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Abstract. The complexity of the isomorphism problem for regular trees, regular
linear orders, and regular words is analyzed. A tree is regular if it is isomorphic
to the prefix order on a regular language. In case regular languages are repre-
sented by NFAs (DFAs), the isomorphism problem for regular trees turns out to be
EXPTIME-complete (resp.P-complete). In case the input automata are acyclic
NFAs (acyclic DFAs), the corresponding trees are (succinctly represented) finite
trees, and the isomorphism problem turns out to bePSPACE-complete (resp.P-
complete). A linear order is regular if it is isomorphic to the lexicographic order
on a regular language. A polynomial time algorithm for the isomorphism prob-
lem for regular linear orders (and even regular words, whichgeneralize the latter)
given by DFAs is presented. This solves an open problem byÉsik and Bloom. A
long version of this paper can be found in [18].

1 Introduction

Isomorphism problems for infinite but finitely presented structures are an active re-
search topic in algorithmic model theory [1]. It is a folklore result in computable model
theory that the isomorphism problem for computable structures (i.e., structures, where
the domain is a computable set of natural numbers and all relations are computable too)
is highly undecidable — more precisely, it isΣ1

1-complete, i.e., complete for the first
existential level of the analytical hierarchy. Khoussainov et al. proved in [15] that even
for automatic structures (i.e., structures, where the domain is a regular set of words and
all relations can be recognized by synchronous multitape automata), the isomorphism
problem isΣ1

1-complete. In [16], this result was further improved to automatic order
trees (trees viewed as partial orders) and automatic linearorders. On the decidability
side, Courcelle proved that the isomorphism problem for equational graphs is decidable
[7]. Recall that a graph is equational if it is the least solution of a system of equations
over the HR graph operations. We remark that Courcelle’s algorithm for the isomor-
phism problem for equational graphs has very high complexity (it is not elementary),
since it uses the decidability of monadic second-order logic on equational graphs.

In this paper, we continue the investigation of isomorphismproblems for infinite
but finitely presented structures at the lower end of the spectra. We focus on two very
simple classes of infinite structures:regular treesandregular words; both are particular
automatic structures. Recall that a countable tree is regular if it has only finitely many
subtrees up to isomorphism. This definition works for ordered trees (where the children
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of a node are linearly ordered) and unordered trees. An equivalent characterization in
the unordered case uses regular languages: An unordered (countable) treeT is regular if
and only if there is a regular languageL ⊆ Σ∗ which contains the empty word and such
thatT is isomorphic to the tree obtained by taking the prefix order on L (ε is the root).
Hence, a regular tree can be represented by a finite deterministic or nondeterministic
automaton (DFA or NFA), and the isomorphism problem for regular trees becomes the
following computational problem: Given two DFAs (resp., NFAs) accepting both the
empty word, are the corresponding regular trees isomorphic?

It is is not difficult to prove that this problem can be solved in polynomial time if the
two input automata are assumed to be DFAs; the algorithm is very similar to the well-
known partition refinement algorithm for checking bisimilarity of finite state systems
[14]. Hence, the isomorphism problem for regular trees thatare represented by NFAs
can be solved in exponential time. Our first main result states that this problem is in fact
EXPTIME-complete (Thm. 3.3). The proof of theEXPTIME lower bound uses three
main ingredients: (i)EXPTIME coincides with alternating polynomial space [5], (ii) a
construction from [13], which reduces the evaluation problem for Boolean expressions
to the isomorphism problem for (finite) trees, and (iii) a small NFA accepting all words
that donot represent an accepting computation of a polynomial space machine [23].

Our proof technique yields another result too: It isPSPACE-complete to check for
two givenacyclic NFAs A1, A2 (both accepting the empty word), whether the trees
that result from the prefix orders onL(A1) andL(A2), respectively, are isomorphic.
Note that these two trees are clearly finite (since the automata are acyclic), but the size
of L(Ai) can be exponential in the number of states ofAi. In this sense, acyclic NFAs
can be seen as a succinct representation of finite trees. ThePSPACE-upper bound for
acyclic NFAs follows easily from Lindell’s result [19] thatisomorphism of explicitly
given trees can be checked in logarithmic space.

The second part of this paper studies the isomorphism problem for regular words,
which were introduced in [6]. Ageneralized wordover a finite alphabetΣ is a countable
linear order together with aΣ-coloring of the elements. A generalized word is regular
if it can be obtained as the least solution (in a certain sensemade precise in [6]) of
a systemX1 = t1, . . . , Xn = tn. Here, everyti is a finite word over the alphabet
Σ ∪{X1, . . . , Xn}. For instance, the systemX = abX defines the regular word(ab)ω.

Courcelle [6] gave an alternative characterization of regular words: A generalized
word is regular if and only if it is equal to the frontier word of a finitely-branching or-
dered regular tree, where the leaves are colored by symbols fromΣ. Here, the frontier
word is obtained by ordering the leaves in the usual left-to-right order (note that the tree
is ordered). Alternatively, a regular word can be represented by a DFAA, where the
set of final states is partitioned into setsFa (a ∈ Σ); we call such a DFA apartitioned
DFA. The corresponding regular word is obtained by ordering thelanguage ofA lexi-
cographically and coloring a wordw ∈ L(A) with a if w leads from the initial state to
a state fromFa.

A third characterization of regular words was provided by Heilbrunner [12]: A gen-
eralized word is regular if it can be obtained from singletonwords (i.e., symbols from
Σ) using the operations of concatenation,ω-power,ω-power and dense shuffle. For
a generalized wordu, its ω-power (resp.ω-power) is the generalized worduuu · · ·
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Fig. 1. A dag for the regular word([abbaabba, abbaabbaabbaabba]η)ω. Nodes labeled with◦
compute the concatenation of their successor nodes. In casethe order of the successor nodes
matters, we specify it by edge labels.

(resp.· · ·uuu). Moreover, the shuffle of generalized wordsu1, . . . , un is obtained by
choosing a dense coloring of the rationals with colors{1, . . . , n} (up to isomorphism,
there is only a single such coloring [21]) and then replacingeveryi-colored rational by
ui. In fact, Heilbrunner presents an algorithm which computesfrom a given system of
equations (or, alternatively, a partitioned DFA) an expression over the above set of op-
erations (called aregular expressionin the following) which defines the least solution
of the system of equations. A simple analysis of Heilbrunner’s algorithm shows that the
computed regular expression in general has exponential size with respect to the input
system of equations and it is easy to see that this cannot be avoided (take for instance
the systemXi = Xi+1Xi+1 (1 ≤ i ≤ n), Xn = a, which defines the finite worda2

n

).
The next step was taken by Thomas in [24], where he proved thatthe isomorphism

problem for regular words is decidable. For his proof, he uses the decidability of the
monadic second-order theory of linear orders; hence his proof does not yield an elemen-
tary upper bound for the isomorphism problem for regular words. Such an algorithm
was later presented by Bloom andÉsik in [2], where the authors present a polynomial
time algorithm for checking whether two given regular expressions define isomorphic
regular words. Together with Heilbrunner’s algorithm, this yields an exponential time
algorithm for checking whether the least solutions of two given systems of equations
(or, alternatively, the regular words defined by two partitioned DFAs) are isomorphic.
It was asked in [2], whether a polynomial time algorithm for this problem exists.

Our second main result answers this question affirmatively.In fact, we prove that
the problem, whether two given partitioned DFAs define isomorphic regular words, is
P-complete (Cor. 4.2 and Thm. 4.4). A large part of the long version [18] of this paper
deals with the polynomial time upper bound. The first step is simple. By reanalyzing
Heilbrunner’s algorithm, it is easily seen that from a givenpartitioned DFA (defining
a regular wordu) one can compute inpolynomial timea succinct representationof a
regular expression foru. This succinct representation consists of a dag (directed acyclic
graph), whose unfolding is a regular expression foru. Figure 1 shows an example of
such a dag. The second and main step of our proof shows that thepolynomial time
algorithm of Bloom and́Esik for regular expressions can be refined in such a way that
it works (in polynomial time) for succinct regular expressions too. The main tool in
our proof is (besides the machinery from [2]) algorithms on compressed strings (see
[22] for a survey), in particular Plandowski’s result that equality of strings that are
represented bystraight-line programs(i.e., context free grammars that only generate
a single word) can be checked in polynomial time [20]. It is a simple observation that
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an acyclicpartitioned DFA is basically a straight-line program. Hence, we show how
to extend Plandowski’s polynomial time algorithm from acyclic partitioned DFAs to
general partitioned DFAs.

An immediate corollary of our result is that it can be checkedin polynomial time
whether the lexicographic orderings on the languages defined by two given DFAs (so
called regular linear orderings) are isomorphic. For the special case that the two input
DFAs accept well-ordered languages, this was shown in [8]. Let us mention that it is
highly undecidable (Σ1

1 -complete) to check, whether the lexicographic orderings on
the languages defined by two given deterministic pushdown automata (these are the
algebraic linear orderings [3]) are isomorphic [16].

2 Preliminaries

We assume standard notions from automata theory. Let us takea finite alphabetΣ. For
u, v ∈ Σ∗, we writeu ≤pref v if there existsw ∈ Σ∗ with v = uw, i.e.,u is aprefixof v.
A languageL ⊆ Σ∗ is prefix-closedif u ≤pref v ∈ L impliesu ∈ L. For a fixed linear
order≤ on the alphabetΣ we define thelexicographic order≤lex on Σ∗ as follows:
u ≤lex v if u ≤pref v or there existw, x, y ∈ Σ∗ anda, b ∈ Σ such thata < b, u = wax,
andv = wby. LetA = (Q, Σ, δ, q0, F ) be a nondeterministic finite automaton (NFA)
whereQ is the set of states,Σ is the input alphabet,δ ⊆ Q × Σ × Q is the transition
relation,q0 ∈ Q is the initial state, andF ⊆ Q is the set of final states. Then,A is
calledprefix-closedif Q = F (thus,L(A) is prefix-closed). For a deterministic finite
automaton (DFA),δ is a partial map fromQ × Σ to Q. A partitioned DFAis a tuple
A = (Q, Σ, δ, q0, (Fa)a∈Γ ), whereΓ is a finite alphabet,B := (Q, Σ, δ, q0,

⋃
a∈Γ Fa)

is an ordinary DFA andFa ∩ Fb = ∅ for a 6= b. SinceB is a DFA, it follows that the
languageL(B) is partitioned by the languagesL(Q, Σ, δ, q0, Fa) (a ∈ Γ ).

We assume that the reader has some basic background in complexity theory, in par-
ticular concerning the complexity classesP, PSPACE, andEXPTIME. All complete-
ness results in this paper refer to logspace reductions.

2.1 Trees

A tree is a partial orderT = (A;≤), where≤ has a smallest element (the root of the
tree; in particularA 6= ∅) and for everya ∈ A, the set{b ∈ A | b ≤ a} is finite and
linearly ordered by≤. We writea ⋖ b if a < b and there does not existc ∈ A with
a < c < b. Then(A; ⋖) is a tree in the graph theoretical sense (sometimes, it is also
called a successor tree). For two treesT1 andT2, we writeT1

∼= T2 in caseT1 and
T2 are isomorphic. Atree over the finite alphabetΣ is a pairT = (L;≤pref), where
L ⊆ Σ∗ is a language withε ∈ L. Note thatT is indeed a tree in the above sense (ε is
the root). IfL is prefix-closed, then, clearly,T is a finitely branching tree.

A countable treeT is called regular if T has only finitely many subtrees up to
isomorphism, see e.g. [4, 24]. Equivalently, a countable tree is regular if it is isomorphic
to a tree of the form(L;≤pref), whereL is a regular language withε ∈ L. If L is
accepted by the DFAA and all final states can be reached from the initial state, then the
subtrees of(L;≤pref) correspond to the final states ofA. Note that by our definition, a
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regular tree needs not be finitely branching. A finitely branching tree is regular if and
only if it is the unfolding of a finite directed graph [4].

Our first definition of a regular tree (having only finitely many subtrees up to iso-
morphism) makes sense for other types of trees as well, e.g. for node-labeled trees or
ordered trees (where the children of a node are linearly ordered). These variants of
regular trees can be generated by finite automata as well. Forinstance, a node-labeled
regular tree(L;≤pref , (La)a∈Γ ), whereΓ is a finite labeling alphabet andLa is the set
of a-labeled nodes can be specified by a partitioned DFA(Q, Σ, δ, q0, (Fa)a∈Γ ) with
La = L(Q, Σ, δ, q0, Fa) andL =

⋃
a∈Γ La. We do not consider node labels in this

paper, since it makes no difference for the isomorphism problem (node labels can be
eliminated by adding additional children to nodes). Ordered regular trees are briefly
discussed in the long version [18] of this paper.

2.2 Linear orders and generalized words

See [21] for a thorough introduction into linear orders. Letη be the order type of the
rational numbers,ω be the order type of the natural numbers, andω be the order type
of the negative integers. Withn we denote a finite linear order withn elements. Let
Λ = (L;≤) be a linear order. Aninterval of Λ is a subsetI ⊆ L such thatx < z < y

andx, y ∈ I implies z ∈ I. The predecessor (resp., successor) ofx ∈ L is a largest
(resp., smallest) element of{y ∈ L | y < x} (resp.,{y ∈ L | x < y}). Of course, the
predecessor(resp.,successor) of x need not exist, but if it exists then it is unique. The
linear orderΛ is denseif L consists of at least two elements, and for allx < y there
existsz with x < z < y. By Cantor’s theorem, every countable dense linear order,
which neither has a smallest nor largest element is isomorphic to η. Hence, if we take
symbols0 and1 with 0 < 1, then({0, 1}∗1;≤lex) ∼= η. The linear orderΛ is scattered
if there does not exist an injective order morphismϕ : η → Λ. Clearly,ω, ω, as well
as every finite linear order are scattered. A linear order isregular if it is isomorphic to
a linear order(L;≤lex) for a regular languageL. For instance,ω, ω, η, and every finite
linear order are regular linear orders.

Generalized words are countable colored linear orders. LetΣ be a finite alphabet. A
generalized word(or simply word)u overΣ is a triple(L;≤, τ) such thatL is a finite
or countably infinite set,≤ is a linear order onL andτ : L → Σ is a coloring ofL.
The alphabetalph(u) equals the image ofτ . If L is finite, we obtain a finite word in the
usual sense. Moreover,u = (L;≤, τ) is scattered if(L;≤) is scattered. We writeu ∼= v

for generalized wordsu andv, if u andv are isomorphic.
There is a natural operation of concatenation of two generalized words. Letu1 =

(L1;≤1, τ1) andu2 = (L2;≤2, τ2) be generalized words withL1∩L2 = ∅. Thenu1u2

is the generalized word(L1∪L2;≤, τ1∪τ2), wherex ≤ y if and only if eitherx, y ∈ L1

andx ≤1 y, or x, y ∈ L2 andx ≤2 y, or x ∈ L1 andy ∈ L2. Similarly, we can define
the ω-power (resp.,ω-power) of a generalized wordu as the generalized word that
results fromω (resp.ω) by replacing every point by a copy ofu. So, intuitively,uω =
uuu · · · anduω = · · ·uuu. Finally, we need the shuffle operator. Given generalized
wordsu1, . . . , un, we let [u1, . . . , un]η be the generalized word that is obtained from
η as follows: Take a coloring ofη with colors1, . . . , n such that for allx, y ∈ Q with
x < y and all1 ≤ i ≤ n, there existsx < z < y such thatz has colori (it can
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be shown that up to isomorphism there is a unique such dense coloring [21]). Then
the shuffle ofu1, . . . , un, denoted by[u1, . . . , un]η, is obtained by replacing everyi-
colored rational by a copy of the generalized wordui. Since[u1, . . . , un]η is invariant
under permutations of theui, we also sometimes use the notationXη for a finite set
X of generalized words. The least set of words which contains the singleton wordsa
for a ∈ Σ and is closed under concatenation,ω-power,ω-power, and shuffle is called
the set ofregular wordsoverΣ, denotedReg(Σ). Note that this definition implies that
every regular word is non-empty, i.e., its domain is a non-empty set. Clearly, every
regular word can be described by aregular expressionover the above operations, but
this regular expression is in general not unique. Given a regular expressione, we define
the corresponding regular word byval(e).

By a result of Heilbrunner [12], regular words can be characterized by partitioned
DFAs as follows: LetA = (Q, Γ, δ, q0, (Fa)a∈Σ) be a partitioned DFA, and letB =
(Q, Γ, δ, q0,

⋃
a∈Σ Fa). Let us fix a linear order on the alphabetΓ , so that the lex-

icographic order≤lex is defined onΓ ∗. Then we denote withw(A) the generalized
word w(A) = (L(B);≤lex, τ), whereτ(u) = a (a ∈ Σ, u ∈ L(B)) if and only
if u ∈ L(Q, Γ, δ, q0, Fa). It is easy to construct from a given regular expressione a
partitioned DFAA with val(e) ∼= w(A), see e.g. [24, proof of Prop. 2] for a simple
construction. The other direction is more difficult. Heilbrunner has shown in [12] how
to compute from a given partitioned DFAA (such thatw(A) is non-empty) a regular
expressione with val(e) ∼= w(A).1 Unfortunately, the size of the regular expression
produced by Heilbrunner’s algorithm is exponential in the size ofA. On the other hand,
reanalyzing Heilbrunner’s algorithm shows that a succinctrepresentation of a regular
expression forw(A) can be produced in polynomial time. This succinct representa-
tion is a dag (directed acyclic graph), where multiple occurrences of the same regular
subexpression are represented only once. We denote such dags with A, B, etc. The reg-
ular word represented by the dagA is again denoted byval(A).

3 Isomorphism problem for regular trees

In this section, we investigate the isomorphism problem for(unordered) regular trees.
We consider two input representations for regular trees: DFAs and NFAs. It turns out
that while the isomorphism problem for DFA-represented regular trees isP-complete,
the same problem becomesEXPTIME-complete for NFA-represented regular trees.
Moreover, we show that forfinite trees that are succinctly represented byacyclicNFAs,
isomorphism isPSPACE-complete.

Let us start with upper bounds. Our proof of the following theorem is based on
an algorithm similar to the partition refinement algorithm for checking bisimilarity of
finite state systems [14]. The statement for NFAs clearly follows from the statement for
DFAs using the powerset construction for transforming NFAsinto DFAs.

Theorem 3.1. For two given DFAs (resp., NFAs)A1,A2 such thatε ∈ L(A1)∩L(A2)
one can decide in polynomial time (resp., exponential time)whether(L(A1);≤pref) ∼=
(L(A2);≤pref).

1 In fact, Heilbrunner [12] speaks about systems of equationsand their least solutions instead of
partitioned DFAs. These two formalisms can be efficiently transformed into each other.
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For acyclic NFAs, we can improve the upper bound from Thm. 3.1to PSPACE.

Theorem 3.2. For two given acyclic NFAsA1, A2 such thatε ∈ L(A1) ∩ L(A2) one
can decide in polynomial space whether(L(A1);≤pref) ∼= (L(A2);≤pref).

The proof of Thm. 3.2 is based on two facts: (i) Given an acyclic NFA A we can com-
pute an explicit representation of the finite tree(L(A);≤pref) (using e.g. adjacency lists)
by a transducer, whose working tape is polynomially bounded, and (ii) isomorphism for
explicitly given finite trees can be checked in logspace [19].

Concerning lower bounds, our main result is:

Theorem 3.3. It is EXPTIME-hard (and henceEXPTIME-complete) to decide for two
given prefix-closed NFAsA1, A2, whether(L(A1);≤pref) ∼= (L(A2);≤pref).

It is straightforward to provePSPACE-hardness of the problem in Thm. 3.3. IfΣ is the
underlying alphabet of a given NFAA, then(L(A);≤pref) is a full |Σ|-ary tree if and
only if L(A) = Σ∗. But universality for NFAs isPSPACE-complete [23]. The proof
for the EXPTIME lower bound stated in Thm. 3.3 is more involved. Here is a rough
outline:EXPTIME coincides with alternating polynomial space [5]. Checkingwhether
a given input is accepted by a polynomial space bounded alternating Turing machine
M amounts to evaluate a Boolean expression whose gates correspond to configurations
of M . Using a construction from [13], the evaluation problem for(finite) Boolean ex-
pressions can be reduced to the isomorphism problem for (finite) trees. In our case, the
Boolean expression will be infinite. Nevertheless, the infinite Boolean expressions we
have to deal with can be evaluated because on every infinite path that starts in the root
(the output gate) there is either anand-gate, where one of the inputs is afalse-gate, or
anor-gate, where one of the inputs is atrue-gate. Applying the construction from [13]
to an infinite Boolean expression (that arises from our construction) yields two infinite
trees, which are isomorphic if and only if our infinite Boolean expression evaluates to
true. Luckily, these two trees turn out to be regular, and they canbe represented by
small NFAs. Using a similar construction, but starting withan alternating polynomial
time machine (instead of an alternating polynomial space machine), we can prove:

Theorem 3.4. It is PSPACE-hard (and hencePSPACE-complete) to decide for two
given prefix-closed acyclic NFAsA1, A2, whether(L(A1);≤pref) ∼= (L(A2);≤pref).

Finally, by a reduction from theP-complete monotone circuit value problem [11] (which
uses again the reduction from the evaluation problem for Boolean expressions to the
isomorphism problem for explicitly given finite trees [13]), we get the next result.

Theorem 3.5. It is P-hard (and henceP-complete) to decide for two given prefix-closed
acyclic DFAsA1 andA2, whether(L(A1);≤pref) ∼= (L(A2);≤pref).

4 Isomorphism problem for regular words

In this section we study the isomorphism problem for regularwords that are represented
by partitioned DFAs. We prove that this problem as well as theisomorphism problem
for regular linear orders that are represented by DFAs areP-complete. It follows that
the isomorphism problem for regular linear orders that are represented by NFAs can be
solved in exponential time. We show that this problem is alsoPSPACE-hard.

7



4.1 Upper bounds

In Section 2.2 we mentioned that Heilbrunner’s algorithm [12] transforms a given par-
titioned DFAA into a succinct regular expressionA (in form of a dag) for the regular
wordw(A). This motivates the following result:

Theorem 4.1. For two given dagsA1 and A2 one can decide in polynomial time,
whetherval(A1) ∼= val(A2).

The next result is an immediate corollary of Thm. 4.1 and [12].

Corollary 4.2. For two given partitioned DFAsA1 andA2 one can decide in polyno-
mial time whetherw(A1) ∼= w(A2).

Our proof of Thm. 4.1 is quite long and technical. But essentially, we use the same
strategy as in [2]. Recall that Bloom andÉsik prove in [2] that for two given (non-
succinct) regular expressionse1, e2 it can be decided in polynomial time, whether they
represent the same regular word. Let us briefly explain theirstrategy.

A central concept in [2] is the notion of a block of a generalized word. Blocks allow
to condensate a generalized word to a coarser word (whose elements are the blocks of
the original word). Letu = (L;≤, τ) be a generalized word over the alphabetΣ. A
subwordof u is an intervalI of the linear order(L;≤)) together with the coloringτ
restricted toI. A uniform subwordof u is a subword that is isomorphic to a shuffle
Γ η for someΓ ⊆ Σ. A uniform subword is amaximal uniform subwordif it is not
properly contained in another uniform subword. Now letv be a subword such that
no point ofv is contained in a uniform subword ofu. Thenv is successor-closedif
for each pointp of v, whenever the successor and the predecessor ofp exist, they are
contained inv as well. A successor-closed subword is minimal if it does notstrictly
contain another successor-closed subword. Finally, ablockof the generalized wordu is
either a maximal uniform subword ofu or a minimal successor-closed subword ofu. A
regular word which consists of a single block is calledprimitive.2 By [2] a generalized
wordu is primitive if and only if it is of one of the following forms (wherex, z ∈ Σ+,
y ∈ Σ∗): A finite non-empty word, a scattered word of the formxωy, a scattered word
of the formyzω, a scattered word of the formxωyzω, or a uniform word (Γ η for some
Γ ⊆ Σ). Let D(Σ) be the set of all primitive words overΣ.

Let u be a regular word. Each pointp of u belongs to some unique blockBl(p),
which induces a regular (and hence primitive) word. Moreover we can order the blocks
of u linearly by settingBl(p) < Bl(q) if and only if p < q. The order obtained that way
is denoted(Bl(u);≤). Then we extend the order(Bl(u);≤) to a generalized word̂u
over the alphabetD(Σ), called theskeletonof u, by labeling each block with the corre-
sponding isomorphic word inD(Σ). Implicitly, it is shown in [2] that for every regular
wordu there exists afinite subset ofD(Σ) such that every block ofu is isomorphic to
a generalized word from that finite subset. Moreover,û is a regular word over that finite
subset ofD(Σ). Bloom andÉsik have shown that two regular words are isomorphic if
and only if their skeletons are isomorphic [2, Cor. 73].

2 In combinatorics on words, a finite word is called primitive,if it is not a proper power of a
non-empty word. Our notion of a primitive word should not be confused with this definition.
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From two given regular expressione1 ande2, Bloom andÉsik compute in polyno-
mial time two “simpler” expressionsf1 andf2 (over a finite alphabet, which consists
of a finite subset ofD(Σ)) such thatval(fi) is the skeleton ofval(ei). Here, “simpler”
means that the height of the expressionfi is strictly smaller than the height ofei. The
above mentioned Cor. 73 from [2] allows to replacee1, e2 byf1, f2. This step is iterated
until one of the two expressions denotes a primitive regularword. If at that point the
other expression does not denote a primitive word, then the two initial regular words
are not isomorphic. On the other hand, if both regular expressions denote primitive reg-
ular words, then one faces the problem of checking whether two given primitive regular
words are isomorphic. It is straightforward to do this in polynomial time.

For succinct expressions (i.e., dags), we use the same strategy. Given two dagsA1

andA2, we compute in polynomial time new dagsB1 andB2 such that (i)val(Bi) is the
skeleton ofval(Ai) and (ii) the height ofBi is strictly smaller than the height ofAi. Note
that the notion of “height” makes sense for dags as well. It isthe maximal length of a
path in the dag. To obtain a polynomial time algorithm at the end, several problems have
to be addressed. First of all, the transformation of a dagA into a dagB such thatval(B)
is the skeleton ofval(A) must be accomplished in polynomial time. But even if we can
achieve this, an overall polynomial running time is not guaranteed, since we have to
iterate this transformation. If for instance, the size ofB (let us define the size of a dag as
the number of edges) would be twice the size ofA, then this would result into an overall
exponential blow-up. But fortunately, our transformationof A into B only involves an
additive blow-up, which is polynomial at each iteration. Finally, at the end, we have to
check isomorphism for two primitive regular words that are succinctly represented by
dags. It is not obvious to do this in polynomial time. In fact,our algorithm for solving
this problem makes essential use of known results for compressed words.

Let us explain this in more detail. A dag, where only the alphabet symbols and the
operation of concatenation is used (noω- andω-powers and no shuffles) is also known
as astraight-line program (SLP). Alternatively, it can be seen as an acyclic context-free
grammar, where each nonterminal is the left-hand side of a unique production. Such a
context-free grammar generates a single finite word. Moreover, the length of this word
can be exponential in the size of the SLP. Hence the SLP can be seen as a compressed
representation of the finite word. In recent years, a lot of effort was spent on the devel-
opment of efficient algorithms for SLP-represented finite words: Our polynomial time
algorithm for primitive regular words that are given by dagsuses a seminal result from
this area: It can be checked in polynomial time, whether the word represented by a first
SLP is a factor of the word represented by a second SLP (compressed pattern match-
ing). The best algorithm for compressed pattern matching has a cubic running time [17].
Note that as a corollary, it can be checked in polynomial time, whether two given SLPs
represent the same finite word. This result was first shown by Plandowski [20].

4.2 Lower bounds for regular linear orders

Let us now turn to lower bounds for the isomorphism problem for regular words. In
fact, all these lower bounds already hold for a unary alphabet, i.e., they hold for regular
linear orders. The results in this section nicely contrast the results from Section 3, where
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we studied the isomorphism problem for the prefix order treeson regular languages. In
this section, we replace the prefix order by the lexicographical order.

Theorem 4.3. For every finite alphabetΣ, it is P-hard (and henceP-complete) to de-
cide for two given dagsA1 andA2 over the alphabetΣ, whetherval(A1) ∼= val(A2).

As for the proof of Thm. 3.5, the proof of Thm. 4.3 is based on a reduction from
the monotone circuit value problem. We do not know, whether the lower bound from
Thm. 4.3 holds for ordinary expressions (instead of dags) too.

Theorem 4.4. It is P-hard (and henceP-complete) to decide for two given DFAsA1

andA2, whether(L(A1);≤lex) ∼= (L(A2);≤lex).

Proof. Note that by Cor. 4.2 the problem belongs toP. For P-hardness, it suffices by
Thm. 4.3 to construct in logspace from a given dagA (over a unary terminal alphabet)
a DFA A such that the linear orderval(A) is isomorphic to(L(A);≤lex). But this is
accomplished by the construction in the proof of [24, Prop. 2]. ⊓⊔

Cor. 4.2 implies that it can be checked inEXPTIME whether the lexicographical order-
ings on two regular languages, given by NFAs, are isomorphic. We do not know whether
this upper bound is sharp. Currently, we can only prove a lower bound ofPSPACE:

Theorem 4.5. It is PSPACE-hard to decide for two given NFAsA1 andA2, whether
(L(A1);≤lex) ∼= (L(A2);≤lex).

Proof. We provePSPACE-hardness by a reduction from thePSPACE-complete prob-
lem whether a given NFAA over the terminal alphabet{a, b} accepts{a, b}∗ [23].
So letA be an NFA over the terminal alphabet{a, b} and letK = L(A). Let Σ =
{0, 1, a, b, $1, $2} and fix the following order onΣ: $1 < 0 < 1 < $2 < a < b. Under
this order,({0, 1}∗1;≤lex) ∼= ({a, b}∗b;≤lex) ∼= η.

It is straightforward to construct fromA in logspace an NFA for the language

L = ({a, b}∗b $1) ∪ (K b {0, 1}∗1) ∪ ({a, b}∗b $2). (1)

It follows that

(L;≤lex) ∼=
∑

w∈{a,b}∗b

L(w) with L(w) ∼=

{
1 + η + 1 if w ∈ K

2 else.

(the sum is taken over all words from{a, b}∗b in lexicographic order). IfK 6= {a, b}∗,
then(L;≤lex) contains an interval isomorphic to2. Hence(L;≤lex) 6∼= η. On the other
hand, ifK = {a, b}∗, then(L;≤lex) ∼= (1+η+1)·η ∼= η. This proves the theorem.⊓⊔

The proof of Thm. 4.5 shows that it isPSPACE-hard to check for a given NFAA,
whether(L(A);≤lex) ∼= η. In fact, this problem turns out to bePSPACE-complete, see
the long version [18] for details.

In [9] it is shown that the problem, whether(L;≤lex) ∼= η for a given context-free
language, is undecidable. This result is shown by a reduction from Post’s correspon-
dence problem. Note that this result can be also easily deduced using the technique

10



DFA NFA

acyclic PSPACE-complete

arbitrary
P-complete

EXPTIME-complete

Table 1. Main results for the isomorphism problem for regular trees

DFA NFA

acyclic C=L-complete C=P-complete

arbitrary P-complete
PSPACE-hard,
in EXPTIME

Table 2. Main results for the isomorphism problem for regular linearorders

from the above proof: If we start with a pushdown automaton for A instead of an
NFA, then the languageL from (1) is context-free. Hence,(L;≤lex) ∼= η if and only if
L(A) = {a, b}∗. The latter property is a well-known undecidable problem.

In Section 3 we also studied the isomorphism problem for finite trees that are suc-
cinctly given by the prefix order on the finite language accepted by an acyclic DFA
(resp., NFA). To complete the picture, we should also consider the isomorphism prob-
lem for linear orders that consist of a lexicographically ordered finite language, where
the latter is represented by an acyclic DFA (resp., NFA). Of course, this problem is
somehow trivial, since two finite linear orders are isomorphic if and only if they have
the same cardinality. Hence, we have to consider the problemwhether two given acyclic
DFAs (resp. NFAs) accept languages of the same cardinality.The complexity of these
problems is analyzed in the long version [18]. Straightforward arguments show that
checking whether two acyclic DFAs (resp. NFAs) accept languages of the same cardi-
nality is complete for the counting classC=L (resp.,C=P), see [18] for definitions.

5 Conclusion and open problems

Table 1 (Table 2) summarizes our complexity results for the isomorphism problem for
regular trees (regular linear orders). Let us conclude withsome open problems. As
can be seen from Table 2, there is a complexity gap for the isomorphism problem for
regular linear orders that are represented by NFAs. This problem belongs toEXPTIME

and isPSPACE-hard. Another interesting problem concerns the equivalence problem
for straight-line programs (i.e., dags that generate finitewords, or equivalently, acyclic
partitioned DFAs, or equivalently, context-free grammarsthat generate a single word).
Plandowski has shown that this problem can be solved in polynomial time. Recall that
this result is fundamental for our polynomial time algorithm for dags (Thm. 4.1). In
[10], it was conjectured that the equivalence problem for straight-line programs isP-
complete, but this is still open.
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