
Parameter Reduction and Automata Evaluation for

Grammar-Compressed Trees

Markus Lohreya, Sebastian Manethb, Manfred Schmidt-Schaußc

aUniversität Leipzig, Institut für Informatik, Germany
bNICTA and University of New South Wales, Australia

cGoethe-Universität Frankfurt, Institut für Informatik, Germany

Abstract

Trees can be conveniently compressed with linear straight-line context-free
tree grammars. Such grammars generalize straight-line context-free string
grammars which are widely used in the development of algorithms that ex-
ecute directly on compressed structures (without prior decompression). It
is shown that every linear straight-line context-free tree grammar can be
transformed in polynomial time into a monadic (and linear) one. A tree
grammar is monadic if each nonterminal uses at most one context param-
eter. Based on this result, polynomial time algorithms are presented for
testing whether a given (i) nondeterministic tree automaton or (ii) nonde-
terministic tree automaton with sibling constraints or (iii) nondeterministic
tree walking automaton, accepts a tree represented by a linear straight-line
context-free tree grammar. It is also shown that if tree grammars are nonde-
terministic or non-linear, then reducing their numbers of parameters cannot
be done without an exponential blow-up in grammar size.

Keywords:

1. Introduction

The current massive increase in data volumes motivates the development
of algorithms on compressed data, like for instance compressed strings, trees,
and graphs. The general goal is to construct algorithms that work directly
on compressed data, without prior decompression. Considerable amount
of work has been done concerning algorithms that execute on compressed
strings, see [1] for a survey. In this field, a popular succinct string represen-
tation are context-free grammars which generate exactly one string. It can

Preprint submitted to Journal of Computer and System Sciences November 9, 2011

be statically guaranteed that only one string is generated, by restricting to
acyclic grammars with exactly one production per nonterminal. Such gram-
mars are known as straight-line programs, briefly SLPs. Since an SLP with
n productions may generate a string of length 2n, an SLP can be seen as a
compressed representation of the generated string. Some of the nice features
of SLPs are:

• Many dictionary based compression schemes, like for instance LZ78 and
LZ77 can be converted efficiently into SLPs, see, e.g., [1–3].

• SLPs are based on context-free grammars and are apt for concise and
clean mathematical proofs.

• For many algorithmic problems, SLPs allow efficient algorithms that
avoid prior decompression. The most studied example in this context is
pattern matching for compressed strings, see [4–6]. Another important
example is equivalence checking of compressed strings, see [7–9].

Due to these appealing properties, it is natural to generalize SLPs to other
more complex data structures. For trees, this is done in [10, 11]. There, a tree
is represented by a context-free tree grammar that generates exactly one tree.
Such grammars are called straight-line context-free tree grammars, briefly
SLCF tree grammars. They generalize the sharing of repeated subtrees as
well-known from DAGs (directed acyclic graphs) to the sharing of repeated
patterns (a pattern is a connected subgraph of the tree) as in the sharing
graphs of Lamping [12]. For tree structures of typical XML documents (i.e.,
the ones used for benchmarking in [10, 13, 14]), experiments show that SLCF
tree grammars give approximately 2–3 times higher compression ratios [10,
13] than DAGs [14]. Note that finding a minimal SLCF tree grammar for a
given tree is NP-complete (even if only linear grammars are generated; see
below). The BPLEX [10] and TreeRePair [13] compressors run in linear time
and approximate a minimal linear grammar (TreeRePair runs almost as fast
as building the minimal unique DAG of a tree). Since sharing of patterns in
an SLCF tree grammar can occur along the paths of a tree, it is possible to
represent a tree of height 2n by an SLCF grammar of size O(n); this is not
possible with a DAG (a DAG has the same height as its represented tree).
More dramatically, an SLCF tree grammar of size O(n) can even generate
a full binary tree of height 2n, which has 22n

many nodes. Hence, double
exponential compression rates can be achieved.

2

The downside of such extreme compression capabilities is that arbitrary
SLCF tree grammars do not inherit some of the nice algorithmic properties
of (string) SLPs. For instance, whereas evaluating a given automaton on
an SLP representation of a string can be done in polynomial time [1], this
problem becomes PSPACE-complete for tree automata and SLCF tree gram-
mars [11]. This motivates the investigation of restricted classes of SLCF tree
grammars. Linearity is one of these restrictions: a context-free tree grammar
is linear if every context parameter occurs at most once in every right-hand
side. In fact, the grammars for XML document trees mentioned above are
linear (both compressors BPLEX and TreeRePair generate only linear SLCF
tree grammars). For linear SLCF grammars, equivalence can be checked in
polynomial time [10, 15], thus generalizing the corresponding result for string
SLPs by Plandowski [7] mentioned above. It is an open problem whether for
non-linear SLCF tree grammars equivalence can be checked in polynomial
time as well. Linear SLCF grammars have been used as structural indexes
for XML querying [16, 17] and as means to speed up unification [18].

Another useful restriction on SLCF tree grammars is k-boundedness: a
context-free tree grammar is k-bounded if every nonterminal uses at most k
context parameters; 1-bounded grammars are also called monadic. In this
paper we study the impact of the various restrictions on SLCF tree gram-
mars with respect to compression. Our main result is the following: a given
linear SLCF tree grammar can be transformed in polynomial time into an
equivalent linear and monadic SLCF tree grammar (Theorem 10). In other
words, for the purpose of compression by linear grammars, one parameter is
already enough; the corresponding linear monadic grammars offer the same
kind of compression as linear SLCF tree grammars. Linear monadic SLCF
tree grammars are also used in [19–22], where they are called singleton tree
grammars. We present three algorithmic applications of Theorem 10: it can
be tested in polynomial time whether a given tree automaton accepts the
tree represented by a linear SLCF tree grammar (Corollary 12). This solves
our main open problem from [11], where we could only present a polynomial
time algorithm for linear k-bounded SLCF tree grammars (when k is a fixed
constant). Our second application generalizes Corollary 12 to tree automata
with equality and disequality constraints between sibling nodes [23, 24] (The-
orem 13). These are bottom-up tree automata which can test whether the
subtrees rooted at children of the current node are equal or not equal. Their
recognized languages are closed under Boolean operations and are strictly
more general than regular tree languages (for a recent generalization see [25]).

3

The running time of this second polynomial time algorithm is much worse
than the running time stated in Corollary 12 for ordinary tree automata;
therefore we state the two results separately. Finally, we show that also non-
deterministic tree walking automata can be evaluated in polynomial time
over trees represented by linear SLCF tree grammar (Theorem 15). Tree
walking automata process the input tree sequentially and thereby can walk
up and down in the tree. Although nondeterministic tree walking automata
are strictly less powerful than ordinary tree automata [26], the transforma-
tion from a nondeterministic tree walking automaton into an ordinary tree
automaton requires an exponential blow-up, see, e.g., [27]. We also prove
that the evaluation problem for tree walking automata with pebbles [27, 28]
over trees represented by linear SLCF tree grammars (and in fact even DAGs)
is PSPACE-complete (Theorem 16).

In Section 8 we show that Theorem 10 does not extend to larger classes of
grammars. First, we consider nondeterministic linear SLCF tree grammars,
i.e., acyclic grammars (no recursion) which may have several productions for
each nonterminal. Such grammars represent finite sets of trees. We give an
example of a linear and n-bounded nondeterministic SLCF tree grammar for
which every equivalent k-bounded such grammar (k < n) must be exponen-
tially larger. Using a straightforward extension of our proof of Theorem 10,
we show that this exponential blow-up is also the worst case. Next, we
consider non-linear SLCF tree grammars. We present an example of a non-
linear n-bounded SLCF tree grammar of size O(n) for which every equivalent
k-bounded SLCF tree grammar (k < n) has size at least 2n−k.

A preliminary version of this paper (containing the main result and its
application to ordinary tree automata) appeared in [29].

2. SLCF String Grammars

For further details on context free grammars see e.g. [30]. A straight-
line context free string grammar (SLCF string grammar) is a context free
grammar G = (N,Σ, P, S) (where N is the set of nonterminals, Σ is the set
of terminals, P ⊆ N × (N ∪ Σ)∗ is the set of productions, and S ∈ N is the
start nonterminal) such that the following holds:

(i) for every A ∈ N there is exactly one production (A → wA) ∈ P with
left-hand side A and

(ii) the relation {(A,B) ∈ N ×N | B occurs in wA} is acyclic.

4

These two conditions ensure that the language generated by G consists of
exactly one string in Σ∗, which we denote by val(G). SLCF string gram-
mars are also known as straight-line programs, see [1] for more details. The
following simple lemma collects some algorithmic properties of SLCF string
grammars. For a string w = a1a2 · · ·an and two positions 1 ≤ i ≤ j ≤ n, we
define |w| = n, w[i] = ai, and w[i : j] = ai · · ·aj.

Lemma 1. Let G be an SLCF string grammar. There exist polynomial time
algorithms for the following problems:

• Compute the length |val(G)|.

• Given a position 1 ≤ i ≤ |val(G)|, compute the symbol val(G)[i].

• Given two positions 1 ≤ i ≤ j ≤ |val(G)|, compute an SLCF string
grammar H such that val(H) = val(G)[i : j].

The proof of the previous lemma is folklore: the grammar is simply traversed
bottom-up in one pass, while computing the lengths of the strings generated
by the nonterminals. A more difficult result was shown by Plandowski [7]:
It can be checked in polynomial time, whether val(G) = val(H) for two given
SLCF string grammars G and H.

W.l.o.g. we will only consider SLCF string grammars in Chomsky normal
form (CNF), which means that all productions are of the form A → a or
A → BC for nonterminals A,B,C and a terminal a. Note that it is well-
known that every context-free grammar can be transformed into CNF in
polynomial time, see, e.g., [31].

In the next section we will introduce SLCF tree grammars, which gener-
alize SLCF string grammars to trees.

3. Trees and SLCF Tree Grammars

We assume the reader to be familiar with basic tree language theory, see,
e.g., [24, 32]. The following are standard definitions of labeled, ordered trees.
By IN we denote the set of natural numbers, and by IN∗ the set of finite
words (sequences) over elements of IN. A ranked alphabet is a pair (F, rank),
where F is a finite set of function symbols and rank : F → IN assigns to
each α ∈ F its rank. Let Fi = {α ∈ F | rank(α) = i} and F≥i =

⋃
j≥i Fj .

Symbols in F0 are called constants. We fix a ranked alphabet (F, rank) in

5

the following. An F-labeled ordered tree t (or ground term over F) is a pair
t = (domt, λt), where (i) domt ⊆ IN∗ is finite, (ii) λt : domt → F, (iii) if
w = vv′ ∈ domt, then also v ∈ domt, and (iv) if v ∈ domt and λt(v) ∈ Fn,
then vi ∈ domt if and only if 1 ≤ i ≤ n. The edge relation of t is implicitly
given as {(v, vi) ∈ domt ×domt | v ∈ IN∗, i ∈ IN}. Thus, ε ∈ domt represents
the root node of t (which is labeled λt(ε)), and vi represents the i-th child
of v. The size of t, denoted by |t|, is defined as |domt|. We identify an
F-labeled tree t with a term in the usual way: if λt(ε) = α ∈ Fi, then this
term is α(t1, . . . , ti), where tj is the term associated with the subtree of t
rooted at node j. The set of all F-labeled trees is denoted T (F). Let us fix
a countable set Y = {y1, y2, . . .} of (formal context-) parameters (below we
also use a distinguished parameter z 6∈ Y). The set of all F-labeled trees
with parameters from Y ⊆ Y is T (F, Y). Formally, we consider parameters
as new constants and define T (F, Y) = T (F ∪ Y). The tree t ∈ T (F, Y)
is linear, if every parameter y ∈ Y occurs at most once in t. For trees
t ∈ T (F, {y1, . . . , yn}), t1, . . . , tn ∈ T (F, Y), by t[y1/t1 · · · yn/tn] we denote the
tree that is obtained by replacing in t every yi-labeled leaf with ti (1 ≤ i ≤ n).
A context is a tree C ∈ T (F,Y∪{z}), in which the distinguished parameter z
appears exactly once. Instead of C[z/t] we write briefly C[t]. When talking
about algorithms on trees, we assume the RAM model of computation, and
we assume that trees are given as standard pointer representation.

For further consideration, let us fix a countable infinite set Ni of symbols
of rank i with Fi∩Ni = ∅. Hence, every finite subset N ⊆

⋃
i≥0 Ni is a ranked

alphabet. A context-free tree grammar (over F) is a triple G = (N,P, S),
where

(i) N ⊆
⋃

i≥0 Ni is a finite set of nonterminals,

(ii) P (the set of productions) is a finite set of pairs of the form (A → t),
where A ∈ N and t ∈ T (F ∪N, {y1, . . . , yrank(A)}), and

(iii) S ∈ N ∩ N0 is the start nonterminal of rank 0.

We assume that every nonterminal B ∈ N \ {S} as well as every terminal
symbol from F occurs in the right-hand side t of some production (A →
t) ∈ P . For a production (A → t) ∈ P with A ∈ N ∩ Nn, we also write
A(y1 . . . , yn) → t in order to emphasize that rank(A) = n. The size |G| of G
is |G| =

∑
(A→t)∈P |t|. Let us define the derivation relation ⇒G on T (F∪N,Y)

as follows: s⇒G s
′ if there exist a production (A→ t) ∈ P with rank(A) = n,

6

a context C ∈ T (F ∪ N,Y ∪ {z}), and trees t1, . . . , tn ∈ T (F ∪ N,Y) such
that s = C[A(t1, . . . , tn)] and s′ = C[t[y1/t1 · · · yn/tn]]. The language defined
by G, denoted by L(G), is the set {t ∈ T (F) | S ⇒∗

G t} ⊆ T (F).
As an example, consider a context-free tree grammar with the three pro-

ductions S → A(a), A(y1) → A(A(y1)), and A(y1) → f(y1, y1). It should be
clear that the language defined by this grammar consists of all full binary
trees over the the binary symbol f and the constant symbol a.

We consider several subclasses of context-free tree grammars:

• G is linear, if for every production (A → t) ∈ P the term t is linear in
the parameters, i.e., each element of {y1, . . . , yrank(A)} occurs at most
once in t.

• G is non-deleting, if for every production (A → t) ∈ P , each of the
parameters y1, . . . , yrank(A) appears in t.

• G is non-erasing, if t 6∈ Y for every production (A→ t) ∈ P .

• G is productive, if it is non-erasing and non-deleting.

• G is k-bounded (for k ∈ IN), if rank(A) ≤ k for every A ∈ N .

• G is monadic if it is 1-bounded.

Finally, a straight-line context-free tree grammar (SLCF tree grammar) is a
context-free tree grammar G = (N,P, S), where

(i) for every A ∈ N there is exactly one production (A → tA) ∈ P with
left-hand side A and

(ii) the relation {(A,B) ∈ N × N | B occurs in tA} is acyclic; we call the
reflexive transitive closure of this relation the hierarchical order of G.

Conditions (i) and (ii) ensure that L(G) contains exactly one tree in T (F); this
tree is denoted val(G). Alternatively, for every term t ∈ T (F∪N, {y1, . . . , yn})
we can define a term valG(t) ∈ T (F, {y1, . . . , yn}) by induction on the hierar-
chical order of G as follows, where 1 ≤ i ≤ n, f ∈ Fm, and A ∈ N ∩ Nm:

• valG(yi) = yi

• valG(f(t1, . . . , tm)) = f(valG(t1), . . . , valG(tm))

7

• valG(A(t1, . . . , tm)) = valG(tA)[y1/valG(t1) · · · ym/valG(tm)].

Finally, let valG(A) = valG(A(y1, . . . , yrank(A))) and val(G) = valG(S). An
SLCF tree grammar can be also seen as a recursive program scheme [33]
that generates a finite tree. SLCF tree grammars generalize SLCF string
grammars in a natural way to trees. The following example shows that
SLCF tree grammars may lead to doubly exponential compression ratios;
thus, they can be exponentially more succinct than DAGs.

Example 2. Let the (non-linear) monadic SLCF tree grammar Gn consist
of the productions

S → A0(a)
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n
An(y1) → f(y1, y1).

Then val(Gn) is a complete binary tree of height 2n + 1. Thus, |val(Gn)| =
2 · 22n

− 1.

On the other hand, it is not difficult to show that for a linear SLCF tree
grammar G it holds that |val(G)| ≤ 2O(|G|). Thus, linear SLCF tree gram-
mars have at most exponential compression ratios, just like DAGs, which are
the same as 0-bounded SLCF tree grammars. But even linear SLCF tree
grammars can be exponentially more succinct than DAGs: the linear SLCF
tree grammar G′

n with the productions S → A0(a), Ai(y1) → Ai+1(Ai+1(y1))
for 0 ≤ i < n, and An(y1) → f(y1) generates a monadic tree of height 2n +1.
The minimal DAG for this tree is the tree itself and thus has size 2n +1. The
following result was shown in [10].

Proposition 3. There exists a polynomial time algorithm that tests for two
given linear SLCF tree grammars G and H, whether val(G) = val(H).

It is open whether Proposition 3 can be generalized to non-linear SLCF tree
grammars. In [11] we could only prove a PSPACE upper bound for the
equality problem for non-linear SLCF tree grammars.

The following lemma can be shown by a simple bottom-up computation
of tree sizes.

Lemma 4. For a given linear SLCF tree grammar G, one can compute the
size |val(G)| in polynomial time.

8

4. Tree Automata

In this section we introduce various models of tree automata. We start
with ordinary nondeterministic tree automata. Let us fix a ranked alphabet
F. A nondeterministic tree automaton over F, NTA for short, is a tuple
A = (Q,∆, F), where

(i) Q is a finite set of states,

(ii) F ⊆ Q is the set of final states, and

(iii) ∆ is a set of transitions of the form (q1, . . . , qrank(f), f, q), where f ∈ F

and q1, . . . , qrank(f), q ∈ Q.

We define the mapping ∆̃ : T (F) → 2Q inductively as follows, where n ≥ 0,
f ∈ Fn, and t1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) =

{q ∈ Q | ∃(q1, . . . , qn, f, q) ∈ ∆ : q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn)}.

The language defined by A, denoted by L(A), is the set

L(A) = {t ∈ T (F) | ∆̃(t) ∩ F 6= ∅}.

The size of the NTA A = (Q,∆, F) is defined as

|A| =
∑

(q1,...,qn,f,q)∈∆

(n · log |Q| + log |F|).

4.1. Tree Automata with Sibling-Constraints

A nondeterministic tree automaton with sibling-constraints (over F), NTAC
for short, is a tuple A = (Q,∆, F), where Q and F are as for NTAs
and ∆ is a set of transitions of the form (E,D, q1, . . . , qrank(f), f, q), where
E,D ⊆ {1, . . . , rank(f)}2 are disjoint relations such that D is irreflexive,
f ∈ F, and q1, . . . , qrank(f), q ∈ Q. The relation E (resp. D) is a set of
equality (resp. disequality) constraints between siblings. We define the map-

ping ∆̃ : T (F) → 2Q inductively as follows, where n ≥ 0, f ∈ Fn, and
t1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(E,D, q1, . . . , qn, f, q) ∈ ∆ :

q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn), ∀(i, j) ∈ E : ti = tj , ∀(i, j) ∈ D : ti 6= tj}.

9

The language defined by A is L(A) = {t ∈ T (F) | ∆̃(t)∩F 6= ∅}. The size of
the NTAC A is

|A| =
∑

(E,D,q1,...,qn,f)∈∆

(n2 + n · log |Q| + log |F|).

4.2. Tree Walking Automata

A tree walking automaton (TWA) [34] accept trees by walking sequen-
tially around the input tree until an accepting state is reached. A TWA
starts its walk at the root. At each step, the TWA gets the information,
whether the current node is the root or the i-th child of the parent node as
well as the label of the current node. Depending on this information, the
automaton can move to the parent node, to a certain child node, or stay at
the current node, while changing the state (or accepting the tree). Let r be
the maximal arity of a symbol in the ranked alphabet F. For a tree t ∈ T (F)
and a node v ∈ domt, we define type(v) ∈ {ε} ∪ IN as follows:

type(v) =

{
ε if v = ε

i if v ∈ IN∗i, i ∈ IN

Formally, a nondeterministic tree walking automaton over F is a tuple W =
(Q,∆, q0, F), where Q and F are as for NTAs, q0 is the initial state, and
∆ is a set of transitions of the form (p, f, i, q, d), where p, q ∈ Q, f ∈ F,
i ∈ {ε, 1, . . . , r}, and d ∈ {↑, ε, 1, . . . , rank(f)}. Moreover, if d =↑, then
i 6= ε.

Let t ∈ T (F) be a tree. A configuration of W on t is a pair from
Q× domt. We define the one-step computation relation ⊢W ⊆ (Q× domt)×
(Q × domt) in the usual way: (p, u) ⊢W (q, v) if there exists a transition
(p, λt(u), type(u), q, d) ∈ ∆ such that v = ud if d ∈ {ε, 1, . . . , r} and v = u′

with u = u′i and i = type(u) if d =↑. Finally, t is accepted by W de-
noted by t ∈ L(W)), if there exists a sequence (q0, u0) ⊢W (q1, u1) ⊢W

· · · (qn−1, un−1) ⊢W (qn, un) such that u0 = ε and qn ∈ F . The size of W
is defined as |W| = |∆| · (log |Q| + log |F| + log(r)).

TWAs are strictly less expressive than NTAs [26]; however the transfor-
mation from a TWA into an equivalent NTA is inherently exponential (for
instance mentioned in [27]). Moreover, emptiness for TWAs is EXPTIME-
complete [27], whereas emptiness for NTAs can be checked in polynomial
time (see, e.g., [24]). An algorithm in deterministic EXPTIME for deciding
emptiness of a TWA is given in [35, Theorem 5].

10

5. Normal Forms for Linear SLCF Tree Grammars

In this section, we only deal with linear SLCF tree grammars. It is easy
to see that a linear SLCF tree grammar G = (N,P, S) can be transformed in
linear time into an equivalent linear and non-deleting SLCF tree grammar:
if for a production A→ tA (with rank(A) = n) the parameters yi1, . . . , yik ∈
{y1, . . . , yn} do not occur in tA, then we can reduce the rank of A to n − k.
Moreover, if A occurs in a right-hand side tB at position v ∈ domtB , then
we remove from tB the subtrees rooted at positions vi1, . . . , vik. We now
produce an equivalent non-deleting grammar in one pass through G: starting
from the leaves of the hierarchical order of G, we reduce the rank of each
nonterminal A and store with it the indexes of removed parameters (so that
in later occurrences of A we know which subtrees to remove). Note that the
size of the new grammar is at most |G|.

Now, let G be a linear and non-deleting SLCF tree grammar. Again it is
easy to see that G can be transformed in linear time into an equivalent linear
and productive SLCF tree grammar: we remove each production with right
hand side y1, and apply the removed productions in all remaining right-hand
sides. As before, this can be done in one pass through the grammar G, and
the resulting grammar has size at most |G|.

The previous two constructions are essentially the same as Fischer’s “ar-
gument-preserving” normal form for IO macro grammars, in the proof of [36,
Theorem 3.1.10]. Macro grammars are similar to context-free tree grammars
except that they generate strings. Since in an SLCF tree grammar, every
nonterminal has exactly one production, it is not difficult to see that the
derivation order (IO or OI, see e.g. [24] for a definition) does not matter
for SLCF tree grammars. It is also known that for arbitrary linear and
non-deleting context-free tree grammars the derivation order again does not
matter [37].

A linear SLCF tree grammar G = (N,P, S) is in Chomsky normal form (CNF)
if it is productive, and for every production (A→ tA) ∈ P with rank(A) = n,
the term tA has one of the following two forms:

(a) f(y1, . . . , yn) with f ∈ Fn

(b) B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn) with B,C ∈ N , 1 ≤ i ≤ j ≤
n + 1.

The proof of the following theorem is a straightforward extension of the
corresponding construction for context-free string grammars. In fact, for

11

macro grammars, a normal form similar to CNF exists (called IO standard
form in [36, Definition 3.1.7]), where the nonterminal C in the second type
(b) can even be assumed to be the first argument of B (for us this does
not work, because in our CNF the parameters have to occur in the order
y1, . . . , yrank(A) in the right-hand side for A).

Theorem 5. Let G = (N,P, S) be a linear and productive SLCF tree gram-
mar over F and let r be the maximal rank in N ∪ F. We can construct in
time O(r · |G|) a linear SLCF tree grammar G′ = (N ′, P ′, S) in CNF such that
N ′ ⊇ N , |N ′| ≤ 2 · |G|, G′ is k′-bounded, k′ ≤ 2r− 1, and valG′(A) = valG(A)
for all A ∈ N .

Proof. Let the SLCF tree grammar G = (N,P, S) be linear and produc-
tive. In a first step, we ensure that for every production (A → tA) ∈ P , the
parameters y1, . . . , yrank(A) occur in this order from left to right in the tree tA.
For this, we reorder all productions bottom-up as follows. Consider a produc-
tion A(y1, . . . , yn) → tA such that all productions for nonterminals in tA are
already reordered. There exists a permutation ρ : {1, . . . , n} → {1, . . . , n}
such that the parameters y1, . . . , yn occur in the order yρ(1), . . . , yρ(n) in tA.
Then we replace the production A(y1, . . . , yn) → tA by the production

A(y1, . . . , yn) → tA[yρ(1)/y1 · · · yρ(n)/yn]

and we replace every subtree of the form A(t1, . . . , tn) in a right-hand side
by the tree A(tρ(1), . . . , tρ(n)). Note that during this process, for every node
in a right-hand side the corresponding list of child-pointers is reordered only
once. Therefore, we need time O(|G|) for this first step and the resulting
grammar has the same size as before.

In a second step, we eliminate chain productions of the formA(y1, . . . , yn) →
B(y1, . . . , yn) with B ∈ N . We can compute in time O(|G|) a partial mapping
f : N → N such that f(A) = B if and only if A(y1, . . . , yn) ⇒+

G B(y1, . . . , yn)
and the right-hand side for B is not just a single nonterminal. We then re-
move all chain productions from G and replace every occurrence of a nonter-
minal A ∈ dom(f) in a right-hand side by f(A). Again, this step does not
increase the size of the grammar.

In a third step, we add for every terminal symbol f ∈ Fn for which there
does not exist a production of the form A(y1, . . . , yn) → f(y1, . . . , yn) a new
nonterminal Af of rank n together with the production Af (y1, . . . , yn) →
f(y1, . . . , yn). Then, we can replace every occurrence of f in a right-hand

12

side of size at least two by a nonterminal. This step increases the size of the
grammar by at most

∑
f∈F

(rank(f) + 1).
In a final step, we reduce the number of nonterminals in each right-hand

side to at most two. Assume that A(y1, . . . , yn) → tA is a production such
that tA consists of at least three nonterminals. The tree tA must be of the
form

B(y1, . . . , yi, t1, t2, . . . , tk)

where i ≥ 0, k ≥ 1, and t1, . . . , tk are trees such that the root of t1 is labeled
by a nonterminal C. Let m ≥ 0 be the number of parameters that appear in
t1 (thus, yi+1, . . . , yi+m appear in t1 in this order) and define the substitution

Ψ = [yi+m+1/yi+2, yi+m+2/yi+3, . . . , yn/yn−m+1].

If the terms t2, . . . , tk are all parameters (i.e., tA = B(y1, . . . , yi, t1, yi+m+1, . . . , yn))
or do not exist (i.e., rank(B) = i + 1), then let γ = B; otherwise let γ = D
where D is a new nonterminal of rank n−m+ 1 with the production

D(y1, . . . , yn−m+1) → B(y1, . . . , yi, yi+1, t2Ψ, . . . , tkΨ). (1)

Clearly, the number of nonterminals in D’s right-hand side is at least one less
than the number of nonterminals in tA. If t1 contains only one nonterminal
then we set t′1 = t1; otherwise, we introduce the new nonterminal E of rankm
with right-hand side t1[yi+1/y1, . . . , yi+m/ym] and let t′1 = E(yi+1, . . . , yi+m).
Finally, we replace the production A(y1, . . . , yn) → tA by

A(y1, . . . , yn) → γ(y1, . . . , yi, t
′
1, yi+m+1, . . . , yn). (2)

Note that this step increases the size of the grammar by n + 3, due to the
production (2). We now iterate this final step until the grammar is in CNF.
Note that at most 2 · |G| many iterations are necessary.

The correctness of the construction can be seen as follows: if the new
nonterminal D is introduced, then apply the D-production in (1) to the
new right-hand side for A in (2). Since, for 1 ≤ ν ≤ (n − i − 1), the
(i+ 1 + ν)-th subtree of D in (2) contains yi+m+ν and in D’s right-hand the
trees t2, . . . , tk appear with yi+m+ν replaced by yi+1+ν , we obtain precisely
B(y1, . . . , yi, t

′
1, t2, . . . , tk). If t1 contains only one nonterminal, then t′1 =

t1 which concludes the correctness proof for that case. Otherwise, t′1 =
E(yi+1, . . . , yi+m) and, similarly as before, application of the E-production
to t′1 gives precisely t1.

13

Recall that r is the maximal rank in F ∪N . The final grammar has size
at most |G| +

∑
f∈F

(rank(f) + 1) + (r + 2) · |G| ≤ (r + 3)|G| + (r + 1) · |F| ∈
O(r · |G|) (note that |F| ≤ |G|, since we assume that every terminal appears
in a right-hand side). The time needed to construct the final grammar is
also in O(r · |G|). The number |N ′| of nonterminals in the final grammar is
≤ 4 · |G| because in each iteration of the last step we add at most two new
nonterminals, and the number of iterations is at most 2 · |G|. In fact, it is
not difficult to see that |N ′| ≤ 2 · |G| because if two new nonterminals are
introduced in an iteration, then the number of nonterminals inD’s right-hand
side is decreased by at least two with respect to tA. �

Note that the construction of CNF in the proof of Theorem 5 also changes
the depth of the grammar. The depth of an SLCF grammar is the maximal
length of any path in the hierarchical order of the grammar. It should be
clear that the depth of the new grammar G′ in CNF is bounded by d·h, where
d is the depth of the original grammar G, and h is the maximal height of the
right-hand side tree of any production of G. In fact, it is bounded by the
maximal sum of heights of right-hand sides of nonterminals that appear on a
path of the hierarchical order of G. In [17] some experiments are reported of
transforming SLCF grammars into CNF. Their grammars were obtained by
running TreeRePair [13] over typical XML document trees. In those experi-
ments, the size of a grammar never increases by more than a factor 10 when
transforming into CNF; the depth on the other hand increases considerably
for certain grammars (with the largest factor around 236).

Example 6. Consider the linear and productive SLCF tree grammar G
ex

with productions S → X(X(a, b), X(b, a)) and X(y1, y2) → h(i(y1), i(y2)).
This grammar is shown on the top right of Figure 4, together with the rep-
resented tree val(G

ex
)| = h(i(h(i(a), i(b))), i(h(i(b), i(a)))). Note that the size

of G
ex

is 12 while the size of the tree val(G
ex

) is 13. We now construct an
equivalent grammar in CNF, following the construction in the proof of Theo-
rem 5: Nothing needs to be done in the first two steps, because all parameters
appear in all the right-hand sides of productions, and, there are no chain
productions. In the third step we add new nonterminals H, I, A,B for the
terminal symbols h, i, a, b, respectively, together with these productions:

H(y1, y2) → h(y1, y2)
I(y1) → i(y1)
A → a
B → b

14

Moreover, we replace all occurrences of h, i, a, b in the right-hand sides of
the S- and X-productions by their corresponding nonterminals. We move to
the final step. Consider the X-production which contains three nonterminals
in its right-hand side. Then Ψ is the identity and we introduce the new
nonterminal D of rank 2 and production D(y1, y2) → H(y1, I(y2)). The new
X-production becomes X(y1, y2) → D(I(y1), y2). Now only the S-production
is not in CNF yet. This time we introduce D′ of rank q and E of rank zero
and productions D′(y1) → X(y1, X(B,A)) and E → X(A,B). We proceed
similarly and finally obtain the following grammar in CNF (plus the above
displayed productions for H, I, A,B).

S → D′(E) E ′′ → D′′′(B)
E → D′′(A) D′′′(y1) → X(y1, A)
D′′(y1) → X(y1, B) X(y1, y2) → D(I(y1), y2)
D′(y1) → X(y1, E

′′) D(y1, y2) → H(y1, I(y2)).

As another example, consider regular tree grammars, i.e., context-free
tree grammars in which all nonterminals are of rank zero: they do not allow
for a normal form in which at most two nonterminals appear in every right-
hand size. To see this, consider the grammar with the two productions
S → f(S, S, S) and S → a. Clearly for this language there is no regular
grammar with less than three nonterminals in the right-hand side of each
production. On the other hand, if we do allow parameters, then the following
grammar in CNF can be given (obtained by the construction in the proof of
Theorem 5):

S → B(S)
B(y1) → C(y1, S)
C(y1, y2) → F (y1, y2, S)
F (y1, y2, y3) → f(y1, y2, y3)
S → a.

Linear SLCF tree grammars in CNF can be stored more efficiently than
ordinary SLCF tree grammars: if we know the rank of each (non)terminal,
then for a right-hand side B(y1, . . . , yi, C(yi+1, . . . , yj), yj+1, . . . , ym) (resp.
f(y1, . . . , yn)) we only need to store the triple (B,C, i) (resp. the symbol f)
which has size O(log |N | + log k) if the grammar is k-bounded and N is its
set of nonterminals. We call this new representation of a CNF grammar its
triple notation. From a given linear SLCF tree grammar G, we can construct
an equivalent linear SLCF tree grammar in CNF in time O(r · |G|) (where r

15

B

g

C A g

g B C A

B A y2 f y5

y1 B C

y3 y4

Figure 1: A skeleton tree

is again the maximal rank of (non)terminals) which only needs space O(|G| ·
(log |G| + log(r))) in triple notation.

6. Parameter Reduction in Linear SLCF Tree Grammars

In this section our main result is proved. We show that a given linear
SLCF tree grammar can be made monadic in polynomial time.

A skeleton tree of rank n ≥ 0 is a tree s ∈ T (N0 ∪N1 ∪F≥2, {y1, . . . , yn}),
such that every parameter yi (1 ≤ i ≤ n) occurs exactly once in s and the
following additional properties are satisfied.

(a) The tree s does not contain a subtree of the form X(Y (t)) for X, Y ∈ N1.

(b) For every subtree f(t1, . . . , tm) of s with f ∈ F≥2 there exist at least
two distinct i ∈ {1, . . . , m} such that ti contains a parameter from
{y1, . . . , yn}.

Example 7. Figure 1 shows a skeleton tree of rank 5, where f ∈ F2, g ∈ F3,
A ∈ N0 and B,C ∈ N1.

In our construction, a skeleton tree will store the branching structure (with
respect to those leaf nodes that are parameters) of the tree generated by a

16

certain nonterminal, i.e., the information on how the paths from the root to
parameters branch. Nonterminals of rank one in a skeleton tree represent
those tree parts that are in between two branching nodes in this branch-
ing structure. The crucial point about skeleton trees is that their size can
be bounded polynomially. For the following lemma, it is important that a
skeleton tree only contains function symbols of rank ≥ 2.

Lemma 8. Let r be the maximal rank of a symbol from F. A skeleton tree
s of rank n ≥ 1 contains at most 2(r · n− r + 1) many nodes.

Proof. The number of nodes in s labeled with a symbol from F≥2 can be
at most n− 1 due to (b). From (a) it follows that the number of N1-labeled
nodes is at most r · (n− 1) + 1. Finally, the number of leaves of s can be at
most (r− 1) · (n− 1) + 1. Hence, s has at most 2(r · n− r + 1) many nodes.

�

Let G = (N,P, S) be a linear SLCF tree grammar. By Theorem 5 we may
assume that G is in CNF. The set of nonterminals N is a finite subset of⋃

i≥0 Ni. We now define in a bottom-up process, for every nonterminal A of
rank n ≥ 1, a skeleton tree skA of rank n. Simultaneously, we construct a
new linear and monadic SLCF tree grammar G′ = (N ′, P ′, S). Consider a
production A→ tA from P and let n = rank(A).

Case 1. tA = f(y1, . . . , yn), where f ∈ Fn: if n ≤ 1, then we add the
production A(y1, . . . , yn) → tA to P ′ and set skA = A(y1, . . . , yn). If n ≥ 2,
then we set skA = tA and do not add any new productions to P ′.

Case 2. tA = B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn), where i ≤ j and the
trees skB, skC are already constructed. In a first step define the tree

s = skB[yi/skC [y1/yi, y2/yi+1, . . . , yj−i/yj−1],

yi+1/yj, yi+2/yj+1, . . . , yn+i−j+1/yn]. (3)

But this tree is not necessarily a skeleton tree; it may violate conditions (a)
and (b) on skeleton trees. Hence, we apply a contract-operation to s which
yields the skeleton tree skA. Moreover, as a side effect, the contract-operation
adds new productions and nonterminals to G′. The contract-operation works
in two steps:

Contract-1 (see Figure 2). Assume that s contains a subtree of the form
Y (Z(t)). There can be only one subtree of this form in s. We now do the
following:

17

Y

Z

s

XskB

skC

Figure 2: Contract-1

f

· · · · · ·
t1

Yk

yp

tm

X

yp

Figure 3: Contract-2

1. Add a fresh nonterminal X ∈ N1 of rank 1 to N ′.

2. Add the production X(y1) → Y (Z(y1)) to P ′.

3. Replace the subtree Y (Z(t)) by X(t).

Contract-2 (see Figure 3). After contract-1, s can only violate condition
(b) for skeleton trees. Hence, assume that s contains a subtree of the form
f(t1, . . . , tm) such that f ∈ F≥2 and there is exactly one k ∈ {1, . . . , m} such
that tk contains a parameter from {y1, . . . , yn}, say yp. Again there can be
only one subtree of this form in s. Moreover, this case may only occur, if C
has rank 0.

Since condition (a) is already satisfied, every subtree tℓ (ℓ 6= k) is of the
form Zℓ or Yℓ(Zℓ) with Yℓ ∈ N1 and Zℓ ∈ N0, whereas tk is either yp or of the
form Yk(yp) for Yk ∈ N1. We do the following:

1. Add a fresh nonterminal X ∈ N1 of rank 1 to N ′.

2. Add to P ′ the productionX(y1) → f(t1, . . . , tk−1, tk[yp/y1], tk+1, . . . , tm).

3. Replace the subtree f(t1, . . . , tm) of s by X(yp).

After this operation, another contract-1 operation might be necessary (if the
new subtree X(yp) is below an N1-labeled node). The resulting tree is the
skeleton tree skA. Now no more contract operations are possible.

Note that the SLCF tree grammar G′ is linear, productive, and monadic.
The following lemma can be shown by induction on the hierarchical order of
G.

18

Lemma 9. For every nonterminal A of G, valG(A) = valG′(skA).

Proof. The lemma can be easily shown by induction on the hierarchical
order of G. Consider a production (A → tA) ∈ P with n = rank(A). If
the right-hand side tA is of the form f(y1, . . . , yn), then we have either skA =
A(y1, . . . , yn) and (A(y1, . . . , yn) → tA) ∈ P ′ (if n ≤ 1) or skA = f(y1, . . . , yn).
Hence, valG(A) = f(y1, . . . , yn) = valG′(skA).

Now assume that the right-hand side tA is of the form

B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn),

where i ≤ j and let s be the term from (3). The productions that were
added to P ′ during the contract-operations ensure that valG′(s) = valG′(skA).
Hence, by induction we obtain:

valG′(skA) = valG′(s)

= valG′(skB[yi/skC [y1/yi · · · yj−i/yj−1], yi+1/yj · · · yn+i−j/yn])

= valG′(skB)[yi/valG′(skC)[y1/yi · · · yj−i/yj−1], yi+1/yj · · · yn+i−j/yn]

= valG′(B)[yi/valG′(C)[y1/yi · · · yj−i/yj−1], yi+1/yj · · · yn+i−j/yn]

= valG(B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj, . . . , yn))

= valG(A).

�

Theorem 10. Let r be the maximal rank of a symbol from F. From a given
linear and k-bounded SLCF tree grammar G = (N,P, S) we can construct
in time O(k · r · |G|) a linear, productive, and monadic SLCF tree grammar
G′ = (N ′, P ′, S) of size O(r · |G|) such that N∩(N0∪N1) ⊆ N ′ and valG′(A) =
valG(A) for every A ∈ N ∩ (N0 ∪ N1).

Proof. Using the constructions from Section 5, we first transform G into
a linear CNF grammar H with O(|G|) many nonterminals. This needs time
O(max{k, r}· |G|). Now we construct for every nonterminal A of H the skele-
ton tree skA and simultaneously the linear and monadic SLCF tree grammar
H′. In order to construct the tree s in Equation (3), we have to copy the al-
ready constructed skeleton trees skB and skC (since we may need these trees
in later steps), which by Lemma 8 needs time O(k · r). The construction of
skA from s needs at most three contraction steps, each of which requires O(1)

19

many pointer operations. Moreover, in every contraction step we add to H′

a production of size at most O(r). Hence, the total size of H′ is O(r · |G|)
and the construction takes time O(k · r · |G|). We obtain the final grammar
G′ by adding to H′ every nonterminal A ∈ N ∩ (N0 ∪ N1), which does not
already belong to H′, together with the production A → skA. By Lemma 9
we have valG′(A) = valG(A). Note that in general G′ is not in CNF, and that
it might contain useless productions. �

Finite unions of linear monadic SLCF tree grammars are studied e.g.
in [38, 39] under the name singleton tree grammar. They are, by Theorem 10,
polynomially equivalent to finite unions of linear SLCF grammars; hence,
their results can also be applied to linear grammars.

Example 11. We transform the linear CNF grammar constructed in Exam-
ple 6 into an equivalent linear monadic SLCF tree grammar. We start with
the set of productions P ′ = {A→ a,B → b, I(y1) → i(y1)} (see Case 1) and
the following skeleton trees:

skA = A, skB = B, skI = I(y1), skH = h(y1, y2).

Next, for X and D we obtain without contract operations:

skD = h(y1, I(y2)), skX = h(I(y1), I(y2)).

Let us now construct skD′′′, skD′′, skE′′, skE, skD′, and skS in this order:

• construction of skD′′′: For the tree s in (3) we obtain s = h(I(y1), I(A)).
With contract-2, we obtain the new production J(y1) → h(I(y1), I(A))
and the skeleton tree skD′′′ = J(y1).

• Construction of skD′′: we get s = h(I(y1), I(B)). With contract-2, we
obtain the new production K(y1) → h(I(y1), I(B)) and the skeleton tree
skD′′ = K(y1).

• Construction of skE′′: we get s = J(B). Thus, we do not add a new
production to P ′ and set skE′′ = J(B).

• Construction of skE: we get s = K(A). Again, we do not add a new
production to P ′ and set skE = K(A).

20

• Construction of skD′: we get s = h(I(y1), I(J(B))). A first contract-
1 operation adds the production L(y1) → I(J(y1)) to P ′ and updates
s to s = h(I(y1), L(B)). Now, we have to apply another contract-2
operation, which adds the production M(y1) → h(I(y1), L(B)) to P ′.
We set skD′ = M(y1).

• Construction of skS. We set s = M(K(A)). Hence, we add to P ′ the
production N(y1) →M(K(y1)) and set skS = N(A).

Thus, an equivalent linear and monadic SLCF tree grammar contains the
following productions:

S → N(A) J(y1) → h(I(y1), I(A)) M(y1) → h(I(y1), L(B))
A → a K(y1) → h(I(y1), I(B)) N(y1) → M(K(y1))
B → b L(y1) → I(J(y1)) I(y1) → i(y1).

Note that the resulting monadic grammar is not in CNF. In order to make
more visible the grammar change when moving from the original (binary)
grammar to a monadic one, we combine some of the productions in the above
grammar: we expand S’s right-hand side by application of the N-production,
and rename M into X0 and K into X1. The resulting S production is shown
in the bottom right of Figure 4. Through similar expansions we obtain the
grammar in the bottom of Figure 4. It shows that the three occurrences of X
of the original grammar have become three different versions in the monadic
grammar: X0, X1, and X2. Note that X0 generates X2 in a ’recursive’ way.

7. Applications to Tree Automata Evaluation

As an immediate corollary of Theorem 10 and [11, Theorem 1] we obtain
the following result:

Corollary 12. For a given NTA A with n states and a given linear and k-
bounded SLCF tree grammar G such that r is the maximal rank of a terminal
symbol from F, we can check in time O(r · |G| · (k + |A| · n2)), whether
val(G) ∈ L(A).

Proof. By Theorem 10 we can transform the linear and k-bounded SLCF
tree grammar G in time O(r · |G| · k) into a monadic linear SLCF tree gram-
mar G. The result follows, since by [11, Theorem 1] (where NTAs are simply

21

i

y2y1

X
→ ii

h

y1 y2

ba

X

h

ii

b a

y

X0

y

y

by

y a

ii

h

ii

h

i

h

X1

X2

→

→

→

i

y X2

b

X1

a

X0

→S

h

i i

X
hX

ba

i i

h

ii

b a

X

→

X

b a

XS

X0h

i i

X2
hX1

ba

i

Figure 4: The grammar Gex (top) and an equivalent monadic grammar (bottom)

22

called TAs) one can check for (i) a given NTA A with n states and (ii) a
given linear and k-bounded SLCF tree grammar G in time O(|G| · |A| ·nk+1),
whether val(G) ∈ L(A) (if A is a deterministic bottom-up tree automa-
ton then time O(|G| · |A| · nk) suffices). In order to make the paper self-
contained, let us briefly explain the argument. For every nonterminal A of
rank r ≤ k and every tuple (q1, . . . , qr, q) ∈ Qr+1 (Q is the set of states of
A), we compute a Boolean value okA(q1, . . . , qr, q) with the following mean-
ing: okA(q1, . . . , qr, q) = true if and only if there is a run of A on the tree
valG(A)(y1, . . . , yr) such that A enters the tree valG(A)(y1, . . . , yr) at the
unique occurrence of the parameter yi in state qi (1 ≤ i ≤ r) and arrives in
state q at the root. For the nonterminal A, we have to compute |Q|r+1 ≤ nk+1

values. Each of these values can be computed in time |A| · |tA| (where tA
is the right-hand side for A), assuming that all ok-values for hierarchically
smaller nonterminals are already computed. By taking the sum over all non-
terminals, we obtain the time bound O(|G| · |A| · nk+1). �

We may assume that r, k ≤ |G| in Corollary 12, since we assume for
context-free tree grammars that every (non)terminal occurs in a right-hand
side. Moreover, we can eliminate states from an NTA that do not occur in
transition tuples. Hence, n ≤ |A|. Thus, the time bound in Corollary 12 can
be replaced by O(|G|3 + |G|2 · |A|3). Hence, val(G) ∈ L(A) can be checked in
polynomial time.

7.1. Tree Automata with Sibling-Constraints

In this section, we extend Corollary 12 to tree automata with sibling-
constraints.

Theorem 13. The problem of checking val(G) ∈ L(A) for a given linear
SLCF tree grammar G and a given NTAC A can be solved in polynomial
time.

Proof. By Theorem 10 we can assume that G = (N,P, S) is linear and
monadic. Moreover, by introducing additional nonterminals it is easy to
normalize G in linear time such that all productions in P are of one of the
following 4 types:

• A→ f(A1, . . . , An) for A,A1 . . . , An ∈ N0 and f ∈ Fn

• A→ B(C) for A,C ∈ N0 and B ∈ N1

23

• A(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An) for A ∈ N1, A1, . . . , An ∈ N0,
f ∈ Fn+1

• A(y) → B(C(y)) for A,B,C ∈ N1

Let A = (Q,∆, F) be an NTAC. Along the hierarchical order of G we will

compute for every A ∈ N0 ∩ N the set of states ∆̃(valG(A)). At the end,

we have to check whether ∆̃(valG(S)) ∩ F 6= ∅. Consider a nonterminal
A ∈ N0 ∩N .

Case 1. The production for A is of the form A → f(A1, . . . , An). Assume

that for every 1 ≤ i ≤ n, the set of states ∆̃(valG(Ai)) is already computed.
Using Proposition 3, we can find out in polynomial time which of the trees
valG(Ai) (1 ≤ i ≤ n) are equal or disequal. Using this information, it is

straightforward to compute the set ∆̃(valG(A)).

Case 2. The production for A is of the form A → B(C). This case requires

more work. Assume that the set of states ∆̃(valG(C)) is already computed.
Define an SLCF string grammar GB in CNF as follows:

• The set of nonterminals is N1 ∩ N , i.e., the nonterminals of G of rank
one.

• The set of terminal symbols is Σ = {[A1, . . . , Ai−1, y, Ai, . . . , An, f] |
∃X ∈ N1 ∩N : (X(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An)) ∈ P}.

• If (X(y) → Y (Z(y))) ∈ P , then GB contains the production X → ZY
(note that we reverse the order of the nonterminals Y and Z); if
(X(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An)) ∈ P , then GB contains the
production X → [A1 . . . , Ai−1, y, Ai, . . . , An, f]. These are all produc-
tions of GB.

• The start nonterminal of GB is B.

The string generated by GB represents the outcome of a partial derivation
from the nonterminal B in the tree grammar G, where the derivation process
is stopped as soon as a nonterminal of rank zero is reached. Let us denote
this tree with t0B(y). This tree has a unique occurrence of the parameter y
and let py ∈ IN∗ be the unique y-labeled node of t0B(y).

24

Example 14. Let G contain the following four productions for nontermi-
nals of rank one: B(y) → B1(B1(y)), B2(y) → f(A2, A2, y, A3), B1(y) →
B2(B3(y)), B3(y) → g(A1, y, A1). Here A1, A2, A3 are nonterminals of rank
0. Then, the SLCF string grammar GB consists of the productions B →
B1B1, B2 → [A2, A2, y, A3, f], B1 → B3B2, and B3 → [A1, y, A1, g] and
generates the string

val(GB) = [A1, y, A1, g] [A2, A2, y, A3, f] [A1, y, A1, g] [A2, A2, y, A3, f].

This string represents the following tree, which is t0B(y):

A1

y

A1

g

A3

A2

A2

f

A1

A1

g

A3

A2

A2

f

We have py = 3232.

Let NB,0 ⊆ N0 ∩ N be the set of all nonterminals of rank 0 that appear in
terminal symbols of val(GB). In our example, we have NB,0 = {A1, A2, A3}.

Claim 1. The set NB,0 can be computed in polynomial time.

We compute for every nonterminal X of GB a set NX,0 ⊆ N0 ∩ N . If
X → [A1, . . . , Ai−1, y, Ai, . . . , An, f] is a production of GB, then set NX,0 =
{A1, . . . , An}. If X → Y Z is a production of GB, then set NX,0 = NY,0∪NZ,0.
In this way we can compute the set NB,0 in polynomial time.

Recall that our goal is to compute in polynomial time the set of states
∆̃(valG(A)). For this, we will work with the SLCF string grammar GB,
which generates a string representation of the tree t0B. The problem is of
course that the size of this tree is exponential in the worst case. Assume
for a moment that A is an ordinary NTA (without sibling constraints).
Then we could proceed as follows: First of all, if we have a terminal a =
[A1, . . . , Ai−1, y, Ai, . . . , An, f] of GB then one can associate with a a rela-
tion Ra ⊆ Q × Q with the following meaning: (q, q′) ∈ Ra if and only if
A has a run on the tree valG(f(A1, . . . , Ai−1, y, Ai, . . . , An)) that enters the
tree at the parameter y in state q and arrives at the root in state q′. Us-
ing the fact that the state sets ∆̃(valG(Aj)) are already computed, one can
compute the relation Ra easily. Then using the productions of GB one can
associate a relation RX with every nonterminal of GB as follows: If X → a

25

is a production of GB, then set RX = Ra. If X → ZY is a production of
GB, then RX is the composition RZ ◦RY . The relation RB is in some sense
the semantics of the tree t0B(y) under the NTA A: (q, q′) ∈ RB if and only
if A can enter t0B(y) at the parameter y in state q and arrive in state q′ at

the root. Finally, if RB is computed, then ∆̃(valG(A)) can be computed as

{q′ ∈ Q | ∃q ∈ ∆̃(valG(C)) : (q, q′) ∈ RB} (recall that ∆̃(valG(C)) is already
computed).

Unfortunately, this procedure fails in our situation, since A is an NTAC.
Therefore, one cannot associate a relation Ra ⊆ Q × Q with a nonterminal
a = [A1, . . . , Ai−1, y, Ai, . . . , An, f] of GB as above: One has to know which
tree is substituted for y in order to know which of the sibling-constraints
are satisfied. But in our situation, we can solve this problem as follows: We
know that the parameter y in t0B(y) is replaced by the tree valG(C). By
Proposition 3, we can check in polynomial time which of the trees valG(X)
for X ∈ {C} ∪ NB,0 are equal. Moreover, the sizes of the subtrees of
valG(t0B)[y/valG(C)] = valG(A) that appear along the path from the node
py to the root strictly increase when walking towards the root. This means
that there are at most |NB,0| many of these subtrees that belong to the set
{valG(X) | X ∈ NB,0}. This allows us to split the string val(GB) into poly-
nomially many substrings. For each of these substrings we can compute a
small SLCF string grammar. Moreover, for each substring we can carry out
essentially the same argument that we sketched above for ordinary NTAs,
because all sibling-constraints are known. In the following, we formally define
the splitting of the string val(GB).

For a nonterminal X ∈ N0∩N of rank 0, let s(X) = |valG(X)| be the num-
ber of nodes of the generated tree; this number can be computed in polyno-
mial time by Lemma 4. For a terminal symbol [A1, . . . , Ai−1, y, Ai, . . . , An, f] ∈
Σ of the string grammar GB let s([A1, . . . , Ai−1, y, Ai, . . . , An, f]) = s(A1) +
· · ·+s(An)+1 (the “+1” comes from the symbol f). The mapping s : Σ → IN
is extended to Σ∗ in the natural way: s(a1 · · ·an) = s(a1) + · · · + s(an)
for a1, . . . , an ∈ Σ. Finally, for a position 0 ≤ p ≤ |val(GB)| = |py| let
s(p) = s(C) + s(val(GB)[1 : p]) (we assume that w[i, j] = ε for i > j in
the following). The value s(p) is the size of a certain subtree of valG(A) =
valG(B)[y/valG(C)], namely the subtree that is rooted in the node py[1 :
|py| − p]. This is the node reached by going p steps up (towards the root)
from the unique occurrence of y in valG(B)(y).

Claim 2. Given p in binary notation, we can compute in polynomial time

26

the value s(p).

First, we construct in polynomial time an SLCF string grammar for the prefix
val(GB)[1 : p], which is possible by Lemma 1. Then the number s(val(GB)[1 :
p]) (and hence s(p)) can be easily computed bottom-up.

Note that s(i) < s(j) for i < j. Hence, there exists a list of numbers
0 ≤ p1 < p2 < · · · < pℓ < |py| such that (i) ℓ ≤ |NB,0| and (ii) for all
p ∈ {0, . . . , |py|}, if s(p) ∈ {s(X) | X ∈ NB,0} then p = pi for some 1 ≤ i ≤ ℓ.

Claim 3. The list p1, . . . , pℓ can be computed in polynomial time.

Note that for every X ∈ NB,0 we can compute the size s(X) in polynomial
time by Lemma 4. Since s(i) < s(j) for i < j, we can use binary search (i)
to check whether there exists p with s(X) = s(p), and (ii) to compute p if it
exists.

Example 14 (continued). Assume that s(C) = s(A1) = 2, s(A2) = 7 and
s(A3) = 9. We have s(0) = 2, s(1) = 7, s(2) = 31, s(3) = 36, and s(4) = 60.
Hence, we obtain the list (p1, p2) = (0, 1).

The list (p1, . . . , pℓ) defines the splitting of val(GB) mentioned above. More
precisely, using Lemma 1 we compute in polynomial time the symbols ai =
val(GB)[pi + 1] ∈ Σ and SLCF string grammars G0, . . . ,Gℓ in CNF such
that val(Gi) = val(GB)[pi + 2, pi+1] for 0 ≤ i ≤ ℓ (here, let p0 = −1 and
pℓ+1 = |val(GB)|). Hence, we have

val(GB) = val(G0) a1 val(G1) a2 · · ·val(Gℓ−1) aℓ val(Gℓ).

Recall that every prefix of val(GB) represents a tree with a unique occur-
rence of the parameter y (if this prefix is the empty string then the tree
is just y). For 0 ≤ i ≤ ℓ let ti(y) be the tree represented by the prefix
val(G0) a1 · · ·val(Gi−1) ai (thus t0(y) = y) and let ui(y) be the tree repre-
sented by the prefix val(G0) a1 · · ·val(Gi−1) aival(Gi) (thus uℓ(y) = t0B(y)).
In our example we have t0(y) = u0(y) = y, t1(y) = u1(y) = g(A1, y, A1),
t2(y) = f(A2, A2, t1(y), A3), and u2(y) = t0B(y).

We compute the state sets Pi = ∆̃(valG(ti[y/C])) andQi = ∆̃(valG(ui[y/C]))

successively in polynomial time. We start with P0 = ∆̃(valG(C)); recall that
this set is already computed.

Computing the set Pi from Qi−1 (i > 0) is straightforward: assume that
ai = [A1, . . . , Aj−1, y, Aj, . . . , An, f]. Hence, we have

ti(y) = f(A1, . . . , Aj−1, ui−1(y), Aj, . . . , An).

27

From the SLCF string grammars G0, . . . ,Gℓ we can easily compute a lin-
ear and monadic SLCF tree grammar for the tree valG(ui−1[y/C]). Hence,
using Proposition 3, we can check in polynomial time, whether the tree
valG(ui−1[y/C]) equals some valG(Ak). Using this information, we can com-
pute in polynomial time the set of states Pi from Qi−1.

In order to compute Qi from Pi, one has to note that when walking
down for |val(Gi)| steps from the root of valG(ui[y/C]) to the unique node
labeled y in ui(y), then the current subtree is never equal to one of the trees
rooted in a sibling node (which is a tree valG(X) for X ∈ NB,0). Hence, for
every terminal symbol a = [A1, . . . , Aj−1, y, Aj+1, . . . , An, f] that occurs in
the grammar Gi we can compute a relation Ra ⊆ Q × Q as follows (recall

that the sets ∆̃(valG(Ak)) for k ∈ {1, . . . , n} \ {j} are already computed):

Ra = {(q, q′) ∈ Q×Q | ∃(E,D, q1, . . . , qj−1, q, qj+1, . . . , qn, f, q
′) ∈ ∆ :

∀k ∈ {1, . . . , n} \ {j} : qk ∈ ∆̃(valG(Ak)),

∀(k,m) ∈ E : k = m ∨ (k 6= j 6= m ∧ valG(Ak) = valG(Am)),

∀(k,m) ∈ D : k = j ∨m = j ∨ (k 6= j 6= m ∧ valG(Ak) 6= valG(Am))}.

Next, for every nonterminal X of the SLCF string grammar Gi we compute
a relation RX as follows: If X → a is a production of Gi, then set RX = Ra.
If X → Y Z is a production of Gi, then set RX = RY ◦ RX . Finally, we set
Qi = {q′ ∈ Q | ∃q ∈ Pi : (q, q′) ∈ RX}, where X is the start nonterminal of
Gi. �

Clearly, the worst-case complexity, in terms of the input grammar, of the
procedure in the proof of Theorem 13 exceeds that of Corollary 12: The pro-
cedure for Proposition 3 given in [10] constructs two string grammars which
realize depth-first left-to-right traversals of the trees represented by the given
SLCF tree grammars, and then checks equality of the strings represented by
these two string grammars. The best known algorithm, in terms of asymp-
totic worst-case complexity, is the one by Lifshits [8] which runs in cubic time
with respect to the sum of sizes of the given grammars. Since Proposition 3
is applied O(|N |)-times, we already obtain a factor of |G′|4, where G′ is the
linear monadic grammar obtained for the given G through Theorem 10.

7.2. Tree Walking Automata

Recall that the transformation from TWAs into NTAs is inherently expo-
nential. Thus, the following complexity result is not subsumed by our results
for NTAs.

28

Theorem 15. The problem of checking val(G) ∈ L(W) for a given linear
SLCF tree grammar G and a given TWA W can be solved in polynomial
time.

Proof. Let W = (Q,F, qI ,∆) be a TWA over F. Let r be the maximal
arity of a symbol in the ranked alphabet F. By Theorem 10, we can assume
that G = (N,P, S) is linear and monadic.1 Moreover, it is easy to modify W
in such a way that the following holds:

• F consists of a single final state qf .

• t ∈ L(W) if and only if there exists a sequence

(q0, u0) ⊢W (q1, u1) ⊢W · · · (qn−1, un−1) ⊢W (qn, un)

such that u0 = un = ε and qn = qf (i.e., at the end the TWA has to be
back at the root).

For every nonterminal A ∈ N ∩N1, we compute 4 ·(r+1) · |F| binary relations
RA

i,f,a,b ⊆ Q × Q, where i ∈ {ε, 1, . . . , r}, f ∈ F, and a, b ∈ {0, 1}. The idea
is that we consider an occurrence of valG(A) in a larger tree. The indexes i
and f specify the relevant information of this occurrence: i is the type of the
root node of valG(A) in the whole tree and f is the root symbol of the tree
which is substituted for the unique occurrence of the parameter y1 in valG(A).
Now we consider a walk of W which does not leave the occurrence of valG(A)
and which starts/ends at the root of valG(A) or the unique occurrence of the
parameter y1 in valG(A). The indexes a and b specify the entry and exit
points of the walk, where 0 refers to the root and 1 refers to the parameter
y1 in valG(A). A pair (p, q) belongs to the relation RA

i,f,a,b, if the TWA W can
enter valG(A) in state p at point a and leave valG(A) at point b in state q.
Moreover, during this walk, we assume that valG(A) is embedded in a larger
tree in such a way that the root of valG(A) is of type i and the parameter y1

is replaced by the symbol f .
Similarly, for every A ∈ N ∩ N0, we compute r + 1 binary relations

RA
i ⊆ Q × Q, where i ∈ {ε, 1, . . . , r}. Here, (p, q) ∈ RA

i , if W can enter
valG(A) at its root in state p and leave valG(A) at its root in state q under

1Theorem 15 can be also shown without the assumption that G is monadic. The proof
becomes only technically more involved, see [40].

29

the assumption that the root of valG(A) has type i in the whole tree. Hence,
to decide whether val(G) ∈ L(W), we have to check whether (q0, qf) ∈ RS

ε .
Now we argue that these relations can easily be computed bottom-up

for all nonterminals using dynamic programming. We assume that all pro-
ductions of G have one of the types listed in the beginning of the proof of
Theorem 13. We first precompute in polynomial time a table for all nonter-
minals which contains the following information:

• The root symbol λvalG(A)(ε) for every nonterminal A ∈ N .

• The unique number 1 ≤ i ≤ r such that the unique occurrence of the
parameter y1 is the i-th child of its parent node in valG(A) for every
A ∈ N ∩ N1.

The different types of productions can be dealt with similarly. Let us consider
for instance a production of the form A(y1) → B(C(y1)). Let λvalG(C)(ε) = g
and assume that the parameter y1 is the k-th child of its parent node in
valG(B). Then, for instance,

RA
i,f,0,1 = RB

i,g,0,1 ◦ (RB
i,g,1,1 ∪R

C
k,f,0,0)

∗ ◦RC
k,f,0,1.

The other relations can be computed similarly.
The complexity of our procedure can be roughly estimated as follows.

There are |N ∩ N1| · 4 · (r + 1) · |F| ≤ O(|G|3) relations for nonterminals
of rank 1 and |N ∩ N0| · (r + 1) ≤ O(|G|2) relations for nonterminals of
rank 0. For each of these relations is computed from previously computed
relations using a constant number of unions, compositions, and transitive
closures. Computing the transitive closure of a relation on Q takes time
O(|Q|3) ≤ O(|A|3); this is the dominating part in the computation. Hence,
in total O(|G|3 · |A|3) time suffices. �

It is easy to construct a TWA B, which accepts a tree t over the ranked
alphabet {∧,∨, 0, 1} if and only if t represents a Boolean expression, which
evaluates to true. The TWA B traverses its input tree in depth-first left-to-
right order. Since the circuit value problem is PTIME-complete, it follows
that already the following question is PTIME-complete: Given a DAG G, is
val(G) accepted by the fixed TWA B? Hence, the upper bound in Theorem 15
is sharp.

An extension of TWAs are TWAs with pebbles where the pebbles are
used obeying a stack discipline, i.e., pebbles 1, . . . , n are placed at nodes and

30

observed, but only the last pebble can be removed, and only the next free
pebble can be placed. It is known that TWAs with pebbles are still less
expressive than NTAs, and the transformation from TWAs with pebbles into
NTAs is inherently non-elementary [28].

Theorem 16. The problem of checking for a given TWA with pebbles W and
a linear SLCF tree grammar G, whether val(G) ∈ L(W) is PSPACE-complete.
Moreover, PSPACE-hardness already holds for the case that G is 0-bounded
(i.e., is a DAG) and W is deterministic and uses only one pebble.

Proof. For the upper bound, one can just guess an accepting run of W on
val(G) incrementally, i.e., at each step we guess and store the next configu-
ration of W. For this, one has to store the current state of W, the current
position in val(G), and the positions of the pebbles. This information can
be stored in polynomial space (a node of val(G) can be represented by a
root-leaf path in the unique derivation tree for the tree grammar G, see also
[10]). Note that for this argument we do not need the fact that the pebbles
are used obeying a stack discipline.

PSPACE-hardness is shown by a simple reduction from quantified Boolean
satisfiability (QBF). So, let ψ be a quantified Boolean formula without free
variables. Using standard arguments, we can assume that ψ has the form

ψ = ∀x1 ∃x2 · · · ∀x2n−1 ∃x2n

m−1∧

i=0

(yi,1 ∨ yi,2 ∨ yi,3),

where yi,j ∈ {x1,¬x1, . . . , x2n,¬x2n}. W.l.o.g. we can assume that m ≥
2. Our DAG G generates a kind of binary unfolding of this formula. The
productions of G are:

A2i → ∧(A2i+1, A2i+1) for 0 ≤ i ≤ n− 1

A2i+1 → ∨(A2i+2, A2i+2) for 0 ≤ i ≤ n− 1

Ai → ∧(a, Ai+1) for 2n ≤ i ≤ 2n+m− 3

A2n+m−2 → ∧(a, a)

Here, a is a constant. Moreover, A0 is the start nonterminal. Note that
the leaves of val(G) are the nodes b1 · · · b2n2i1 and b1 · · · b2n2m−1, where
b1, . . . , b2n ∈ {1, 2} and 0 ≤ i ≤ m − 2. The TWA W with one pebble
works as follows: Basically, W is the TWA that evaluates Boolean expres-
sions by traversing its input tree in depth-first left-to-right order. When W

31

visits a leaf b1 · · · b2n2ic (where c = 1 if 0 ≤ i ≤ m−2 and c = ε if i = m−1),
we can assume that W has the number i stored in its finite control. Hence,
W knows that the disjunction yi,1 ∨ yi,2 ∨ yi,3 has to be evaluated in the cur-
rent truth assignment, which maps the variable xk to bk − 1 ∈ {0, 1}. Hence,
W has to determine the truth values of the three literals yi,1, yi,2, yi,3. The
truth value of a variable xk (1 ≤ k ≤ 2n) can be easily determined as follows:
First W places the pebble on the current leaf b1 · · · b2n2ic. Then it walks up
for exactly |c|+ i+ (2n− k) steps. If the reached node is a left (resp. right)
child of its parent node then xk evaluates to false (resp. true). Then, W can
deterministically walk back to the leaf, where the pebble was placed before,
by making a depth-first left-to-right traversal. �

8. Adding Nondeterminism, Non-Linearity or Recursion

If we relax condition (i) of the definition of SLCF tree grammars to (i’) P
contains for every A ∈ N at least one production with left-hand side A (but
keep the acyclicity condition (ii)) then we obtain nondeterministic SLCF
tree grammars (NSLCF tree grammars). Such grammars generate finite sets
of trees, which by the following example may contain double-exponentially
many trees.

8.1. Nondeterminism

Example 17. For n ≥ 1, let the linear, productive, and monadic NSLCF
tree grammar Gn consist of the productions

S → A0(a)
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n
An(y1) → f(y1)
An(y1) → g(y1).

Then L(Gn) consists of all monadic trees with 2n many internal nodes, each
of which is labeled f or g. Thus |L(Gn)| = 22n

.

We now want to show that given a linear and productive NSLCF tree gram-
mar G, we can, in general, not obtain an equivalent monadic grammar of size
|G|O(1). In fact, there is a family Gn (n ≥ 1) of linear and productive NSLCF
tree grammars such that any monadic, linear, and productive NSLCF tree
grammar that generates L(Gn) is of size 2O(|Gn|1/2). Thus, for nondeterministic
grammars an exponential blow-up cannot be avoided when going to monadic

32

grammars. Later we show that this is the worst case blow-up and that in
fact any linear and non-deleting NSLCF tree grammar can be transformed
into an equivalent monadic one which is at most exponentially larger.

Example 18. For n ≥ 1, let the symbol fn be of rank n and define the linear
and productive NSLCF tree grammar Gn (of size O(n2)) with the following
productions:

S → A0(a, . . . , a)

Ai(y1, . . . , yn) → Ai+1(f(y1), . . . , f(yn)) for 0 ≤ i < n

Ai(y1, . . . , yn) → Ai+1(g(y1), . . . , g(yn)) for 0 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn).

Then Ln = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a monadic tree
with n many internal nodes, each of which is labeled f or g.

Lemma 19. Let n ≥ 1, k < n, and let G be a linear, non-deleting, and k-
bounded NSLCF grammar such that L(G) = Ln is the set from Example 18.
Then |G| ≥ 2n.

Proof. Assume that G is a linear, non-deleting, and k-bounded NSLCF
tree grammar such that k < n and L(G) = Ln. W.l.o.g. we can assume
that every nonterminal of G appears in a successful derivation of G, i.e., a
derivation from the start nonterminal to a terminal tree. Let P (fn) be the
set of all productions of the form A → t, where t contains a subtree of the
form fn(t1, . . . , tn). Clearly, since G is non-deleting, every right-hand side
of a production from P (fn) contains a unique such subtree. Moreover, in
every successful derivation of G, a production from P (fn) has to be applied
exactly once. We claim that |P (fn)| ≥ 2n. Consider a production (A →
t) ∈ P (fn) and consider the unique subtree in t of the form fn(t1, . . . , tn).
Since rank(A) ≤ k < n and G is linear, there exists an i ∈ {1, . . . , n} such
that ti does not contain a parameter, i.e., ti ∈ T (F ∪ N). Assume that two
different terminal trees can be derived from ti. Then we can derive with G
a tree, where the root has two different subtrees, a contradiction. Hence,
from ti we can generate exactly one tree. We denote this tree by τ [A → t],
since it can be associated with the production (A → t) ∈ P (fn). Hence, for
every successful derivation S ⇒∗

G s, where the production (A → t) ∈ P (fn)
is applied (exactly once), we must have s = fn(τ [A → t], . . . , τ [A → t]).

33

Since we can generate 2n many terminal trees from S and in each derivation
exactly one production from P (fn) is applied, it follows that |P (fn)| ≥ 2n.
�

By the following theorem, the lower bound from Lemma 19 can be matched
by an upper bound. The proof of this result is similar to the proof of Theo-
rem 10.

Theorem 20. For a given linear NSLCF tree grammar G = (N,P, S) we
can construct in time 2O(|G|) a linear and monadic NSLCF tree grammar
G′ = (N ′, P ′, S) of size 2O(|G|) such that L(G′) = L(G).

Proof. The proof is very similar to the proof of Theorem 10. Instead of
storing just a single skeleton tree skA for every nonterminal, we have to store
a set SKA of skeleton trees. The crucial point is that by Lemma 8 the number
of different skeleton trees of rank n is bounded exponentially in n. Hence,
also the size of the set SKA is bounded exponentially. For the inductive step
in case 2 of the construction of skA, we have to combine all trees from SKB

with all trees from SKC ; this yields a set of trees S (instead of the single tree s
from (3)). For each tree from S we have to apply contract operations as long
as possible in order to obtain SKA. The formal details are straightforward
and left to the reader. �

One might also think about extending Theorem 10 to non-linear SLCF tree
grammars. But results from [11] make such an extension quite unlikely: it is
PSPACE-complete to check whether a deterministic bottom-up tree automa-
ton accepts val(G), where G is a given (non-linear) SLCF tree grammar. If
we restrict this problem by requiring G to be k-bounded for a fixed constant
k, then it becomes P-complete. Here is an explicit example showing that
Theorem 10 cannot be extended to non-linear SLCF tree grammars.

8.2. Non-Linearity

Example 21. For n ≥ 1, let the symbol fn be of rank n, let g have rank 2,
and let 0 and 1 have rank 0. Define the productive (but non-linear) SLCF
tree grammar Gn with the following productions, where Ai is a nonterminal
of rank i (1 ≤ i ≤ n):

S → g(A1(0), A1(1))

Ai(y1, . . . , yi) → g(Ai+1(y1, . . . , yi, 0), Ai+1(y1, . . . , yi, 1)) for 1 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn)

34

Then val(Gn) results from a complete binary g-tree of height n by replacing
the k-th leaf (0 ≤ k ≤ 2n − 1) by the tree fn(b1, . . . , bn), where b1b2 · · · bn is
the binary representation of k. The size of Gn is O(n2).

Lemma 22. Let n ≥ 1, k < n, and let G be a k-bounded SLCF tree gram-
mar such that val(G) = val(Gn), where Gn is the SLCF tree grammar of
Example 21. Then |G| ≥ 2n−k.

Proof. Let Tn be the set of all occurrences of subterms of the form fn(t1, . . . , tn)
that occur in right-hand sides of G. We claim that |Tn| ≥ 2n−k. Consider a
term fn(t1, . . . , tn) ∈ Tn. Since G is k-bounded, at most k parameters can
occur among the terms t1, . . . , tn. During the derivation, each of these pa-
rameters may be either substituted by the constant 0 or 1. Hence, from each
fn(t1, . . . , tn) ∈ Tn, we can obtain during the derivation at most 2k different
trees of the form f(b1, . . . , bn) with b1, . . . , bn ∈ {0, 1}. Since val(Gn) contains
2n such subtrees, we get |Tn| ≥ 2n−k. �

Clearly, Lemma 22 implies that without an exponential blow-up, we cannot
reduce the number of parameters in any non-linear SLCF tree grammar to
a constant. But we cannot even reduce the number of parameters from n
to ε · n (where ε < 1 is a constant) without an exponential blowup. For
arbitrary context-free tree grammars with OI derivation order it is proved in
Theorem 6.5 of [41] that the number of parameters gives rise to a hierarchy
that is proper at each step (even for the string yield languages).

8.3. Recursion

For arbitrary linear context-free tree grammars (thus, with recursion and
nondeterminism), the number of parameters gives rise to a hierarchy of lan-
guages which is strict at each level. In fact, the family of languages that
can be used to prove the strictness of this hierarchy is similar to the one of
Example 18.

Example 23. For n ≥ 1, let fn be a symbol of rank n and A be a nonterminal
of rank n. Define the linear and productive context-free tree grammar Gn with
the productions

S → A(a, . . . , a)
A(y1, . . . , yn) → A(f(y1), . . . , f(yn))
A(y1, . . . , yn) → fn(y1, . . . , yn).

35

Then L′
n = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a monadic tree

of the form fm(a) for some m ≥ 0.

The proof of the following lemma is similar to the one of Lemma 19.

Lemma 24. Let n ≥ 1 and k < n. The set L′
n from Example 23 cannot be

generated by a linear, non-deleting, and k-bounded context-free tree grammar.

Proof. Assume there is a linear, non-deleting, and k-bounded context-free
tree grammar G such that k < n and L(G) = L′

n. W.l.o.g. we can assume
that every nonterminal of G appears in a successful derivation of G. Let
P (fn) be the set of all productions of the form A → t, where t contains a
subtree of the form fn(t1, . . . , tn). Since G is non-deleting, every right-hand
side of a production from P (fn) contains a unique such subtree. Moreover, in
every successful derivation of G, a production from P (fn) has to be applied
exactly once.

Consider a production (A→ t) ∈ P (fn) and consider the unique subtree
in t of the form fn(t1, . . . , tn). Since rank(A) ≤ k < n and G is linear, there
exists an i ∈ {1, . . . , n} such that ti does not contain a parameter, i.e., ti ∈
T (F ∪ N). Assume that two different terminal trees can be derived from ti.
Then we can derive with G a tree, where the root has two different subtrees,
a contradiction. Hence, from ti we can generate exactly one tree that we
denote with τ [A → t]. Thus, for every successful derivation S ⇒∗

G s, where
the production (A → t) ∈ P (fn) is applied, we must have s = fn(τ [A →
t], . . . , τ [A → t]). Hence L(G) = {fn(τ [A → t], . . . , τ [A → t]) | (A → t) ∈
P (fn)} is finite, a contradiction. �

Let us emphasize that it is crucial for Lemma 19 and 24 that the arity of the
root symbol fn (which is n) is greater than k.

9. Future Work

It will be interesting to investigate the practical implications of our re-
sults. For instance, in [17], tree automata over linear SLCF grammars are
used for efficient XPath execution. Is it possible to improve running times
by first transforming the grammars into monadic grammars? A similar ques-
tion can be raised concerning other problems such as equivalence checking or
unification over SLCF grammars. The last two problems have recently been
implemented [18].

36

As mentioned in the Introduction, tree automata with equality and dis-
equality constraints between sibling nodes (NTACs) have recently been gen-
eralized [25]. Other even more powerful recent models are tree automata
with arbitrary disequality and restricted equality constraints [42] and tree
automata with global constraints [43, 44]. Can we extend our results and
give polynomial time algorithms for evaluating such automata over linear
SLCF grammars? Another missing point is to determine precise polynomi-
als for Theorems 13 and 15. Moreover, can we prove any lower bounds on
automata evaluation over SLCF grammars? An interesting problem is to
study restrictions of non-linear and nondeterministic grammars which still
allow a polynomial time transformation into monadic (or into k-bounded for
a constant k) SLCF grammars.

Acknowledgments The first author is supported by the DFG research
project Algorithms on compressed data (ALKODA). We would like to thank
Christian Mathissen for pointing out a mistake in a previous version of the
contract-2 operation.

References

[1] W. Rytter, Grammar compression, LZ-encodings, and string algorithms
with implicit input, in: 31st Internat. Colloquium on Automata, Lan-
guages and Programming, ICALP’04, volume 3142 of Lecture Notes in
Comput. Sci., Springer, Berlin, 2004, pp. 15–27.

[2] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sa-
hai, A. Shelat, The smallest grammar problem., IEEE Transactions on
Information Theory 51 (2005) 2554–2576.

[3] R. Carrascosa, F. Coste, M. Gallé, G. G. I. López, Choosing word occur-
rences for the smallest grammar problem, in: 4th Internat. Conference
on Language and Automata Theory and Applications, LATA’10, vol-
ume 6031 of Lecture Notes in Comput. Sci., Springer, Berlin, 2010, pp.
154–165.

[4] M. Karpinski, W. Rytter, A. Shinohara, An efficient pattern-matching
algorithm for strings with short descriptions, Nord. J. Comput. 4 (1997)
172–186.

37

[5] M. Miyazaki, A. Shinohara, M. Takeda, An improved pattern matching
algorithm for strings in terms of straight-line programs, J. of Discrete
Algorithms 1 (2000) 187–204.

[6] W. Rytter, Compressed and fully compressed pattern-matching in one
and two dimensions, Proceedings of IEEE 88 (2000) 1769–1778.

[7] W. Plandowski, Testing equivalence of morphisms on context-free lan-
guages, in: Second European Symposium on Algorithms, ESA’94, vol-
ume 855 of Lecture Notes in Comput. Sci., Springer, Berlin, 1994, pp.
460–470.

[8] Y. Lifshits, Processing compressed texts: A tractability border, in:
18th Annual Symposium on Combinatorial Pattern Matching, CPM’07,
volume 4580 of Lecture Notes in Comput. Sci., Springer, Berlin, 2007,
pp. 228–240.

[9] M. Schmidt-Schauß, G. Schnitger, Fast equality test for straight-line
compressed strings, Frank report 45, Institut für Informatik. Fachbereich
Informatik und Mathematik. J. W. Goethe-Universität Frankfurt am
Main, 2011.

[10] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of
XML document trees, Inf. Syst. 33 (2008) 456–474.

[11] M. Lohrey, S. Maneth, The complexity of tree automata and XPath on
grammar-compressed trees, Theor. Comput. Sci. 363 (2006) 196–210.

[12] J. Lamping, An algorithm for optimal lambda calculus reductions,
in: 17th Annual ACM Symposium on Principles of Programming Lan-
guages, POPL’90, ACM Press, 1990, pp. 16–30.

[13] M. Lohrey, S. Maneth, R. Mennicke, Tree structure compression with
repair, in: Data Compression Conference, DCC 2011, IEEE Computer
Society, 2011, pp. 353–362.

[14] P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML, in:
29th Internat. Conference on Very Large Data Bases, VLDB’03, Morgan
Kaufmann, 2003, pp. 141–152.

38

[15] M. Schmidt-Schauß, Polynomial Equality Testing for Terms with Shared
Substructures, Frank report 21, Institut für Informatik. Fachbereich
Informatik und Mathematik. J. W. Goethe-Universität Frankfurt am
Main, 2005.

[16] D. K. Fisher, S. Maneth, Structural selectivity estimation for XML doc-
uments, in: 23rd Internat. Conference on Data Engineering, ICDE’07,
IEEE Computer Society Press, 2007, pp. 626–635.

[17] S. Maneth, T. Sebastian, Fast and tiny structural self-indexes for XML,
CoRR abs/1012.5696 (2010).

[18] A. Gascón, S. Maneth, L. Ramos, First-order unification on compressed
terms, in: 22nd Internat. Conference on Rewriting Techniques and Ap-
plications, RTA 2011, volume 10 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011, pp. 51–60.

[19] A. Gascón, G. Godoy, M. Schmidt-Schauß, Unification and matching
on compressed terms, ACM Trans. Comput. Log. 12 (2011). Electronic,
26 pages.

[20] A. Gascón, G. Godoy, M. Schmidt-Schauß, Unification with singleton
tree grammars, in: 20th Internat. Conference on Rewriting Techniques
and Applications, RTA’09, volume 5595 of Lecture Notes in Comput.
Sci., Springer, Berlin, 2009, pp. 365–379.

[21] A. Gascón, G. Godoy, M. Schmidt-Schauß, Context matching for com-
pressed terms, in: 23rd Annual IEEE Symposium on Logic in Computer
Science, LICS’08, IEEE Computer Society, 2008, pp. 93–102.

[22] J. Levy, M. Schmidt-Schauß, M. Villaret, The complexity of monadic
second-order unification, SIAM J. Comput. 38 (2008) 1113–1140.

[23] B. Bogaert, S. Tison, Equality and disequality constraints on direct
subterms in tree automata, in: 9th Symposion on Theoretical Aspects of
Computer Science, STACS’92, volume 577 of Lecture Notes in Comput.
Sci., Springer, Berlin, 1992, pp. 161–172.

[24] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding,
D. Lugiez, S. Tison, M. Tommasi, Tree automata techniques and ap-
plications, Available at: http://www.grappa.univ-lille3.fr/tata,
2007.

39

[25] H. Comon-Lundh, F. Jacquemard, N. Perrin, Tree automata with mem-
ory, visibility and structural constraints, in: 10th Internat. Confer-
ence on Foundations of Software Science and Computational Structures,
FoSSaCS’07, volume 4423 of Lecture Notes in Comput. Sci., Springer,
Berlin, 2007, pp. 168–182.

[26] M. Bojanczyk, T. Colcombet, Tree-walking automata do not recognize
all regular languages, SIAM J. Comput. 38 (2008) 658–701.

[27] M. Bojanczyk, Tree-walking automata, 2008. Survey presented as tuto-
rial at LATA 2008, available at: http://www.mimuw.edu.pl/∼bojan/

papers/twasurvey.pdf.

[28] M. Samuelides, L. Segoufin, Complexity of pebble tree-walking au-
tomata, in: 16th Internat. Symposium on Fundamentals of Compu-
tation Theory, FCT’07, volume 4639 of Lecture Notes in Comput. Sci.,
Springer, Berlin, 2007, pp. 458–469.

[29] M. Lohrey, S. Maneth, M. Schmidt-Schauß, Parameter reduction in
grammar-compressed trees, in: 12th Internat. Conference on Founda-
tions of Software Science and Computational Structures, FOSSACS’09,
volume 5504 of Lecture Notes in Comput. Sci., Springer, Berlin, 2009,
pp. 212–226.

[30] J. W. Hopcroft, J. D. Ullman, Introduction to automata theory, lan-
guages, and computation, Addison-Wesley, 1979.

[31] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to automata the-
ory, languages, and computation - international edition (2. ed), Addison-
Wesley, 2003.

[32] F. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa
(Eds.), Handbook of Formal Languages, Volume 3, Springer, 1997, pp.
1–68.

[33] B. Courcelle, A representation of trees by languages I, Theoret. Comput.
Sci. 6 (1978) 255–279.

[34] A. V. Aho, J. D. Ullman, Translations on a context-free grammar,
Inform. and Control 19 (1971) 439–475.

40

[35] J. Engelfriet, H. J. Hoogeboom, B. Samwel, XML transformation by
tree-walking transducers with invisible pebbles, in: 26th Symposium on
Principles of Database Systems, PODS’07, ACM Press, 2007, pp. 63–72.

[36] M. Fischer, Grammars with macro-like productions, Ph.D. thesis, Har-
vard University, Massachusetts, 1968.

[37] A. Fujiyoshi, T. Kasai, Spinal-formed context-free tree grammars, The-
ory Comput. Syst. 33 (2000) 59–83.

[38] J. Levy, M. Schmidt-Schauß, M. Villaret, Bounded second-order uni-
fication is NP-complete, in: 17th International Conference on Term
Rewriting and Applications, RTA’06, volume 4098 of Lecture Notes in
Comput. Sci., Springer, Berlin, 2006, pp. 400–414.

[39] J. Levy, M. Schmidt-Schauß, M. Villaret, On the complexity of bounded
second-order unification and stratified context unification, Logic Journal
of the IGPL 19 (2011) 763–789.

[40] M. Saadi, Auswertung von Tree Walking Automaten auf komprimierten
Daten, Master’s thesis, Universität Leipzig, 2009.

[41] J. Engelfriet, G. Rozenberg, G. Slutzki, Tree transducers, L systems,
and two-way machines, J. Comp. Syst. Sci. 20 (1980) 150–202.

[42] G. Godoy, O. Giménez, L. Ramos, C. Àlvarez, The HOM problem is de-
cidable, in: 42nd ACM Symposium on Theory of Computing, STOC’10,
ACM Press, 2010, pp. 485–494.

[43] L. Barguñó, C. Creus, G. Godoy, F. Jacquemard, C. Vacher, The empti-
ness problem for tree automata with global constraints, in: Proc. LICS
2010, IEEE Computer Society Press, 2010, pp. 263–272.

[44] E. Filiot, J.-M. Talbot, S. Tison, Tree automata with global constraints,
Int. J. Found. Comput. Sci. 21 (2010) 571–596.

41

