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Abstract. The complexity of the isomorphism problem for regular treegular
linear orders, and regular words is analyzed. A tree is eggfilt is isomorphic
to the prefix order on a regular language. In case regulaukyes are repre-
sented by NFAs (DFASs), the isomorphism problem for reguksed turns out to be
EXPTIME-complete (respP-complete). In case the input automata are acyclic
NFAs (acyclic DFAS), the corresponding trees are (suclyimepresented) finite
trees, and the isomorphism problem turns out t&*BEACE-complete (respP-
complete). A linear order is regular if it is isomorphic tetlexicographic order
on a regular language. A polynomial time algorithm for them®rphism prob-
lem for regular linear orders (and even regular words, whiheralize the latter)
given by DFAs is presented. This solves an open problerdiy and Bloom. A
long version of this paper can be found in [18].

1 Introduction

Isomorphism problems for infinite but finitely presentedistures are an active re-
search topic in algorithmic model theory [1]. It is a folkéaresult in computable model
theory that the isomorphism problem for computable stmgstii.e., structures, where
the domain is a computable set of natural numbers and alior$aare computable too)
is highly undecidable — more precisely, it 1${-complete, i.e., complete for the first
existential level of the analytical hierarchy. Khoussaiebal. proved in [15] that even
for automatic structures (i.e., structures, where the doima regular set of words and
all relations can be recognized by synchronous multitapenaata), the isomorphism
problem isX1-complete. In [16], this result was further improved to amétic order
trees (trees viewed as partial orders) and automatic lioeters. On the decidability
side, Courcelle proved that the isomorphism problem foaéiqunal graphs is decidable
[7]. Recall that a graph is equational if it is the least Solubf a system of equations
over the HR graph operations. We remark that Courcelle’'srialgn for the isomor-
phism problem for equational graphs has very high compldkits not elementary),
since it uses the decidability of monadic second-orderlogiequational graphs.

In this paper, we continue the investigation of isomorphmwblems for infinite
but finitely presented structures at the lower end of thetsped/e focus on two very
simple classes of infinite structure@sgular treesandregular words both are particular
automatic structures. Recall that a countable tree is aedfut has only finitely many
subtrees up to isomorphism. This definition works for orderees (where the children
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of a node are linearly ordered) and unordered trees. An alguit/characterization in
the unordered case uses regular languages: An unordereddbte) tred’” is regular if
and only if there is a regular languageC >* which contains the empty word and such
that7" is isomorphic to the tree obtained by taking the prefix ordef.de is the root).
Hence, a regular tree can be represented by a finite detstioior nondeterministic
automaton (DFA or NFA), and the isomorphism problem for tagtrees becomes the
following computational problem: Given two DFAs (resp., A} accepting both the
empty word, are the corresponding regular trees isomoPphic

Itis is not difficult to prove that this problem can be solveghdlynomial time if the
two input automata are assumed to be DFAs; the algorithmrissimilar to the well-
known partition refinement algorithm for checking bisimitg of finite state systems
[14]. Hence, the isomorphism problem for regular trees #natrepresented by NFAs
can be solved in exponential time. Our first main result sttitat this problemis in fact
EXPTIME-complete (Thm. 3.3). The proof of tHeXPTIME lower bound uses three
main ingredients: (EXPTIME coincides with alternating polynomial space [5], (ii) a
construction from [13], which reduces the evaluation peabfor Boolean expressions
to the isomorphism problem for (finite) trees, and (iii) a #rii&A accepting all words
that donotrepresent an accepting computation of a polynomial spachima[23].

Our proof technique yields another result too: IPSPACE-complete to check for
two givenacyclic NFAs A;, As (both accepting the empty word), whether the trees
that result from the prefix orders di.A;) and L(.Az), respectively, are isomorphic.
Note that these two trees are clearly finite (since the autmara acyclic), but the size
of L(A;) can be exponential in the number of statesdpf In this sense, acyclic NFAs
can be seen as a succinct representation of finite trees?JP&CE-upper bound for
acyclic NFAs follows easily from Lindell’s result [19] th&omorphism of explicitly
given trees can be checked in logarithmic space.

The second part of this paper studies the isomorphism profderegular words
which were introduced in [6]. Aeneralized wordver a finite alphabeY is a countable
linear order together with &'-coloring of the elements. A generalized word is regular
if it can be obtained as the least solution (in a certain semsge precise in [6]) of
a systemX; = t1,...,X, = t,. Here, every; is a finite word over the alphabet
Yu{Xy,...,X,}. Forinstance, the systeM = abX defines the regular wor@b)-.

Courcelle [6] gave an alternative characterization of fa&gwords: A generalized
word is regular if and only if it is equal to the frontier wordl @ finitely-branching or-
dered regular tree, where the leaves are colored by symiooisX. Here, the frontier
word is obtained by ordering the leaves in the usual leftigbt order (note that the tree
is ordered). Alternatively, a regular word can be represgily a DFAA, where the
set of final states is partitioned into séts (a € X); we call such a DFA partitioned
DFA. The corresponding regular word is obtained by orderingahguage ofA lexi-
cographically and coloring a word € L(.A) with a if w leads from the initial state to
a state from¥,.

A third characterization of regular words was provided byllbtenner [12]: A gen-
eralized word is regular if it can be obtained from singletamrds (i.e., symbols from
X7) using the operations of concatenatianpower,w-power and dense shuffle. For
a generalized word,, its w-power (respw-power) is the generalized worguw - - -



Fig.1. A dag for the regular word[abbaabba, abbaabbaabbaabba]™)”. Nodes labeled with
compute the concatenation of their successor nodes. Intbaserder of the successor nodes
matters, we specify it by edge labels.

(resp.- - -uuu). Moreover, the shuffle of generalized words . . ., u,, is obtained by
choosing a dense coloring of the rationals with colgrs. .., n} (up to isomorphism,
there is only a single such coloring [21]) and then replaeweryi-colored rational by
u;. In fact, Heilbrunner presents an algorithm which compéras a given system of
equations (or, alternatively, a partitioned DFA) an expi@s over the above set of op-
erations (called @egular expressioiin the following) which defines the least solution
of the system of equations. A simple analysis of Heilbrutsredgorithm shows that the
computed regular expression in general has exponentabdith respect to the input
system of equations and it is easy to see that this cannotdigeal/(take for instance
the systemX; = X; 11 X;11 (1 < i < n), X,, = a, which defines the finite WoraF").

The next step was taken by Thomas in [24], where he provedtteasomorphism
problem for regular words is decidable. For his proof, hesube decidability of the
monadic second-order theory of linear orders; hence hisfjgimes not yield an elemen-
tary upper bound for the isomorphism problem for regulardgoSuch an algorithm
was later presented by Bloom agsik in [2], where the authors present a polynomial
time algorithm for checking whether two given regular exgsiens define isomorphic
regular words. Together with Heilbrunner’s algorithmstlrields an exponential time
algorithm for checking whether the least solutions of tweegi systems of equations
(or, alternatively, the regular words defined by two partisd DFAS) are isomorphic.
It was asked in [2], whether a polynomial time algorithm foistproblem exists.

Our second main result answers this question affirmativelfact, we prove that
the problem, whether two given partitioned DFAs define isgghix regular words, is
P-complete (Cor. 4.2 and Thm. 4.4). A large part of the longsiger [18] of this paper
deals with the polynomial time upper bound. The first stepnigpte. By reanalyzing
Heilbrunner’s algorithm, it is easily seen that from a giysnrtitioned DFA (defining
a regular wordu) one can compute ipolynomial timea succinct representatioof a
regular expression far. This succinct representation consists of a dag (direagclia
graph), whose unfolding is a regular expressiondoFigure 1 shows an example of
such a dag. The second and main step of our proof shows thabtizeomial time
algorithm of Bloom andEsik for regular expressions can be refined in such a way that
it works (in polynomial time) for succinct regular exprasss too. The main tool in
our proof is (besides the machinery from [2]) algorithms empressed strings (see
[22] for a survey), in particular Plandowski's result thajuality of strings that are
represented bgtraight-line programgi.e., context free grammars that only generate
a single word) can be checked in polynomial time [20]. It iSrapde observation that



anacyclic partitioned DFA is basically a straight-line program. Henwe show how
to extend Plandowski’'s polynomial time algorithm from daygartitioned DFAs to
general partitioned DFASs.

An immediate corollary of our result is that it can be checkegolynomial time
whether the lexicographic orderings on the languages dkefiggwo given DFAs (so
called regular linear orderings) are isomorphic. For thecsd case that the two input
DFAs accept well-ordered languages, this was shown in [8].us mention that it is
highly undecidable X'i-complete) to check, whether the lexicographic orderings o
the languages defined by two given deterministic pushdowonsata (these are the
algebraic linear orderings [3]) are isomorphic [16].

2 Prédiminaries

We assume standard notions from automata theory. Let usthikite alphabel’. For
u,v € X*, we writeu <y v ifthere existav € X* with v = uw, i.e.,u is aprefixof v.
A languagel C X* is prefix-closedf u <. v € L impliesu € L. For a fixed linear
order< on the alphabet’ we define thdexicographic order<,., on >* as follows:
U <jex v if u <prer v Orthere exist, z, y € 2* anda, b € X suchthat < b, u = waxz,
andv = wby. Let A = (Q, X, 9, qo, F') be a nondeterministic finite automaton (NFA)
whereqQ is the set of stateg, is the input alphabet, C Q x X' x @ is the transition
relation,qy € Q is the initial state, and” C Q is the set of final states. Then, is
calledprefix-closedf @ = F' (thus,L(.A) is prefix-closed). For a deterministic finite
automaton (DFA)J is a partial map fronf) x X' to Q). A partitioned DFAIs a tuple
A=(Q,X,0,q,(Fa)acr), wherel is a finite alphabet3 := (Q, ¥, 9, g0, U, Fa)
is an ordinary DFA and”, N F, = () for a # b. SinceB is a DFA, it follows that the
languagel.(B) is partitioned by the languagégQ, X, d, qo, Fu) (a € I).

We assume that the reader has some basic background in catmfiieory, in par-
ticular concerning the complexity classesPSPACE, andEXPTIME. All complete-
ness results in this paper refer to logspace reductions.

21 Trees

A treeis a partial ordefl” = (A4; <), where< has a smallest element (the root of the
tree; in particulatd # 0) and for everya € A, the set{b € A | b < a} is finite and
linearly ordered by<. We writea < b if a < b and there does not existe A with

a < ¢ < b. Then(4; <) is a tree in the graph theoretical sense (sometimes, itds als
called a successor tree). For two trdgsandT», we write Ty = T5 in caseT; and

T, are isomorphic. Aree over the finite alphabeX is a pairT = (L; <y.f), Where

L C ¥*is alanguage with € L. Note thatT" is indeed a tree in the above sensés(
the root). If L is prefix-closed, then, clearl¥; is a finitely branching tree.

A countable tre€l" is calledregular if 7" has only finitely many subtrees up to
isomorphism, see e.g. [4, 24]. Equivalently, a countalgle is regular if it is isomorphic
to a tree of the form(L; <,.f), whereL is a regular language with € L. If L is
accepted by the DFA and all final states can be reached from the initial state, tine
subtrees of L; <,.f) correspond to the final states.df Note that by our definition, a
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regular tree needs not be finitely branching. A finitely bieng tree is regular if and
only if it is the unfolding of a finite directed graph [4].

Ouir first definition of a regular tree (having only finitely nyasubtrees up to iso-
morphism) makes sense for other types of trees as well,@.goide-labeled trees or
ordered trees (where the children of a node are linearlyredje These variants of
regular trees can be generated by finite automata as welingtance, a node-labeled
regular treg L; <yref, (Lo )acr), Wherel™ is a finite labeling alphabet arfd, is the set
of a-labeled nodes can be specified by a partitioned DRAX, 0, qo, (F,)aer) With
L, = L(Q,%,d,q0, F,) andL = |J,. Lo. We do not consider node labels in this
paper, since it makes no difference for the isomorphismlprol{node labels can be
eliminated by adding additional children to nodes). Ordergular trees are briefly
discussed in the long version [18] of this paper.

2.2 Linear ordersand generalized words

See [21] for a thorough introduction into linear orders. hdie the order type of the
rational numbersy be the order type of the natural numbers, ande the order type
of the negative integers. With we denote a finite linear order with elements. Let
A = (L; <) be alinear order. Ainterval of A is a subsef C L such thatr < z < y
andz,y € I impliesz € I. The predecessor (resp., successor} @ L is a largest
(resp., smallest) element§f € L | y < «} (resp.{y € L | x < y}). Of course, the
predecessofresp.,successgrof x need not exist, but if it exists then it is unique. The
linear order/ is denseif L consists of at least two elements, and foraalkk y there
existsz with x < z < y. By Cantor’s theorem, every countable dense linear order,
which neither has a smallest nor largest element is isonitph). Hence, if we take
symbolsO and1 with 0 < 1, then({0,1}*1; <) = 1. The linear order! is scattered
if there does not exist an injective order morphigm n — A. Clearly,w, @, as well
as every finite linear order are scattered. A linear ordezgsilar if it is isomorphic to
a linear order L; <) for a regular languagé. For instancey, @, 1, and every finite
linear order are regular linear orders.

Generalized words are countable colored linear orderstlst a finite alphabet. A
generalized wordor simply word)u over X is a triple(L; <, 7) such that_ is a finite
or countably infinite set< is a linear order o, andr : . — X is a coloring ofLL.
The alphabetlph(u) equals the image of. If L is finite, we obtain a finite word in the
usual sense. Moreover,= (L; <, 7) is scattered if L; <) is scattered. We write = v
for generalized words andv, if © andv are isomorphic.

There is a natural operation of concatenation of two geizeords. Letu; =
(L1;<1,71) andus = (Lo; <o, 72) be generalized words with; N Ly = §. Thenu;us
is the generalized word.; ULs; <, 71 UTs), wherex < yifand only if eitherz, y € L,
andx <; y,orz,y € Ly andz <, y, orz € Ly andy € L. Similarly, we can define
the w-power (resp.-power) of a generalized word as the generalized word that
results fromw (resp.w) by replacing every point by a copy ef So, intuitively,u® =
wuw --- andu® = ---uuu. Finally, we need the shuffle operator. Given generalized
wordsuy, . .., u,, we letfu, ..., u,]"? be the generalized word that is obtained from
7 as follows: Take a coloring af with colors1, ..., n such that for alkz, y € Q with
x < yandalll < i < n,there existst < z < y such thatz has color: (it can



be shown that up to isomorphism there is a unique such derngengp[21]). Then
the shuffle ofuy, ..., u,, denoted byuy, ..., u,]", is obtained by replacing evety
colored rational by a copy of the generalized werdSince[uy, . .., u,]" is invariant
under permutations of the;, we also sometimes use the notati&ifi for a finite set
X of generalized words. The least set of words which contdiassingleton words
for a € X’ and is closed under concatenatianpower,-power, and shuffle is called
the set ofregular wordsover X, denotedReg(X'). Note that this definition implies that
every regular word is non-empty, i.e., its domain is a nompgnset. Clearly, every
regular word can be described byegular expressiomver the above operations, but
this regular expression is in general not unique. Given aleeg@xpressior, we define
the corresponding regular word byl(e).

By a result of Heilbrunner [12], regular words can be chamaeed by partitioned
DFAs as follows: Letd = (Q, I, 9, qo, (F.)awex) be a partitioned DFA, and lé8 =
(Q,I',0,q0, U,cx Fa)- Let us fix a linear order on the alphabEt so that the lex-
icographic order<. is defined onI™. Then we denote withu(.A) the generalized
word w(A) = (L(B); <iex,7), Wherer(u) = a (a € X, u € L(B)) if and only
if we L(Q,T,4,q0, Fy). It is easy to construct from a given regular expressian
partitioned DFAA with val(e) = w(A), see e.g. [24, proof of Prop. 2] for a simple
construction. The other direction is more difficult. Heilbner has shown in [12] how
to compute from a given partitioned DFA (such thatw(.A) is non-empty) a regular
expressiore with val(e) = w(.A).r Unfortunately, the size of the regular expression
produced by Heilbrunner’s algorithm is exponential in thze ®f A. On the other hand,
reanalyzing Heilbrunner’s algorithm shows that a succiepresentation of a regular
expression forw(.A) can be produced in polynomial time. This succinct represent
tion is a dag (directed acyclic graph), where multiple ocences of the same regular
subexpression are represented only once. We denote suslwvidbd\, B, etc. The reg-
ular word represented by the dags again denoted byal(A).

3 Isomorphism problem for regular trees

In this section, we investigate the isomorphism problem(émordered) regular trees.
We consider two input representations for regular treeAdnd NFAs. It turns out
that while the isomorphism problem for DFA-representedifagtrees i-complete,
the same problem becomé&XPTIME-complete for NFA-represented regular trees.
Moreover, we show that fdmite trees that are succinctly representedibyclicNFAs,
isomorphism iPSPACE-complete.

Let us start with upper bounds. Our proof of the followingdbem is based on
an algorithm similar to the partition refinement algorithon €hecking bisimilarity of
finite state systems [14]. The statement for NFAs clearlip¥ed from the statement for
DFAs using the powerset construction for transforming NAs DFAs.

Theorem 3.1. For two given DFAs (resp., NFAs};, As such that € L(A;)NL(As
one can decide in polynomial time (resp., exponential tiwlegther(L(A;); <pref) =
(L(A2)a Spref)-

Y In fact, Heilbrunner [12] speaks about systems of equatimstheir least solutions instead of
partitioned DFAs. These two formalisms can be efficiendysformed into each other.



For acyclic NFAs, we can improve the upper bound from Thmt@ASPACE.

Theorem 3.2. For two given acyclic NFAsA,, A; such that € L(A;) N L(Az) one
can decide in polynomial space whetli&n A1 ); <prer) = (L(A2); <pref)-

The proof of Thm. 3.2 is based on two facts: (i) Given an acydiFA A we can com-
pute an explicit representation of the finite t(ég.A); <,.¢) (using e.g. adjacency lists)
by a transducer, whose working tape is polynomially bounded (ii) isomorphism for
explicitly given finite trees can be checked in logspace.[19]

Concerning lower bounds, our main result is:

Theorem 3.3. Itis EXPTIME-hard (and henc&XPTIME-complete) to decide for two
given prefix-closed NFA4, Az, whether(L(A1); <pref) = (L(A2); <pref)-

Itis straightforward to prov@ SPACE-hardness of the problem in Thm. 3.3 fis the
underlying alphabet of a given NFA, then(L(A); <pf) is a full | X|-ary tree if and
only if L(A) = X*. But universality for NFAs iP§SPACE-complete [23]. The proof
for the EXPTIME lower bound stated in Thm. 3.3 is more involved. Here is a houg
outline: EXPTIME coincides with alternating polynomial space [5]. Checkivitether
a given input is accepted by a polynomial space boundechalieg Turing machine
M amounts to evaluate a Boolean expression whose gatesmomce configurations
of M. Using a construction from [13], the evaluation problem(forite) Boolean ex-
pressions can be reduced to the isomorphism problem fote(fitmees. In our case, the
Boolean expression will be infinite. Nevertheless, the itdiBoolean expressions we
have to deal with can be evaluated because on every infintitetipat starts in the root
(the output gate) there is either and-gate, where one of the inputs igdse-gate, or
anor-gate, where one of the inputs israe-gate. Applying the construction from [13]
to an infinite Boolean expression (that arises from our cantbn) yields two infinite
trees, which are isomorphic if and only if our infinite Boateexpression evaluates to
true. Luckily, these two trees turn out to be regular, and they lmamepresented by
small NFAs. Using a similar construction, but starting wath alternating polynomial
time machine (instead of an alternating polynomial spacehina), we can prove:

Theorem 3.4. It is PSPACE-hard (and hencd®SPACE-complete) to decide for two
given prefix-closed acyclic NFA4;, Az, whether(L(A;); <pref) = (L(A2); <pref)-

Finally, by a reduction from thB-complete monotone circuit value problem [11] (which
uses again the reduction from the evaluation problem forl&uooexpressions to the
isomorphism problem for explicitly given finite trees [13le get the next result.

Theorem 3.5. Itis P-hard (and henc@-complete) to decide for two given prefix-closed
acyclic DFAsA; and As, whether(L(A;); <pref) = (L(A2); <pref)-

4 1somorphism problem for regular words

In this section we study the isomorphism problem for regwiaids that are represented
by partitioned DFAs. We prove that this problem as well asisbenorphism problem
for regular linear orders that are represented by DFAsPacemplete. It follows that
the isomorphism problem for regular linear orders that apeesented by NFAs can be
solved in exponential time. We show that this problem is &SBACE-hard.



4.1 Upper bounds

In Section 2.2 we mentioned that Heilbrunner’s algorithi] [ttansforms a given par-
titioned DFA A into a succinct regular expressian(in form of a dag) for the regular
word w(.A). This motivates the following result:

Theorem 4.1. For two given dagsA; and A, one can decide in polynomial time,
whetheral(A;) = val(Ay).

The next result is an immediate corollary of Thm. 4.1 and [12]

Corollary 4.2. For two given partitioned DFAs1; and.4, one can decide in polyno-
mial time whethetw(A4;) = w(As).

Our proof of Thm. 4.1 is quite long and technical. But essglytiwe use the same
strategy as in [2]. Recall that Bloom artsik prove in [2] that for two given (non-
succinct) regular expressions, e; it can be decided in polynomial time, whether they
represent the same regular word. Let us briefly explain gtstegy.

A central conceptin [2] is the notion of a block of a genemdizvord. Blocks allow
to condensate a generalized word to a coarser word (whoseete are the blocks of
the original word). Letu = (L; <,7) be a generalized word over the alphabgtA
subwordof w is an intervall of the linear ordefL; <)) together with the coloring
restricted to/. A uniform subwordof « is a subword that is isomorphic to a shuffle
I for somel” C X. A uniform subword is anaximal uniform subwordf it is not
properly contained in another uniform subword. Now Jebe a subword such that
no point ofv is contained in a uniform subword af Thenwv is successor-closei
for each poinp of v, whenever the successor and the predecessoerist, they are
contained inv as well. A successor-closed subword is minimal if it doesstdttly
contain another successor-closed subword. Finabjpek of the generalized word is
either a maximal uniform subword afor a minimal successor-closed subword:0A
regular word which consists of a single block is calfginitive? By [2] a generalized
wordw is primitive if and only if it is of one of the following formsiherex, z € X,

y € X*): Afinite non-empty word, a scattered word of the farfy, a scattered word
of the formyz*, a scattered word of the forn’yz*, or a uniform word {7 for some
I' C X). Let D(X) be the set of all primitive words over.

Let u be a regular word. Each poiptof u belongs to some unique blodX(p),
which induces a regular (and hence primitive) word. Moreeowe can order the blocks
of u linearly by settingBl(p) < Bl(q) if and only if p < ¢. The order obtained that way
is denotedBl(u); <). Then we extend the ord¢Bl(u); <) to a generalized word
over the alphabdb(X), called theskeletorof u, by labeling each block with the corre-
sponding isomorphic word i (). Implicitly, it is shown in [2] that for every regular
word u there exists dinite subset ofD(X') such that every block af is isomorphic to
a generalized word from that finite subset. Moreoues, a regular word over that finite
subset ofD(X). Bloom andEsik have shown that two regular words are isomorphic if
and only if their skeletons are isomorphic [2, Cor. 73].

2 In combinatorics on words, a finite word is called primitivieit is not a proper power of a
non-empty word. Our notion of a primitive word should not leeftised with this definition.



From two given regular expressien ande,, Bloom andEsik compute in polyno-
mial time two “simpler” expressiong, and f, (over a finite alphabet, which consists
of a finite subset oD (X)) such thatal(f;) is the skeleton ofal(e;). Here, “simpler”
means that the height of the expressjiis strictly smaller than the height ef. The
above mentioned Cor. 73 from [2] allows to replagee, by f1, f2. This stepis iterated
until one of the two expressions denotes a primitive regwiand. If at that point the
other expression does not denote a primitive word, thenviloeiitial regular words
are not isomorphic. On the other hand, if both regular exgioes denote primitive reg-
ular words, then one faces the problem of checking whethegiven primitive regular
words are isomorphic. It is straightforward to do this inypwmial time.

For succinct expressions (i.e., dags), we use the samegstréiven two dags;
andA,, we compute in polynomial time new das andB- such that (iyval(B;) is the
skeleton oal(A;) and (ii) the height oB; is strictly smaller than the height &f;. Note
that the notion of “height” makes sense for dags as well. thésmaximal length of a
path in the dag. To obtain a polynomial time algorithm at the, several problems have
to be addressed. First of all, the transformation of adl@gto a dagB such thaval(B)
is the skeleton ofal(A) must be accomplished in polynomial time. But even if we can
achieve this, an overall polynomial running time is not gueed, since we have to
iterate this transformation. If for instance, the sizédfet us define the size of a dag as
the number of edges) would be twice the sizé\pthen this would result into an overall
exponential blow-up. But fortunately, our transformatafm into B only involves an
additive blow-up, which is polynomial at each iteratiomd&lly, at the end, we have to
check isomorphism for two primitive regular words that aneanctly represented by
dags. It is not obvious to do this in polynomial time. In famty algorithm for solving
this problem makes essential use of known results for cosspoewords.

Let us explain this in more detail. A dag, where only the al@taymbols and the
operation of concatenation is used (moandw-powers and no shuffles) is also known
as astraight-line program (SLR)Alternatively, it can be seen as an acyclic context-free
grammar, where each nonterminal is the left-hand side ofiguerproduction. Such a
context-free grammar generates a single finite word. Mareakie length of this word
can be exponential in the size of the SLP. Hence the SLP caedreas a compressed
representation of the finite word. In recent years, a lot ffrefvas spent on the devel-
opment of efficient algorithms for SLP-represented finitedgo Our polynomial time
algorithm for primitive regular words that are given by dages a seminal result from
this area: It can be checked in polynomial time, whether thewepresented by a first
SLP is a factor of the word represented by a second SLP (casgaeattern match-
ing). The best algorithm for compressed pattern matchisgltabic running time [17].
Note that as a corollary, it can be checked in polynomial tiwigether two given SLPs
represent the same finite word. This result was first showndayd®wski [20].

4.2 Lower boundsfor regular linear orders

Let us now turn to lower bounds for the isomorphism problemrégular words. In
fact, all these lower bounds already hold for a unary alphalee, they hold for regular
linear orders. The results in this section nicely conttastésults from Section 3, where



we studied the isomorphism problem for the prefix order toresegular languages. In
this section, we replace the prefix order by the lexicogregdtarder.

Theorem 4.3. For every finite alphabel, it is P-hard (and henc®-complete) to de-
cide for two given dagd; andA; over the alphabel’, whethewal(A;) = val(A2).

As for the proof of Thm. 3.5, the proof of Thm. 4.3 is based oreduction from
the monotone circuit value problem. We do not know, whetherlower bound from
Thm. 4.3 holds for ordinary expressions (instead of dags) to

Theorem 4.4. It is P-hard (and hencé-complete) to decide for two given DFAG
and.A;, whether(L(A1); <jex) = (L(A2); <jex)-

Proof. Note that by Cor. 4.2 the problem belongshoFor P-hardness, it suffices by
Thm. 4.3 to construct in logspace from a given dafpver a unary terminal alphabet)
a DFA A such that the linear ordenl(A) is isomorphic to(L(.A); <j). But this is
accomplished by the construction in the proof of [24, Prdp. 2 O

Cor. 4.2 implies that it can be checkeddXPTIME whether the lexicographical order-
ings on two regular languages, given by NFAs, are isomorptiécdo not know whether
this upper bound is sharp. Currently, we can only prove aldeend ofPSPACE:

Theorem 4.5. It is PSPACE-hard to decide for two given NFA4, and A,, whether
(L(Al)y Slex) = (L(-AQ)y Slex)-

Proof. We provePSPACE-hardness by a reduction from tRE PACE-complete prob-
lem whether a given NFAA4 over the terminal alphabdl, b} accepts{a,b}* [23].
So let. A be an NFA over the terminal alphabgt, b} and letK = L(A). Let X =
{0,1,a,b,$;,$2} and fix the following order or’: $; < 0 < 1 < $5 < a < b. Under
this order,({0,1}*1; <jex) = ({a, 0}b; <jex) = 7.

It is straightforward to construct frotd in logspace an NFA for the language

L = ({a,b}"0%1) U (Kb{0,1}*1) U ({a,b}"b$2). (1)
It follows that

14+n4+1 ifwek
2 else.

(Li<ie) = Y L(w) with c(w)fv{

we{a,b}*b

(the sum is taken over all words frofa, b}*b in lexicographic order). IfX £ {a, b}*,
then(L; <) contains an interval isomorphic & Hence(L; <i) % 1. On the other
hand, ifK = {a,b}*, then(L; <iex) = (1+n+1)-n = n. This proves the theorem.O

The proof of Thm. 4.5 shows that it RSPACE-hard to check for a given NFA4,
whether(L(A); <ix) = 7. In fact, this problem turns out to lRSPACE-complete, see
the long version [18] for details.

In [9] it is shown that the problem, whethék; <) = 7 for a given context-free
language, is undecidable. This result is shown by a redudtmm Post’s correspon-
dence problem. Note that this result can be also easily @eblusing the technique

10



DFA NFA

acyclic PSPACE-complete
P-complete
arbitrary EXPTIME-complete

Table 1. Main results for the isomorphism problem for regular trees

DFA NFA
acyclic C_L-complete C_P-complete

arbitrar P-complete PSPACE-hard,

Y P in EXPTIME

Table 2. Main results for the isomorphism problem for regular lineaters

from the above proof: If we start with a pushdown automatanoinstead of an
NFA, then the languagg from (1) is context-free. HencéL; <) = n if and only if
L(A) = {a,b}*. The latter property is a well-known undecidable problem.

In Section 3 we also studied the isomorphism problem forditriéges that are suc-
cinctly given by the prefix order on the finite language aceegiy an acyclic DFA
(resp., NFA). To complete the picture, we should also cardite isomorphism prob-
lem for linear orders that consist of a lexicographicallgened finite language, where
the latter is represented by an acyclic DFA (resp., NFA). @irse, this problem is
somehow trivial, since two finite linear orders are isomdephand only if they have
the same cardinality. Hence, we have to consider the probleether two given acyclic
DFAs (resp. NFAs) accept languages of the same cardinaligy.complexity of these
problems is analyzed in the long version [18]. Straightfamdvarguments show that
checking whether two acyclic DFAs (resp. NFAs) accept laggs of the same cardi-
nality is complete for the counting cla€s.L (resp.,C_P), see [18] for definitions.

5 Conclusion and open problems

Table 1 (Table 2) summarizes our complexity results for oeniorphism problem for
regular trees (regular linear orders). Let us conclude witime open problems. As
can be seen from Table 2, there is a complexity gap for theasphism problem for
regular linear orders that are represented by NFAs. Thislpnobelongs t&XPTIME
and isPSPACE-hard. Another interesting problem concerns the equiaemoblem
for straight-line programs (i.e., dags that generate finiteds, or equivalently, acyclic
partitioned DFAs, or equivalently, context-free gramntaiet generate a single word).
Plandowski has shown that this problem can be solved in pohyal time. Recall that
this result is fundamental for our polynomial time algomitlior dags (Thm. 4.1). In
[10], it was conjectured that the equivalence problem fraight-line programs i®-
complete, but this is still open.
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