + 2 and the

algorithm terminates.

The algorithm from Figure 1 for computing [s]I \[t]I and [s]I⊓[t]I leads to a polyno-

mial time algorithm, which computes CCP-expressions for (we write val for valB in

the following) [val(Y )]I ⊓ [val(Z)]I and [val(Y )]I \ [val(Z)]I , see Figure 2 (where the



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

34 Niko Haubold, Markus Lohrey, Christian Mathissen

concatenation operation in CCP-expressions is denoted by ◦ for better readability).

The idea is to consider the statements for updating inf and diff in Figure 1 as state-

ments for computing CCP-expressions α and β with [val(α)]I = [val(Y )]I ⊓ [val(Z)]I
and [val(β)]I = [val(Y )]I \ [val(Z)]I . So, (2) and (3) from Proposition 40 is satisfied.

Moreover, property (1) follows directly from the construction of α and β. For the

size estimate in (4), note that by Lemma 47, α and β are concatenations of O(1)

many expressions of the form πK(Y [p1, p2]). Moreover, each of the positions p1 and

p2 is bounded by |val(Y )| ≤ |val(B)| and hence needs only O(log2(|val(B)|)) many

bits.

It remains to be argued that the algorithm in Figure 2 is indeed a polynomial

time algorithm. By Lemma 47, the number of iterations of the loop body is bounded

by |W |+ 1. Hence, it suffices to show that a single iteration only needs polynomial

time. The condition [val(α ◦ πW\U (Y [ℓ : j]))]I ¹ [val(Z)]I in line (*) of Figure 2

can be checked in polynomial time by Lemma 19; note that by Lemma 3 we can

compute in polynomial time an SLP for val(α ◦πW\U (Y [ℓ : j])). Hence, the number

j in line (*) can be computed in polynomial time via binary search. Finally, the

position pos(val(Y ), j +1, i) in line (**) of Figure 2 can be computed in polynomial

time by Lemma 43. This finishes the proof of Proposition 40.

6. More algorithms for compressed traces

Before we proceed to the proof of our second main result Theorem 27, we first prove

some further results concerning traces, which are represented by SLPs. This results

are more or less direct consequences of Proposition 40.

As in the previous sections we fix the finite independence alphabet (W,E)

with W = {1, . . . , n}. An immediate corollary of Lemma 15, Proposition 40, and

Lemma 3 is:

Corollary 48. Let (W,E) be a fixed independence alphabet with W = {1, . . . , n}.

For given pairwise disjoint finite alphabets Γ1, . . . ,Γn and SLPs A and B over the

alphabet Γ =
⋃n

i=1 Γi, we can check in polynomial time, whether the trace supremum

[val(A)]E[Γ1,...,Γn] ⊔p [val(B)]E[Γ1,...,Γn] exists, and in case it exists, we can compute

in polynomial time an SLP S such that

[val(S)]E[Γ1,...,Γn] = [val(A)]E[Γ1,...,Γn] ⊔p [val(B)]E[Γ1,...,Γn].

Lemma 17 and Corollary 48 imply the following corollary.

Corollary 49. Let (W,E) be a fixed independence alphabet with W = {1, . . . , n}

and r ∈ N a constant. For given pairwise disjoint finite alphabets Γ1, . . . ,Γn and

SLPs A1, . . . , Ar over the alphabet Γ =
⋃n

i=1 Γi, we can check in polynomial time,

whether the trace supremum [val(A1)]E[Γ1,...,Γn] ⊔p · · · ⊔p [val(Ar)]E[Γ1,...,Γn] exists,

and in case it exists, we can compute in polynomial time an SLP S such that

[val(S)]E[Γ1,...,Γn] = [val(A1)]E[Γ1,...,Γn] ⊔p · · · ⊔p [val(Ar)]E[Γ1,...,Γn].



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 35

Clearly the Corollaries 48 and 49 also hold for the suffix supremum. It is im-

portant that we fix the number r of SLPs in Corollary 49: Each application of

Lemma 48 may increase the size of the SLP polynomially. Hence, a non-fixed num-

ber of applications might lead to an exponential blow-up.

7. Double cones

For this section let us fix as usual the finite independence alphabet (W,E) with

W = {1, . . . , n}. Moreover, as in Section 2.6, we fix finitely generated groups Gi for

i ∈ {1, . . . n}. Let G denote the graph product G(W,E, (Gi)i∈W ) for the rest of this

section. Moreover, let Ai, A, I, and R have the same meaning as in Section 2.6. All

identities in this section hold in the trace monoid M(A, I), unless we add “in G”,

which of course means that the identity holds in the graph product G.

In this section, we will prove several results for the trace monoid M(A, I) which

will be needed in the next section for deciding RSCCP(G, B) for some finite B ⊆ A.

Let

Z = {i ∈ W | (i, j) ∈ E for all j 6= i}.

For i ∈ W let

Star(i) = Ai ∪
⋃

j∈E(i)

Aj .

Note that
⋂

i∈W

Star(i) =
⋃

i∈Z

Ai. (8)

The following statement is straightforward to prove by considering the dependence

graph of uau−1.

Lemma 50. Let i ∈ W , a ∈ Ai, and u ∈ IRR(R). The trace uau−1 is R-irreducible

if and and only if max(u) ∩ Star(i) = ∅.

The dependence graph of an R-irreducible trace uau−1 has the following shape:

aDu Du−1

We call an R-irreducible trace of the form uau−1 with a ∈ A a double cone. By

the following lemma, each double cone has a unique factorization of the form u1bu2

with |u1| = |u2|.

Lemma 51. Let uau−1 = u1bu2 ∈ IRR(R) with a, b ∈ A and |u1| = |u2|. Then

a = b, u1 = u and u2 = u−1.

Proof. Let uau−1 = u1bu2 ∈ IRR(R), where a, b ∈ A and |u1| = |u2|. We have

max(ua) = {a} and (a, c) ∈ D for all c ∈ min(u−1). Moreover |u1| = |u2| = |u|. By



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

36 Niko Haubold, Markus Lohrey, Christian Mathissen

Levi’s Lemma 11, there exist traces x, y1, y2 and z with u1b = xy1, u2 = y2z, ua =

xy2, u−1 = y1z and y1Iy2. Assume that y2 6= ε. Since max(y2) ⊆ max(ua) = {a}

we get max(y2) = {a}. Since (a, c) ∈ D for all c ∈ min(y1) ⊆ min(u−1) and y1Iy2

it follows y1 = ε. But then |u| = |u−1| = |z| < |y2z| = |u2| leads to a contradiction.

Hence, we must have y2 = ε. Thus |u| = |u−1| = |y1z| = |y1| + |z| = |y1| + |u2| =

|y1| + |u| implies y1 = ε. Therefore we get ua = u1b and u−1 = u2. Finally, since

max(ua) = {a} we must have a = b and u = u1.

The next lemma gives us a necessary condition for an RSCCP(G, B)-instance to

be solvable. In the lemma we restrict to those (decompressed) equations w = xax−1

of an RSCCP(G, B)-instance where a is from a fixed factor Gi of our graph product

G. Assume that these equations are wj = xajx
−1 (1 ≤ j ≤ m) where wj ∈ G

(it is given compressed) and aj ∈ Ai, and assume there exists a solution x in G.

Then the lemma tells us that there exists a single trace v and a single element

c ∈ Gi such that each left-hand side wj can be represented by an R-irreducible

trace of the form vbjv
−1 with bj ∈ Ai (i.e., it is a double cone). Moreover, for all

(1 ≤ j ≤ m) we have aj = cbjc
−1 in the group Gi. The latter means that a certain

RSCCP(Gi, {a1, . . . , am}) is solvable (in our later application of the lemma, we will

compute SLPs for the group elements bj ∈ Gi). In this way, we will reduce our

RSCCP(G, B)-instance to RSCCP-instances for the factor groups Gi.

Lemma 52. Let i ∈ W , a1, . . . , am ∈ Ai, w1, . . . , wm ∈ IRR(R), and x ∈ M(A, I)

such that wj = xajx
−1 in G for all 1 ≤ j ≤ m. Then there exist v ∈ IRR(R),

b1, . . . , bm ∈ Ai, c ∈ Gi such that for all 1 ≤ j ≤ m:

• wj = vbjv
−1 in M(A, I) and

• aj = cbjc
−1 in the group Gi.

Proof. We prove the lemma by induction on the length of the trace x. W.l.o.g.

we can assume that x ∈ IRR(R), since if wj = xajx
−1 holds in G then also wj =

NFR(x)ajNFR(x)−1 in G.

If |x| = 0 then wj = aj for all 1 ≤ j ≤ m. Hence, we can set v = ε, bj = aj ,

and c = 1Gi
. For the induction step we distinguish three cases. First assume that

max(x) ∩ Ai 6= ∅. Let x = yd in M(A, I) with d ∈ Ai. In G we have

wj = xajx
−1 = ydajd

−1y−1 = ya′
jy

−1

with a′
j = dajd

−1 ∈ Ai for 1 ≤ j ≤ m. Since |y| < |x| it follows by induction that

there are v ∈ IRR(R), b1, . . . , bm ∈ Ai, c ∈ Gi such that for all 1 ≤ j ≤ m:

• wj = vbjv
−1 in M(A, I) and

• a′
j = cbjc

−1 in the group Gi.

The last identity implies aj = (d−1c)bj(c
−1d).



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 37

Next, assume that max(x) ∩ Aj 6= ∅ for some j with (i, j) ∈ E. Let x = yd in

M(A, I) with d ∈ Aj and (i, j) ∈ E. We get

wj = xajx
−1 = ycajc

−1y−1 = yajy
−1

in G. Again, we can directly apply the induction hypothesis.

Finally assume that max(x)∩Star(i) = ∅. Then, by Lemma 50 xajx
−1 ∈ IRR(R)

(since x ∈ IRR(R)) for all 1 ≤ j ≤ m. Hence, wj = xajx
−1 in M(A, I). We can set

v = x, bj = aj , and c = 1Gi
.

For a ∈ A we denote in the sequel with A(a) the unique set Ai (i ∈ W ) such

that a ∈ Ai. Similarly, we denote with G(a) the unique group Gi such that a ∈ Ai.

Note that the two premises (a) and (b) in the following lemma are precisely the

conclusions (for all i ∈ W ) in Lemma 52. The lemma gives us a criterion (namely

(2) below) for solvability of an RSCCP(G, B)-instance (which is (1) below). Using

the results from Section 6, we are able to check this criterion in polynomial time

(using oracle access to the problems for the factor groups Gi listed in Theorem 27).

Lemma 53. Let B ⊆ A be a finite set with Bi = B ∩ Ai 6= ∅ for i ∈ W . Let

wa ∈ IRR(R) (a ∈ B), vi ∈ IRR(R) (i ∈ W ), ba ∈ A(a) (a ∈ B), and ci ∈ Gi

(i ∈ W ) such that for all i ∈ W and all a ∈ Bi we have:

(a) wa = vibav−1
i in M(A, I) and

(b) a = cibac−1
i in Gi.

If s =
⊔

i∈W vi exists, then alph(s) ∩ Ai = ∅ for all i ∈ Z. Moreover, the following

two conditions are equivalent:

(1) There exists x ∈ M(A, I) with wa = xax−1 in G for all a ∈ B.

(2) The trace supremum s =
⊔

i∈W vi exists and wa = sas−1 holds in G for all

a ∈
⋃

i∈W\Z Bi.

Proof. We first show that alph(s)∩Aj = ∅ for all j ∈ Z in case s =
⊔

i∈W vi exists.

For this it suffices to show that every vi (i ∈ W ) does not contain symbols from
⋃

j∈Z Aj . Recall that for a ∈ Bi the trace wa = vibav−1
i is R-irreducible. But if vi

would contain a symbol from
⋃

j∈Z Aj , then vibav−1
i would not be R-irreducible.

Let us now prove the equivalence of (1) and (2). For the direction (2) ⇒ (1) we

set

x = s
∏

j∈Z

c−1
j

Then, for all a ∈
⋃

i∈W\Z Bi we get

wa = sas−1 = xax−1,

since
∏

j∈Z c−1
j commutes with a. On the other hand, if a ∈ Bi for some i ∈ Z,

then we must have vi = ε (otherwise wa = vibav−1
i would not belong to IRR(R)).



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

38 Niko Haubold, Markus Lohrey, Christian Mathissen

Hence, in G we get

wa = ba = c−1
i aci = (s

∏

j∈Z

c−1
j )a(s

∏

j∈Z

c−1
j )−1 = xax−1.

Here, it is important to note that that s commutes with
∏

j∈Z c−1
j and a (since

s does not contain symbols from
⋃

j∈Z Aj) and also
∏

j∈Z\{i} c−1
j commutes with

a ∈ Bi.

For the direction (1) ⇒ (2) let wa = xax−1 in G for all a ∈ B, where we assume

w.l.o.g. that x ∈ IRR(R). For all i ∈ W , choose di ∈ Ai ∪ {ε} and xi ∈ IRR(R)

such that x = xidi and max(xi) ∩ Ai = ∅. Furthermore let xi = tiui with uiIAi

such that |ui| is maximal. By Lemma 12, this factorization is unique. Then, for all

a ∈ Bi 6= ∅,

vibav−1
i = wa = xax−1 = tiuidiad−1

i u−1
i t−1

i = ticat−1
i

in G where we set ca = diad−1
i ∈ Ai. Moreover, the definition of ti implies that

max(ti) ∩ Star(i) = ∅. By Lemma 50, ticat−1
i ∈ IRR(R). Hence, ticat−1

i = vibav−1
i .

Lemma 51 implies ti = vi and ca = ba. Hence, we have x = tiuidi = viuidi which

implies vi ¹p x for all i ∈ W . Therefore s =
⊔

i∈W vi exists and s ¹p x. But then

x = sy for some R-irreducible y ∈ M(A, I). Moreover, we can find for all i ∈ W

some ri ∈ M(A, I) such that s = viri. We have x = viriy and set zi = riy. Then,

for all a ∈ Bi, we get vibav−1
i = wa = xax−1 = viziaz−1

i v−1
i in G. We can cancel vi

and v−1
i to infer ba = ziaz−1

i in G. Hence, we must have ziaz−1
i

∗
−→R ba. It follows

that alph(zi) ⊆ Star(i) for all i ∈ W . Since y is a suffix of zi for all i ∈ W it follows

that alph(y) ⊆ Star(i) for all i ∈ W and therefore alph(y) ⊆
⋃

j∈Z Aj by (8). Hence,

y commutes with all a ∈
⋃

i∈W\Z Bi. Thus, for all a ∈
⋃

i∈W\Z Bi we get

wa = xax−1 = syay−1s−1 = sas−1

in G. This concludes the proof of the lemma.

8. Restricted simultaneous compressed conjugacy

Based on our results on double cones from the previous section, we will prove

Theorem 27 in this section. We use the notations for (W,E), Gi (i ∈ W ), G, R, A,

Ai (i ∈ W ) and M(A, I) from the previous section. Let furthermore Σi be a finite

generating set for Gi for i ∈ {1, . . . , n}. W.l.o.g. we can assume that Σi ∩ Σj = ∅

for i 6= j. We define Σ =
⋃n

i=1 Σi; it is a finite generating set of the graph product

G.

Let ∅ 6= Bi ⊆ Gi be finite for i ∈ W and B =
⋃

i∈W Bi. Let us fix an instance

(Aa)a∈B of the problem RSCCP(G, B). We can assume w.l.o.g. that for all i ∈ W

and all a ∈ Bi we have a 6= 1Gi
(and hence Bi ⊆ Ai), since otherwise we only have

to test in polynomial time (using oracle access to CWP(Gi)) whether val(Aa) = 1Gi
.

If this is true, then we can remove a and Aa from the RSCCP(G, B) instance.

To the given SLPs Aa (a ∈ B) we first apply Proposition 39 to construct re-

duced well-formed 2-level CCP-systems Ba (a ∈ B) with val(Aa) = val(Ba) in G in



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 39

polynomial time using oracle access to the decision problems CWP(Gi) for i ∈ W .

As explained in Section 4, we can interpret lower level nonterminals from a 2-level

CCP-system Ba as elements from A and hence uvalBa
maps every upper level non-

terminal of Ba to a word over A, which can be interpreted as an element of M(A, I)

or G. We need the following lemma:

Lemma 54. For a given reduced and well-formed 2-level CCP-system A over Σ±1

we can check in polynomial time, whether the trace [uval(A)]I is a double cone. In

case [uval(A)]I is a double cone, we can compute in polynomial time the following

data:

• some i ∈ W ,

• a reduced and well-formed 2-level CCP-system Va over Σ±1 and

• an SLP C over the alphabet Σ±1
i such that val(C) represents the element

a ∈ Ai and [uval(A)]I = [uval(Va)]Ia[uval(Va)]−1
I in M(A, I).

Proof. First we check whether |uval(A)| is odd. If not, then uval(A) cannot be a

double cone. Assume that |uval(A)| = 2k+1 for some k ≥ 0 and let uval(A) = u1au2

with |u1| = |u2| = k. By Lemma 51, [uval(A)]I is a double cone if and only if

[u1]I = [u2]
−1
I (for this, it is important that A is reduced). We can easily compute

reduced and well-formed 2-level CCP-systems Va and V′
a with uval(Va) = u1 and

uval(V′
a) = u−1

2 . By Lemma 3 and 20, we can check in polynomial time whether

[uval(Va)]I = [uval(V′
a)]I . Moreover, we can compute in polynomial time i ∈ W

such that a ∈ Ai and an SLP C, which generates the group element a (this SLP is

part of lo(A)). This concludes the proof.

Now we can present an algorithm that solves RSCCP(G, B) in polynomial time

with oracle access to the problems CWP(Gi) and RSCCP(Gi, Bi) for i ∈ W :

Proof of Theorem 27. Let Aa (a ∈ B) be the input SLPs. We have to check whether

there exists x such that val(Aa) = xax−1 in G for all a ∈ B. By Proposition 39

we can assume that Aa is a reduced well-formed 2-level CCP-system for all a ∈

B. Note that we need oracle access to the problems CWP(Gi) in order to apply

Proposition 39.

In a first step we check, whether there exist vi ∈ M(A, I), ci ∈ Gi (i ∈ W ) and

ba ∈ A(a) (a ∈ B) such that for all i ∈ W and all a ∈ Bi:

• [uval(Aa)]I = vibav−1
i (in M(A, I)) and

• a = cibac−1
i in the group Gi.

Two points are important here:

• If these elements vi, ci, ba do not exist, then by Lemma 52 there cannot

exist x such that val(Aa) = xax−1 in G for all a ∈ B.

• One can check in polynomial time whether vi, ci, ba with the above proper-

ties exist using oracle access to the problems RSCCP(Gi, Bi) (i ∈ W ): Using



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

40 Niko Haubold, Markus Lohrey, Christian Mathissen

Lemma 54, we check in polynomial time, whether every trace [uval(Aa)]I
is a double cone (we can reject, if this does not hold) and compute re-

duced and well-formed CCP-systems Va and SLPs for elements ba ∈ A with

[uval(Aa)]I = [uval(Va)]Iba[uval(Va)]−1
I . Next, we check whether ba ∈ A(a)

(this is easy; just look at the terminal alphabet of the SLP for ba) and

whether [uval(Va)]I = [uval(Vb)]I if a, b ∈ B belong to the same set Bi.

The latter is possible in polynomial time by Lemma 3 and 20. Finally, we

have to check whether for every i ∈ W there exists ci ∈ Gi such that for

all a ∈ Bi, a = cibac−1
i holds in the group Gi. But this is an instance of

the problem RSCCP(Gi, Bi) (recall that ba is given by an SLP over the

alphabet Σ±1
i ).

Let us now assume that the elements vi, ci, ba with the above properties exist and

that we have computed the reduced and well-formed 2-level CCP-systems Vi (i ∈

W ) with [uval(Vi)]I = vi. Then, by Lemma 53 it suffices to check whether the

supremum s =
⊔

i∈W vi exists and whether

[uval(Aa)]I = sas−1 (9)

holds in G for all a ∈
⋃

i∈W\Z Bi.

First we check in polynomial time using Corollary 49 whether the trace supre-

mum s =
⊔

i∈W [uval(Vi)]I exists (recall that |W | = n is a constant in our consider-

ation). Assume that s exist. Corollary 49 allows us to compute in polynomial time

a well-formed 2-level CCP-systems S such that [uval(S)]I = s. Hence (9) becomes

an instance of CWP(G), which by Theorem 26 can be solved in polynomial time

with oracle access to the problems CWP(Gi) (i ∈ W ). This concludes the proof of

Theorem 27.

9. Computing the core of a compressed trace

The next three sections are concerned with the proof of Theorem 31, stating that

the compressed conjugacy problem of a graph group can be solved in polynomial

time. In this section, we introduce the concept of the core of a trace [46] and show

that the core of a compressed trace can be computed in polynomial time.

We will fix a finite independence alphabet (Σ, I) and the corresponding graph

group G(Σ, I) for the rest of this section. With R we denote the trace rewriting

system from Section 2.5.

The following results are direct corollaries of Lemma 3, Proposition 39, and

Proposition 40 (which can be applies since (Σ, I) is a fixed independence alphabet):

Corollary 55. For a given SLP A over the alphabet Σ±1 we can compute in poly-

nomial time an SLP B over the alphabet Σ±1 with [val(B)]I = NFR([val(A)]I).

Corollary 56. For given SLPs A and B over Σ±1, we can compute in polynomial

time SLPs P and D such that:



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 41

• [val(P)]I = [val(A)]I ⊓p [val(B)]I and

• [val(D)]I = [val(A)]I \p [val(B)]I .

Definition 57. A trace v is called cyclically R-irreducible if v ∈ IRR(R) and

min(v)∩min(v−1) = ∅. If for a trace w we have NFR(w) = uvu−1 in M(Σ±1, I) for

traces u, v with v cyclically R-irreducible, then we call v the core of w, core(w) for

short.

The trace v in the last definition is uniquely defined [46]. Moreover, note that a

trace t is a double cone if and only if t ∈ IRR(R) and core(t) has length 1.

In this section, we will present a polynomial time algorithm for computing an

SLP that represents core([val(A)]I) for a given SLP A. For this, we need the following

lemmas.

Lemma 58. Let u,w ∈ M(Σ±1, I). If u ¹p w, u−1 ¹p w and w ∈ IRR(R), then

u = ε.

Proof. Suppose for contradiction that

T = {w ∈ IRR(R) | ∃u ∈ M(Σ±1, I) \ {ε} : u, u−1 ¹p w} 6= ∅.

Let w ∈ T with |w| minimal and u ∈ M(Σ±1, I) such that u 6= ε and u, u−1 ¹p w. If

|u| = 1 then u = a for some a ∈ Σ±1 and hence a, a−1 ¹p w, a contradiction since

aDa−1. If |u| = 2 then u = a1a2 for some a1, a2 ∈ Σ±1. Since w, and therefore u

is R-irreducible, we have a1 6= a−1
2 . Since a1 ∈ min(w) and a−1

2 ∈ min(w) we have

a1Ia−1
2 , i.e., a1Ia2. Hence, also a2 ∈ min(w), which contradicts a−1

2 ∈ min(w). So

assume that |u| > 2. Let a ∈ min(u). Then a ∈ min(w), and there exist traces t, w′

with w = aw′ = u−1t. If a 6∈ min(u−1), then a ∈ min(t) and aIu−1. But the latter

independence contradicts a−1 ∈ alph(u−1). Hence a ∈ min(u−1), i.e., a−1 ∈ max(u).

Thus, we can write u = ava−1 and u−1 = av−1a−1 with v 6= ε (since |u| > 2). Since

ava−1 = u ¹p aw′ and av−1a−1 = u−1 ¹p aw′ and M(Σ±1, I) is cancellative, we

have v ¹p w′, v−1 ¹p w′. Since v 6= ε, we have a contradiction to the fact that |w|

is minimal.

Note that Lemma 58 also holds for the suffix order ¹s.

Example 59. We take the independence alphabet from Example 13 and consider

the trace w = [c−1d−1a−1ba−1cabdc−1d−1a−1b−1dca]I ∈ M(Σ±1, I), whose depen-

dence graph looks as follows:

c−1 d−1 c d c−1 d−1 d c

a−1 b a−1 a b a−1 b−1 a

Then, we have NFR(w) = [c−1d−1a−1bcbdc−1a−1b−1ca]I :



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

42 Niko Haubold, Markus Lohrey, Christian Mathissen

c−1 d−1 c d c−1 c

a−1 b b a−1 b−1 a

Hence, the core of w is core(w) = [d−1cbdc−1a−1]I and looks as follows:

d−1 c d c−1

b a−1

Note that we have NFR(w) ⊓p NFR(w−1) = c−1a−1b and hence

NFR

(

(

NFR(w)⊓pNFR(w−1)
)−1

NFR(w)
(

NFR(w) ⊓p NFR(w−1
)

)

= NFR

(

(

c−1a−1b
)−1(

c−1d−1a−1bcbdc−1a−1b−1ca
)(

c−1a−1b
)

)

= d−1cbdc−1a−1 = core(w).

This fact holds for every trace, and will be proven next.

Lemma 60. Let w ∈ IRR(R) and d = w ⊓p w−1. Then NFR(d−1wd) = core(w).

Proof. Let d = w ⊓p w−1. Thus, there are traces u, v such that du = w = v−1d−1

and min(u) ∩ min(v) = ∅. By Levi’s Lemma (Lemma 11) it follows that there are

traces x, y1, y2, z such that xy1 = d, y2z = u, xy2 = v−1, y1z = d−1, and y1Iy2.

Hence we have y1 ¹p d−1 and y1 ¹s d, which is equivalent to y−1
1 ¹p d−1. Moreover,

since w is R-irreducible, so is d−1. We can apply Lemma 58 to infer that y1 = ε.

It follows that x = d, z = d−1, and thus w = du = dy2z = dy2d
−1. Moreover,

since min(y2z)∩min(y−1
2 x−1) = min(u)∩min(v) = ∅, we have min(y2)∩min(y−1

2 ) =

∅. Hence, y2 is the core of w. Moreover since w (and therefore y2) is R-irreducible,

we have NFR(d−1wd) = NFR(d−1dy2d
−1d) = y2.

We now easily obtain:

Corollary 61. For the fixed independence alphabet (Σ, I) the following problem can

be solved in polynomial time:

INPUT: An SLP A over Σ±1.

OUTPUT: An SLP B with [val(B)]I = core([val(A)]I)

Proof. By Corollary 55 we can assume that [val(A)]I is R-irreducible. By Corol-

lary 56 we can compute in polynomial time an SLP P with [val(P)]I = [val(A)]I ⊓p

[val(A)−1]I . Lemma 60 implies

core([val(A)]I) = NFR([val(P)−1val(A)val(P)]I).

By Corollary 55 we can compute in polynomial time an SLP B with

[val(B)]I = NFR([val(P)−1val(A)val(P)]I),

which concludes the proof.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 43

10. A pattern matching algorithm for connected patterns

Our second tool for proving Theorem 31 is a pattern matching algorithm for com-

pressed traces. For two traces v and w we say that v is a factor of w if there exist

traces x, y with w = xvy. This is equivalent to saying that the dependence graph

Dw contains a convex subset such that the induced subgraph is isomorphic to Dv.

We consider the following problem and show that it can be solved in polynomial

time if the independence alphabet (Σ, I) satisfies certain conditions.

INPUT: An independence alphabet (Σ, I) and two SLPs T and P over Σ.

QUESTION: Is [val(P)]I a factor of [val(T)]I?

We write alph(T) and alph(P) for alph(val(T)) and alph(val(P)), respectively. We

may assume that Σ = alph(T) and that Σ is connected. Otherwise we simply solve

several instances of the latter problem separately. Also, we assume in the following

that the SLPs T = (V,Σ, S, P ) and P are in Chomsky normal form. Let Γ ⊆ Σ.

We can view the projection morphism πΓ : Σ∗ → Γ∗ also as a morphism πΓ :

M(Σ, I) → M(Γ, I ∩ (Γ × Γ)) in the natural way, i.e., we define πΓ([u]I) = [πΓ(u)]I
(this is indeed well-defined). Since Σ is a constant size alphabet, we can compute in

polynomial time an SLP (without initial variable) that contains for every variable

X ∈ V and every Γ ⊆ Σ a variable XΓ such that val(XΓ) = πΓ(valT(X)); see the

proof of Lemma 3. If rhsT(X) = Y Z, then we simply set the right-hand side of XΓ

to YΓZΓ.

In order to develop a polynomial time algorithm for the problem stated above we

need a succinct representation for an occurrence of P in T. Since [val(P)]I is a factor

of [val(T)]I if and only if there is a prefix u ¹p [val(T)]I such that u[val(P)]I ¹p

[val(T)]I , we will in fact compute prefixes with the latter property and represent a

prefix u by its Parikh image (|u|a)a∈Σ. Hence we say a sequence O = (Oa)a∈Σ ∈ NΣ

is an occurrence of a trace v in a trace w if and only if there is a prefix u ¹p w such

that uv ¹p w, and O = (|u|a)a∈Σ. For Γ ⊆ Σ we write πΓ(O) for the restriction

(Oa)a∈Γ. Furthermore, we say that O is an occurrence of P in T if O is an occurrence

of [val(P)]I in [val(T)]I . Note that our definition of an occurrence of P in T does not

exactly correspond to the intuitive notion of an occurrence as a convex subset of the

dependence graph of [val(T)]I . In fact, to a convex subset of the dependence graph

of [val(T)]I , which is isomorphic to the dependence graph of [val(P)]I , there might

correspond several occurrences O, since for an a ∈ Σ that is independent of alph(P)

we might have several possibilities for the value Oa. However, if we restrict to letters

that are dependent on alph(P), then our definition of an occurrence coincides with

the intuitive notion.

Let X be a nonterminal of T with rhsT(X) = Y Z and let O be an occurrence

of [val(P)]I in [val(X)]I . If there are a, b ∈ alph(P) such that Oa < |val(Y )|a and

Ob + |val(P)|b > |val(Y )|b, then we say that O is an occurrence of P at the cut of

X. We assume w.l.o.g. that |val(P)| ≥ 2, otherwise the problem reduces simply to

checking whether there occurs a certain letter in val(T). This assumption implies

that [val(P)]I is a factor of [val(T)]I if and only if there is a nonterminal X of T for



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

44 Niko Haubold, Markus Lohrey, Christian Mathissen

which there is an occurrence of P at the cut of X.

Example 62. We take the independence alphabet from Example 13 again. Let

X be a nonterminal

with val(X) = acbc ad cbc acbc acbc acbc acb|c acbc acbc acbc acb dc where ’|’

denotes the cut of X and val(P) = acbc acbc acbc acbc acbc. Then the occurrences of

val(P) at the cut of X are (1, 1, 2, 1), (2, 2, 4, 1), (3, 3, 6, 1), and (4, 4, 8, 1) where the

positions in a tuple correspond to the letters in our alphabet in the order a, b, c, d.

We will see later how to construct them.

Lemma 63 ([32]). Let v, w ∈ M(Σ, I). A sequence (na)a∈Σ ∈ NΣ is an occurrence

of v in w if and only if (na, nb) is an occurrence of π{a,b}(v) in π{a,b}(w) for all

(a, b) ∈ D.

Let Γ,∆ ⊆ Σ. We call occurrences (Oa)a∈Γ and (O′
a)a∈∆ matching if (Oa)a∈Γ∩∆ =

(O′
a)a∈Γ∩∆. An arithmetic progression is a subset of NΣ of the form

{(ia)a∈Σ + k · (da)a∈Σ | 0 ≤ k ≤ ℓ}.

This set can be represented by the triple ((ia)a∈Σ, (da)a∈Σ, ℓ). The descriptional size

|((ia)a∈Σ, (da)a∈Σ, ℓ)| of this arithmetic progression is ⌈log2(ℓ)⌉+
∑

a∈Σ(⌈log2(ia)⌉+

⌈log2(da)⌉). In Example 62, the occurrences of val(P) at the cut of X form the

arithmetic progression
(

(1, 1, 2, 1), (1, 1, 2, 0), 3
)

.

We will use Lemma 63 in order to compute the occurrences of P in T in form

of a family of arithmetic progressions. To this aim, we follow a similar approach

as Genest and Muscholl for message sequence charts [18]. In particular Lemma 64

below was inspired by [18, Proposition 1].

Throughout the rest of this section we make the following assumption:

alph(P) is connected and {a, b} ∩ alph(P) 6= ∅ for all (a, b) ∈ D with a 6= b. (10)

Let X be a nonterminal of T and let O be an occurrence of P at the cut of X.

Since the alphabet of the pattern is connected there must be some a, b ∈ Σ with

(a, b) ∈ D such that π{a,b}(O) is at the cut of X{a,b}. We will therefore compute

occurrences of π{a,b}(val(P)) at the cut of X{a,b}. It is well known (see [29]) that

the occurrences of π{a,b}(val(P)) at the cut of X{a,b} form an arithmetic progression

((ia, ib), (da, db), ℓ) and that π{a,b}(val(P)) is of the form unv for some n ≥ ℓ and

strings u, v ∈ {a, b}∗ with v ¹p u, |u|a = da and |u|b = db. Moreover, by [29] the

arithmetic progression ((ia, ib), (da, db), ℓ) can be computed in time O(|T|2|P|).d

Now suppose we have computed the occurrences of π{a,b}(val(P)) at the cut of

X{a,b} in form of an arithmetic progression. The problem now is how to find (for the

possibly exponentially many occurrences in the arithmetic progression) matching

occurrences of projections onto all other pairs in D.

dIn fact, in [29] it was shown that the arithmetic progression (ia + ib, da + db, ℓ) can be computed
in time O(|T|2|P|). Observe that from this the arithmetic progression ((ia, ib), (da, db), ℓ) can be
computed in time |T| + |P|.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 45

The following lemma states that for each occurrence O at the cut of a nonter-

minal either there is a pair (a, b) ∈ D such that the projection of O onto {a, b} is

the first or the last element of an arithmetic progression, or all projections of O lie

at the cut of the same nonterminal.

Lemma 64. Let X be a nonterminal of T and let O be an occurrence of P at the

cut of X. Then either

(i) π{a,b}(O) is at the cut of X{a,b} for all (a, b) ∈ D with a 6= b, or

(ii) there are a, b ∈ alph(P) with (a, b) ∈ D such that π{a,b}(O) is the first or last

element of the arithmetic progression of occurrences of π{a,b}(val(P)) at the

cut of X{a,b}.

Proof. Let rhsT(X) = Y Z. Clearly, by our general assumption (10) it suffices to

show that either (ii) holds, or Oa < |val(Y )|a < Oa + |val(P)|a for all a ∈ alph(P).

We show this assertion by induction on |alph(P)|. If alph(P) is a singleton, then it

is trivially true.

Next, we consider the case |alph(P)| = 2. So let {a, b} = alph(P) and hence

(a, b) ∈ D by (10). Assume that (ii) does not hold. Consider the arithmetic progres-

sion ((ia, ib), (da, db), ℓ) of occurrences of val(P) at the cut of X{a,b}. Then val(P) is

of the form unv for some n ≥ ℓ and strings u, v ∈ {a, b}∗ with v ¹p u, |u|a = da

and |u|b = db. We conclude that da, db > 0 as otherwise |alph(P)| ≤ 1. Suppose

for contradiction that ia + ℓda > |val(Y )|a. Since no prefix w of π{a,b}(val(X)) can

satisfy |w|a > |val(Y )|a and |w|b < |val(Y )|b we conclude ib + ℓdb ≥ |val(Y )|b.

But then the occurrence (ia + ℓda, ib + ℓdb) is not at the cut of X{a,b}, which is a

contradiction. Hence ia + ℓda ≤ |val(Y )|a and by symmetry ib + ℓdb ≤ |val(Y )|b.

Similarly, since (ia, ib) is an occurrences of val(P) at the cut of X{a,b}, we get

|val(Y )|a ≤ ia + |val(P)|a and |val(Y )|b ≤ ib + |val(P)|b. As π{a,b}(O) is neither the

first nor the last element of the arithmetic progression (we assume that (ii) does

not hold), we have Oa = ia + kda and Ob = ib + kdb for some 0 < k < ℓ and hence

Oa < |val(Y )|a < Oa + |val(P)|a and Ob < |val(Y )|b < Ob + |val(P)|b as required.

Now, suppose that |alph(P)| ≥ 3. Since O is an occurrence at the cut of X,

there are a, b ∈ alph(P) such that Oa < |val(Y )|a and Ob + |val(P)|b > |val(Y )|b.

We may assume that (a, b) ∈ D. Indeed, if Oa + |val(P)|a > |val(Y )|a choose a = b.

Otherwise, since alph(P) is connected there is a dependence path between a and b.

Since Oa + |val(P)|a ≤ |val(Y )|a, there must be an edge (a′, b′) ∈ D on this path

such that a′, b′ ∈ alph(P), Oa′ + |val(P)|a′ ≤ |val(Y )|a′ (and hence Oa′ < |val(Y )|a′),

and Ob′ + |val(P)|b′ > |val(Y )|b′ .

Next consider a spanning tree of (alph(P),D∩ alph(P)× alph(P)) which contains

the edge (a, b) (in case a 6= b). Let c /∈ {a, b} be a leaf of this spanning tree (it exists

since |alph(P)| ≥ 3). Obviously, ∆ = alph(P) \ {c} is connected and π∆(O) is at

the cut of X∆. Thus we can apply the induction hypothesis to π∆(val(P)) and X∆.

We get either (ii) (in which case we are done) or Oa < |val(Y )|a < Oa + |val(P)|a
for all a ∈ ∆. Assume the latter. In particular, Od < |val(Y )|d < Od + |val(P)|d



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

46 Niko Haubold, Markus Lohrey, Christian Mathissen

for some d ∈ ∆ with (c, d) ∈ D. Hence, π{d,c}(O) is at the cut of X{d,c}. Thus,

applying the induction hypothesis also to π{d,c}(val(P)) and X{d,c} we get either

(ii) or Oc < |val(Y )|c < Oc + |val(P)|c.

The last lemma motivates that we partition the set of occurrences into two sets.

Let O be an occurrence of P in T at the cut of X. We call O single (for X) if there

are a, b ∈ alph(P) with (a, b) ∈ D such that the projection π{a,b}(O) is the first

or the last element of the arithmetic progression of occurrences of π{a,b}(val(P)) at

the cut of X{a,b}. Otherwise, we call O periodic (for X). By Lemma 64, if O is

periodic, then π{a,b}(O) is an element of the arithmetic progression of occurrences

of π{a,b}(val(P)) at the cut of X{a,b} for all (a, b) ∈ D (but neither the first nor the

last element, if a, b ∈ alph(P)). The next proposition shows that we can decide in

polynomial time whether there are single occurrences of val(P) in T.

Proposition 65. For given SLPs T and P we can decide in time (|T| + |P|)O(1)

whether there is a single occurrence at the cut of some nonterminal of T.

Proof. We do the following for all a, b ∈ alph(P) with (a, b) ∈ D and all nonter-

minals X of T: First we check using [29] whether an occurrence of π{a,b}(val(P)) at

the cut of X{a,b} exists. If such an occurrence exists, then we can compute (using

again [29]) the first occurrence (Of
a , Of

b ) and the last occurrence (Ol
a, Ol

b) in the

arithmetic progression of occurrences of π{a,b}(val(P)) at the cut of X{a,b}. For all

(Oa, Ob) ∈ {(Of
a , Of

b ), (Ol
a, Ol

b)} we check, whether (Oa, Ob) is a projection of an

occurrence of val(P) in val(X) as follows.

Let a1, . . . , an be an enumeration of Σ such that a = a1, b = a2 and D(ai) ∩

{a1, . . . , ai−1} 6= ∅ for all 2 ≤ i ≤ n. Moreover, we require that the elements of

alph(P) appear at the beginning of our enumeration, i.e., are the elements a1, . . . , aj

for some j ≤ n. This can be assumed since Σ and alph(P) are connected. We iterate

over 3 ≤ i ≤ n and compute, if possible, an integer Oai
such that (Oa1

, . . . , Oai
) is

an occurrence of π{a1,...,ai}(val(P)) in π{a1,...,ai}(val(X)).

So let i ≥ 3, d = ai, and ∆ = {a1, . . . , ai−1}. By our general assumption (10)

we can choose some c ∈ ∆ ∩ alph(P) such that (c, d) ∈ D. Let us further assume

that we have already constructed an occurrence (Oa1
, . . . , Oai−1

) of π∆(val(P)) in

π∆(val(X)). First, we compute the unique number k ≥ 0 such that dkc is a prefix

of π{c,d}(val(P)). Then, we compute the word w ∈ {c, d}∗ such that wdkc is a

prefix of πc,d(val(X)) and |w|c = Oc. If such a prefix w does not exist, then there

is no occurrence (Oa1
, . . . , Oai−1

, Od) of π∆∪{d}(val(P)) in π∆∪{d}(val(X)). On the

other hand, if such a prefix w exists, it exists uniquely. Note that if there is an

occurrence (Oa1
, . . . , Oai−1

, Od) of π∆∪{d}(val(P)) in π∆∪{d}(val(X)), then we must

have Od = |w|d. Hence, we set |w|d = Od. Last, using [29] we check in polynomial

time for all e ∈ D(d) ∩ ∆ whether (Oe, Od) is an occurrence of π{d,e}(val(P)) in

π{d,e}val(X). By Lemma 63, the latter holds if and only if (Oa1
, . . . , Oai−1

, Od) is

an occurrence of π∆∪{d}(val(P)) in π∆∪{d}(val(X)).



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 47

It remains to be shown that for every nonterminal X of T we can compute the

periodic occurrences of val(P) at the cut of X. To this aim we define the amalga-

mation of arithmetic progressions. Let Γ,Γ′ ⊆ Σ such that Γ∩Γ′ 6= ∅. Consider two

arithmetic progressions

p = ((ia)a∈Γ, (da)a∈Γ, ℓ), p′ = ((i′a)a∈Γ′ , (d′a)a∈Γ′ , ℓ′).

The amalgamation of p and p′ is

p ⊗ p′ = {v = (va)a∈Γ∪Γ′ | πΓ(v) ∈ p and πΓ′(v) ∈ p′}.

Example 66. We continue Example 62 and show how to compute occurrences at

the cut. First we consider the projections of val(P) and val(X):

π{a,b}(val(P)) = (ab)5 val(X{a,b}) = (ab)6|(ab)4

π{b,c}(val(P)) = (cbc)5 val(X{b,c}) = (cbc)5cb|c(cbc)4

π{c,d}(val(P)) = c10 val(X{c,d}) = c2dc9|c8dc

For the projections we find the arithmetic progressions pab, pbc, pcd of occurrences

at the cut:

occurrences of π{a,b}(val(P)) at the cut of X{a,b} : pab =
(

(2, 2), (1, 1), 3
)

occurrences of π{b,c}(val(P)) at the cut of X{b,c} : pbc =
(

(1, 2), (1, 2), 4
)

occurrences of π{c,d}(val(P)) at the cut of X{c,d} : pcd =
(

(2, 1), (1, 0), 7
)

.

Note that in pab the first component corresponds to a and the second to b whereas

in pbc the first component corresponds to b and the second to c. We amalgamate

the arithmetic progressions and obtain pabc = pab ⊗ pbc =
(

(2, 2, 4), (1, 1, 2), 3
)

. If

we again amalgamate we obtain pabcd = pabc ⊗ pcd =
(

(2, 2, 4, 1), (1, 1, 2, 0), 2
)

. This

way we found occurrences (2, 2, 4, 1), (3, 3, 6, 1) and (4, 4, 8, 1) of P at the cut of X.

Observe that there is a fourth occurrence (1, 1, 2, 1) that we did not find this way

which is single.

Lemma 67. Let Γ,Γ′ ⊆ Σ with Γ ∩ Γ′ 6= ∅, and let p = ((ia)a∈Γ, (da)a∈Γ, ℓ)

and p′ = ((i′a)a∈Γ′ , (d′a)a∈Γ′ , ℓ′) be two arithmetic progressions. Then p ⊗ p′ is an

arithmetic progression which can be computed in time (|p| + |p′|)O(1).

Proof. We need to solve the system of linear equations

[ ib + db · x = i′b + d′b · y ]b∈Γ∩Γ′ (11)

for integers x and y under the constraint

0 ≤ x ≤ ℓ and 0 ≤ y ≤ ℓ′. (12)

Let us fix an a ∈ Γ ∩ Γ′. First we solve the single equation

ia + da · x = i′a + d′a · y. (13)



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

48 Niko Haubold, Markus Lohrey, Christian Mathissen

for non-negative integers x and y. The solutions are given by the least solution

plus a multiple of the least common multiple of da and d′a. We start by computing

g = gcd(da, d′a). If ia 6= i′a mod g, then there is no solution for equation (13) and

hence p ⊗ p′ = ∅. In this case we stop. Otherwise, we compute the least solution

sa ≥ max(ia, i′a) of the simultaneous congruences

z = ia mod da,

z = i′a mod d′a.

This can be accomplished with (log(da)+log(d′a))2 many bit operations; see e.g. [1].

Let k = (sa− ia)/da ≥ 0 and k′ = (sa− i′a)/d′a ≥ 0. Now, the non-negative solutions

of equation (13) are given by

(x, y) = (k +
d′a
g

· t, k′ +
da

g
· t) for all t ≥ 0. (14)

If |Γ∩Γ′| = 1 we adapt the range for t such that the constraint (12) is satisfied and

we are done.

Otherwise, (11) is a system of at least 2 linear equations in 2 variables. Hence

(11) has at least 2 (and then infinitely many) solutions if and only if any two

equations are linearly dependent over Q, i.e. for all b ∈ Γ ∩ Γ′ the following holds:

∃kb ∈ Q : da = kb · db, d′b = kb · d
′
a and i′a − ia = kb · (i

′
b − ib) (15)

In this case all solutions of equation (13) are solutions of system (11). Thus we can

test condition (15) for all b ∈ Γ ∩ Γ′ and in case it holds it only remains to adapt

the range for t such that the constraint (12) is satisfied. Otherwise there is at most

one solution and we can fix b ∈ Γ ∩ Γ′ such that (15) does not hold. We plug the

solution (14) into ib + db · x = i′b + d′b · y and obtain

ib + (k +
d′a
g

· t) · db = i′b + (k′ +
da

g
· t) · d′b.

We can solve this for t (if possible) and test whether this gives rise to a solution for

(11) under the constraint (12).

Proposition 68. Let X be a nonterminal of T. The periodic occurrences of P

at the cut of X form an arithmetic progression which can be computed in time

(|T| + |P|)O(1).

Proof. As in the proof of Proposition 65 let a1, . . . , an be an enumeration of Σ

such that {a1, . . . , ai−1} ∩ D(ai) 6= ∅ for all 2 ≤ i ≤ n and the elements of alph(P)

appear at the beginning of the enumeration. We iterate over 1 ≤ i ≤ n and compute

the arithmetic progressions of the periodic occurrences of π{a1,...,ai}(val(P)) at the

cut of X{a1,...,ai}. For i = 1 this is easy.

So let i ≥ 2, let a = ai and let ∆ = {a1, . . . , ai−1}. Assume that the periodic

occurrences of π∆(val(P)) at the cut of X∆ are given by the arithmetic progression

p = ((ic)c∈∆, (dc)c∈∆, ℓ). For all b ∈ D(a)∩∆ let p{a,b} be the arithmetic progression



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 49

of all occurrences of π{a,b}(val(P)) at the cut of X{a,b} (without the first and the

last occurrence if a, b ∈ alph(P)). Recall that we assume that {c, d} ∩ alph(P) 6= ∅

for all c, d ∈ Σ with (c, d) ∈ D and c 6= d. Hence, by Lemma 63, O is a periodic

occurrence of π{a1,...,ai}(val(P)) at the cut of X{a1,...,ai} if and only if π∆(O) ∈ p

and (Oa, Ob) ∈ p{a,b} for all b ∈ D(a) ∩ ∆. Hence the periodic occurrences of

π{a1,...,ai}(val(P)) at the cut of X{a1,...,ai} are given by the arithmetic progression
⊗

b∈D(a)∩∆

p{a,b} ⊗ p.

The result follows now from Lemma 67.

Summarizing the last section we get the following theorem.

Theorem 69. Given an independence alphabet (Σ, I) and two SLPs P and T over

Σ such that alph(P) = alph(T), we can decide in polynomial time whether [val(P)]I
is a factor of [val(T)]I .

Proof. Note that our assumption (10) is satisfied if alph(P) = alph(T). Recall that

we may assume that alph(T) is connected and that |val(P)| ≥ 2. Using Proposition 65

we can decide in polynomial time whether a single occurrence of P at the cut of some

nonterminal of T exists. By Proposition 68 we can compute the periodic occurrences

of P at the cuts of all nonterminals from T in polynomial time. The result follows,

since by definition [val(P)]I is a factor of [val(T)]I if and only if there is a nonterminal

X of T such that there is either a single occurrence of P at the cut of X or a periodic

occurrence of P at the cut of X.

Remark 70. In the last section we actually proved the above theorem under weaker

assumptions: We only need for each connected component Σi of alph(T) that Σi ∩

alph(P) is connected and that {a, b}∩ alph(P) 6= ∅ for all (a, b) ∈ D∩ (Σi ×Σi) with

a 6= b.

11. Compressed conjugacy

In this section we will prove Theorem 31. For this, we will follow the approach from

[32,47] for non-compressed traces. We will fix the graph group G(Σ, I) for the rest

of this section. The following result allows us to transfer the conjugacy problem to

a problem on (compressed) traces:

Theorem 71 ([32,47]). Let u, v ∈ M(Σ±1, I). Then the following are equivalent:

(1) u is conjugated to v in G(Σ, I).

(2) There exists x ∈ M(Σ±1, I) such that x core(u) = core(v)x in M(Σ±1, I) (it is

said that core(u) and core(v) are conjugated in M(Σ±1, I)).

(3) |core(u)|a = |core(v)|a for all a ∈ Σ±1 and there exists k ≤ |Σ±1| such that

core(u) is a factor of core(v)k.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

50 Niko Haubold, Markus Lohrey, Christian Mathissen

The equivalence of (1) and (2) can be found in [47], the equivalence of (2) and

(3) is shown in [32]. We can now infer Theorem 31:

Proof of Theorem 31. Let A and B be two given SLPs over Σ±1. We want to

check, whether val(A) and val(B) represent conjugated elements of the graph group

G(Σ, I). Using Corollary 61, we can compute in polynomial time SLPs C and D

with [val(C)]I = core([val(A)]I) and [val(D)]I = core([val(B)]I). By Theorem 71, it

suffices to check the following two conditions:

(a) |core([val(C)]I)|a = |core([val(D)]I)|a for all a ∈ Σ±1

(b) There exists k ≤ |Σ±1| such that core([val(C)]I) is a factor of core([val(D)]I)
k.

Condition (a) can be easily checked in polynomial time, since the number of occur-

rences of a symbol in a compressed strings can be computed in polynomial time.

Moreover, condition (b) can be checked in polynomial time by Theorem 69, since

(by condition (a)) we can assume that alph(val(C)) = alph(val(D)).

12. Open problems

We have shown that the restricted simultaneous compressed conjugacy problem for

a graph product of finitely generated groups (see Section 3) can be reduced to the

compressed word problems and the restricted simultaneous compressed conjugacy

problems for the vertex groups in polynomial time (Theorem 27). It remains unclear

whether this holds also for the general simultaneous compressed conjugacy problem

as well. It is even unclear, whether the simultaneous compressed conjugacy problem

for a graph group can be solved in polynomial time. It is also unclear, whether the

compressed conjugacy problem for a graph product of finitely generated groups can

be reduced to the compressed word problems and the compressed conjugacy problem

for the vertex groups in polynomial time. Here, we have at least a polynomial time

algorithm for graph groups (Theorem 31).

Additionally we do not know whether the general compressed pattern matching

problem for traces, where we drop restriction (10) on page 44, can be decided in

polynomial time.

For graph groups, we do not know whether our compressed decision problems

(compressed word problem, compressed conjugacy problem, and restricted simul-

taneous compressed conjugacy problem) can be solved in polynomial time, if the

independence alphabet is part of the input. Finally, we would like to know, whether

the graph product of finitely generated groups with finitely generated automorphism

groups has a finitely generated automorphism group.

References

[1] E. Bach and J. Shallit. Algorithmic Number Theory, volume I: Efficient Algorithms.
MIT Press, 1996.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 51

[2] A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In
Proceeding of the 5th IFIP International Conference on Theoretical Computer Science
(IFIP TCS 2008), Milano (Italy), pages 87–100. Springer, 2008.

[3] R. V. Book and F. Otto. String–Rewriting Systems. Springer, 1993.
[4] W. W. Boone. The word problem. Annals of Mathematics (2), 70:207–265, 1959.
[5] R. Charney. An introduction to right-angled Artin groups. Geometriae Dedicata,

125:141–158, 2007.
[6] R. Charney, J. Crisp, and K. Vogtmann. Automorphisms of 2-dimensional right-

angled Artin groups. Geometry & Topology, 11:2227–2264, 2007.
[7] R. Charney and K. Vogtmann. Finiteness properties of automorphism groups of

right-angled Artin groups. Bulletin of the London Mathematical Society, 41(1):94–
102, 2009.

[8] R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous
cellular automata. Information and Computation, 106(2):159–202, 1993.

[9] L. Corredor and M. Gutierrez. A generating set for the automorphism group of a
graph product of abelian groups. Technical report, arXiv.org, 2009. http://arxiv.
org/abs/0911.0576.

[10] J. Crisp, E. Godelle, and B. Wiest. The conjugacy problem in right-angled Artin
groups and their subgroups. Journal of Topology, 2(3), 2009.

[11] M. B. Day. Peak reduction and finite presentations for automorphism groups of right-
angled artin groups. Geometry & Topology, 13(2):817–855, 2009.

[12] V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer
Science. Springer, 1990.

[13] V. Diekert and M. Lohrey. Word equations over graph products. International Journal
of Algebra and Computation, 18(3):493–533, 2008.

[14] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
[15] C. Droms. A complex for right-angled coxeter groups. Proceedings of the American

Mathematical Society, 131(8):2305–2311, 2003.
[16] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P.

Thurston. Word processing in groups. Jones and Bartlett, Boston, 1992.
[17] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for

Lempel-Ziv encoding (extended abstract). In R. G. Karlsson and A. Lingas, editors,
Proceedings of the 5th Scandinavian Workshop on Algorithm Theory (SWAT 1996),
Reykjav́ık (Iceland), number 1097 in Lecture Notes in Computer Science, pages 392–
403. Springer, 1996.

[18] B. Genest and A. Muscholl. Pattern matching and membership for hierarchical mes-
sage sequence charts. Theory of Computing Systems, 42(4):536–567, 2008.

[19] S. M. Gersten, D. F. Holt, and T. R. Riley. Isoperimetric inequalities for nilpotent
groups. Geometric and Functional Analysis, 13(4):795–814, 2003.

[20] E. R. Green. Graph Products of Groups. PhD thesis, The University of Leeds, 1990.
[21] C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD

thesis, University of Stuttgart, Institut für Informatik, 2000.
[22] N. Haubold and M. Lohrey. Compressed word problems in HNN-extensions and amal-

gamated products. In Proceedings of Computer Science in Russia (CSR 2009), num-
ber 5675 in Lecture Notes in Computer Science, pages 237–249. Springer, 2009. long
version to appear in Theory of Computing Systems.

[23] N. Haubold, M. Lohrey, and C. Mathissen. Compressed conjugacy and the word prob-
lem for outer automorphism groups of graph groups. In Proceedings of Developments
in Language Theory (DLT 2010), number 6224 in Lecture Notes in Computer Science,
pages 218–230. Springer, 2010.



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

52 Niko Haubold, Markus Lohrey, Christian Mathissen

[24] S. Hermiller and J. Meier. Algorithms and geometry for graph products of groups.
Journal of Algebra, 171:230–257, 1995.

[25] I. Kapovich, A. Myasnikov, P. Schupp, and V. Shpilrain. Generic-case complexity,
decision problems in group theory, and random walks. Journal of Algebra, 264(2):665–
694, 2003.

[26] M. I. Kargapolov and J. I. Merzljakov. Fundamentals of the theory of groups, vol-
ume 62 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979.

[27] D. Kuske and M. Lohrey. Logical aspects of Cayley-graphs: the monoid case. Inter-
national Journal of Algebra and Computation, 16(2):307–340, 2006.

[28] M. R. Laurence. A generating set for the automorphism group of a graph group.
Journal of the London Mathematical Society. Second Series, 52(2):318–334, 1995.

[29] Y. Lifshits. Processing compressed texts: A tractability border. In B. Ma and
K. Zhang, editors, Proceedings of the 18th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 2007), London (Canada), number 4580 in Lecture Notes in
Computer Science, pages 228–240. Springer, 2007.

[30] Y. Lifshits and M. Lohrey. Querying and embedding compressed texts. In R. Královic
and P. Urzyczyn, editors, Proceedings of the 31th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2006), Stará Lesná (Slovakia),
number 4162 in Lecture Notes in Computer Science, pages 681–692. Springer, 2006.

[31] R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the
Association for Computing Machinery, 24(3):522–526, 1977.

[32] H.-N. Liu, C. Wrathall, and K. Zeger. Efficient solution to some problems in free
partially commutative monoids. Information and Computation, 89(2):180–198, 1990.

[33] M. Lohrey. Word problems and membership problems on compressed words. SIAM
Journal on Computing, 35(5):1210 – 1240, 2006.

[34] M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In Pro-
ceedings of Computer Science in Russia (CSR 2007), Ekatarinburg (Russia), number
4649 in Lecture Notes in Computer Science, pages 249–258. Springer, 2007.

[35] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.
[36] J. Macdonald. Compressed words and automorphisms in fully residually free groups.

International Journal of Algebra and Computation, 20(3):343–355, 2010.
[37] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm

for strings in terms of straight-line programs. In A. Apostolico and J. Hein, editors,
Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM
97), Aarhus (Denmark), number 1264 in Lecture Notes in Computer Science, pages
1–11. Springer, 1997.

[38] A. Myasnikov, V. Shpilrain, and A. Ushakov. Group-based Cryptography. Birkhäuser,
2008.

[39] P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory.
American Mathematical Society, Translations, II. Series, 9:1–122, 1958.

[40] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[41] W. Plandowski. Testing equivalence of morphisms on context-free languages. In J. van

Leeuwen, editor, Second Annual European Symposium on Algorithms (ESA’94),
Utrecht (The Netherlands), number 855 in Lecture Notes in Computer Science, pages
460–470. Springer, 1994.

[42] W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the solution
of word equations. In Proceedings of the 25th International Colloquium on Automata,
Languages and Programming (ICALP 1998), number 1443 in Lecture Notes in Com-
puter Science, pages 731–742. Springer, 1998.

[43] W. Plandowski and W. Rytter. Complexity of language recognition problems for



January 19, 2012 10:6 WSPC/INSTRUCTION FILE long

Compressed decision problems for graph products 53

compressed words. In J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg,
editors, Jewels are Forever, Contributions on Theoretical Computer Science in Honor
of Arto Salomaa, pages 262–272. Springer, 1999.

[44] S. Schleimer. Polynomial-time word problems. Commentarii Mathematici Helvetici,
83(4):741–765, 2008.

[45] H. Servatius. Automorphisms of graph groups. Journal of Algebra, 126(1):34–60, 1989.
[46] C. Wrathall. The word problem for free partially commutative groups. Journal of

Symbolic Computation, 6(1):99–104, 1988.
[47] C. Wrathall. Free partially commutative groups. In Combinatorics, computing and

complexity, pages 195–216. Kluwer Academic Press, 1989.


