
Logspace computations in graph groups and
Coxeter groups

Volker Diekert1, Jonathan Kausch1, and Markus Lohrey2

1 FMI, Universität Stuttgart, Germany
2 Insitut für Informatik, Universität Leipzig, Germany

Abstract. Computing normal forms in groups (or monoids) is in general
harder than solving the word problem (equality testing). However, nor-
mal form computation has a much wider range of applications. It is there-
fore interesting to investigate the complexity of computing normal forms
for important classes of groups. We show that shortlex normal forms in
graph groups and in right-angled Coxeter groups can be computed in
logspace. Graph groups are also known as free partially commutative
groups or as right-angled Artin groups in the literature. (Artin groups
can be realized as subgroups of Coxeter groups.) Graph groups arise in
many areas and have a close connection to concurrency theory. The con-
nection is used here. Indeed, for our result we use a representation of
group elements by Mazurkiewicz traces. These are directed acyclic node-
labelled graphs (i.e. pomsets). They form an algebraic model to describe
runs of concurrent systems. Concurrent systems which are deterministic
and co-deterministic can be studied via inverse monoids. As an appli-
cation of our results we show that the word problem for free partially
commutative inverse monoids is in logspace. This result generalizes a
result of Ondrusch and the third author on free inverse monoids.
All Coxeter groups are linear, so the word problem can be solved in
logspace, but it is open (in the non-right-angled case) whether shortlex
normal forms can be computed in logspace, or, less demanding, whether
they can be computed efficiently in parallel. We show that for all Coxeter
groups the set of letters occurring in the shortlex normal form of an
element can be computed in logspace.

1 Introduction

The study of group-theoretic decision problems, like the word problem (Does a
given word equal 1 in the group?), the conjugacy problem (Are two given words
conjugated in the group?), and the isomorphism problem (Do two given group
presentations yield isomorphic groups?), is a classical topic in combinatorial
group theory with a long history dating back to the beginning of the 20th century,
see the survey [25] for more details.1

With the emergence of computational complexity theory, the complexity of
these decision problems in various classes of groups has developed into an active
1 All groups in this paper are assumed to be finitely generated.

research area, where algebraic methods as well as computer science techniques
complement one another in a fruitful way.

In this paper we are interested in group-theoretic problems which can be
solved efficiently in parallel (hence below P). More precisely, we are interested
in deterministic logspace, called simply logspace in the following. A fundamental
result in this context (which is crucial in this paper, too) was shown in [22, 30]:
The word problem of finitely generated linear groups belongs to logspace. (In
[22], Lipton and Zalcstein proved this result for fields of characteristic 0, only.)
The class of groups with a word problem in logspace is further investigated in
[32]. Another important result is Cai’s NC2 algorithm for the word problem of a
hyperbolic group [6]. In [23] this result was improved to LOGCFL.

Often, it is not enough to solve the word problem, but one has to compute
a normal form for a given group element. Fix a finite generating set Γ (w.l.o.g.
closed under inverses) for the group G. Then, a geodesic for g ∈ G is a shortest
word over Γ that represents g. By choosing the lexicographical smallest (w.r.t.
a fixed ordering on Γ) word among all geodesics for g, one obtains the short-
lex normal form of g. The problem of computing geodesics and various related
problems were studied in [14, 15, 17, 27, 29]. It turned out that there are groups
with an easy word problem (in logspace), but where simple questions related to
geodesics are computationally hard. For instance, every metabelian group em-
beds (effectively) into a direct product of linear groups; hence its word problem
can be solved in logspace. On the other hand, it is shown in [14], that the question
whether a given element x of the wreath product Z/2Z o (Z× Z) (a metabelian
group) has geodesic length at most n is NP-complete. A corresponding result
was shown in [27] for the free metabelian group of rank 2. Clearly, these results
show that in general one cannot compute shortlex normal forms in metabelian
groups in polynomial time (unless P = NP). On the positive side, for shortlex
automatic groups [18] (i.e., automatic groups, where the underlying regular set of
representatives is the set of shortlex normal forms) shortlex normal forms can be
computed in quadratic time. In [27], it is also noted that geodesics in nilpotent
groups can be computed in polynomial time.

In this paper, we deal with the problem of computing geodesics and shortlex
normal forms in logspace. A function can be computed in logspace, if it can be
computed by a deterministic logspace transducer. The latter is a Turing machine
with three tapes: (i) a read-only input tape, (ii) a read/write work tape of length
O(log n), and (iii) a write-only output tape. The output is written sequentially
from left to right onto the output tape. Every logspace transducer can be trans-
formed into an equivalent deterministic polynomial time algorithm. Still better,
it can be performed by a Boolean circuit of polynomial size and O(log2 n) depth.
Although it is not completely obvious, the class of logspace computable functions
is closed under composition. (See e.g. the textbook [28] for these facts.)

Recently, the class of groups, where geodesics and shortlex normal forms
can be computed in logspace, attracted attention, see [16], where it was noted
among other results that shortlex normal forms in free groups can be computed
in logspace. (Implicitly, this result was also shown in [24].) In this paper, we prove

2

a generalization of this result. Our main result states that shortlex normal forms
can be computed in logspace for graph groups and right-angled Coxeter groups
(Thm. 1). Graph groups are also known as free partially commutative groups
or as right-angled Artin groups. A graph group is defined by a finite undirected
graph (Σ, I) by taking Σ as the set of group generators and adding the defining
relation ab = ba for all edges (a, b) ∈ I. Graph groups received in recent years
a lot of attention in group theory because of their rich subgroup structure [2, 9,
19]. On the algorithmic side, (un)decidability results were obtained for many im-
portant group-theoretic decision problems in graph groups [8, 13]. Right-angled
Coxeter groups arise from graph groups by adding all relations a2 = 1 for a ∈ Σ.
They form an important subclass of Coxeter groups, which are discrete reflec-
tion groups [3]. Every Coxeter group is linear and therefore has a logspace word
problem [3, 10]. Moreover, there is a standard embedding of a graph group into
a right-angled Coxeter group [20]. Hence, also graph groups are linear and have
logspace word problems.

The computation of shortlex normal forms in Coxeter groups can be done in
quadratic time, since Coxeter groups are also known to be shortlex automatic, see
[5, 7]. However, no efficient parallel algorithms are known so far. In order to show
that for right-angled Coxeter groups normal forms can be computed efficiently in
parallel, we prove a stronger result: The computation is possible in logspace. This
is an optimal result in the sense that logspace is the smallest known complexity
class for the word problem in free groups; this in turn is a lower bound for our
problem. We use techniques from the theory of Mazurkiewicz traces [11]. More
precisely, we describe right-angled Coxeter groups by strongly confluent length-
reducing trace rewriting systems. Moreover, using the geometric representation
of right-angled Coxeter groups, we show that the alphabet of symbols that appear
in a geodesic for g can be computed in logspace from g (Cor. 1). This alphabetic
information enables us to compute shortlex normal forms in logspace. Using the
special properties of the above mentioned embedding of graph groups into right-
angled Coxeter groups, we can transfer our result to the former class of groups,
which is the class we were interested in. For general Coxeter groups, we are still
able to compute in logspace the alphabet of symbols that appear in the shortlex
normal form (Thm. 2). The proof of Thm. 2 is more difficult than the proof
of Cor. 1 in the sense that it uses geometry and more facts from [3]. Whether
shortlex normal forms in general Coxeter groups can be computed in logspace
remains open.

Finally, we apply Thm. 1 to free partially commutative inverse monoids.
These monoids arise naturally in the context of deterministic and co-determin-
istic concurrent systems. This includes many real systems, because they can
be viewed as deterministic concurrent systems with undo-operations. In [12]
it was shown that the word problem for a free partially commutative inverse
monoid can be solved in time O(n log(n)). (Decidability of the word problem
is due to Da Costa [31].) Using our logspace algorithm for computing shortlex
normal forms in a graph group, we can show that the word problem for a free
partially commutative inverse monoid can be solved in logspace (Thm. 3). Again,

3

with state-of-the art techniques, this can be viewed as an optimal result. It
also generalizes a corresponding result for free inverse monoids from [24]. Let
us emphasize that in order to obtain Thm. 3 we have to be able to compute
shortlex normal forms in graph groups in logspace; knowing only that the word
problem is in logspace would not have been sufficient for our purposes.

Let us remark that for all our results it is crucial that the group (resp., the
free partially commutative inverse monoids) is fixed and not part of the input.
For instance, it is not clear whether for a given undirected graph (Σ, I) and a
word w over Σ ∪ Σ−1 one can check in logspace whether w = 1 in the graph
group defined by the graph (Σ, I).

2 Notation

All groups and monoids M in this paper are assumed to be finitely generated
and they come with a surjective monoid homomorphism π : Σ∗ →M , where Σ
is a finite set (also called an alphabet) and Σ∗ is the free monoid over Σ. We
assume that there is an involution x 7→ x−1 on M (as for all groups and inverse
monoids)2 and that M = (π(Σ)∪π(Σ)−1)∗. If π : Σ∗ → G is a surjective monoid
homomorphism for a group G, then G becomes a factor group of the free group
F (Σ). Let Σ be a disjoint copy of Σ and Γ = Σ∪Σ. There is a unique extension
of the natural mapping Σ → Σ : a 7→ a such that Γ ∗ becomes a monoid with
involution. (Indeed, we must satisfy a = a and a1 · · · an = an · · · a1.) Hence, we
can lift our homomorphism π to a surjective monoid homomorphism π : Γ ∗ →M
which respects the involution (π(x) = x−1). Elements of Γ (resp. Γ ∗) are called
letters (resp. words). The length of a word w is denoted by |w|. Given a surjective
monoid homomorphism π : Σ∗ → M and a linear order on Γ we can define the
geodesic length and the shortlex normal form for elements in M as follows. For
x ∈ M , the geodesic length ‖x‖ is the length of a shortest word in π−1(x).
The shortlex normal form of x is the lexicographical first word in the finite set{
w ∈ π−1(x)

∣∣ ‖x‖ = |w|
}

.

3 Mazurkiewicz traces and graph groups

More details on Mazurkiewicz traces can be found in [11]. An independence
alphabet is a pair (Σ, I), where Σ is a finite set (or alphabet) and I ⊆ Σ × Σ
is an irreflexive and symmetric relation, called the independence relation. Thus,
(Σ, I) is a finite undirected graph. The complementary relation D = (Σ×Σ)\ I
is called a dependence relation. It is reflexive and symmetric. We extend (Σ, I)
to a graph (Γ, IΓ), where Γ = Σ ∪ Σ with Σ ∩ Σ = ∅, and IΓ is the minimal
independence with I ⊆ IΓ and such that (a, b) ∈ IΓ implies (a, b) ∈ IΓ . The
independence alphabet (Σ, I) defines a free partially commutative monoid (or

2 An involution on a set Γ is a permutation a 7→ a such that a = a. An involution of
a monoid satisfies in addition xy = y x.

4

trace monoid) M(Σ, I) and a free partially commutative group G(Σ, I) by:

M(Σ, I) = Σ∗/ {ab = ba | (a, b) ∈ I} ,
G(Σ, I) = F (Σ)/ {ab = ba | (a, b) ∈ I} .

Free partially commutative groups are also known as right-angled Artin groups
or graph groups. Elements of M(Σ, I) are called (Mazurkiewicz) traces. They
have a unique description as dependence graphs, which are node-labelled acyclic
graphs defined as follows. Let u = a1 · · · an ∈ Σ∗ be a word. The vertex set of
the dependence graph DG(u) is {1, . . . , n} and vertex i is labelled with ai ∈ Σ.
There is an arc from vertex i to j if and only if i < j and (ai, aj) ∈ D. Now, two
words define the same trace in M(Σ, I) if and only if their dependence graphs are
isomorphic. A dependence graph is acyclic, so its transitive closure is a labelled
partial order ≺, which can be uniquely represented by its Hasse diagram. There
is an arc from i to j in the Hasse diagram, if i ≺ j and there does not exist k
with i ≺ k ≺ j.

A trace u ∈ M(Σ, I) is a factor of v ∈ M(Σ, I), if v ∈ M(Σ, I)uM(Σ, I).
The set of letters occurring in a trace u is denoted by α(u). The independence
relation I is extended to traces by letting (u, v) ∈ I, if α(u) × α(v) ⊆ I. We
also write I(a) = {b ∈ Σ | (a, b) ∈ I}. A trace u is called a prime if DG(u) has
exactly one maximal element. Thus, if u is a prime, then we can write u as u = va
in M(Σ, I), where a ∈ Σ and v ∈M(Σ, I) are uniquely defined. Moreover, this
property characterizes primes. A prime prefix of a trace u is a prime trace v such
that u = vx in M(Σ, I) for some trace x. We will use the following simple fact.

Lemma 1. Let (Σ, I) be a fixed independence relation. There is a logspace trans-
ducer that on input u ∈M(Σ, I) outputs a list of all prime prefixes of u.

Proof. The prime prefixes of u correspond to the downward-closed subsets of
the dependence graph DG(u) that have a unique maximal element. Assume that
u = a1a2 · · · an with ai ∈ Σ. Our logspace transducer works in n phases. In the
i-th phase it outputs the sequence of all symbols aj (j ≤ i) such that there exists
a path in DG(u) from j to i. Note that there exists a path from j to i in DG(u)
if and only if there is such a path of length at most |Σ|. Since Σ is fixed, the
existence of such a path can be checked in logspace. ut

We use standard notation from the theory of rewriting systems, cf [4]. Let M =
M(Σ, I). A trace rewriting system is a finite set of rules S ⊆ M ×M . A rule
is often written in the form ` −→ r. The system S defines a one-step rewriting
relation =⇒S ⊆M ×M by x =⇒S y if there exist (`, r) ∈ S and u, v ∈M with
x = u`v and y = urv in M . By ∗=⇒S , we denote the reflexive and transitive
closure of =⇒S . The set IRR(S) denotes the set of traces to which no rule of
S applies. If S is confluent and terminating, then for every u ∈ M there is a
unique û ∈ IRR(S) with u

∗=⇒S û, and IRR(S) is a set of normal forms for the
quotient monoid M/S. If, in addition, S is length-reducing (i.e., |`| > |r| for all
(`, r) ∈ S), then ‖π(u)‖ = |û| for the canonical homomorphism π : M →M/S.

5

Example 1. The system SG = {aa −→ 1 | a ∈ Γ} is (strongly) confluent and
length-reducing over M(Γ, IΓ) [11]. The quotient monoid M(Γ, IΓ)/SG is the
graph group G(Σ, I).

By Ex. 1 elements in graph groups have a unique description as dependence
graphs, too. A trace belongs to IRR(SG) if and only if it does not contain a factor
aa for a ∈ Γ . In the dependence graph, this means that the Hasse diagram does
not contain any arc from a vertex labeled a to a vertex labeled a with a ∈ Γ .
Moreover, a word u ∈ Γ ∗ represents a trace from IRR(SG) if and only if u does
not contain a factor of the form ava with a ∈ Γ and α(v) ⊆ I(a).

4 Right-angled Coxeter groups

The right-angled Coxeter group C(Σ, I) is generated by the finite alphabet Σ
and has the defining relations a2 = 1 for a ∈ Σ and (ab)2 = 1 (i.e. ab = ba)
for (a, b) ∈ I. Similarly to the graph group G(Σ, I), the right-angled Coxeter
group C(Σ, I) can be defined by a (strongly) confluent and length-reducing trace
rewriting system (this time on M(Σ, I) instead of M(Γ, IΓ)). Let

SC = {a2 → 1 | a ∈ Σ}.

Then SC is indeed (strongly) confluent and length-reducing on M(Σ, I) and the
quotient M(Σ, I)/SC is C(Σ, I). Hence we have two closely related (strongly)
confluent and length-reducing trace rewriting systems: SG defines the graph
group G(Σ, I) and SC defines the right-angled Coxeter group C(Σ, I). Both
systems define unique normal forms of geodesic length: û ∈M(Γ, IΓ) for SG and
û ∈ M(Σ, I) for SC . Note that there are no explicit commutation rules as they
are built-in in trace theory. There is a linear time algorithm for computing û;
see [11] for a more general result of this type.

It is well known that a graph group G(Σ, I) can be embedded into a right-
angled Coxeter group [20]. For this, one has to duplicate each letter from Σ. For-
mally, we can take the right-angled Coxeter group C(Γ, IΓ) (in which a does not
denote the inverse of a). Consider the mapping ϕ(a) = aa from Γ to Γ ∗. Obvi-
ously, ϕ induces a homomorphism from G(Σ, I) to the Coxeter group C(Γ, IΓ).
As IRR(SG) ⊆ M(Γ, IΓ) is mapped to IRR(SC) ⊆ M(Γ, IΓ), we recover the
well-known fact that ϕ is injective. Actually we see more. Assume that ŵ is
the shortlex normal form of some ϕ(g). Then replacing in ŵ factors aa with a
and replacing factors aa with a yields a logspace reduction of the problem of
computing shortlex normal forms in graph groups to the problem of computing
shortlex normal forms in right-angled Coxeter groups. Thus, for our purposes it
is enough to calculate shortlex normal forms for right-angled Coxeter groups of
type C(Σ, I). For the latter, it suffices to compute in logspace on input u ∈ Σ∗
some trace (or word) v such that u = v in C(Σ, I) and |v| = ‖u‖. Then, the
shortlex normal form for u is the lexicographic normal form of the trace v, which
can be easily computed in logspace from u.

6

A trace in M(Σ, I) is called a Coxeter-trace , if it does not have any factor a2

where a ∈ Σ. It follows that every element in C(Σ, I) has a unique representation
as a Coxeter-trace. Let a ∈ Σ. A trace u is called a-short, if during the derivation
u
∗=⇒SC

û ∈ IRR(SC) the rule a2 −→ 1 is not applied. Thus, u is a-short if and
only if the number of occurrences of the letter a is the same in the trace u
and its Coxeter-trace û. We are interested in the set of letters which survive
the reduction process. By α̂(u) = α(û) we denote the alphabet of the unique
Coxeter-trace û with u = û in C(Σ, I). Here is a crucial observation:

Lemma 2. A trace u is a-short if and only if u has no factor ava such that
α̂(v) ⊆ I(a).

Proof. If u contains a factor ava such that α̂(v) ⊆ I(a), then u is clearly not
a-short. We prove the other direction by induction on the length of u. Write u =
a1 · · · an with ai ∈ Σ. We identify u with its dependence graph DG(u) which has
vertex set {1, . . . , n}. Assume that u is not a-short. Then, during the derivation
u
∗=⇒SC

û, for a first time a vertex i with label ai = a is canceled with vertex j
with label aj = a and i < j. It is enough to show that α̂(ai+1 · · · aj−1) ⊆ I(a).
If the cancellation of i and j happens in the first step of the rewriting process,
then we are done: α(ai+1 · · · aj−1) ⊆ I(a). So, let the first step cancel vertices
k and ` with labels ak = a` = b and k < `. Clearly, {i, j} ∩ {k, `} = ∅. The
set α̂(ai+1 · · · aj−1) can change, only if either i < k < j < ` or k < i < ` < j.
However in both cases we must have (b, a) ∈ I, and we are done by induction. ut

The standard geometric representation σ : C(Σ, I)→ GL(n,Z) (where n = |Σ|)
is defined as follows (see [3]), where we write σa for the mapping σ(a):

σa(a) = −a, σa(b) = b if (a, b) ∈ I, σa(b) = b+ 2a if (a, b) ∈ D and a 6= b.

In this definition, a, b are letters. We identify Zn = ZΣ and vectors from Zn are
written as formal sums

∑
b λbb. One can easily verify that σab(c) = σba(c) for

(a, b) ∈ I and σaa(b) = b. Thus, σ defines indeed a homomorphism from C(Σ, I)
to GL(n,Z) (as well as homomorphisms from Σ∗ and from M(Σ, I) to GL(n,Z)).
Note that if w = uv is a trace and (b, v) ∈ I for a symbol b, then σw(b) = σu(b).
The following proposition is fundamental for understanding how the internal
structure of w is reflected by letting σw act on letters (called simple roots in the
literature). For lack of a reference for this variant (of a well-known general fact)
and since the proof is rather easy in the right-angled case (in contrast to the
general case), we give a proof. Our proof is purely combinatorial.

Proposition 1. Let wd be a Coxeter-trace, σw(d) =
∑
b λbb and wd = udv

where ud is prime and (d, v) ∈ I. Then it holds:

(1) λb 6= 0 ⇐⇒ b ∈ α(ud). Moreover, λb > 0 for all b ∈ α(ud).
(2) Let b, c ∈ α(ud), b 6= c, and assume that the first b in DG(ud) appears before

the first c in DG(ud). Then we have λb > λc > 0.

7

Proof. We prove both statements of the lemma by induction on |u|. For |u| = 0
both statements are clear. Hence, let u = au′ and σu′(d) =

∑
b µbb. Thus,

σu(d) =
∑
b

λbb = σa(
∑
b

µbb) =
∑
b

µbσa(b).

Note that µb = λb for all b 6= a. Hence, by induction λb = 0 for all b /∈ α(ud)
and λb > 0 for all b ∈ α(ud) \ {a}.

Let us now prove (2) for the trace u (it implies λa > 0 and hence (1)).
Consider b, c ∈ α(ud), b 6= c, such that the first b in DG(ud) appears before the
first c in DG(ud). Clearly, this implies c 6= a. For b 6= a we obtain that the first
b in DG(u′d) appears before the first c in DG(u′d). Hence, by induction we get
µb > µc > 0. Claim (2) follows since b 6= a 6= c implies µb = λb and µc = λc.

Thus, let a = b. As there is path from the first a to every c in DG(ud) we may
replace c by the first letter we meet on such a path. Hence we may assume that
a and c are dependent. Note that a 6= c because u is a Coxeter-trace. Hence,
λc = µc > 0 and it is enough to show λa > µc. But λa ≥ 2µc − µa by the
definition of σa. If µa = 0, then λa ≥ 2µc, which implies λa > µc, since µc > 0.
Thus, we may assume µa > 0. By induction, we get a ∈ α(u′d). Here comes the
crucial point: the first c in DG(u′d) must appear before the first a in u′d. Thus,
µc > µa by induction, which finally implies λa ≥ 2µc−µa = µc+(µc−µa) > µc.

ut

Corollary 1. Let C(Σ, I) be a fixed right-angled Coxeter group. Then on input
w ∈ Σ∗ we can calculate in logspace the alphabet α̂(w) of the corresponding
Coxeter-trace ŵ.

Proof. Introduce a new letter x which depends on all other letters from Σ. We
have σw(x) = σ bw(x) =

∑
b λbb. As ŵx is a Coxeter-trace and prime, we have

for all b ∈ Σ: b ∈ α̂(w) ⇐⇒ b ∈ α(ŵx) ⇐⇒ λb 6= 0, where the last equivalence
follows from Prop. 1. Whether λb 6= 0 can be checked in logspace, by computing
λb mod m for all numbers m ≤ |w|, since the least common multiple of the first n
numbers is larger than 2n (if n ≥ 7) and the λb are integers with |λb| ≤ 2|w|. See
also [22] for an analogous statement in the general context of linear groups. ut

The hypothesis in Cor. 1 of being right-angled will be removed in Thm. 2. It
remains open whether this hypothesis can be removed in the following theorem.

Theorem 1. Let G be a fixed graph group or a fixed right-angled Coxeter group.
Then we can calculate in logspace shortlex normal forms in G.

Proof. As remarked earlier, it is enough to consider a right-angled Coxeter group
G = C(Σ, I). Fix a letter a ∈ Σ. We first construct a logspace transducer, which
computes for an input trace w ∈M(Σ, I) a trace u ∈M(Σ, I) with the following
properties: (i) u = w in C(Σ, I), (ii) u is a-short, and (iii) for all b ∈ Σ, if w
is b-short, then also u is b-short. Having such a logspace transducer for every
a ∈ Σ, we can compose all of them in an arbitrary order (note that |Σ| is
a constant) to obtain a logspace transducer which computes for a given input

8

trace w ∈ M(Σ, I) a trace u such that w = u in C(Σ, I) and u is a-short for
all a ∈ Σ, i.e., u ∈ IRR(SC). Thus u = ŵ. From u we can compute easily in
logspace the Hasse diagram of DG(u) and then the shortlex normal form.

So, let us fix a letter a ∈ Σ and an input trace w = a1 · · · an, where
a1, . . . , an ∈ Σ. We remove from left to right positions (or vertices) labeled
by the letter a which cancel and which therefore do not appear in ŵ. We read
a1 · · · an from left to right. In the i-th stage do the following: If ai 6= a output
the letter ai and switch to the (i+ 1)-st stage. If however ai = a, then compute
in logspace (using Cor. 1) the maximal index j > i (if it exists) such that aj = a
and α̂(ai+1 · · · aj−1) ⊆ I(a). If no such index j exists, then append the letter ai
to the output tape and switch to the (i + 1)-st stage. If j exists, then append
the word ai+1 · · · aj−1 to the output tape, but omit all a’s. After that switch
immediately to stage j + 1. Let wi−1 be the content of the output tape at the
beginning of stage i (hence, w0 = 1). The invariant of the algorithm is that
(i) wi−1 = a1 · · · ai−1 in C(Σ, I), (ii) wi−1 is a-short, and (iii) if a1 · · · ai−1 is
b-short, then also wi−1 is b-short. The proof of this fact uses Lem. 2. ut

5 Arbitrary Coxeter groups

In this section G denotes a fixed (not necessarily right-angled) Coxeter group,
which is given by a generating set Σ = {a1, . . . , an} of n generators and a
symmetric n × n matrix M = (mi,j)1≤i,j≤n over (N \ {0}) ∪ {∞} such that
mi,j = 1 ⇐⇒ i = j. The defining relations are (aiaj)mi,j = 1 for 1 ≤ i, j ≤ n
with mi,j <∞. In particular, a2

i = 1 for 1 ≤ i ≤ n. One can show that if u and v
are geodesics with u = v in G then α(u) = α(v) [3, Cor. 1.4.8] (Recall that α(x)
denotes the alphabet of the word x). We will show how to compute this alphabet
in logspace. We fix the standard geometric representation σ : G → GL(n,R)
(where we write again σw for the mapping σ(w)), see e.g. [3, Sect. 4.2]:

σai
(aj) = aj + 2 cos(π/mi,j) · ai

Let RΣ be the n dimensional real vector space where the letter ai is identified
with the i-th unit vector. Thus, vectors can be written as formal sums

∑
b∈Σ λbb

with real coefficients λb. We write
∑
b∈Σ λbb ≥ 0 if λb ≥ 0 for all b ∈ Σ. The

following lemma can be found in [3, Prop. 4.2.5]:

Lemma 3. Let w ∈ G, a ∈ Σ. We have σw(a) ≥ 0 if and only if ‖wa‖ > ‖w‖.

As in the proof of Cor. 1 introduce a new letter x with x2 = 1, but no other new
defining relation. This yields a Coxeter group G′ = G ∗ (Z/2Z) ≥ G generated
by Σ′ = Σ ∪ {x}. Thus, ax is of infinite order in G′ for all a ∈ Σ. Clearly,
‖wx‖ > ‖w‖ for all w ∈ G. Hence, σw(x) ≥ 0 for all w ∈ G by Lem. 3.

Lemma 4. Let w ∈ G and σw(x) =
∑
b∈Σ′ λbb. Then for all b ∈ Σ we have

λb 6= 0 if and only if the letter b appears in the shortlex normal form of w.

9

Proof. We may assume that w is a geodesic in G. We prove the result by induc-
tion on ‖w‖ = |w|. If w = 1, then the assertion is trivial. If b ∈ Σ does not occur
as a letter in w, then it is clear that λb = 0. Thus, we may assume that b ∈ α(w)
and we have to show that λb 6= 0. By induction, we may write w = ua with
‖uax‖ > ‖ua‖ > ‖u‖. We have σw(x) = σuσa(x) = σu(x+2a) = σu(x)+2σu(a).
The standard geometric representation yields moreover σw(x) = x+

∑
c∈Σ λcc,

where λc ≥ 0 for all c ∈ Σ by Lem. 3. As ‖ua‖ > ‖u‖ we get σu(a) ≥ 0 by
Lem. 3. Moreover, by induction (and the fact ‖ux‖ > ‖u‖), we know that for all
letters c ∈ α(u) the corresponding coefficient in σu(x) is strictly positive. Thus,
we are done if b ∈ α(u). So, the remaining case is that b = a 6∈ α(u). However,
in this case σu(a) = a+

∑
c∈Σ\{a} µcc. Hence λa ≥ 2. ut

Theorem 2. There is a logspace transducer which on input w ∈ Σ∗ computes
the set of letters occurring in the shortlex normal form of w.

Proof. Using the technique from [22] and Lem. 4, we can carry out all computa-
tions in the polynomial ring Z[X] [22]. In order to check that entries are not zero
it suffices to check it mod m with respect to all m up to a polynomial threshold.
Due to space limitations, details are skipped. ut

6 Free partially commutative inverse monoids

A monoid M is inverse, if for every x ∈M there is x ∈M with

xxx = x, xxx = x, and xx yy = yy xx. (1)

The element x is uniquely defined by these properties and it is called the inverse
of x. Thus, we may also use the notation x = x−1. It is easy to see that every
idempotent element in an inverse monoid has the form xx−1, and all these ele-
ments are idempotent. Using equations (1) for all x, y ∈ Γ ∗ as defining relations
we obtain the free inverse monoid FIM(Σ) which has been widely studied in the
literature. More details on inverse monoids can be found in [21].

An inverse monoid over an independence alphabet (Σ, I) is an inverse monoid
M together with a mapping ϕ : Σ → M such that ϕ(a)ϕ(b) = ϕ(b)ϕ(a) and
ϕ(a)ϕ(b) = ϕ(b)ϕ(a) for all (a, b) ∈ I. We define the free partially commutative
inverse monoid over (Σ, I) as the quotient monoid

FIM(Σ, I) = FIM(Σ)/{ab = ba, ab = ba | (a, b) ∈ I}.

It is an inverse monoid over (Σ, I). Da Costa has studied FIM(Σ, I) in his
PhD thesis [31]. He proved that FIM(Σ, I) has a decidable word problem, but
he did not show any complexity bound. The first upper complexity bound for the
word problem is due to [12], where it was shown to be solvable in timeO(n log(n))
on a RAM. The aim of this section is to show that the space complexity of the
word problem of FIM(Σ, I) is very low, too.

Theorem 3. The word problem of FIM(Σ, I) can be solved in logspace.

10

Proof. For a word u = a1 · · · an (a1, . . . , an ∈ Γ) let ui ∈ M(Γ, IΓ) (1 ≤ i ≤ n)
be the trace represented by the prefix a1 · · · ai and define

M(u) = {p | ∃1 ≤ i ≤ n : p is a prime prefix of ûi} ⊆M(Γ, IΓ). (2)

(This set is a partial commutative analogue of the classical notion of Munn tree
introduced in [26].) It is shown in [12, Sect. 3] that for all words u, v ∈ Γ ∗,
u = v in FIM(Σ, I) if and only if (i) u = v in the graph group G(Σ, I) and (ii)
M(u) = M(v). Since G(Σ, I) is linear, condition (i) can be checked in logspace
[22, 30]. For (ii), it suffices to show that the set M(u) from (2) can be computed
in logspace from the word u (then M(u) = M(v) can be checked in logspace,
since the word problem for the trace monoid M(Γ, IΓ) belongs to uniform TC0

[1] and hence to logspace). By Thm. 1 we can compute in logspace a list of all
normal forms ûi (1 ≤ i ≤ n), where ui is the prefix of u of length i. By composing
this logspace transducer with a logspace transducer for computing prime prefixes
(see Lem. 1), we obtain a logspace transducer for computing the set M(u). ut

7 Concluding remarks and open problems

We have shown that shortlex normal forms can be computed in logspace for
graph groups and right-angled Coxeter groups. For general Coxeter groups, we
are only able to compute the set of letters appearing in the shortlex normal
form in logspace. An obvious open problem is, whether for every Coxeter group
shortlex normal forms can be computed in logspace. We are tempted to believe
that this is indeed the case. A more general question is, whether shortlex normal
forms can be computed in logspace for automatic groups. Here, we are more
sceptical. It is not known whether the word problem of an arbitrary automatic
group can be solved in logspace. In [23], an automatic monoid with a P-complete
word problem was constructed. In fact, it is even open, whether the word problem
for a hyperbolic group belongs to logspace. The best current upper bound is
LOGCFL [23]. So, one might first try to lower this bound e.g. to LOGDCFL.
M. Kapovich pointed out that there are non-linear hyperbolic groups. Hence the
results of [22, 30] (linear groups have logspace word problems) do not help here.

References

1. C. Àlvarez and J. Gabarró. The parallel complexity of two problems on concur-
rency. Inform. Process. Lett., 38:61–70, 1991.

2. M. Bestvina and N. Brady. Morse theory and finiteness properties of groups.
Invent. Math., 129:445–470, 1997.

3. A. Björner and F. Brenti. Combinatorics of Coxeter groups. Springer, 2005.
4. R. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.
5. B. Brink and R. B. Howlett. A finiteness property and an automatic structure for

Coxeter groups. Math. Ann., 296:179–190, 1993.
6. J.-Y. Cai. Parallel computation over hyperbolic groups. In Proceedings STOC’92,

106–115. ACM Press, 1992.

11

7. W. A. Casselman. Automata to perform basic calculations in Coxeter groups.
C.M.S. Conference Proceedings, 16, 1994.

8. J. Crisp, E. Godelle, and B. Wiest. The conjugacy problem in right-angled Artin
groups and their subgroups. J. Topol., 2(3), 2009.

9. J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-
angled artin groups and braid groups. Algebr. Geom. Topol., 4:439–472, 2004.

10. M. W. Davis. The geometry and topology of Coxeter groups, volume 32 of London
Mathematical Society Monographs Series. Princeton University Press, 2008.

11. V. Diekert. Combinatorics on Traces. LNCS 454. Springer, 1990.
12. V. Diekert, M. Lohrey, and A. Miller. Partially commutative inverse monoids.

Semigroup Forum, 77:196–226, 2008.
13. V. Diekert and A. Muscholl. Solvability of equations in free partially commutative

groups is decidable. Internat. J. Algebra Comput., 16:1047–1070, 2006. Journal
version of ICALP 2001, 543–554, LNCS 2076.

14. C. Droms, J. Lewin, and H. Servatius. The length of elements in free solvable
groups. Proc. Amer. Math. Soc., 119:27–33, 1993.

15. M. Elder. A linear-time algorithm to compute geodesics in solvable Baumslag-
solitar groups. Illinois J. Math., 54:109–128, 2010.

16. M. Elder, G. Elston, and G. Ostheimer. On groups that have normal forms com-
putable in logspace. AMS Sectional Meeting, Las Vegas, May 2011. Paper in
preparation.

17. M. Elder and A. Rechnitzer. Some geodesic problems in groups. Groups. Com-
plexity. Cryptology, 2:223–229, 2010.

18. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and
W. P. Thurston. Word Processing in Groups. Jones and Bartlett, Boston, 1992.

19. R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Adv.
in Appl. Math., 38:302–323, 2007.

20. T. Hsu and D. T. Wise. On linear and residual properties of graph products.
Michigan Mathematical Journal, 46(2):251–259, 1999.

21. M. V. Lawson. Inverse Semigroups: The Theory of Partial Symmetries. World
Scientific, 1999.

22. R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. J. Assoc.
Comput. Mach., 24:522–526, 1977.

23. M. Lohrey. Decidability and complexity in automatic monoids. Internat. J. Found.
Comput. Sci., 16:707–722, 2005.

24. M. Lohrey and N. Ondrusch. Inverse monoids: Decidability and complexity of
algebraic questions. Inf. Comput., 205:1212–1234, 2007.

25. C. F. Miller III. Decision problems for groups – survey and reflections. In Algo-
rithms and Classification in Combinatorial Group Theory, 1–60. Springer, 1992.

26. W. Munn. Free inverse semigroups. Proc. London Math. Soc., 29:385-404, 1974.
27. A. Myasnikov, V. Roman’kov, A. Ushakov, and A.Vershik. The word and geodesic

problems in free solvable groups. Trans. Amer. Math. Soc., 362:4655–4682, 2010.
28. Ch. Papadimitriou. Computation Complexity. Addison-Wesley, 1994.
29. M. Paterson and A. Razborov. The set of minimal braids is co-NP-complete. J.

Algorithms, 12:393–408, 1991.
30. H.-U. Simon. Word problems for groups and contextfree recognition. In Proceedings

FCT’79, 417–422. Akademie-Verlag, 1979.
31. A. A. Veloso da Costa. Γ -Produtos de Monóides e Semigrupos. PhD thesis, Uni-

versidade do Porto, Faculdade de Ciências, 2003.
32. S. Waack. Tape complexity of word problems. In Proceedings FCT’81, LNCS 117,

467–471. Springer, 1981.

12

