Compressed word problems for inverse monoids

Markus Lohrey

Universitt Leipzig, Institut fir Informatik, Germany
| ohrey@nformati k. uni -1 eipzi g.de

Abstract. The compressed word problem for a finitely generated moddid
asks whether two given compressed words over the generatbfgepresent the
same element a¥/. For string compression, straight-line programs, i.e., context-
free grammars that generate a single string, are used in this papeshtvis
that the compressed word problem for a free inverse monoid of fimteatleast
two is complete forlI5 (second universal level of the polynomial time hierar-
chy). Moreover, it is shown that there exists a fixed finite idempoteisgmtation
(i.e., afinite set of relations involving idempotents of a free inverse ridpnior
which the corresponding quotient monoid haBSPACE-complete compressed
word problem. The ordinary uncompressed word problem for suglotient can
be solved in logspace [10]. Finally,RSPACE-algorithm that checks whether a
given element of a free inverse monoid belongs to a given rationaksigpre-
sented. This problem is also shown to P&8PACE-complete (even for a fixed
finitely generated submonoid instead of a variable rational subset).

1 Introduction

The decidability and complexity of algorithmic problemdiinitely generated monoids
and groups is a classical topic at the borderline of commdience and mathematics.
The most basic question of this kind is therd problemwhich asks whether two words
over the generators represent the same element. Markovosthgi®ved independently
that the word problem for finitely presented monoids is uididde in general. Later,
Novikov and Boone extended the result of Markov and Post itefinpresented groups,
see the the survey [15] for references.

In this paper, we are interested iimverse monoidsA monoid is inverse, if for
each element there exists a unique “inverse’ ! such thatr = zz~'z andz~! =
z~tzz~! [3]. In the same way as groups can be represented by setsrofifadions,
inverse monoids can be represented by sets of partial iojecf3]. Algorithmic ques-
tions for inverse monoids received increasing attentiothépast and inverse monoid
theory found several applications in combinatorial grougory, see e.g. [10] and the
survey [15] for further references.

Since the class of inverse monoids forms a variety of algelorath respect to
the operations of multiplication, inversion, and the idigntlement), the free inverse
monoidFIM(I") generated by a sét exists. Munn gave in [16] an explicit representa-
tion of the free inverse monollM(I"). Elements can be represented by finite subtrees
of the Cayley-graph of the free group generated 1{go calledviunn tree$. Moreover,
there are two distinguished nodes (an initial node and a findé). Multiplication of



two elements oFIM(I") amounts of gluing the two Munn trees together, where the
final node of the first Munn tree is identified with the initiadde of the second Munn
tree. This gives rise to a very simple algorithm for the womlkpem of FIM(I"), which

can moreover implemented in linear time. In [10], it was alkown (using Munn trees
together with a result of Lipton and Zalcstein [5] sayingtttiee word problem for

a finitely generated free group can be solved in logspace)thieaword problem for
FIM(I") can be solved in logspace.

Although the word problem for a free inverse monoid can beesblery efficiently,
there are several subtle differences between the algddthroperties of free inverse
monoids on the one hand and free monoids and free groups ahbehand. Let us
give two examples:

— Solvability of equations: By the seminal results of Makarims problem is decid-
able for free monoids and free groups. On the other handalsitity of equations
in a finitely generated free inverse monoid of rank at leati@ ank is the minimal
number of generators) is undecidable [19].

— Rational subset membership problem: Membership in a gigganal subset of a
free monoid or free group can be decided in polynomial tinke2 $ame problem is
NP-complete for finitely generated free inverse monoids okrarleast two [2].

In this paper, we show that in a certain sense also the wottdlgarois harder for free
inverse monoids than free monoids (groups). For this weidenthecompressed word
problem where the input words are given succinctly by so caBéaight-line pro-
grams(SLPs) [18]. An SLP is a context free grammar that generatsame word, see
Section 4. Since the length of this word may grow expondwtiagith the size (num-
ber of productions) of the SLP, SLPs can be seen as a compiact tpresentation.
SLPs turned out to be a very flexible compressed represaemtatistrings, which are
well suited for studying algorithms for compressed strirggse [8] for references. In
the compressed word problem for a finitely generated monsdithe input consists of
two SLPs that generate words over the generators pand it is asked whether these
two words represent the same element\df Hence, the compressed word problem
for a free monoid simply asks, whether two SLPs generateaimesvord. Plandowski
proved in [17] that this problem can be solved in polynormirakt, the best algorithm is
due to Lifshits [4] and has a cubic running time. Based on dtarski's result, it was
shown in [7] that the compressed word problem for a free gaarpbe solved in poly-
nomial time. This result has algorithmic implications foetordinary (uncompressed)
word problem: In [11, 20] it was shown that the word problemtfte automorphism
group of a grougz can be reduced in polynomial time to tbempressedord problem
for G (more general: the word problem for the endomorphism moobamonoidM
can be reduced in polynomial time to tbempressedord problem for)/). Hence, the
word problem for the automorphism group of a free group tdrowt to be solvable in
polynomial time [20], which solved an open problem from camalborial group theory.
Generalizations of this result for larger classes of graigssbe found in [11, 13].

Our first main result states that the compressed word profadeavery finitely gen-
erated free inverse monoid of rank at least two is completérfh the second universal
level of the polynomial time hierarchy (Thm. 4). The uppeubad follows easily us-
ing Munn’s solution for the word problem together with theva mentioned result of



Lipton and Zalcstein for free groups. The lower bound is Hame a reduction from

a variant of the SUBSETSUM problem together with an encodiing SUBSETSUM
instance by an SLP [7]. Hence, the compressed word problefrefinverse monoids

is indeed computationally harder than the compressed waidlgm for free monoids
(groups) (unles® = I17). It is not difficult to see that the compressed word problem
for a free inverse monoid of rank 1 can be solved in polynotma¢ (Prop. 1).

In [14], Margolis and Meakin presented a large class of fipifgesented inverse
monoids with decidable word problems. An inverse monoidnfiihiat class is of the
form FIM(I")/ P, whereP is a presentation consisting of a finite number of relations
e = f, wheree and f are idempotents dfIM(I"); we call such a presentation idem-
potent. An alternative proof for the decidability result Mirgolis and Meakin was
given in [21]. In [10] it was shown that the word problem foreey inverse monoid
FIM(I")/ P, whereP is an idempotent presentation, can be solved in logspads. Th
implies that the compressed word problem for each of theg¥se monoids belongs
to the clasPSPACE. Our second main result states that the are specific idempote
presentations® such that the compressed word problem Févi(I") /P is PSPACE-
complete (Thm. 5).

In the last part of the paper we consider the compressedwaifithe rational subset
membership problem. The class of rational subsets of a rdaviois the smallest class
of subsets, which contains all finite subsets, and whichased under union, product
and Kleene star{* is the submonoid generated by the subse&t A). If M is finitely
generated by, then a rational subset @ff can be represented by a finite automaton
over the alphabef'. In this case, the rational subset membership problem asilether
a given element oM (given by a finite word over”) belongs to a given rational subset
(given by a finite automaton ovér). Especially for groups, this problem is intensively
studied, see e.g. [12]. In [2], it was shown that the ratiGudiset membership problem
for a free inverse monoid of finite rank at least twd\iB-complete. Here, we consider
the compressed rational subset membership probletrere the input consists of an
SLP-compressed word over the generators and a finite autaroser the generators.
We show that the compressed rational subset membershipeprdbr a free inverse
monoid of finite rank at least two BSPACE-complete. The difficult part of the proof
is to show membership IRSPACE. PSPACE-hardness holds already for the case that
the rational subset is a fixed finitely generated submondidn(16).

Proofs that are omitted in this paper can be found in the largion [9].

2 Preliminaries

Let I" be a finite alphabet. Thempty wordoverI" is denoted by. Lets = a; ---a,, €
I'* be aword ovel”, wheren > 0 anday,...,a, € I'for 1 <i < n. Thelengthof s
is|s| =n.Forl <i < nlets[i] = a; andforl <i < j < nlets[i,j] = a;ai41---a;.
If i > j we sets[i,j] = . Forn € NletI'S" = {w € I'* | |w| < n}. We write
s X tfors,t € I'*, if sis aprefix oft. AsetA C I'* is prefix-closedif u < v € A
impliesu € A. We denote with"~! = {a~! | a € I'} a disjoint copy of the finite
alphabet’". Fora=! € I'~! we defingla~!)~! = q; thus,~! becomes an involution on
the alphabef” U I"~1. We extend this involution to words frofd” U I"~1)* by setting



(ay---an)™' =a;'---a;', wherea; € TUT~'. Fora € I'UI'~' andn > 0 we
usea™" as an abbreviation for the wor@~—!)". We use standard terminology from
automata theory. Aondeterministic finite automatdiNFA) over an input alphabef
is a tupled = (Q, X, 9, q, F), whereQ is the set of stateg, C Q x X' x Q is the
transition relationgy € @ is the initial state, and’ C @ is the set of final states. For a
deterministic finite automatond : Q x X' —,, Q is a partial mapping fron® x X to Q.

Complexity theory: We assume some basic background in complexity theory. Recal
that 717 (the second universal level of the polynomial time hiergjdk the class of

all languagesl. for which there exists a polynomial time predicd®x,y, z) and a
polynomialp(n) such thatl, = {z € X* | Vy € Z=P(2D3z ¢ =plel) . P(z y, 2)}.
POLYLOGSPACE denotes the clasiSPACE(log(n)?")) = DSPACE(log(n)°™).

A PSPACE-transducer is a deterministic Turing machine with a realy-mput tape, a
write-only output tape and a working tape, whose length isioed by»°("), wheren

is the input length. The output is written from left to right the output tape, i.e., in each
step the transducer either outputs a new symbol on the otapet in which case the
output head moves one cell to the right, or the transduces doeoutput a new symbol

in which case the output head does not move. Moreover, weresthat the transducer
terminates for every input. This implies thaP&PACE-transducer computes a mapping
f: X% — ©*, where|f(w)| is bounded bp!*1°"” . A POLYLOGSPACE-transducer is
defined in the same way a®&PACE-transducer, except that the length of the working
tape is bounded bipg(n)°™). The proof of the following lemma uses the same idea
that shows that logspace reducibility is transitive.

Lemma 1. Assume thaff : ¥* — ©* can be computed by BSPACE-transducer
and thatg : ©* — A* can be computed by ROLYLOGSPACE-transducer. Then the
mappingf o g can be computed byRSPACE-transducer. In particular, if the language
L C 6* belongs taAPOLYLOGSPACE, thenf~!(L) belongs toPSPACE.

Free groups: Itis common to identify a congrueneeon a monoidM/ with the surjec-
tive homomorphism fromd/ to the quotient\//« that maps an element € M to the
congruence class of with respect tax. Thefree groupFG(I") generated by the sét
is the quotient monoid

FG(I) = (uI~h*/s, 1)

whered is the smallest congruence 6/ U I'~1)* that contains all pairghb—1, ¢) for
b e I'ur'~1. Itis well known that for every, € (I"'UI'~1)* there exists a unique word
r(u) € (I'U I'~1)* (thereduced normal form of) such that(u) = §(r(u)) andr(u)
does not contain a factor of the fo—* for b € I"'U I"'~1. It holds§(u) = §(v) if and
only if r(u) = r(v). Since the word-(u) can be calculated from in linear time, the
word problem forFG(I") can be solved in linear time. LRR(I") = {r(u) | v € (I"U
I'~1)*} be the set of alirreduciblewords. The epimorphis#: (I'UI'~1)* — FG(I)
restricted tdRR(I") is a bijection.

The Cayley-graph dfG(I") with respect to the standard generating/Setl”"—* will
be denoted by (I). Its vertex seti$G(I") and there is an-labeled edged € I'UI" 1)
fromz € FG(I') toy € FG(I") if y = xza in FG(I"). Note thatFG(I") is a finitely-
branching tree. Figure 1 shows a finite portior¢fa, b}). Here, and in the following,



Fig. 1. The Cayley-grapi€({a, b}) of the free groug-G({«a, b})

we only draw one directed edge between two points. Thusvieryedrawna-labeled
edge we omit the~!-labeled reversed edge.

3 Inverse monoids

A monoid M is called aninverse monoidf for every m € M there is aunique
m~! € M suchthatn = mm~tm andm~=! = m~tmm=1. For detailed reference on
inverse monoids see [3]; here we only recall the basic nstiBince the class of inverse
monoids forms a variety of algebras (with respect to the atpmrs of multiplication,
inversion, and the identity element), the free inverse ntbRtM (1) generated by a set
I" exists. Vagner gave an explicit presentatioffidfl (I"): Let p be the smallest congru-
ence on the free monoid™ U I"~1)* which contains for all words, w € (I"U I"~1)*
the pairs(w, ww™'w) and (ww~tvv=1, vo~tww™1); these identities are also called
Vagner equations. ThefiM(I") ~ (I"U I""1)* /p. An elementz of an inverse monoid
M is idempotent (i.e3? = z) if and only if z is of the formmm~! for somem € M.



Hence, Vagner’s presentation BfM(I") implies that idempotent elements in an in-
verse monoid commute. Since the Vagner equations are triine ifiee grougrG(I),
there exists a congruengeon FIM(I") such thatG(I") = FIM(I")/~v. When viewing
congruences as homomorphisms, we have p o v, where¢ is the congruence on
(ruIr—1* from (1). Elements ofIM(I") can be also represented Waunn treesThe
Munn treeMT (u) of u € (I"U I'~1)* is a finite and prefix-closed subsetl&R(I); it
is defined by

MT (u) = {r(v) | v 2 u}.

By identifying an irreducible word € IRR(I") with the group elemeni(v), MT (u)
becomes the set of all nodes along the unique patti(ifi) that starts inl and that is
labeled with the word:. The subgraph of the Cayley-graph{I"), which is induced by
MT (u) is connected. Hence it is a finite tree and we can ideify(«) with this tree.
The following result is known as Munn’s Theorem:

Theorem 1 ([16]).For all u,v € (I' U I'"1)*, we haveip(u) = p(v) if and only if
(r(u) = r(v) andMT(u) = MT(v)).

Thus,p(u) € FIM(I") can be uniquely represented by the g&ifT (u), r(u)). In fact,
if we define on the set of all paifg/, v) € 2'RRU") x |IRR(I") (with v € U andU finite
and prefix-closed) a multiplication b/, v)(V,w) = (r(U U vV),r(vw)), then the
resulting monoid is isomorphic lM(I”). Quite often, we represent an elemgfit)
FIM(I") by a diagram for its Munn tree, where in addition the nederepresented by
a bigger circle and the nod€w) is marked by an outgoing arrow.#{u) = ¢, then we
omit this arrow. By Thm. 1 such a diagram uniquely specifieslament ofFIM(I").

Example 1.The diagram fop(bb~tabb~ta) € FIM({a, b}) looks as follows:
b b

a a

Thm. 1 leads to a polynomial time algorithm for the word pesblfor FIM(I"). For
instance, the reader can easily check #iat'abb—'a = aaa"'bb " 'a~"'bb~laa in
FIM({a, b}) by using Munn’s Theorem. In fact, every word that labels & geim ¢
to aa (the node with the outgoing arrow) and that visits all nodethe above diagram
represents the same elemen®t¥l({a, b}) asbb—abb~'a. Munn’s theorem also im-
plies that an elemeni(u) € FIM(I") (whereu € (I" U I'"1)*) is idempotent (i.e.,
pluu) = p(u)) ifand only if r(u) = .

For afinite set? C (I"ul'~Y)* x (Ul ~Y)* defineFIM(I") /P = ('l ~Y)* /7p
to be the inverse monoid with the sEtof generators and the stof relations, where
7p is the smallest congruence 6RUI"~1)* generated byU P. Viewed as a morphism,
this congruence factors ag = p o vp with FIM(I") /vp = FIM(I")/P. We say that
P C (rur—Y* x (rur-1*is anidempotent presentatioifh for all (e, f) € P,
p(e) andp(f) are both idempotents &fIM(I"), i.e.,r(e) = r(f) = by the remark
above. In this paper, we are concerned with inverse monéidedormFIM(I") /P for
a finite idempotent presentatidh In this case, since every identity, /) € P is true
in FG(I") (we havei(e) = o(f) = 1), there also exists a congruenge on FIM(I") /P
with (FIM(I")/P)/vp = FG(I"). The following commutative diagram summarizes all
morphisms introduced so far.
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In the sequel, the meaning of the congrueneés~yp, v, 7p, andvp will be fixed.

To solve the word problem fdtIM(I") / P, Margolis and Meakin [14] used a closure
operation for Munn trees, which is based on work of Steph&h [&/e shortly review
the ideas here. As remarked in [14], every idempotent ptaten P can be replaced
by the idempotent presentatiéti = {(e,ef), (f,ef) | (e, f) € P}, i.e ,FIM(I")/P =
FIM(I")/P’. SinceMT(e) C MT(ef) 2 MT(f) if r(e) = r(f) = &, we can restrict
in the following to idempotent presentatiod’ such thatMT(e) C MT(f) for all
(e, f) € P. Define a rewriting relation=p on prefix-closed subsets ¢RR(I") as
follows, whereU, V' C IRR(I"): U =p V if and only if

(e, f) € PIue U(r(uMT(e)) CU andV = U Ur(uMT(f))).

Finally, define the closure d&f C IRR(I") with respect to the presentatidhas
dp(U) = J{VIUSpV}

Example 2.Assume that” = {a,b}, P = {(aa"!,a%a2), (bb~1,b%b=2)} andu =
aa~'bb~'. The graphical representations for these elements lookllasv:

$=4 f=§ 4

a b

Then the closurelp(MT (u)) is {a™ | n > 0} U {b™ | n > 0} C IRR(I").
Margolis and Meakin proved the following result:

Theorem 2 ([14]).Let P be an idempotent presentation and ety € (I" U I'~1)*.
Thenrp(u) = 7p(v) if and only if (r(u) = r(v) andclp(MT(u)) = clp(MT(v))).

The result of Munn forlFIM(I") (Thm. 1) is a special case of this result fBr= 0.
Note also thakclp(MT(u)) = clp(MT(v)) if and only if MT(u) C clp(MT(v))
andMT(v) C clp(MT(u)). Margolis and Meakin used Thm. 2 in connection with
Rabin’s tree theorem in order to give a solution for the warmabfem for the monoid
FIM(I")/P. Using tree automata techniques, a logspace algorithmhéowbrd prob-
lem forFIM(I")/P was given in [10]. For this result, it is important that therdpotent
presentatior is not part of the input. The uniform version of the word peh| where
P is part of the input, i€XPTIME-complete [10].

4 Straight-line programs

We are using straight-line programs as a succinct reprasemtof strings with reoc-
curring subpatterns [18]. Atraight-line program (SLP) over a finite alphabEtis a



context free grammak = (V, I, S, P), whereV is the set ohonterminals I" is the

set ofterminals S € V is theinitial nonterminal andP C V x (V U I')* is the

set of productionssuch that (i) for everyX € V there is exactly onee € (V U I')*

with (X, a) € P and (ii) there is no cycle in the relatigi{X,Y) € V x V | 3a €
(Vun*Y(Vul)*:(X,«a) € P}. These conditions ensure that the language gener-
ated by the straight-line prografcontains exactly one wonel(A).

Remark 1.The following problems can be solved in polynomial time:

(a) Given an SLR\, calculatelval(A)| in binary representation.
(b) Given an SLRA and two binary coded numbets< : < j < |val(A)|, compute an
SLPB with val(B) = val(A)[z, j].

Also notice thatal(A) can be computed from by aPSPACE-transducer.

Plandowski [17] presented a polynomial time algorithm fsting whetheral(A) =

val(B) for two given SLPsA andB. A cubic algorithm was presented by Lifshits [4].
Let M be a finitely generated monoid and IEtbe a finite generating set far/.

Thecompressed word problefar M is the following computational problem:

INPUT: SLPsA andB over the alphabef’.
QUESTION: Doewal(A) = val(B) hold in M?

The above mentioned result of Plandowski [17] means thatahgressed word prob-
lem for a finitely generated free monoid can be solved in pafyial time. The follow-
ing result was shown in [7].

Theorem 3 ([7]).For every finite alphabel’, the compressed word problem f6& (1)
can be solved in polynomial time (andRscomplete ifi I"| > 2).

5 Compressed word problem forFIM(I")

Recall that the word problem fdfIM(I") can be solved in logspace [10]. In the com-
pressed setting we have:

Theorem 4. For every finite alphabel” with |I"| > 2, the compressed word problem
for FIM(I") is II}-complete.

Proof. For thelI} upper bound, le& andB be SLPs over some alphaliéty I"~! and
let m = |val(A)| andn = |val(B)|. These numbers can be computed in polynomial
time by Remark 1. By Thm. 1, we havel(A) = val(B) in FIM(I") if and only if:

val(A) = val(B) in FG(I') 2
Vie{0,...,m}3j €{0,...,n}:val(A)[1,i =valB)[1,j] iInFG(") (3)
Vie {0,...,n} 35 € {0,...,m} :val(B)[1,4] = val(A)[1,j] in FG(I")  (4)

Thm. 3 implies that (2) can be checked in polynomial time, rehs (3) and (4) are
II%-properties.



It suffices to prove the lower bound fét = {a, b}. We make a logspace reduction
from the followingII%-complete problem [1], wher@- v = ujvq1 +- - - +u,v,, denotes
the scalar product of two integer vectars= (u1,...,un), 0 = (V1,...,0,):

INPUT: vectorst = (u1,...,un) € N, 7 = (v1,...,v,) € N?, andt € N (all
coded binary)

QUESTION: Does/z € {0,1}™3y € {0,1}" : u-ZT + v -y = t hold?

Lets = ui+- - Fupm+vi+--+vp, Sy = ur+- - -+uy,, ands, = vi+- - -+v,. W.L.o.g.
we can assume < s. Using the construction from [7] (proof of Theorem 5.2) wa ca
construct in logspace an S4B such thatal(A;) = Hze{o,l}m a*T A%~ "T Here
the product is taken over all tuples frof0, 1} in lexicographic order. By replac-
ing A; by Asa® (which can be easily generated by a small SLP), we obtain & SL
Ay with val(Ay) = er{o,l}m a™% Aya®~"7, Similarly, we obtain an SLR\3; with
val(As) = [Trcio.1yn a’¥(bb=ta=%v)a® VY, Finally, be replacingd, in A, by the
start nonterminal oA 5 we obtain an SLRA with

val(A) = H {auw H (a”'ybb_la_s’“ a® —va> as_“'x] :
zef{0,1}™ ye{0,1}n
Moreover, it is easy to construct a second $.Buch that
val(B) = val(A)a—*2" (a'bb~'a*")*".
We claim thatval(A) = val(B) in FIM({a, b}) if and only if
VTeN"JgeN'":u-T+0-g=t. (5)

We haver(val(A)) = r(val(B)) = a®2". Thus,val(A) = val(B) holds inFIM({a, b})

if and only if MT(val(A)) = MT(val(B)). Sinceval(A) is a prefix ofval(B), we obtain
MT(val(A)) € MT(val(B)). Moreover, for the prefixal(A)a=*2" of val(B) we have
r(val(A)a=*?") = ¢ andMT(val(A)a=2") = MT(val(A)). This and the fact that
MT(val(A)) C MT(val(B)) implies thatMT (val(A)) = MT(val(B)) if and only if

MT((atbbta*"*)2") C MT(val(A)). (6)
We show that (6) is equivalent to (5). We have
MT((a*bb e )" ) = {a’ |0 <i < s-2"}U{a™*b |0 <k < 2™}

Sincer(val(A)) = a*2", we havea’ € MT(val(A)) forall 0 < i < s-2™. Hence,
(6) is equivalent ta! T**h € MT (val(A)) for every0 < k < 2™, i.e. (for a bit vector
U= (u1,...,u,) € {0,1}" letn(u) = Y, u;2'~! be the number represented iy

vz € {0,1}™ : a™@5Hh ¢ MT(val(A)). 7)
Now, MT(val(A)) Na*b = {a"@s+72+7Tp | 7 € {0,1}™,7 € {0,1}"}. Hence, (7)
ifand only if vz € {0,1}"3y € {0,1}":w-T+v -y =t. O

For a free inverse monoid of rank one, the compressed wotderois simpler:

Proposition 1. The compressed word problem féiM({a}) can be solved in polyno-
mial time.



6 Compressed word problems foFIM(I") /P

For an inverse monoid of the forAIM(I") / P, where[" is finite andP is a finite idem-
potent presentation, the word problem can be still solvddgspace [10]. In this case,
the complexity of the compressed word problem reaches RSEACE:

Theorem 5. The following holds:

(@) For every finite idempotent presentatiéh C (I" U I'"1)* x (I" U I'"1)*, the
compressed word problem f6tM(I") / P belongs taPSPACE.

(b) There exists a fixed finite idempotent presentakton (I'U '~ 1)* x (I'U I'~1H)*
such that the compressed word problemFtvi(1")/ P is PSPACE-complete.

Proof. Let us first show (a). In [10], it was shown that the ordinaryrdvproblem for
FIM(I")/P can be solved in logarithmic space. Sine$(A) can be computed from
by aPSPACE-transducer (Remark 1), statement (a) follows from Lemma 1.

For the lower bound in (b), we use the following recent relolh [8]: There exists
a fixed regular languagé over some paired alphab&t x © such that the following
problem isPSPACE-complete (for strings: € X*,v € ©* with |u| = |v| = n let
u@v = (ult],v[1]) - (uln], vin]) € (2 x ©)"):

INPUT: SLPsA (overX) andB (over®) with |val(A)| = |val(B)|
QUESTION: Doewal(A) ® val(B) € L hold?

W.l.o.g. assume thaf N© = . Let A = (Q, X x O, 6, qo, F) be a deterministic finite
automaton withl.(A) = L. LetI' = Y U O U Q U {A, B, C} (all unions are assumed
to be disjoint). Consider the fixed idempotent presentatiar the alphabef’ with the
following relations:

bl /q bl /q D BJ/; B f
T = T if 4(q, (a,b)) =p = if feF
a a C
A — A
C C

C

With the upper left relation, we simulate the automaténThe upper right relation
allows to add aC-labeled edge as soon as a final state is reached3#labeled edge
acts as a kind of end marker for the input word. Finally, thet lzlation allows to
propagate th€’'-labeled edge back to the origin (note

Assume thatal(A) = a; - - - a,, andval(B) = b - - - b,,. Consider the string

n

w=qoqy " | [(aia; *A) BB H 1, b))

i=1

Itis easy to compute from andB in polynomial time an SL with val(C) = w. The
Munn treeMT (w) looks as follows:



B

b1| /g0 ‘b2 ‘ba [54 ‘bn—l ‘bn
A A A l o l A l A
as a4 An—1 [An

ai
We claim thatw = CC~'w in FIM(I")/P if and only if val(A) @ val(B) € L( ).
Clearly,w = CC~'w = 1in FG(I"). Moreover,clp(MT(w)) = clp(MT(CC~1w))
(
)-

a2

if and only if C' € clp(MT(w)). Thus, it suffices to show th&t € clp(MT(w)) if and
only if val(A) @ val(B) € L(A). First, assume thatl(A) ® val(B) ¢ L(A). Letg; be
the state of4 after readinga1,b1) - - - (a;, ;) (0 < i < n). Thus,q, ¢ F. Thisimplies
thatclp(MT(w)) = MT(w) U {A%q; | 0 < i < n}. HenceC & clp(MT(w)). On the
other hand, ifg,, € F, thenclp(MT(w)) = MT(w) U {A%g;, A'C | 0 < i < n} and
thereforeC' € clp(MT(w)). O

7 Rational subset membership problems

In this section we briefly outline our results on the compedsgriant of the rational
subset membership problem for free inverse monoids. We\gitlr a lower bound.

Theorem 6. There exists a fixed alphabEtand a fixed finite subsét C (I"u "~ 1)*
such that the following problem BSPACE-hard:

INPUT: An SLPA over the alphabef” U I"~!

QUESTION: Doegp(val(A)) € p(K™*) hold?

Note thatp(K™*) is the submonoid oFIM(I") generated by(K). Let us now turn to
an upper bound.

Theorem 7. The following problem belongs ®5PACE:
INPUT: An SLPA over an alphabet”ul"~! and an NFAA over the alphabef’ul" 1.
QUESTION: Doeg(A) € p(L(A)) hold?

The proof of Thm. 7 is based on tree automata techniques.llReaaa Munn tree
MT (u) can be viewed as an edge labeled tree. The narde be made the root of the
tree. Such a rooted edge-labeled tree can be evaluated bg automaton. Usually,
tree automata work on node labeled trees, but this is onlglmieality. The proof of
Thm. 7 is based on the following two lemmas.

Lemma 2. There is aPSPACE-transducer, which computed T (val(A)) for a given
input SLPA.

Lemma 3. There is aPSPACE-transducer, which computes from a given nondeter-
ministic finite automaton4 over the alphabet” U I"~! and a given SLPA over
the alphabet/” U I'"! a nondeterministic tree automatd® = B(.A, A) such that:
p(val(A)) € p(L(A)) ifand only ifMT (val(A)) is accepted bys.

Proof of Thm. 7We apply Lemma 1, wher¢ : (A, A) — (MT(val(A)), B(A,A))
and L is the uniform membership problem for tree automata, ite2,get of all pairs
(T, B), whereT is a tree andB is a tree automaton that accefitsBy [6], L belongs to
LOGCFL and hence t&OLYLOGSPACE. Moreover, the mapping can be computed
by aPSPACE-transducer by Lemma 2 and 3. ad
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