
The Complexity of Decomposing Modal and
First-Order Theories

Stefan Göller, Jean Christoph Jung
Institut für Informatik, Univ. Bremen

Bremen, Germany

Markus Lohrey
Institut für Informatik, Univ. Leipzig

Leipzig, Germany

Abstract—We show that the satisfiability problem for the two-
dimensional extension K ×K of unimodal K is nonelementary,
hereby confirming a conjecture of Marx and Mikulás from
2001. Our lower bound technique allows us to derive further
lower bounds for many-dimensional modal logics for which only
elementary lower bounds were previously known. We also derive
nonelementary lower bounds on the sizes of Feferman-Vaught
decompositions w.r.t. product for any decomposable logic that is
at least as expressive as unimodal K. Finally, we study the sizes
of Feferman-Vaught decompositions and formulas in Gaifman
normal form for fixed-variable fragments of first-order logic.

I. INTRODUCTION

A. Modal Logic and Many-Dimensional Modal Logic

Modal logic [1], [2] originated in philosophy and for a long
time it was known as ’the logic of necessity and possibility’.
Later, it has been discovered that modal logics are well-
suited to talk about relational structures, so called (Kripke)
frames. Relational structures appear in many branches of
computer science, consider for example transition systems in
verification, semantic networks in knowledge representation,
or attribute value structures in linguistics. This has lead to
various applications of modal logic in areas such as computer
science, mathematics, and artificial intelligence.

Depending on the application, a lot of different modal
operators have been introduced in the past, each of them
tailored towards expressing different features of the domain.
For instance there are modalities that talk about time, space,
knowledge, beliefs, etc.

However, it turned out that recent application domains
require to express properties that combine different modalities,
e.g., talk about the evolution of knowledge over time. In
order to reflect these requirements in theory, many-dimensional
modal logics have been studied intensively [7], [8]. A par-
ticular way of combining two logics L1 and L2 is building
their product L1 × L2 [3]. For products, the semantics is
given in terms of structures, whose frames are restricted to
be asynchronous products of the (one-dimensional) component
frames. The interpretation of the atomic propositions is done
in an uninterpreted way, i.e., it is independent from the
component frames.

An important and well-studied problem in this context is
satisfiability checking, i.e., to decide whether a given formula
admits a model. When considering products of modal logics,

it has been shown that the computational complexity of satis-
fiability checking often increases drastically in comparison to
the well-behaved component logics. As an example, consider
the basic modal logic K and its variant K4 for reasoning
over the class of transitive frames. Satisfiability is PSPACE-
complete for both K and K4 [4], while for K × K and
K4×K only elementary upper bounds were known [3]. Even
worse, satisfiability becomes undecidable in K ×K ×K [5]
and K4 ×K4 [6]. To some extent, this can be explained by
the grid-like shape of product structures.

B. Logical Decomposition

Logical decomposition can concisely be summarized as
follows: A logic L admits decomposition w.r.t. some operation
op if all L-properties that are interpreted on composed (with
respect to the operation op) structures, are already determined
by the L-properties of the component structures. Logical
decomposition dates back to the work of Mostowski [10] and
Feferman and Vaught [11], where it is shown that first-order
logic (FO) is decomposable w.r.t. a general product operation,
which covers also disjoint union and product. Later, both for
more expressive logics and for more sophisticated operations
such decomposability results have been proven, see [12] for
an excellent survey.

When proving decomposability for a logic L, one often
obtains an effective procedure for computing such decompo-
sitions: Given a formula ϕ from L evaluated on composed
structures, one can effectively compute (i) a finite set of
formulas {ϕ1, . . . , ϕn}, each being evaluated on some spe-
cific component, and (ii) a propositional formula β, whose
propositions are tests of the form Si ⊧ ϕj , such that for all
composed structures S = op(S1, . . . ,Sk): S ⊧ ϕ if and only
if β evaluates to true. The size of the resulting decomposition
is typically nonelementary in the size of the original formula.
Dawar et al. proved that this is unavoidable if L = FO [9].

Decomposition theorems have powerful implications in
computer science logic. Let us mention only four of them.

Firstly, assume some decomposable logic L: Then decid-
ability of the L-theory of some composed structure, for in-
stance a product structure, can be derived from the decidability
of the L-theories of its component structures.

Secondly, let us mention that model checking a fixed L-
formula (i.e. the data complexity) in a composed structure
is not harder than model checking fixed L-formulas on the

component structures: If the formula is fixed, also the decom-
position is fixed (although possibly large).

Moreover, decompositional methods can be applied for
showing decidability of satisfiability checking: Instead of ask-
ing whether a given formula ϕ is satisfiable in a composed
model, one computes a decomposition for ϕ, translates the
decomposition into disjunctive normal form, and finally checks
satisfiability of a conjunction of formulas in their correspond-
ing components. Rabinovich proved that basic modal logic
K is decomposable w.r.t. interpreted products [13], where
“interpreted” means that the interpretation of the propositions
is inherited from the component structures. It is worth noting
that this, however, does not lead to decidability of K×K w.r.t.
the classical (uninterpreted) products mentioned above. To
the contrary, satisfiability w.r.t. interpreted products is easily
reducible to the uninterpreted version.

Finally, an important application of logical decomposition
à la Feferman and Vaught is the (original) proof of Gaifman’s
locality theorem [14] stating that every first-order sentence
is equivalent to a boolean combination of basic local sen-
tences, where a basic local sentence admits quantification
only relativized to finite neighbourhoods of elements. Gaif-
man’s locality theorem has important applications such as
inexpressibility results for first-order logic. For a further and
more recent application of Gaifman’s locality theorem we
mention algorithmic meta-theorems for first-order logic [15],
stating that first-order properties can be efficiently solved on
numerous classes of structures.

C. Our Contributions and Related Work

As our first main result we show that (even the interpreted
variant of) the satisfiability problem of two-dimensional modal
logic K2 = K × K has nonelementary complexity, hereby
solving a fundamental problem that has been open for more
than 10 years. Gabbay and Shetman proved in 1998 that
satisfiability in K2 is decidable in a tower of exponentials
[3]. To the best of the authors’ knowledge, the best known
lower bound has been NEXP-hardness shown by Marx and
Mikulás in 2001 [16]. In fact, we prove that satisfiability in
K2 restricted to formulas of switching depth k (the minimal
modal rank among the two dimensions) is k-NEXP-complete,
hereby confirming a conjecture of Marx and Mikulás [16]. We
derive nonelementary lower bounds for the two-dimensional
modal logics K4×K and S52×K for which only elementary
lower bounds were known [7].

Our lower bound technique allows us to derive a nonele-
mentary lower bound for the size of Feferman-Vaught decom-
positions w.r.t. product for K. Such a result was already shown
in [17]. However, in contrast to [17], our proof technique
implies that the nonelementary lower bound carries over to
all decomposable logics that are at least as expressive as
K. An instance of such a logic is the two-variable fragment
FO2 of first-order logic. Moreover, we prove that the same
lower bound holds when relativized to the class of finite trees,
answering an open problem formulated in [17].

In the same fashion, for the three-variable fragment FO3

of first-order logic, we can derive the following new results:
(i) the size of Feferman-Vaught decompositions w.r.t. disjoint
sum are inherently nonelementary and (ii) equivalent formulas
in Gaifman normal form are inherently nonelementary. It is
worth mentioning that (i) and (ii) were shown in [9] for full
FO. By inspecting the formulas in [9] it turns out that they
are in fact FO4-formulas. However, it seems to be unclear
whether the construction from [9] can be adapted so that it
yields FO3-formulas.

Finally, we provide effective doubly exponential (and hence
elementary) upper bounds for the two-variable fragment FO2

of first-order logic both for Feferman-Vaught decompositions
and for equivalent formulas in Gaifman normal form. This
supports former observations that in many aspects FO2 is
better behaved than FO3. For instance, in contrast to FO3 it
has a finite model property and satisfiability is decidable [18].
We also prove (non-matching) lower bounds of the form c

√
n

(for any constant c) for both Feferman-Vaught decomposition
and equivalent formulas in Gaifman normal form for FO2.

II. PRELIMINARIES

For i, j ∈ Z let [i, j] be the interval [i, i + 1, . . . , j]. By
N = {0,1, . . .} we denote the non-negative integers. For a set
X we denote by bool(X) the set of boolean formulas with
variables ranging over X . Let u = u1⋯uk ∈ Σ∗ with ui ∈ Σ
for each i ∈ [1, k]. By ∣u∣ = k we denote the length of u.

A. Kripke Frames and Structures

Let us fix a countable set of action labels A and a countable
set of propositional variables P. For a finite set A ⊆ A of action
labels, an A-frame is a tuple F = (W,{ aÐ→∣ a ∈ A}), where W
is set of worlds and

aÐ→ ⊆W ×W is a binary (accessibility)
relation over W for each a ∈ A. An (A,P)-Kripke structure
(or (A,P)-structure for short), for a finite set A ⊆ A of action
labels and a finite set P ⊆ P of propositional variables, is a
tuple S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}), where (W,{ aÐ→∣
a ∈ A}) is an A-frame and Wp ⊆ W is an interpretation for
each propositional variable p ∈ P. By F(S) def= (W,{ aÐ→∣ a ∈
A}) we denote the underlying A-frame of S. By ∣S∣ = ∣W ∣
we denote the size of S. We say that S is finite if W is finite.
For s ∈W let NS(s) def= {u ∈W ∣ ∃a ∈ A ∶ s aÐ→ u} be the set
of direct successors of s in S. A pointed (A,P)-structure is
a pair (S, s) where S is an (A,P)-structure and s is a world
of S. An ({a},P)-structure is also called unimodal. We write
(W, aÐ→,{Wp ∣ p ∈ P}) instead of (W,{ aÐ→},{Wp ∣ p ∈ P}).

B. Multimodal Logic

Formulas of multimodal logic are defined by the following
grammar, where a (resp., p) ranges over A (resp., P):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◇a ϕ

We introduce the usual abbreviations ⊺ = p∨¬p for some p ∈ P,
� = ¬⊺, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), and ◻aϕ = ¬◇a¬ϕ. We say
that ϕ is over (A,P) if the set of action labels (resp. the set
of propositional variables) that appears in ϕ is a subset of A

2

(resp. P). For an (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣
p ∈ P}), w ∈W , and a formula ϕ over (A,P), we define the
satisfaction relation (S,w) ⊧ ϕ by structural induction on ϕ,
where a ∈ A and p ∈ P:

(S,w) ⊧ p def⇔ w ∈Wp

(S,w) ⊧ ¬ϕ def⇔ (S,w) /⊧ ϕ
(S,w) ⊧ ϕ1 ∧ ϕ2

def⇔ (S,w) ⊧ ϕ1 and (S,w) ⊧ ϕ2

(S,w) ⊧◇aϕ
def⇔ ∃w′ ∶ w aÐ→ w′ and (S,w′) ⊧ ϕ

Let ϕ be a multimodal logic formula over (A,P). An (A,P)-
structure S is a model of ϕ if (S,w) ⊧ ϕ for some world w
of S. We say that ϕ is satisfiable if ϕ has a model.

C. Asynchronous Products and Many-Dimensional Modal
Logic

Fix non-empty, finite, and pairwise disjoint sets
A1, . . . ,Ad ⊆ A of action labels and non-empty, finite,
and pairwise disjoint sets P1, . . . ,Pd ⊆ P of propositional
variables. Let A = ⋃i∈[1,d] Ai and P = ⋃i∈[1,d] Pi. For
Ai-frames Fi = (Wi,{

aÐ→i∣ a ∈ Ai}) (i ∈ [1, d]) we define
the asynchronous product ∏i∈[1,d] Fi

def= (W,{ aÐ→∣ a ∈ A})
to be the A-frame, where W = W1 × ⋯ ×Wd and where for
each v = ⟨v1, . . . , vd⟩ ∈ W and w = ⟨w1, . . . ,wd⟩ ∈ W we
have v

aÐ→ w if and only if there is some i ∈ [1, d] such
that a ∈ Ai, vi

aÐ→i wi and vj = wj for each j ∈ [1, d] ∖ {i}.
An (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P})
is an uninterpreted product structure if F(S) = ∏d

i=1 Fi,
where each Fi is some Ai-frame. Thus, we do not make any
restrictions on how atomic propositions are interpreted.

Next, let us define interpretations of atomic propositions
in products, as introduced in [13]. A (product) interpretation
is a mapping σ ∶ P → bool(P). In our lower bound proofs in
Section III, σ will be the identity interpretation id with id(p) =
p for all p ∈ P. Let Si = (Wi,{

aÐ→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi})
be an (Ai,Pi)-structure for i ∈ [1, d]. For an interpretation σ,
their σ-product ∏σ

i∈[1,d] Si is defined as the (A,P)-structure
S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) such that F(S) =
∏i∈[1,d] F(Si) and ⟨w1, . . . ,wd⟩ ∈Wp if and only if α ⊧ σ(p),
where α(q) = 1 if and only if wi ∈Wq,i for each i ∈ [1, d] and
q ∈ Pi. If no interpretation is given, we define ∏i∈[1,d] Si

def=
∏id
i∈[1,d] Si.
Let us generalize multimodal logic to higher dimensions. A

multimodal formula of dimension d ≥ 1 (briefly, a multimodal
Kd-formula) is a formula ϕ over (A = ⋃di=1 Ai,P = ⋃di=1 Pi).
If ∣Ai∣ = 1 for all i ∈ [1, d] then ϕ is a unimodal formula
of dimension d ≥ 1 (briefly, a unimodal Kd-formula). For a
multimodal Kd-formula ϕ and i ∈ [1, d] we define ranki(ϕ)
inductively: ranki(p) = 0 for p ∈ P, ranki(¬ϕ) = ranki(ϕ),
ranki(ϕ1 ∧ ϕ2) = max{ranki(ϕ1), ranki(ϕ2)},
ranki(◇aϕ) = ranki(ϕ) for a ∈ A ∖ Ai, and
ranki(◇aϕ) = ranki(ϕ) + 1 for a ∈ Ai. Finally, we
define the switching depth of ϕ as min{ranki(ϕ) ∣ 1 ≤ i ≤ d}
[16]. An uninterpreted product model of ϕ is an uninterpreted

product structure S (in the above sense) such that for some
world w of S we have (S,w) ⊧ ϕ. For an interpretation σ,
a σ-model is a σ-product structure S such that (S,w) ⊧ ϕ
for some world w of S. We say ϕ is uninterpreted satisfiable
(resp., σ-satisfiable) if ϕ has an uninterpreted (resp., σ-)
product model. Let us introduce the following decision
problems for multimodal (unimodal) Kd:

MULTIMODAL (UNIMODAL) Kd-SAT

INPUT: A multimodal (unimodal) Kd-formula ϕ.
QUESTION: Is ϕ uninterpreted satisfiable?

We introduce the corresponding variant in the presence of
an interpretation σ of the atomic propositions.

MULTIMODAL (UNIMODAL) Kd
σ -SAT

INPUT: A multimodal (unimodal) Kd-formula ϕ and
some interpretation σ.

QUESTION: Is ϕ σ-satisfiable?

Since we mainly deal with the unimodal case in this paper,
we use Kd

σ-SAT as an abbreviation for UNIMODAL Kd
σ-SAT.

The following proposition is not hard to prove, but will be
technically useful in Sections III and IV.

Proposition 1. There is a polynomial time many-one reduction
from (MULTIMODAL) Kd

σ-SAT to (MULTIMODAL) Kd-
SAT, which preserves the switching depth.

D. First-Order Logic

We assume standard definitions concerning first-order logic.
Only relational signatures will be considered. For k ≥ 1, a
formula ϕ is an FOk-formula if at most k different variables
are used in ϕ. Note that a formula, in which every subformula
has at most k free variables is equivalent to an FOk-formula.
The quantifier rank of a formula ϕ is the maximal nesting
depth of quantifiers in ϕ; it is denoted by qr(ϕ).

E. Feferman-Vaught Decompositions

The Feferman-Vaught decomposition theorem for multi-
modal Kd can be formulated as follows, and was proven in
[13].

Theorem 2 ([13]). From an interpretation σ and a multimodal
Kd-formula ϕ over (⋃i∈[1,d] Ai,⋃i∈[1,d] Pi), one can compute
a tuple (Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji} a finite set of
multimodal formulas over (Ai,Pi) and β a positive boolean
formula with variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such
that for every (Ai,Pi)-structure Si and every world wi of Si

(i ∈ [1, d]):

(
σ

∏
i∈[1,d]

Si, ⟨w1, . . . ,wn⟩) ⊧ ϕ ⇔ µ ⊧ β

Here, µ ∶X → {0,1} is defined by µ(xji) = 1 iff (Si,wi) ⊧ ψji .

We call D = (Ψ1, . . . ,Ψd, β) the decomposition of ϕ and
define ∣D∣ = ∣β∣ +∑i,j ∣ψji ∣ to be its size. We note that in the
same way one can define decompositions for the unimodal
variant and for extensions of multimodal logic.

3

We note that Thm. 2 only holds in the presence of an
interpretation σ for the atomic propositions. We also mention
that Thm. 2 has been proven in [13] for much more elaborated
notions of interpretations. However, note that not every logic
admits decomposition: For instance the property EGp meaning
“there is a maximal path (a path is maximal if it is either
infinite or ends in a dead-end) on which every world satisfies
p” is not decomposable, as shown in [13].

An analogous theorem can be stated for first-order sen-
tences, see [12] for a survey. In the following theorem, we
view every p ∈ P = ⋃i∈[1,d] Pi as a unary predicate and every
a ∈ A = ⋃i∈[1,d] Ai as a binary predicate.

Theorem 3 ([11]). From an interpretation σ and an FOk-
sentence ϕ over the signature (A,P) one can compute a tuple
(Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji} a finite set of FOk-
sentences over the signature (Ai,Pi) and β a positive boolean
formula with variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such
that for every (Ai,Pi)-structure Si (i ∈ [1, d]):

σ

∏
i∈[1,d]

Si ⊧ ϕ ⇔ µ ⊧ β.

Here, µ ∶X → {0,1} is defined by µ(xji) = 1 iff Si ⊧ ψji .

III. K2-SAT IS HARD

The goal of this section is to show a nonelementary lower
bound for K2-SAT and thus to close the complexity gap for
this problem. As a necessary preliminary step we show how
to enforce (nonelementary) big models in K2

id. Using this, we
prove via a standard reduction from appropriate tiling prob-
lems that K2

id-SAT is nonelementary. Applying Proposition 1
yields the nonelementary lower bound for K ×K.

Recall the function Tower ∶ N × N → N defined as
Tower(0, n) = n and Tower(` + 1, n) = 2Tower(`,n) for each
`, n ∈ N. In this section, we construct a family {ϕ`,n ∣ `, n ≥ 1}
of unimodal K2-formulas such that for each `, n ∈ N, (i)
∣ϕ`,n∣ ≤ exp(`)⋅poly(n) and (ii) if (S×S′, ⟨s, s′⟩) ⊧ ϕ`,n, then
∣S∣, ∣S′∣ ≥ Tower(`, n). Informally speaking, our intention is
that if (S ×S′, ⟨s, s′⟩) ⊧ ϕ`,n then both (S, s) and (S′, s′)
are of a particular structure that we will call (`, n)-treelike.
Before giving its formal definition, we provide some intuition
about when a pointed structure (S, s) is treelike (the definition
of when (S′, s′) is treelike will be analogous).

Intuitively, think of a pointed structure (S, s) to be (`, n)-
treelike if it contains a tree of depth ` rooted in s (possibly
with additional worlds and transitions) such that

● (S, t) is (` − 1, n)-treelike for every successor t of s,
● s has Tower(`, n) successors.

For this purpose, we additionally assign a value val(S, s)
to every (`, n)-treelike structure (S, s) and require that for
every i ∈ [0,m] with m = Tower(`, n)− 1 there is a successor
si of s with value i (however, we cannot exclude copies of
si). For ` = 0, the value is defined by propositional variables
p0, . . . , pn−1 which define an n-bit number, where p0 refers to
the least significant bit. For ` > 0, the value is defined using
an additional proposition pb. Intuitively, the worlds s0, . . . , sm

s

val(s) = 175

s0

pb

p←succ

pprec

s1
p0

pb

p←succ

s2
p1

pb

p←succ

s3
p0p1

pb

p←succ

s4
p2

psucc

s5
p0p2

pb

s6
p1p2

s7
p0p1p2

pb

Fig. 1. Example of an (1,3)-treelike structure with value 175.

define a binary number (by convention, the leftmost bit is the
least significant bit) b0⋯bm, where bi = 1 precisely when the
proposition pb is satisfied in si. Obviously, this number is
between 0 and Tower(`+1, n)−1. Figure 1 gives an example
of an (1,3)-treelike structure with value 175. First observe
that s has 8 = 23 = Tower(1,3) successors s0, . . . , s7. Next
note that in each si the evaluation of the propositions pj
(j ∈ [0,2]) gives a binary number equal to i. For instance, in s4
only p2 is true, hence the corresponding binary number is 001
which is 4. As indicated, the evaluation of pb gives rise to the
binary number b⃗ = 11110101 which equals 175. For enforcing
the described treelike structures (S, s) we need additional
auxiliary propositional variables psucc, p←succ, pprec, and p←prec.
These propositions provide more information about the binary
number b⃗ = b0⋯bTower(`,n)−1 encoded by the successors of s:

● psucc marks the first (from left to right) 0 in b⃗,
● p←succ marks all worlds left of psucc,
● pprec marks the first 1 in b⃗, and
● p←prec marks all worlds left of pprec.

Inuitively, psucc (resp. pprec) marks the maximal position that
changes when b⃗ is increased (resp. decreased) by 1. In other
words, increasing b⃗ by 1 can be done by flipping all bits
marked with psucc or p←succ and carrying over the remaining
ones. We refer again to Figure 1 for a valid evaluation of the
auxiliary propositions.

It is worth mentioning that (`, n)-treelike structures are
similar to the trees T̃h(n) from [9, Definition 2]. As mentioned
above, we add a few more unary predicates (propositional vari-
ables) since our structures will be enforced in 2-dimensional
modal logic instead of first-order logic.

In the following, we formally define (`, n)-treelike struc-
tures and their associated values. For this purpose, let us
fix the set of action labels A = {a, a′} and for each
n ≥ 1 define the set of propositional variables Pn

def=
{p0, . . . , pn−1} ∪ Paux and Qn

def= {q0, . . . , qn−1} ∪ Qaux

with Paux
def= {pb, psucc, p

←
succ, pprec, p

←
prec} and Qaux

def=
{qb, qsucc, q

←
succ, qprec, q

←
prec}. For the sake of simplicity, we call

({a},Pn)-structures (resp. ({a′},Qn)-structures) left struc-
tures (resp. right structures). We give only the definition
for left pointed structures because the definition for right
structures is simply obtained by replacing every proposition

pg by qg and
aÐ→ by

a′Ð→.

4

The definition of (`, n)-treelike structures (S, s) and their
associated values val(S, s) ∈ [0,Tower(` + 1, n) − 1] is by
induction on `. Consider the left pointed structure (S, s)
where S = (W, aÐ→,{Wp ∣ p ∈ Pn}). Then (S, s) is (0, n)–
treelike if NS(s) = ∅. The value of (S, s) is

val(S, s) def=
n−1

∑
i=0

bi2i ∈ [0,2n − 1],

where bi = 1 if s ∈Wpi and bi = 0 otherwise.
For ` > 0, (S, s) is (`, n)-treelike if the following hold,

where m = Tower(`, n) − 1:
(a) For all u ∈ NS(s), (S, u) is (` − 1, n)-treelike. Let

N i
S(s) def= {u ∈ NS(s) ∣ val(S, u) = i} for i ∈ [0,m].

(b) N i
S(s) ≠ ∅ for every i ∈ [0,m].

(c) If u, v ∈ N i
S(s) for some i ∈ [0,m], then u ∈ Wp if and

only if v ∈Wp for each p ∈ Paux.
(d) If NS(s) ⊆ Wpb then Wpsucc ∩NS(s) = ∅ and NS(s) ⊆

Wp←succ
.

(e) If NS(s) ∖Wpb ≠ ∅ and k ∈ [0,m] is minimal such that
Nk

S(s) ∖Wpb ≠ ∅, then for all v ∈ NS(s): v ∈ Wpsucc iff
val(S, v) = k and v ∈Wp←succ

iff val(S, v) < k.
(f) If NS(s)∩Wpb = ∅ then Wpprec∩NS(s) = ∅ and NS(s) ⊆

Wp←prec .
(g) If NS(s) ∩Wpb ≠ ∅ and k ∈ [0,m] is minimal such that

Nk
S(s) ∩Wpb ≠ ∅, then for all v ∈ NS(s): v ∈ Wpprec iff

val(S, v) = k and v ∈Wp←prec iff val(S, v) < k.
Note that we make no restriction on the valuation of propo-
sitions in the world s. Moreover, also the set Wpb ∩NS(s)
is arbitrary, but this set uniquely determines the sets Wpsucc ∩
NS(s), Wp←succ

∩NS(s), Wpprec ∩NS(s), and Wp←prec ∩NS(s).
Finally, we define the value of (S, s) as follows: For i ∈

[0,m], let bi = 0 if Wpb ∩N i
S(s) = ∅ and bi = 1 otherwise.

Then,

val(S, s) def=
m

∑
i=0
bi2i ∈ [0,2m+1 − 1] = [0,Tower(`+ 1, n)− 1].

Observe that this definition does not require a unique successor
world si for each value i. In fact, one cannot enforce this in
modal logic.

We will construct a family of formulas (ϕ`,n)`,n≥0 that
admit only (`, n)-treelike structures as models. In order to
emphasize the two dimensions that we have in formulas over
({a} ⊎ {a′},Pn ⊎ Qn), we write x (resp. y) instead of ◇a

(resp. ◇a′) to refer to the modality of the first (resp. second)
dimension of the product, and similarly for box formulas.

Before we define the formulas ϕ`,n, we introduce auxiliary
formulas eq`,n, first`,n, last`,n, and succ`,n whose names
indicate their intended purposes. For ` = 0 they are as follows:

eq0,n
def= ⋀i∈[0,n−1] pi ↔ qi

first0,n
def= ⋀i∈[0,n−1] ¬pi ∧ ¬qi

last0,n
def= ⋀i∈[0,n−1] pi ∧ qi

succ0,n
def= ⋁i∈[0,n−1](¬pi ∧ qi∧

⋀j∈[0,i−1](pj ∧ ¬qj) ∧⋀j∈[i+1,n−1] pj ↔ qj)

For ` > 0 we define them as follows:

eq`,n
def= ⊟ q (eq`−1,n → (pb ↔ qb))

first`,n
def= ⊟¬pb ∧ q¬qb

last`,n
def= ⊟pb ∧ qqb

succ`,n
def= x¬pb ∧ ⊟ q (eq`−1,n →

(psucc ↔ qprec) ∧ ((¬p←succ ∧ ¬psucc)→ (pb ↔ qb)))

In order to show the intuition of the introduced formulas we
prove the following lemma.

Lemma 4. Let ` ≥ 0 and let (S, s) and (S′, s′) be left and
right (`, n)-treelike structures. Then the following holds:

(a) (S ×S′, ⟨s, s′⟩) ⊧ eq`,n iff val(S, s) = val(S′, s′).
(b) (S ×S′, ⟨s, s′⟩) ⊧ first`,n iff val(S, s) = val(S′, s′) = 0.
(c) (S × S′, ⟨s, s′⟩) ⊧ last`,n iff val(S, s) = val(S′, s′) =

Tower(` + 1, n) − 1.
(d) (S ×S′, ⟨s, s′⟩) ⊧ succ`,n iff val(S′, s′) = val(S, s) + 1

Now we give a family of formulas ϕ`,n with the idea that
every model of ϕ`,n is the product of a left (`, n)-treelike
structure and a right (`, n)-treelike structure with the same
value.

Definition 5. Set ϕ0,n = eq0,n ∧ ⊟� ∧ q� and define ϕ`,n, by
induction on `, as the conjunction of the following formulas:

(1) xy (ϕ`−1,n ∧ first`−1,n)
(2) ⊟y ϕ`−1,n

(3) qx ϕ`−1,n

(4) ⊟ (q¬last`−1,n →ysucc`−1,n)
(5) ⊟ q (eq`−1,n → ⋀pg∈Paux

(pg ↔ qg))
(6) ⊟ q (((psucc ∨ p←prec)→ ¬pb) ∧ ((p←succ ∨ pprec)→ pb)))
(7) ⊟ q (succ`−1,n → ⋀x∈{succ,prec}((qx ∨ q←x)→ p←x)∧

(p←x → (q←x ∨ qx))
(8) xy (psucc ∨ p←succ) ∧ xy (pprec ∨ p←prec)

Some remarks regarding the intuition of the formulas are
appropriate. In the following explanation we will, in analogy
to left and right structures, distinguish left and right worlds.

Formulas (2) and (3) together imply inductively condition
(a) from the definiton of (`, n)-treelike structures (every
successor is (`−1, n)-treelike). Condition (b), the existence of
successor worlds for each value k ∈ [0,Tower(` + 1, n) − 1],
is enforced by induction on k: Formula (1) enforces a left
(` − 1, n)-treelike structure with value 0, thus establishing
the induction base. Formula (4) enforces for every left world
with value k a right world with value k + 1. Formula (3)
enforces a left world having the same value k + 1; this yields
the induction step. Formula (5) enforces condition (c). The
remaining conditions (d)-(g) from the definiton of (`, n)-
treelike structures can be reformulated as follows:

(i) If a world satisfies psucc or p←prec (resp., p←succ or pprec),
then it does not satisfy pb (resp., it satisfies pb).

(ii) If psucc or p←succ (resp., pprec or p←prec) is satisfied in a left
world of value k > 0, then p←succ (resp., p←prec) is satisfied
in all left worlds with value k − 1.

5

(iii) If p←succ (resp., p←prec) is satisfied in a left world of value
k < Tower(`, n) − 1, then p←succ or psucc (resp., p←prec or
pprec) is satisfied in every left world of value k + 1.

(iv) There is a successor world satisfying either psucc or p←succ

(resp. pprec or p→prec).
Clearly, (i) (resp. (iv)) is expressed by formula (6) (resp. (8)).
Finally, formula (5) and (7) yield (ii) and (iii). For instance,
if a left world with value k > 0 satisfies p←succ or psucc, then
by formula (5) the corresponding right world satisfies q←succ or
qsucc. Formula (7) implies that p←succ is satisfied in every left
world with value k−1. We are now ready to present our main
theorem.

Theorem 6. For every ` ≥ 0 the following holds:

(a) (S×S′, ⟨s, s′⟩) ⊧ ϕ`,n iff (S, s) and (S′, s′) are (`, n)-
treelike structures with val(S, s) = val(S′, s′).

(b) ∣ϕ`,n∣ ≤ 3` ⋅poly(`, n) and the formula ϕ`,n is computable
in time 3` ⋅ poly(`, n).

(c) The switching depth of ϕ`,n is `.

By making use of the models that are be enforced
by Thm. 6, we can finally prove a nonelementary
lower bound for K2

id-SAT via a standard reduction from
an appropriately chosen tiling problem. Let `-NEXP =
NTIME(Tower(`,poly(n))).

Proposition 7. For each ` ≥ 1, K2
id-SAT restricted to formulas

of switching depth ` is `-NEXP-hard under polynomial time
reductions. In particular, K2

id-SAT is nonelementary.

The following theorem is an immediate consequence of
Proposition 1 and Proposition 7.

Corollary 8. For each ` ≥ 1, K2-SAT restricted to formulas
of switching depth ` is `-NEXP-hard under polynomial time
reductions. In particular, K2-SAT is nonelementary.

IV. HARDNESS RESULTS FOR K4 ×K AND S52 ×K

In this section, we prove further nonelemementary lower
bound results for the satisfiability problem of two-dimensional
modal logics on restricted classes of frames. We hereby close
nonelementary complexity gaps that were stated as open prob-
lems in [19]. Although in [19] uninterpreted product models
for these logics are of interest, we prove our lower bounds for
the id-interpretation only: For each of the logics studied here,
the id-interpretation case can be reduced in polynomial time
to the uninterpreted case in analogy to Proposition 1.

We define the following logics:
● K4 × K: Two-dimensional unimodal logic restricted to

product models S ×S′, where F(S) is transitive.
● S5 × K: Two-dimensional unimodal logic restricted to

product models S×S′ such that if F(S) = (W,≡), then
≡ is an equivalence relation.

● S52×K: Two-dimensional modal logic that is bimodal in
the first dimension and unimodal in the second dimension
restricted to models S ×S′ such that if F(S) = (W,≡1

,≡2), then both ≡1 and ≡2 are equivalence relations.

Let us start with K4 × K. We adapt the straightforward
reduction from K to K4 to the two-dimensional case. When
following a transition in a K4-frame one has no control
over how far one is actually going due to transitivity of the
frame. The idea for the reduction is to introduce additional
propositions h0, . . . , hn and enforce levels in the models.
Intuitively, hi is true in w′ precisely when w′ is in level i seen
from the world w where the formula is evaluated. Following
a transition is then restricted to increase the level only by 1.

Let ϕ be a unimodal K2-formula with rank1(ϕ) = r and
define for every 0 ≤ k ≤ r the translation function tk by taking

tk(p) = Hk ∧ p
tk(¬ψ) = Hk ∧ ¬tk(ψ)

tk(ψ1 ∧ ψ2) = tk(ψ1) ∧ tk(ψ2)
tk(yψ) = ytk(ψ)
tk(xψ) = Hk ∧x(Hk+1 ∧ tk+1(ψ))

where Hk
def= hk ∧ ⋀i≠k ¬hi and k < r in the definition

of tk(xψ). We show that the translation is satisfiability
preserving. More precisely, we prove the following lemma.

Lemma 9. For every unimodal K2-formula ϕ we have: ϕ is
id-satisfiable in K2 iff t0(ϕ) is id-satisfiable in K4 ×K.

It is easy to see that Lemma 9 provides a reduction of K2
id-

SAT to id-satisfiability in K4 × K. Finally, an adaption of
Proposition 1 to the logic K4×K together with Proposition 7
yields the following result.

Theorem 10. Satisfiability in K4 ×K is nonelementary.

Next, we study combinations of K with S5 and S52. It
is well-known that the complexity for checking satisfiability
jumps from NP for S5 to PSPACE for S52. We will show that
also the complexity for deciding satisfiability in the product
logics S5×K and S52×K, respectively, differs. In particular,
we will again reduce from K2

id-SAT in order to show a
nonelementary lower bound for the latter logic, which is in
sharp contrast to the following result by Marx [20].

Theorem 11 ([20]). Satisfiability in S5×K is NEXP-complete.

PSPACE-hardness for satisfiability in S52 is shown by a
straightforward reduction from K [7]. We adapt this reduction
to the two-dimensional case by defining a translation † by

q† = p∗ ∧ q
(ϕ1 ∧ ϕ2)† = ϕ†

1 ∧ ϕ
†
2

(¬ϕ)† = p∗ ∧ ¬(ϕ†)
(yϕ)† = y(ϕ†)
(xϕ)† = p∗ ∧x1(¬p∗ ∧x2(p∗ ∧ ϕ†))

where x1 and x2 refer to the two modalities in S52 and p∗ is
a fresh propositional variable in the left signature. Intuitively,
one transition in K is simulated by two transitions in S52. This
is possible since the composition of two equivalence relations
is neither symmetric nor transitive in general and using the
fresh variable p∗ we can enforce a non-trivial transition, i.e.,
no loops. It can be proven along the lines of the proof in [7]
that † preserves id-satisfiability.

6

Lemma 12. For every unimodal K2-formula ϕ we have: ϕ is
id-satisfiable in K2 iff ϕ† is id-satisfiable in S52 ×K.

The following theorem is an immediate consequence of
Lemma 12, Proposition 7, and an adaption of Proposition 1 to
S52 ×K.

Theorem 13. Satisfiability in S52 ×K is nonelementary.

V. FEFERMAN-VAUGHT DECOMPOSITION FOR PRODUCTS

Having enforced nonelementarily branching trees with small
2-dimensional unimodal formulas (Thm. 6) allows us to prove
a nonelementary lower bound for the sizes of Feferman-Vaught
decompositions for 2-dimensional unimodal logic. Without
making this explicit in the statement, our lower bound is more
general than the nonelementary lower bound for 2-dimensional
unimodal logic from [17] in the following sense. We provide
a family of small formulas which are “inherently hard to
decompose”: When assuming, by contradiction, the existence
of small decompositions for our formulas, any model for them
can be used to deduce the desired contradiction, whereas in
[17] appropriately chosen models had to be defined for this.
Our proof strategy is similar to the proof of Thm. 5.1. in [9].

Theorem 14. Feferman-Vaught decompositions for unimodal
logic w.r.t. asynchronous product are inherently nonelemen-
tary. More precisely, for every elementary function f(n) there
exists ` ≥ 1 such that the unimodal K2-formula ϕ`,2 from
Definition 5 has no decomposition D` in the sense of Thm. 2
with ∣D`∣ ≤ f(∣ϕ`,2∣). The same lower bound holds when
relativized to product structures T×T′, where F(T) and F(T′)
are finite trees.

Proof: Assume by contradiction that there is an elemen-
tary function f ∶ N → N such that for each ` ≥ 1 there is
a decomposition D` = (Ψ(`)

1 ,Ψ(`)
2 , β`) of ϕ`,2 in the sense

of Thm. 2 with ∣D`∣ ≤ f(∣ϕ`,2∣). In particular, ∣β`∣ ≤ f(∣ϕ`,2∣).
Since ∣ϕ`,2∣ ≤ exp(`) by Thm. 6(b), there exists an elementary
function g such that ∣β`∣ ≤ g(`) for all ` ≥ 0. Thus, there exists
an h ≥ 0 with 2g(h−1) < Tower(h,2); let us fix such an h.

By Thm. 6(a), ϕh,2 is id-satisfiable. Assume that (S ×
S′, ⟨w,w′⟩) ⊧ ϕh,2 for some left pointed structure (S,w)
and some right pointed structure (S′,w′). By Thm. 6(a),
(S,w) and (S′,w′) are (h,2)-treelike and val(S,w) =
val(S′,w′) = k for some k ∈ [0,Tower(h + 1,2) − 1]. By
the definition of (h,2)-treelike structures, there exist for each
i ∈ [0,Tower(h,2) − 1] worlds vi ∈ NS(w) and v′i ∈ NS′(w′)
such that (S, vi) and (S′, v′i) are (h − 1,2)-treelike and
val(S, vi) = val(S′, v′i) = i. Also note that

(S ×S′, ⟨vi, v′j⟩) ⊧ ϕh−1,2 ⇔ i = j (1)

for all i, j ∈ [0,Tower(h,2) − 1]. Consider our decomposi-
tion Dh−1 = (Ψ(h−1)

1 ,Ψ(h−1)
2 , βh−1) of ϕh−1,2. Assume that

Ψ(h−1)
1 = {ψj ∣ j ∈ J} and Ψ(h−1)

2 = {ψ′j ∣ j ∈ J ′}. Recall
that βh−1 is a positive boolean formula with variables from
X = {xj ∣ j ∈ J} ∪ {x′j ∣ j ∈ J ′} and that ∣βh−1∣ ≤ g(h − 1).
Hence, ∣X ∣ ≤ g(h − 1).

For each r ∈ [0,Tower(h,2) − 1] we define a truth assign-
ment µr ∶X → {0,1} as follows:

µr(xj) = 1 ⇔ (S, vr) ⊧ ψj
µr(x′j) = 1 ⇔ (S′, v′r) ⊧ ψ′j

Since for βh−1 there are 2∣X ∣ ≤ 2g(h−1) < Tower(h,2) many
truth assignments, there exist 0 ≤ r < s < Tower(h,2) with
µr = µs. Since (S ×S′, ⟨vr, v′r⟩) ⊧ ϕh−1,2, this implies (S ×
S′, ⟨vr, v′s⟩) ⊧ ϕh−1,2. But this contradicts (1).

Our lower bound also holds when only products of finite
trees are allowed as models, since for every `, n, there exists
an (`, n)-treelike structure S such that F(S) is a finite tree
(of height `).

Note that the lower bound from Thm. 14 would even hold
if we defined the size of a decomposition (Ψ1, . . . ,Ψd, β) as
the size of the boolean formula β only (and not accounting
for the sizes of the Ψi); the same proof works for this
variant. In contrast to [17] the proof of Thm. 14 allows to
derive nonelementary lower bounds on decompositions for any
decomposable logic (in the sense of Thm. 2) that is at least
as expressive as unimodal logic and only elementarily less
succinct than unimodal logic.

Corollary 15. Every logic that is at least as expressive as and
at most elementary less succinct as unimodal logic does not
have elementary sized Feferman-Vaught decompositions with
respect to asynchronous product.

VI. FEFERMAN-VAUGHT DECOMPOSITION FOR SUMS

So far, we only considered Feferman-Vaught decompo-
sitions for asynchronous products. Another important and
natural operation on structures is the disjoint sum. Let us fix
a relational signature τ and for i ∈ [1, d] let Si = (Di,{Pi,a ∣
a ∈ τ}) be a τ -structure such that Di ∩ Dj = ∅ for i ≠ j.
Let Ai /∈ τ (i ∈ [1, d]) be a fresh unary predicate symbol. The
the disjoint sum ∑di=1 Si is the following structure over the
signature τ ∪ {A1, . . . ,Ad}:
d

∑
i=1

Si
def= (⋃

i∈[1,d]
Di,{ ⋃

i∈[1,d]
Pi,a ∣ a ∈ τ} ∪ {Di ∣ i ∈ [1, d]}).

Here, ⋃i∈[1,d] Pi,a is the interpretation for a ∈ τ and Di is the
interpretation for the fresh symbol Ai. The following result is
again classical [11], [12].

Theorem 16. For every FOk-sentence ϕ over the signature
τ ⊎ {A1, . . . ,Ad} one can compute a tuple (Ψ1, . . . ,Ψd, β),
where each Ψi = {ψji ∣ j ∈ Ji} is a finite set of FOk-sentences
over the signature τ and where β is a positive boolean formula
with variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for
all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji) = 1 iff Si ⊧ ψji .

The following result is a simple corollary of Corollary 15.

7

Corollary 17. For every k ≥ 3, there is no elementary function
f(n) such that every FOk-formula ϕ has a Feferman-Vaught
decomposition w.r.t. disjoint sum of size f(∣ϕ∣).

Corollary 17 raises the question whether even Feferman-
Vaught decompositions for FO2 w.r.t. disjoint sum become
nonelementary. We give a negative answer to this question.

Theorem 18. The following is computable in doubly exponen-
tial time:
INPUT: An FO2-sentence ϕ over τ ⊎ {A1, . . . ,Ad}
OUTPUT: A decomposition (Ψ1, . . . ,Ψd, β), where Ψi = {ψji ∣
j ∈ Ji} is a finite set of FO2-sentences over τ and β is a
positive boolean formula with variables from X = {xji ∣ i ∈
[1, d], j ∈ Ji} such that for all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji) = 1 iff Si ⊧ ψji .

We will prove Thm. 18 only for the case d = 2. Hence, let
us fix a signature τ of relational symbols and let A1,A2 /∈ τ
be two additional unary symbols. Let S1 and S2 be relational
structures over the signature τ .

We define a partial order ⪯ on the set of all first-order
formulas by setting ψ1 ⪯ ψ2 if and only if ψ1 is a subformula
of ψ2. For a formula ϕ we denote with Qϕ the set of all
subformulas of ϕ that start with a quantifier. With Qcl

ϕ we
denote the set of those formulas in Qϕ that are closed, i.e.,
do not have free variables. In a formula ∃x ∶ Ai(x)∧ψ (resp.
∀x ∶ Ai(x)→ ψ), where i ∈ {1,2}, we say that x is relativized
to Ai, and for better readability we write ∃x ∈ Ai ∶ ψ (resp.
∀x ∈ Ai ∶ ψ) for that formula.

A formula ϕ over the signature τ ∪ {A1,A2} is called pure
if ϕ is a boolean combination of formulas ϕ1, . . . , ϕn such
that for every 1 ≤ i ≤ n there exists j ∈ {1,2} such that for
every (Qx ∶ ψ) ∈ Qϕi (where Q ∈ {∃,∀}), x is relativized
to Aj in Qx ∶ ψ. Equivalently, ϕ is pure, if for all (Q1x ∶
ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), x is
relativized in (Q1x ∶ ψ1) to the same Ai as y in (Q2y ∶ ψ2).
To prove Thm. 18 (for d = 2), it suffices to transform an FO2

sentence over the signature τ∪{A1,A2} in doubly exponential
time into an equivalent pure FO2-sentence over the signature
τ ∪ {A1,A2}.

A formula ϕ over the signature τ∪{A1,A2} is called almost
pure if it satisfies the following conditions:

● For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in (Qx ∶ ψ) to
either A1 or A2.

● If (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶
ψ2), then either x is relativized in (Q1x ∶ ψ1) to the
same Ai as y in (Q2y ∶ ψ2), or there exists θ ∈ Qcl

ϕ with
(Q1x ∶ ψ1) ⪯ θ ≺ (Q2y ∶ ψ2).

In other words, whenever a chain of subformulas (Q1x ∶ ψ1) ⪯
(Q2y ∶ ψ2) ⪯ ϕ does not satisfy the pureness condition, then
(Q1x ∶ ψ1) occurs within a proper subsentence of (Q2y ∶
ψ2) that moreover starts with a quantifier. Clearly, every pure
formula is almost pure. Vice versa, we have:

Lemma 19. From a given almost pure formula ϕ over the
signature τ ∪{A1,A2} one can compute a logically equivalent
pure formula ϕ′ of size 2∣Qcl

ϕ∣ ⋅O(∣ϕ∣). If ϕ is an FO2-formula
then ϕ′ is an FO2-formula as well.

Proof: The idea is to replace the topmost occurrences of
sentences from the set Qcl

ϕ by truth values in all possible ways
in a big disjunction over all possible truth assignments. Since
sentences from Qcl

ϕ may also violate the pureness condition,
we have to iterate this replacement step.

Let ϕ be almost pure and let F be the set of all mappings
fromQcl

ϕ to {true, false}. For f ∈ F and a formula θ let θ[f] be
the formula that results from θ by replacing every ⪯-maximal
formula ψ from the set (Qθ ∖ {θ}) ∩Qcl

ϕ by the truth value
f(ψ). Then, we define ϕ′ as the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈Qcl

ϕ

(f(ψ)↔ ψ[f])).

Clearly, ϕ′ is equivalent to ϕ and ϕ′ is pure.

Lemma 20. From a given FO2-formula ϕ(x) over the signa-
ture τ ∪ {A1,A2} with at most one free variable x, one can
compute FO2-formulas ϕ′(x) and ϕ′′(x) of size 2O(∣ϕ∣2) such
that the following holds for all structures S1 and S2 over the
signature τ .

● Qx ∈ A1 ∶ ϕ′(x) and Qx ∈ A2 ∶ ϕ′′(x) are almost pure
(where Q ∈ {∀,∃}).

● For all a ∈ S1, S1 +S2 ⊧ ϕ(a) iff S1 +S2 ⊧ ϕ′(a).
● For all a ∈ S2, S1 +S2 ⊧ ϕ(a) iff S1 +S2 ⊧ ϕ′′(a).

Moreover, ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) and ∣Qcl

ϕ′′(x)∣ ∈ 2O(∣ϕ∣).

Proof: Let us construct the formula ϕ′(x) (ϕ′′(x) is
constructed analogously) by induction over the structure of the
formula ϕ(x). The case that the top-most operator in ϕ(x) is
a boolean operator is clear, e.g., set (ϕ1 ∧ ϕ2)′ = ϕ′1 ∧ ϕ′2.

Now, assume that ϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is
an FO2-formula, the formula ψ(x, y) can be obtained from
a positive boolean formula B(p1, . . . , pk) by replacing every
propositonal variable pi by

(a) some α(x) ∈ Qϕ, where only x may occur freely, or by
(b) some β(y) ∈ Qϕ, where only y may occur freely, or by
(c) a possibly negated atomic formula (i.e., a literal) that

involves a subset of the variables {x, y}.

Let ψ′(x, y) be the formula that results from ψ(x, y) by
replacing every subformula α(x) (resp. β(y)) of type (a) (resp.
(b)) by α′(x) (resp. β′(y)). We can write B as a DNF formula
B = ⋁ri=1Bi of size 2O(∣B∣), where every Bi is a conjunction
of formulas of the types (a)–(c). Hence, we can write Bi as

Bi = αi(x) ∧ βi(y) ∧ γi(x, y),

where αi is a conjunction of type-(a) formulas, βi is a
conjunction of type-(b) formulas, and γi(x, y) is a conjunction
of type-(c) formulas.

Clearly, over a structure S1 +S2, the formula ∃y ∶ ψ(x, y)

8

is equivalent to ∃y ∈ A1 ∶ ψ(x, y) ∨ ∃y ∈ A2 ∶ ψ(x, y), i.e., to

∃y ∈ A1 ∶ ψ(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (αi(x) ∨ βi(y) ∨ γi(x, y)).

By induction, for all x ∈ S1, this formula is equivalent to

∃y ∈ A1 ∶ ψ′(x, y) ∨ (2)
r

⋁
i=1

∃y ∈ A2 ∶ (α′i(x) ∧ β′′i (y) ∧ γi(x, y)). (3)

In line (3), every occurrence of a literal in γi(x, y), in which
both x and y occur, can be replaced either by true (if the
literal is negative) or false (if the literal is positive). The reason
for this is that no atomic relations of S1 + S2 involve both
elements of S1 and S2. We therefore obtain an equivalent
formula of the form

∃y ∈ A1 ∶ ψ′(x, y) ∨
r

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))).

Here δi,1(x) (resp. δi,2(y)) is the conjunction of all literals in
γi(x, y) that only involve the variable x (resp. y). Let ϕ′(x)
be the above formula. We have to show that the formula

∃x ∈ A1

⎛
⎜
⎝

∃y ∈ A1 ∶ ψ′(x, y) ∨
r

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)))
⎞
⎟
⎠

is almost pure. This follows inductively from the fact that ∃x ∈
A1∃y ∈ A1 ∶ ψ′(x, y), ∃x ∈ A1 ∶ α′i(x), and ∃y ∈ A2 ∶ β′′i (y)
are almost pure, and the fact that ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))
is closed. This concludes the case ϕ(x) = ∃y ∶ ψ(x, y). The
case ϕ(x) = ∀y ∶ ψ(x, y) can be treated analogously.

If we allow ∧’s and ∨’s of arbitrary width, then the depth
(i.e., the height of the syntax tree) of ϕ′(x) is bounded by
O(∣ϕ∣). Due to forming CNFs and DNFs, the width of ∧’s and
∨’s can be bounded by 2∣ϕ(x)∣. Hence, the syntax tree of ϕ′(x)
has height O(∣ϕ∣) and branching degree 2∣ϕ(x)∣, and therefore
has 2O(∣ϕ∣2) many nodes. Replacing ∧’s and ∨’s of arbitrary
width ≤ 2∣ϕ(x)∣ by 2-ary ∧’s and ∨’s only multiplies the number
of nodes by 2∣ϕ(x)∣. Hence, ϕ′(x) is of size 2O(∣ϕ∣2).

For the bound ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) note that in the above

construction, the number of closed subformulas that start with
a quantifier is increased by at most r + 1 (due to the formulas
∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)) for i ∈ [1, r]). Since r is
exponential in the size of the boolean formula B, the bound
∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) follows.

Theorem 21. From a given closed FO2-formula ϕ over the
signature τ ∪ {A1,A2} one can compute a pure closed FO2-
formula ψ of size 22O(∣ϕ∣) such that for all structures S1 and
S2 over the signature τ , S1 +S2 ⊧ ϕ iff S1 +S2 ⊧ ψ.

Proof: We first apply Lemma 20 to ϕ and obtain a closed
almost pure FO2-formula θ such that S1+S2 ⊧ ϕ iff S1+S2 ⊧
θ. The size of θ is bounded by 2O(∣ϕ∣2). Finally, we apply
Lemma 19 to θ and obtain an equivalent pure FO2-formula

ψ of size 2∣Qcl
θ ∣ ⋅O(∣θ∣). Since ∣θ∣ ∈ 2O(∣ϕ∣2) and ∣Qcl

θ ∣ ∈ 2O(∣ϕ∣)

this yields the upper bound 22O(∣ϕ∣) for the size of ψ.
Let us conclude this section with a (non-matching) lower

bound on Feferman-Vaught decompositions for FO2.

Proposition 22. There is no function f(n) ∈ o(√n) and
c > 1 such that every FO2-formula ϕ has a Feferman-Vaught
decompositions w.r.t. disjoint sum of size co(

√
∣ϕ∣).

VII. GAIFMAN NORMAL FORM

Our technique from the proof of Thm. 18 can be used to
prove a doubly exponential upper bound on the size (and
construction) of Gaifman normal forms [14].

Let S = (D,{Pa ∣ a ∈ τ}) be a structure over a relational
signature τ . Then the Gaifman graph of S is the undirected
graph G(S) = (D,E), where the edge relation E contains a
pair (u, v) ∈ D ×D with u ≠ v if and only if there exists a
relation Pa (a ∈ τ) of arity say n and a tuple (u1, . . . , un) ∈
Pa such that u, v ∈ {u1, . . . , un}. For u, v ∈ D, the distance
dS(u, v) is the length (number of edges) of a shortest path
from u to v in G(S). For a tuple u = (u1, . . . , un) and v,
let dS(u, v) = min{dS(ui, v) ∣ 1 ≤ i ≤ n}. For n ∈ N, the
n-sphere around u is SS,n(u) = {v ∈ D ∣ dS(u, v) ≤ n}. We
write Sn(u) for SS,n(u), if S is clear from the context.

Note that for every n ∈ N, there exists a first-order formula
dn(x, y) such that for all structures S and all elements u, v
of S, S ⊧ dn(u, v) if and only if dS(u, v) ≤ n. For better
readability, we write d(x, y) ≤ n instead of dn(x, y). The for-
mula d(x, y) > n should be understood similarly. In a formula
of the form ∃y ∶ d(x, y) ≤ r ∧ ψ or ∀y ∶ d(x, y) ≤ r → ψ, we
say that the variable y is relativized to Sr(x). A formula ϕ is
called r-local around x if for every occurrence of a subformula
(Qy ∶ ψ) ∈ Qϕ, the variable y is relativized in (Qy ∶ ψ) to
a sphere Sq(x) for some q ≤ r. A sentence ψ is called an
r-local Gaifman-sentence if it is of the form

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕi(xi),

where every ϕi(xi) is q-local around (the single variable) xi
for some q ≤ r.

Theorem 23 (Gaifman’s theorem [14]). Every first-order
formula ϕ(x) is equivalent to a boolean combination ψ(x)
of r-local formulas around x and q-local Gaifman-sentences
for suitable r and q (that are exponential in the size of ϕ(x)).

We call the formula ψ(x) from Thm. 23 a Gaifman normal
form for ϕ(x). In [9] it was shown that (for FO4-formulas
already) the size of equivalent formulas in Gaifman normal
form cannot be bounded elementarily. By using our formulas
ϕ`,n from Section III and analogous ideas as in [9], we can
strengthen the latter result to FO3.

Proposition 24. There is no elementary function f(n) such
that every FO3-formula ϕ has an equivalent formula in
Gaifman normal form of size f(∣ϕ∣).

Next, we show that for the fragment FO2 such an elementary
(in fact, doubly exponential) bound is possible:

9

Theorem 25. Every FO2-formula ϕ(x) is equivalent to a
boolean combination ψ(x) of r-local formulas around x and
q-local Gaifman-sentences with r ≤ 3qr(ϕ), q ≤ 6qr(ϕ), and
∣ψ∣ ≤ 22O(∣ϕ∣) .

In Thm. 25, x is a single variable. This is no restriction,
since every FO2-formula can be written as a boolean combi-
nation of formulas that (i) start with a quantifier, and (ii) that
have at most one free variable. In the rest of this section, all
r-local formulas will be r-local around a single variable x.
For the proof of Thm. 25 it is useful to define almost r-local
formulas around x and almost r-local Gaifman-sentences. We
do this by simultaneous induction:

● Every formula that is built up from atomic formulas and
almost p-local Gaifman-sentences (for arbitrary p) using
boolean operators and quantifiers relativized to Sq(x) for
arbitrary q ≤ r is an almost r-local formula around x
(hence, every r-local formula around x is almost r-local
around x).

● If for some q ≤ r every formula ϕi(xi) is almost q-local
around xi (1 ≤ i ≤ n), then the sentence

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕi(xi)

is an almost r-local Gaifman-sentence.
For a formula ϕ, let G(ϕ) be the set of all almost p-local
Gaifman-sentences ψ (for arbitrary p) with ψ ⪯ ϕ.

Lemma 26. From an almost r-local formula ϕ(x) (around x)
one can compute a logically equivalent Boolean combination
ϕ′(x) of r-local formulas around x and q-local Gaifman
sentences. Here, the size of ϕ′(x) is bounded by 2∣G(ϕ)∣ ⋅O(∣ϕ∣)
and q is the maximum of all p such that G(ϕ) contains an
almost p-local Gaifman sentence.

Proof: Let ϕ(x) be almost r-local around x and let F
be the set of all mappings from G(ϕ) to {true, false}. For
f ∈ F and a formula θ let θ[f] be the formula that results
from θ by replacing every ⪯-maximal formula ψ from the set
(G(θ)∖{θ})∩G(ϕ) by the truth value f(ψ). Then, we define
ϕ′ as the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈G(ϕ)

(f(ψ)↔ ψ[f])).

Clearly, ϕ′ is equivalent to ϕ and ϕ′ is r-local around x.

Lemma 27. From an FO2-formula ϕ(x) with at most one
free variable x, one can compute an equivalent almost r-local
formula ϕ`(x) of size 2O(∣ϕ∣2) with r ≤ 3qr(ϕ), ∣G(ϕ`)∣ ≤
2O(∣ϕ∣), and every ψ ∈ G(ϕ`) is an almost 2r-local Gaifman
sentence.

Let us finally prove Thm. 25. We first apply Lemma 27
to ϕ(x) and obtain an equivalent almost r-local formula
θ(x) with ∣θ∣ ≤ 2O(∣ϕ∣2). Moreover r ≤ 3qr(ϕ) and every
sentence in G(θ) is an almost 2r-local Gaifman sentence.
Finally, we apply Lemma 26 to θ and obtain an equivalent
Boolean combination ψ(x) of r-local formulas around x and

2r-local Gaifman sentences. The size of ψ(x) is bounded by
2∣G(θ)∣ ⋅O(∣θ∣). Since ∣θ∣ ≤ 2O(∣ϕ∣2) and ∣G(θ)∣ ≤ 2O(∣ϕ∣), this
yields the upper bound 22O(∣ϕ∣) for the size of ψ(x). ⊓⊔

Finally, we give a (non-matching) lower bound on the size
of equivalent formulas in Gaifman normal form for FO2; the
proof is again based on techniques from [9].

Proposition 28. There is no function f(n) ∈ o(√n) and c > 1
such that every FO2-formula ϕ has an equivalent formula in
Gaifman normal form of size cf(∣ϕ∣).

VIII. OPEN PROBLEMS

The main open problem concerns the size of Feferman-
Vaught decompositions (w.r.t. disjoint sum) and equivalent for-
mulas in Gaifman normal form for FO2. For both formalisms,
we proved an upper bound of 22O(n) and a lower bound of
co(

√
n) (for c > 1). We conjecture that the upper bound can be

improved to 2O(n).

ACKNOWLEDGMENT

Jean Christoph Jung was supported by the DFG project LU
1417/1-1.

REFERENCES

[1] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge
University Press, 2001.

[2] P. Blackburn, F. Wolter, and J. van Benthem, Eds., Handbook of Modal
Logic. Elsevier, 2006.

[3] D. M. Gabbay and V. B. Shehtman, “Products of Modal Logics, Part
1,” Logic Journal of the IGPL, 6(1):73–146, 1998.

[4] R. E. Ladner, “The Computational Complexity of Provability in Systems
of Modal Propositional Logic,” SIAM J. Comput., 6(3):467–480, 1977.

[5] R. Hirsch, I. M. Hodkinson, and Á. Kurucz, “On modal logics between
K x K x K and S5 x S5 x S5,” J. Symb. Log., 67(1):221–234, 2002.

[6] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev, “Products of
’transitive’ modal logics,” J. Symb. Log., 70(3):993–1021, 2005.

[7] D. Gabbay, A. Kurusz, F. Wolter, and M. Zakharyaschev, Many-
Dimensional Modal Logics: Theory and Applications. Elsevier, 2003.

[8] M. Marx and Y. Venema, Multi-Dimensional Modal Logic. Kluwer
Academic Press, 1996.

[9] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt, “Model The-
ory Makes Formulas Large,” in Proc. of ICALP 2007, LNCS 4596.
Springer, 2007.

[10] A. Mostowski, “On direct products of theories,” J. Symbolic Logic, 17:1–
31, 1952.

[11] S. Feferman and R. L. Vaught, “The first order properties of products
of algebraic systems,” Fundamenta Mathematicae, 47:57–103, 1959.

[12] J. A. Makowsky, “Algorithmic uses of the Feferman-Vaught Theorem,”
Ann. Pure Appl. Logic, 126(1-3):159–213, 2004.

[13] A. Rabinovich, “On compositionality and its limitations,” ACM Trans.
Comput. Log., 8(1), 2007.

[14] H. Gaifman, “On local and nonlocal properties,” in Logic Colloquium
’81, J. Stern, Ed. North Holland, 1982, pp. 105–135.

[15] S. Kreutzer, “Algorithmic meta-theorems,” Electronic Colloquium on
Computational Complexity (ECCC), vol. 16, p. 147, 2009.

[16] M. Marx and S. Mikulás, “Products, or How to Create Modal Logics
of High Complexity,” Logic Journal of the IGPL, 9(1):71–82, 2001.

[17] S. Göller and A. W. Lin, “Concurrency Makes Simple Theories Hard,”
in Proc. of STACS, ser. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012, pp. 344–355.

[18] E. Grädel, P. G. Kolaitis, and M. Y. Vardi, “On the decision problem for
two-variable first-order logic,” Bull. Symbolic Logic, 3(1):53–69, 1997.

[19] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev, “Products of
’transitive’ modal logics,” J. Symb. Log., 70(3):993–1021, 2005.

[20] M. Marx, “Complexity of products of modal logics,” J. Log. Comput.,
9(2):197–214, 1999.

[21] E. Börger, E. Grädel, and Y. Gurevich, The classical decision problem,
ser. Universitext. Springer-Verlag, 2001.

10

