
Compressed word problems for inverse monoids

Markus Lohrey

Universiẗat Leipzig, Institut f̈ur Informatik, Germany
lohrey@informatik.uni-leipzig.de

Abstract. The compressed word problem for a finitely generated monoidM

asks whether two given compressed words over the generators ofM represent the
same element ofM . For string compression, straight-line programs, i.e., context-
free grammars that generate a single string, are used in this paper. It isshown
that the compressed word problem for a free inverse monoid of finite rank at least
two is complete forΠp

2
(second universal level of the polynomial time hierar-

chy). Moreover, it is shown that there exists a fixed finite idempotent presentation
(i.e., a finite set of relations involving idempotents of a free inverse monoid), for
which the corresponding quotient monoid has aPSPACE-complete compressed
word problem. The ordinary uncompressed word problem for such aquotient can
be solved in logspace [10]. Finally, aPSPACE-algorithm that checks whether a
given element of a free inverse monoid belongs to a given rational subset is pre-
sented. This problem is also shown to bePSPACE-complete (even for a fixed
finitely generated submonoid instead of a variable rational subset).

1 Introduction

The decidability and complexity of algorithmic problems infinitely generated monoids
and groups is a classical topic at the borderline of computerscience and mathematics.
The most basic question of this kind is theword problem, which asks whether two words
over the generators represent the same element. Markov and Post proved independently
that the word problem for finitely presented monoids is undecidable in general. Later,
Novikov and Boone extended the result of Markov and Post to finitely presented groups,
see the the survey [15] for references.

In this paper, we are interested ininverse monoids. A monoid is inverse, if for
each elementx there exists a unique “inverse”x−1 such thatx = xx−1x andx−1 =
x−1xx−1 [3]. In the same way as groups can be represented by sets of permutations,
inverse monoids can be represented by sets of partial injections [3]. Algorithmic ques-
tions for inverse monoids received increasing attention inthe past and inverse monoid
theory found several applications in combinatorial group theory, see e.g. [10] and the
survey [15] for further references.

Since the class of inverse monoids forms a variety of algebras (with respect to
the operations of multiplication, inversion, and the identity element), the free inverse
monoidFIM(Γ) generated by a setΓ exists. Munn gave in [16] an explicit representa-
tion of the free inverse monoidFIM(Γ). Elements can be represented by finite subtrees
of the Cayley-graph of the free group generated byΓ (so calledMunn trees). Moreover,
there are two distinguished nodes (an initial node and a finalnode). Multiplication of

two elements ofFIM(Γ) amounts of gluing the two Munn trees together, where the
final node of the first Munn tree is identified with the initial node of the second Munn
tree. This gives rise to a very simple algorithm for the word problem ofFIM(Γ), which
can moreover implemented in linear time. In [10], it was alsoshown (using Munn trees
together with a result of Lipton and Zalcstein [5] saying that the word problem for
a finitely generated free group can be solved in logspace) that the word problem for
FIM(Γ) can be solved in logspace.

Although the word problem for a free inverse monoid can be solved very efficiently,
there are several subtle differences between the algorithmic properties of free inverse
monoids on the one hand and free monoids and free groups on theother hand. Let us
give two examples:

– Solvability of equations: By the seminal results of Makanin, this problem is decid-
able for free monoids and free groups. On the other hand, solvability of equations
in a finitely generated free inverse monoid of rank at least 2 (the rank is the minimal
number of generators) is undecidable [19].

– Rational subset membership problem: Membership in a given rational subset of a
free monoid or free group can be decided in polynomial time. The same problem is
NP-complete for finitely generated free inverse monoids of rank at least two [2].

In this paper, we show that in a certain sense also the word problem is harder for free
inverse monoids than free monoids (groups). For this we consider thecompressed word
problem, where the input words are given succinctly by so calledstraight-line pro-
grams(SLPs) [18]. An SLP is a context free grammar that generates only one word, see
Section 4. Since the length of this word may grow exponentially with the size (num-
ber of productions) of the SLP, SLPs can be seen as a compact string representation.
SLPs turned out to be a very flexible compressed representation of strings, which are
well suited for studying algorithms for compressed strings; see [8] for references. In
the compressed word problem for a finitely generated monoidM the input consists of
two SLPs that generate words over the generators ofM , and it is asked whether these
two words represent the same element ofM . Hence, the compressed word problem
for a free monoid simply asks, whether two SLPs generate the same word. Plandowski
proved in [17] that this problem can be solved in polynomial time; the best algorithm is
due to Lifshits [4] and has a cubic running time. Based on Plandowski’s result, it was
shown in [7] that the compressed word problem for a free groupcan be solved in poly-
nomial time. This result has algorithmic implications for the ordinary (uncompressed)
word problem: In [11, 20] it was shown that the word problem for the automorphism
group of a groupG can be reduced in polynomial time to thecompressedword problem
for G (more general: the word problem for the endomorphism monoidof a monoidM
can be reduced in polynomial time to thecompressedword problem forM). Hence, the
word problem for the automorphism group of a free group turned out to be solvable in
polynomial time [20], which solved an open problem from combinatorial group theory.
Generalizations of this result for larger classes of groupscan be found in [11, 13].

Our first main result states that the compressed word problemfor every finitely gen-
erated free inverse monoid of rank at least two is complete for Πp

2 , the second universal
level of the polynomial time hierarchy (Thm. 4). The upper bound follows easily us-
ing Munn’s solution for the word problem together with the above mentioned result of

Lipton and Zalcstein for free groups. The lower bound is based on a reduction from
a variant of the SUBSETSUM problem together with an encodingof a SUBSETSUM
instance by an SLP [7]. Hence, the compressed word problem for free inverse monoids
is indeed computationally harder than the compressed word problem for free monoids
(groups) (unlessP = Πp

2). It is not difficult to see that the compressed word problem
for a free inverse monoid of rank 1 can be solved in polynomialtime (Prop. 1).

In [14], Margolis and Meakin presented a large class of finitely presented inverse
monoids with decidable word problems. An inverse monoid from that class is of the
form FIM(Γ)/P , whereP is a presentation consisting of a finite number of relations
e = f , wheree andf are idempotents ofFIM(Γ); we call such a presentation idem-
potent. An alternative proof for the decidability result ofMargolis and Meakin was
given in [21]. In [10] it was shown that the word problem for every inverse monoid
FIM(Γ)/P , whereP is an idempotent presentation, can be solved in logspace. This
implies that the compressed word problem for each of these inverse monoids belongs
to the classPSPACE. Our second main result states that the are specific idempotent
presentationsP such that the compressed word problem forFIM(Γ)/P is PSPACE-
complete (Thm. 5).

In the last part of the paper we consider the compressed variant of the rational subset
membership problem. The class of rational subsets of a monoid M is the smallest class
of subsets, which contains all finite subsets, and which is closed under union, product
and Kleene star (A∗ is the submonoid generated by the subsetA ⊆ M). If M is finitely
generated byΓ , then a rational subset ofM can be represented by a finite automaton
over the alphabetΓ . In this case, the rational subset membership problem asks,whether
a given element ofM (given by a finite word overΓ) belongs to a given rational subset
(given by a finite automaton overΓ). Especially for groups, this problem is intensively
studied, see e.g. [12]. In [2], it was shown that the rationalsubset membership problem
for a free inverse monoid of finite rank at least two isNP-complete. Here, we consider
the compressed rational subset membership problem, where the input consists of an
SLP-compressed word over the generators and a finite automaton over the generators.
We show that the compressed rational subset membership problem for a free inverse
monoid of finite rank at least two isPSPACE-complete. The difficult part of the proof
is to show membership inPSPACE. PSPACE-hardness holds already for the case that
the rational subset is a fixed finitely generated submonoid (Thm. 6).

Proofs that are omitted in this paper can be found in the long version [9].

2 Preliminaries

Let Γ be a finite alphabet. Theempty wordoverΓ is denoted byε. Let s = a1 · · · an ∈
Γ ∗ be a word overΓ , wheren ≥ 0 anda1, . . . , an ∈ Γ for 1 ≤ i ≤ n. Thelengthof s
is |s| = n. For1 ≤ i ≤ n let s[i] = ai and for1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj .
If i > j we sets[i, j] = ε. For n ∈ N let Γ≤n = {w ∈ Γ ∗ | |w| ≤ n}. We write
s ¹ t for s, t ∈ Γ ∗, if s is a prefix oft. A setA ⊆ Γ ∗ is prefix-closed, if u ¹ v ∈ A
implies u ∈ A. We denote withΓ−1 = {a−1 | a ∈ Γ} a disjoint copy of the finite
alphabetΓ . Fora−1 ∈ Γ−1 we define(a−1)−1 = a; thus,−1 becomes an involution on
the alphabetΓ ∪ Γ−1. We extend this involution to words from(Γ ∪ Γ−1)∗ by setting

(a1 · · · an)−1 = a−1
n · · · a−1

1 , whereai ∈ Γ ∪ Γ−1. Fora ∈ Γ ∪ Γ−1 andn ≥ 0 we
usea−n as an abbreviation for the word(a−1)n. We use standard terminology from
automata theory. Anondeterministic finite automaton(NFA) over an input alphabetΓ
is a tupleA = (Q,Σ, δ, q0, F), whereQ is the set of states,δ ⊆ Q × Σ × Q is the
transition relation,q0 ∈ Q is the initial state, andF ⊆ Q is the set of final states. For a
deterministic finite automaton, δ : Q×Σ →p Q is a partial mapping fromQ×Σ to Q.

Complexity theory: We assume some basic background in complexity theory. Recall
that Πp

2 (the second universal level of the polynomial time hierarchy) is the class of
all languagesL for which there exists a polynomial time predicateP (x, y, z) and a
polynomialp(n) such thatL = {x ∈ Σ∗ | ∀y ∈ Σ≤p(|x|)∃z ∈ Σ≤p(|x|) : P (x, y, z)}.
POLYLOGSPACE denotes the classNSPACE(log(n)O(1)) = DSPACE(log(n)O(1)).
A PSPACE-transducer is a deterministic Turing machine with a read-only input tape, a
write-only output tape and a working tape, whose length is bounded bynO(1), wheren
is the input length. The output is written from left to right on the output tape, i.e., in each
step the transducer either outputs a new symbol on the outputtape, in which case the
output head moves one cell to the right, or the transducer does not output a new symbol
in which case the output head does not move. Moreover, we assume that the transducer
terminates for every input. This implies that aPSPACE-transducer computes a mapping
f : Σ∗ → Θ∗, where|f(w)| is bounded by2|w|O(1)

. A POLYLOGSPACE-transducer is
defined in the same way as aPSPACE-transducer, except that the length of the working
tape is bounded bylog(n)O(1). The proof of the following lemma uses the same idea
that shows that logspace reducibility is transitive.

Lemma 1. Assume thatf : Σ∗ → Θ∗ can be computed by aPSPACE-transducer
and thatg : Θ∗ → ∆∗ can be computed by aPOLYLOGSPACE-transducer. Then the
mappingf ◦g can be computed by aPSPACE-transducer. In particular, if the language
L ⊆ Θ∗ belongs toPOLYLOGSPACE, thenf−1(L) belongs toPSPACE.

Free groups: It is common to identify a congruenceα on a monoidM with the surjec-
tive homomorphism fromM to the quotientM/α that maps an elementm ∈ M to the
congruence class ofm with respect toα. Thefree groupFG(Γ) generated by the setΓ
is the quotient monoid

FG(Γ) = (Γ ∪ Γ−1)∗/δ, (1)

whereδ is the smallest congruence on(Γ ∪ Γ−1)∗ that contains all pairs(bb−1, ε) for
b ∈ Γ ∪Γ−1. It is well known that for everyu ∈ (Γ ∪Γ−1)∗ there exists a unique word
r(u) ∈ (Γ ∪ Γ−1)∗ (thereduced normal form ofu) such thatδ(u) = δ(r(u)) andr(u)
does not contain a factor of the formbb−1 for b ∈ Γ ∪Γ−1. It holdsδ(u) = δ(v) if and
only if r(u) = r(v). Since the wordr(u) can be calculated fromu in linear time, the
word problem forFG(Γ) can be solved in linear time. LetIRR(Γ) = {r(u) | u ∈ (Γ ∪
Γ−1)∗} be the set of allirreduciblewords. The epimorphismδ : (Γ ∪Γ−1)∗ → FG(Γ)
restricted toIRR(Γ) is a bijection.

The Cayley-graph ofFG(Γ) with respect to the standard generating setΓ∪Γ−1 will
be denoted byC(Γ). Its vertex set isFG(Γ) and there is ana-labeled edge (a ∈ Γ∪Γ−1)
from x ∈ FG(Γ) to y ∈ FG(Γ) if y = xa in FG(Γ). Note thatFG(Γ) is a finitely-
branching tree. Figure 1 shows a finite portion ofC({a, b}). Here, and in the following,

1

. . .
...

...
. . .

aa−1

b−1

b

a−1

b−1

b

a

b−1

b

aa−1

b

aa−1

b−1

a−1

b−1

b

aa−1
b

aa−1

b−1

a−1

b−1

b
a

b−1

b

aa−1
b

a

b−1

b

aa−1
b

aa−1

b−1

a−1

b−1

b
a

b−1

b

aa−1

b−1

Fig. 1.The Cayley-graphC({a, b}) of the free groupFG({a, b})

we only draw one directed edge between two points. Thus, for every drawna-labeled
edge we omit thea−1-labeled reversed edge.

3 Inverse monoids

A monoid M is called aninverse monoidif for every m ∈ M there is aunique
m−1 ∈ M such thatm = mm−1m andm−1 = m−1mm−1. For detailed reference on
inverse monoids see [3]; here we only recall the basic notions. Since the class of inverse
monoids forms a variety of algebras (with respect to the operations of multiplication,
inversion, and the identity element), the free inverse monoid FIM(Γ) generated by a set
Γ exists. Vagner gave an explicit presentation ofFIM(Γ): Let ρ be the smallest congru-
ence on the free monoid(Γ ∪ Γ−1)∗ which contains for all wordsv, w ∈ (Γ ∪ Γ−1)∗

the pairs(w,ww−1w) and(ww−1vv−1, vv−1ww−1); these identities are also called
Vagner equations. ThenFIM(Γ) ≃ (Γ ∪ Γ−1)∗/ρ. An elementx of an inverse monoid
M is idempotent (i.e.,x2 = x) if and only if x is of the formmm−1 for somem ∈ M .

Hence, Vagner’s presentation ofFIM(Γ) implies that idempotent elements in an in-
verse monoid commute. Since the Vagner equations are true inthe free groupFG(Γ),
there exists a congruenceγ on FIM(Γ) such thatFG(Γ) = FIM(Γ)/γ. When viewing
congruences as homomorphisms, we haveδ = ρ ◦ γ, whereδ is the congruence on
(Γ ∪Γ−1)∗ from (1). Elements ofFIM(Γ) can be also represented viaMunn trees: The
Munn treeMT(u) of u ∈ (Γ ∪ Γ−1)∗ is a finite and prefix-closed subset ofIRR(Γ); it
is defined by

MT(u) = {r(v) | v ¹ u}.

By identifying an irreducible wordv ∈ IRR(Γ) with the group elementδ(v), MT(u)
becomes the set of all nodes along the unique path inC(Γ) that starts in1 and that is
labeled with the wordu. The subgraph of the Cayley-graphC(Γ), which is induced by
MT(u) is connected. Hence it is a finite tree and we can identifyMT(u) with this tree.
The following result is known as Munn’s Theorem:

Theorem 1 ([16]).For all u, v ∈ (Γ ∪ Γ−1)∗, we have:ρ(u) = ρ(v) if and only if
(r(u) = r(v) andMT(u) = MT(v)).

Thus,ρ(u) ∈ FIM(Γ) can be uniquely represented by the pair(MT(u), r(u)). In fact,
if we define on the set of all pairs(U, v) ∈ 2IRR(Γ) × IRR(Γ) (with v ∈ U andU finite
and prefix-closed) a multiplication by(U, v)(V,w) = (r(U ∪ vV), r(vw)), then the
resulting monoid is isomorphic toFIM(Γ). Quite often, we represent an elementρ(u) ∈
FIM(Γ) by a diagram for its Munn tree, where in addition the nodeε is represented by
a bigger circle and the noder(u) is marked by an outgoing arrow. Ifr(u) = ε, then we
omit this arrow. By Thm. 1 such a diagram uniquely specifies anelement ofFIM(Γ).

Example 1.The diagram forρ(bb−1abb−1a) ∈ FIM({a, b}) looks as follows:

b
a a

b

Thm. 1 leads to a polynomial time algorithm for the word problem for FIM(Γ). For
instance, the reader can easily check thatbb−1abb−1a = aaa−1bb−1a−1bb−1aa in
FIM({a, b}) by using Munn’s Theorem. In fact, every word that labels a path from ε
to aa (the node with the outgoing arrow) and that visits all nodes of the above diagram
represents the same element ofFIM({a, b}) asbb−1abb−1a. Munn’s theorem also im-
plies that an elementρ(u) ∈ FIM(Γ) (whereu ∈ (Γ ∪ Γ−1)∗) is idempotent (i.e.,
ρ(uu) = ρ(u)) if and only if r(u) = ε.

For a finite setP ⊆ (Γ ∪Γ−1)∗×(Γ ∪Γ−1)∗ defineFIM(Γ)/P = (Γ ∪Γ−1)∗/τP

to be the inverse monoid with the setΓ of generators and the setP of relations, where
τP is the smallest congruence on(Γ∪Γ−1)∗ generated byρ∪P . Viewed as a morphism,
this congruence factors asτP = ρ ◦ νP with FIM(Γ)/νP = FIM(Γ)/P . We say that
P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ is an idempotent presentationif for all (e, f) ∈ P ,
ρ(e) andρ(f) are both idempotents ofFIM(Γ), i.e., r(e) = r(f) = ε by the remark
above. In this paper, we are concerned with inverse monoids of the formFIM(Γ)/P for
a finite idempotent presentationP . In this case, since every identity(e, f) ∈ P is true
in FG(Γ) (we haveδ(e) = δ(f) = 1), there also exists a congruenceγP onFIM(Γ)/P
with (FIM(Γ)/P)/γP = FG(Γ). The following commutative diagram summarizes all
morphisms introduced so far.

(Γ ∪ Γ−1)∗

FIM(Γ) FG(Γ)FIM(Γ)/P

ρ

γ

δτP

νP γP

In the sequel, the meaning of the congruencesρ, δ, γP , γ, τP , andνP will be fixed.
To solve the word problem forFIM(Γ)/P , Margolis and Meakin [14] used a closure

operation for Munn trees, which is based on work of Stephen [22]. We shortly review
the ideas here. As remarked in [14], every idempotent presentationP can be replaced
by the idempotent presentationP ′ = {(e, ef), (f, ef) | (e, f) ∈ P}, i.e.,FIM(Γ)/P =
FIM(Γ)/P ′. SinceMT(e) ⊆ MT(ef) ⊇ MT(f) if r(e) = r(f) = ε, we can restrict
in the following to idempotent presentationsP such thatMT(e) ⊆ MT(f) for all
(e, f) ∈ P . Define a rewriting relation⇒P on prefix-closed subsets ofIRR(Γ) as
follows, whereU, V ⊆ IRR(Γ): U ⇒P V if and only if

∃(e, f) ∈ P ∃u ∈ U
(

r(u MT(e)) ⊆ U andV = U ∪ r(u MT(f))
)

.

Finally, define the closure ofU ⊆ IRR(Γ) with respect to the presentationP as

clP (U) =
⋃

{V | U
∗
⇒P V }.

Example 2.Assume thatΓ = {a, b}, P = {(aa−1, a2a−2), (bb−1, b2b−2)} andu =
aa−1bb−1. The graphical representations for these elements look as follows:

a a

a

= b b

b

= a b

Then the closureclP (MT(u)) is {an | n ≥ 0} ∪ {bn | n ≥ 0} ⊆ IRR(Γ).

Margolis and Meakin proved the following result:

Theorem 2 ([14]).Let P be an idempotent presentation and letu, v ∈ (Γ ∪ Γ−1)∗.
ThenτP (u) = τP (v) if and only if(r(u) = r(v) andclP (MT(u)) = clP (MT(v))).

The result of Munn forFIM(Γ) (Thm. 1) is a special case of this result forP = ∅.
Note also thatclP (MT(u)) = clP (MT(v)) if and only if MT(u) ⊆ clP (MT(v))
and MT(v) ⊆ clP (MT(u)). Margolis and Meakin used Thm. 2 in connection with
Rabin’s tree theorem in order to give a solution for the word problem for the monoid
FIM(Γ)/P . Using tree automata techniques, a logspace algorithm for the word prob-
lem forFIM(Γ)/P was given in [10]. For this result, it is important that the idempotent
presentationP is not part of the input. The uniform version of the word problem, where
P is part of the input, isEXPTIME-complete [10].

4 Straight-line programs

We are using straight-line programs as a succinct representation of strings with reoc-
curring subpatterns [18]. Astraight-line program (SLP) over a finite alphabetΓ is a

context free grammarA = (V, Γ, S, P), whereV is the set ofnonterminals, Γ is the
set of terminals, S ∈ V is the initial nonterminal, andP ⊆ V × (V ∪ Γ)∗ is the
set ofproductionssuch that (i) for everyX ∈ V there is exactly oneα ∈ (V ∪ Γ)∗

with (X,α) ∈ P and (ii) there is no cycle in the relation{(X,Y) ∈ V × V | ∃α ∈
(V ∪ Γ)∗Y (V ∪ Γ)∗ : (X,α) ∈ P}. These conditions ensure that the language gener-
ated by the straight-line programA contains exactly one wordval(A).

Remark 1.The following problems can be solved in polynomial time:

(a) Given an SLPA, calculate|val(A)| in binary representation.
(b) Given an SLPA and two binary coded numbers1 ≤ i ≤ j ≤ |val(A)|, compute an

SLPB with val(B) = val(A)[i, j].

Also notice thatval(A) can be computed fromA by aPSPACE-transducer.

Plandowski [17] presented a polynomial time algorithm for testing whetherval(A) =
val(B) for two given SLPsA andB. A cubic algorithm was presented by Lifshits [4].

Let M be a finitely generated monoid and letΓ be a finite generating set forM .
Thecompressed word problemfor M is the following computational problem:

INPUT: SLPsA andB over the alphabetΓ .
QUESTION: Doesval(A) = val(B) hold inM?

The above mentioned result of Plandowski [17] means that thecompressed word prob-
lem for a finitely generated free monoid can be solved in polynomial time. The follow-
ing result was shown in [7].

Theorem 3 ([7]).For every finite alphabetΓ , the compressed word problem forFG(Γ)
can be solved in polynomial time (and isP-complete if|Γ | ≥ 2).

5 Compressed word problem forFIM(Γ)

Recall that the word problem forFIM(Γ) can be solved in logspace [10]. In the com-
pressed setting we have:

Theorem 4. For every finite alphabetΓ with |Γ | ≥ 2, the compressed word problem
for FIM(Γ) is Πp

2 -complete.

Proof. For theΠp
2 upper bound, letA andB be SLPs over some alphabetΓ ∪Γ−1 and

let m = |val(A)| andn = |val(B)|. These numbers can be computed in polynomial
time by Remark 1. By Thm. 1, we haveval(A) = val(B) in FIM(Γ) if and only if:

val(A) = val(B) in FG(Γ) (2)

∀i ∈ {0, . . . ,m} ∃j ∈ {0, . . . , n} : val(A)[1, i] = val(B)[1, j] in FG(Γ) (3)

∀i ∈ {0, . . . , n} ∃j ∈ {0, . . . ,m} : val(B)[1, i] = val(A)[1, j] in FG(Γ) (4)

Thm. 3 implies that (2) can be checked in polynomial time, whereas (3) and (4) are
Πp

2 -properties.

It suffices to prove the lower bound forΓ = {a, b}. We make a logspace reduction
from the followingΠp

2 -complete problem [1], whereu ·v = u1v1 + · · ·+unvn denotes
the scalar product of two integer vectorsu = (u1, . . . , un), v = (v1, . . . , vn):

INPUT: vectorsu = (u1, . . . , um) ∈ N
m, v = (v1, . . . , vn) ∈ N

n, andt ∈ N (all
coded binary)
QUESTION: Does∀x ∈ {0, 1}m∃y ∈ {0, 1}n : u · x + v · y = t hold?

Lets = u1+· · ·+um+v1+· · ·+vn, su = u1+· · ·+um, andsv = v1+· · ·+vn. W.l.o.g.
we can assumet < s. Using the construction from [7] (proof of Theorem 5.2) we can
construct in logspace an SLPA1 such thatval(A1) =

∏

x∈{0,1}m au·xA1a
su−u·x. Here

the product is taken over all tuples from{0, 1}m in lexicographic order. By replac-
ing A1 by A2a

sv (which can be easily generated by a small SLP), we obtain an SLP
A2 with val(A2) =

∏

x∈{0,1}m au·xA2a
s−u·x. Similarly, we obtain an SLPA3 with

val(A3) =
∏

y∈{0,1}n av·y(bb−1a−sv)asv−v·y. Finally, be replacingA2 in A2 by the
start nonterminal ofA3 we obtain an SLPA with

val(A) =
∏

x∈{0,1}m

[

au·x
∏

y∈{0,1}n

(

av·ybb−1a−svasv−v·y

)

as−u·x

]

.

Moreover, it is easy to construct a second SLPB such that

val(B) = val(A)a−s·2m(

atbb−1as−t
)2m

.

We claim thatval(A) = val(B) in FIM({a, b}) if and only if

∀x ∈ N
m∃y ∈ N

n : u · x + v · y = t. (5)

We haver(val(A)) = r(val(B)) = as·2m

. Thus,val(A) = val(B) holds inFIM({a, b})
if and only if MT(val(A)) = MT(val(B)). Sinceval(A) is a prefix ofval(B), we obtain
MT(val(A)) ⊆ MT(val(B)). Moreover, for the prefixval(A)a−s·2m

of val(B) we have
r(val(A)a−s·2m

) = ε andMT(val(A)a−s·2m

) = MT(val(A)). This and the fact that
MT(val(A)) ⊆ MT(val(B)) implies thatMT(val(A)) = MT(val(B)) if and only if

MT((atbb−1as−t)2
m

) ⊆ MT(val(A)). (6)

We show that (6) is equivalent to (5). We have

MT((atbb−1as−t)2
m

) = {ai | 0 ≤ i ≤ s · 2m} ∪ {at+k·sb | 0 ≤ k < 2m}.

Sincer(val(A)) = as·2m

, we haveai ∈ MT(val(A)) for all 0 ≤ i ≤ s · 2m. Hence,
(6) is equivalent toat+k·sb ∈ MT(val(A)) for every0 ≤ k < 2m, i.e. (for a bit vector
u = (u1, . . . , un) ∈ {0, 1}n let n(u) =

∑n

i=1 ui2
i−1 be the number represented byu)

∀x ∈ {0, 1}m : an(x)·s+tb ∈ MT(val(A)). (7)

Now, MT(val(A)) ∩ a∗b = {an(x)·s+u·x+v·yb | x ∈ {0, 1}m, y ∈ {0, 1}n}. Hence, (7)
if and only if ∀x ∈ {0, 1}m∃y ∈ {0, 1}n : u · x + v · y = t. ⊓⊔

For a free inverse monoid of rank one, the compressed word problem is simpler:

Proposition 1. The compressed word problem forFIM({a}) can be solved in polyno-
mial time.

6 Compressed word problems forFIM(Γ)/P

For an inverse monoid of the formFIM(Γ)/P , whereΓ is finite andP is a finite idem-
potent presentation, the word problem can be still solved inlogspace [10]. In this case,
the complexity of the compressed word problem reaches evenPSPACE:

Theorem 5. The following holds:

(a) For every finite idempotent presentationP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗, the
compressed word problem forFIM(Γ)/P belongs toPSPACE.

(b) There exists a fixed finite idempotent presentationP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

such that the compressed word problem forFIM(Γ)/P is PSPACE-complete.

Proof. Let us first show (a). In [10], it was shown that the ordinary word problem for
FIM(Γ)/P can be solved in logarithmic space. Sinceval(A) can be computed fromA
by aPSPACE-transducer (Remark 1), statement (a) follows from Lemma 1.

For the lower bound in (b), we use the following recent resultfrom [8]: There exists
a fixed regular languageL over some paired alphabetΣ × Θ such that the following
problem isPSPACE-complete (for stringsu ∈ Σ∗, v ∈ Θ∗ with |u| = |v| = n let
u ⊗ v = (u[1], v[1]) · · · (u[n], v[n]) ∈ (Σ × Θ)∗):

INPUT: SLPsA (overΣ) andB (overΘ) with |val(A)| = |val(B)|
QUESTION: Doesval(A) ⊗ val(B) ∈ L hold?

W.l.o.g. assume thatΣ ∩Θ = ∅. LetA = (Q,Σ ×Θ, δ, q0, F) be a deterministic finite
automaton withL(A) = L. Let Γ = Σ ∪ Θ ∪ Q ∪ {A,B,C} (all unions are assumed
to be disjoint). Consider the fixed idempotent presentationover the alphabetΓ with the
following relations:

a

b q

A
=

a

b q

A

p
if δ(q, (a, b)) = p

B f
=

B

C

f
if f ∈ F

=A

C

A

CC

With the upper left relation, we simulate the automatonA. The upper right relation
allows to add aC-labeled edge as soon as a final state is reached; theB-labeled edge
acts as a kind of end marker for the input word. Finally, the last relation allows to
propagate theC-labeled edge back to the origin (node1).

Assume thatval(A) = a1 · · · an andval(B) = b1 · · · bn. Consider the string

w = q0q
−1
0

n
∏

i=1

(aia
−1
i A)BB−1

n−1
∏

i=0

(A−1bn−ib
−1
n−i).

It is easy to compute fromA andB in polynomial time an SLPC with val(C) = w. The
Munn treeMT(w) looks as follows:

. . .
A A A A A

a1

b1 q0

a2

b2

a3

b3

a4

b4

an−1

bn−1

an

bn B

We claim thatw = CC−1w in FIM(Γ)/P if and only if val(A) ⊗ val(B) ∈ L(A).
Clearly,w = CC−1w = 1 in FG(Γ). Moreover,clP (MT(w)) = clP (MT(CC−1w))
if and only if C ∈ clP (MT(w)). Thus, it suffices to show thatC ∈ clP (MT(w)) if and
only if val(A) ⊗ val(B) ∈ L(A). First, assume thatval(A) ⊗ val(B) /∈ L(A). Let qi be
the state ofA after reading(a1, b1) · · · (ai, bi) (0 ≤ i ≤ n). Thus,qn 6∈ F . This implies
thatclP (MT(w)) = MT(w) ∪ {Aiqi | 0 ≤ i ≤ n}. Hence,C 6∈ clP (MT(w)). On the
other hand, ifqn ∈ F , thenclP (MT(w)) = MT(w) ∪ {Aiqi, A

iC | 0 ≤ i ≤ n} and
thereforeC ∈ clP (MT(w)). ⊓⊔

7 Rational subset membership problems

In this section we briefly outline our results on the compressed variant of the rational
subset membership problem for free inverse monoids. We start with a lower bound.

Theorem 6. There exists a fixed alphabetΓ and a fixed finite subsetK ⊆ (Γ ∪ Γ−1)∗

such that the following problem isPSPACE-hard:
INPUT: An SLPA over the alphabetΓ ∪ Γ−1

QUESTION: Doesρ(val(A)) ∈ ρ(K∗) hold?

Note thatρ(K∗) is the submonoid ofFIM(Γ) generated byρ(K). Let us now turn to
an upper bound.

Theorem 7. The following problem belongs toPSPACE:
INPUT: An SLPA over an alphabetΓ ∪Γ−1 and an NFAA over the alphabetΓ ∪Γ−1.
QUESTION: Doesρ(A) ∈ ρ(L(A)) hold?

The proof of Thm. 7 is based on tree automata techniques. Recall that a Munn tree
MT(u) can be viewed as an edge labeled tree. The nodeε can be made the root of the
tree. Such a rooted edge-labeled tree can be evaluated by a tree automaton. Usually,
tree automata work on node labeled trees, but this is only a technicality. The proof of
Thm. 7 is based on the following two lemmas.

Lemma 2. There is aPSPACE-transducer, which computesMT(val(A)) for a given
input SLPA.

Lemma 3. There is aPSPACE-transducer, which computes from a given nondeter-
ministic finite automatonA over the alphabetΓ ∪ Γ−1 and a given SLPA over
the alphabetΓ ∪ Γ−1 a nondeterministic tree automatonB = B(A, A) such that:
ρ(val(A)) ∈ ρ(L(A)) if and only ifMT(val(A)) is accepted byB.

Proof of Thm. 7.We apply Lemma 1, wheref : (A,A) 7→ (MT(val(A)),B(A, A))
andL is the uniform membership problem for tree automata, i.e., the set of all pairs
(T,B), whereT is a tree andB is a tree automaton that acceptsT . By [6], L belongs to
LOGCFL and hence toPOLYLOGSPACE. Moreover, the mappingf can be computed
by aPSPACE-transducer by Lemma 2 and 3. ⊓⊔

References

1. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity
of pattern matching for highly compressed two-dimensional texts.J. Comput. Syst. Sci.,
65(2):332–350, 2002.

2. V. Diekert, M. Lohrey, and A. Miller. Partially commutative inverse monoids. Semigroup
Forum, 77(2):196–226, 2008.

3. M. V. Lawson. Inverse Semigroups: The Theory of Partial Symmetries. World Scientific,
1999.

4. Y. Lifshits. Processing compressed texts: A tractability border. InProc. CPM, LNCS 4580,
pages 228–240. Springer, 2007.

5. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace.J. Assoc. Comput. Mach.,
24(3):522–526, 1977.

6. M. Lohrey. On the parallel complexity of tree automata. InProc. RTA 2001, LNCS 2051,
pages 201–215. Springer, 2001.

7. M. Lohrey. Word problems and membership problems on compressed words.SIAM J. Com-
put., 35(5):1210 – 1240, 2006.

8. M. Lohrey. Leaf languages and string compression.Inf. Comput., 209(6):951–965, 2011.
9. M. Lohrey. Compressed word problems for inverse monoids. http://arxiv.org/abs/1106.1000

10. M. Lohrey and N. Ondrusch. Inverse monoids: decidability and complexity of algebraic
questions.Inf. Comput., 205(8):1212–1234, 2007.

11. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. InProc. CSR
2007, LNCS 4649, pages 249–258. Springer, 2007.

12. M. Lohrey and B. Steinberg. Tilings and submonoids of metabelian groups. Theory Com-
put. Syst., 48(2):411–427, 2011.

13. J. Macdonald. Compressed words and automorphisms in fully residually free groups.Inter-
nat. J. Algebra Comput., 20(3):343–355, 2010.

14. S. Margolis and J. Meakin. Inverse monoids, trees, and context-free languages.
Trans. Amer. Math. Soc., 335(1):259–276, 1993.

15. S. Margolis, J. Meakin, and M. Sapir. Algorithmic problems in groups, semigroups and
inverse semigroups. In J. Fountain, editor,Semigroups, Formal Languages and Groups,
pages 147–214. Kluwer, 1995.

16. W. Munn. Free inverse semigroups.Proc. London Math. Soc., 30:385–404, 1974.
17. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. In

Proc. ESA’94, LNCS 855, pages 460–470. Springer, 1994.
18. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed

words. In J. Karhum̈aki, H. A. Maurer, G. Paun, and G. Rozenberg, editors,Jewels are
Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
262–272. Springer, 1999.

19. B. V. Rozenblat. Diophantine theories of free inverse semigroups.Sib. Math. J., 26:860–865,
1985. English translation.

20. S. Schleimer. Polynomial-time word problems.Comment. Math. Helv., 83:741–765, 2008.
21. P. V. Silva. Rational languages and inverse monoid presentations.Internat. J. Algebra Com-

put., 2:187–207, 1992.
22. J. Stephen. Presentations of inverse monoids.J. Pure Appl. Algebra, 63:81–112, 1990.

