
The Complexity of Decomposing Modal and First-Order

Theories

Stefan Göller
University of Bremen, Germany

goeller@informatik.uni-bremen.de

Jean Christoph Jung
University of Bremen, Germany

jeanjung@informatik.uni-bremen.de

Markus Lohrey
University of Leipzig, Germany

lohrey@informatik.uni-leipzig.de

September 15, 2014

Abstract

We study the satisfiability problem of the logic K2 = K ×K, i.e., the two-dimensional
variant of unimodal logic, where models are restricted to asynchronous products of two
Kripke frames. Gabbay and Shehtman proved in 1998 that this problem is decidable in
a tower of exponentials. So far the best known lower bound is NEXP-hardness shown by
Marx and Mikulás in 2001.

Our first main result closes this complexity gap: We show that satisfiability in K2

is nonelementary. More precisely, we prove that it is k-NEXP-complete, where k is the
switching depth (the minimal modal rank among the two dimensions) of the input formula,
hereby solving a conjecture of Marx and Mikulás. Using our lower-bound technique allows
us to derive also nonelementary lower bounds for the two-dimensional modal logics K4×K
and S52 ×K for which only elementary lower bounds were previously known.

Moreover, we apply our technique to prove nonelementary lower bounds for the sizes
of Feferman-Vaught decompositions with respect to product for any decomposable logic
that is at least as expressive as unimodal K, generalizing a recent result by the first author
and Lin. For the three-variable fragment FO3 of first-order logic, we obtain the following
immediate corollaries: (i) the size of Feferman-Vaught decompositions with respect to
disjoint sum are inherently nonelementary and (ii) equivalent formulas in Gaifman normal
form are inherently nonelementary.

Our second main result consists in providing effective elementary (more precisely,
doubly exponential) upper bounds for the two-variable fragment FO2 of first-order logic
both for Feferman-Vaught decompositions and for equivalent formulas in Gaifman normal
form.

1 Introduction

1.1 Modal logic and many-dimensional modal logic

Modal logic [1, 2] originated in philosophy and for a long time it was known as “the logic of ne-
cessity and possibility”. Later, it has been discovered that modal logics are well-suited to talk
about relational structures, so called (Kripke) frames. Relational structures appear in many

1

branches of computer science; consider for example transition systems in verification, seman-
tic networks in knowledge representation, or attribute value structures in linguistics. This
has led to various applications of modal logic in areas such as computer science, mathematics,
and artificial intelligence.

Depending on the application, a lot of different modal operators have been introduced
in the past, each of them tailored towards expressing different features of the domain. For
instance there are modalities that talk about time, space, knowledge, beliefs, etc.

However, it turned out that recent application domains require to express properties that
combine different modalities, e.g., talk about the evolution of knowledge over time. In order
to reflect these requirements in theory, many-dimensional modal logics have been studied
intensively [3, 4]. A particular way of combining two logics L1 and L2 is building their
product L1 ×L2 [5]. For products, the semantics is given in terms of structures, whose frames
are restricted to be asynchronous products of the (one-dimensional) component frames. The
interpretation of the atomic propositions is done in an uninterpreted way, i.e., it is independent
from the component frames.

An important and well-studied problem in this context is satisfiability checking, i.e., to
decide whether a given formula admits a model. When considering products of modal logics,
it has been shown that the computational complexity of satisfiability checking often increases
drastically in comparison to the well-behaved component logics. As an example, consider
the basic modal logic K and its variant K4 for reasoning over the class of transitive frames.
Satisfiability is PSPACE-complete for both K and K4 [6], while for K ×K and K4 ×K only
nonelementary upper bounds were known [5]. Even worse, satisfiability becomes undecidable
in K × K × K [7] and K4 × K4 [8]. To some extent, this can be explained by the grid-like
shape of product structures.

1.2 Logical decomposition

Logical decomposition can concisely be summarized as follows: A logic L admits decomposition
w.r.t. some operation op on structures if all L-properties that are interpreted on composed
(with respect to the operation op) structures, are already determined by the L-properties of
the component structures. Logical decomposition dates back to the work of Mostowski [9]
and Feferman and Vaught [10], where it is shown that first-order logic (FO) is decomposable
w.r.t. a general product operation, which covers also disjoint union and product. Later, both
for more expressive logics and for more sophisticated operations such decomposability results
have been proven, see [11] for an excellent survey.

When proving decomposability for a logic L, one often obtains an effective procedure for
computing such decompositions: Given a formula ϕ from L evaluated on composed structures,
one can effectively compute (i) a finite set of formulas {ϕ1, . . . , ϕn}, each being evaluated on
some specific component, and (ii) a propositional formula β, whose propositions are tests of
the form Si ⊧ ϕj , such that for all composed structures S = op(S1, . . . ,Sk): S ⊧ ϕ if and
only if β evaluates to true. The size of the resulting decomposition is typically nonelementary
in the size of the original formula. Dawar et al. proved that this is unavoidable if L = FO [12].

Decomposition theorems have powerful implications in computer science logic. Let us
mention only four of them.

Firstly, assume some decomposable logic L: Then decidability of the L-theory of some
composed structure, for instance a product structure, can be derived from the decidability of
the L-theories of its component structures.

2

Secondly, let us mention that model checking a fixed L-formula (i.e. the data complexity)
in a composed structure is not harder than model checking fixed L-formulas on the component
structures: If the formula is fixed, also the decomposition is fixed (although possibly large).

Moreover, decompositional methods can be applied for showing decidability of satisfiability
checking: Instead of asking whether a given formula ϕ is satisfiable in a composed model,
one computes a decomposition for ϕ, translates the decomposition into disjunctive normal
form, and finally checks satisfiability of a conjunction of formulas in their corresponding
components. Rabinovich proved that basic modal logic K is decomposable w.r.t. interpreted
products [13], i.e. where “interpreted” means that an interpretation of the propositions on
the respective component structures is applied. It is worth noting that this, however, does
not lead to decidability of K × K w.r.t. the classical (uninterpreted) products mentioned
above. To the contrary, satisfiability w.r.t. interpreted products is easily reducible to the
uninterpreted version.

Finally, an important application of logical decomposition à la Feferman and Vaught is
the (original) proof of Gaifman’s locality theorem [14] stating that every first-order sentence
is equivalent to a boolean combination of basic local sentences, where a basic local sentence
admits quantification only relativized to finite neighbourhoods of elements. Gaifman’s locality
theorem has important applications such as inexpressibility results for first-order logic. For
a further and more recent application of Gaifman’s locality theorem we mention algorithmic
meta-theorems for first-order logic [15], stating that first-order properties can be efficiently
evaluated on numerous classes of structures.

1.3 Our contributions and related work

As our first main result we show that (even the interpreted variant of) the satisfiability prob-
lem of two-dimensional modal logic K2 = K×K has nonelementary complexity, hereby solving
a fundamental problem that has been open for more than 10 years. Gabbay and Shehtman
proved in 1998 that satisfiability in K2 is decidable in a tower of exponentials [5]. To the
best of the authors’ knowledge, the best known lower bound has been NEXP-hardness shown
by Marx and Mikulás in 2001 [16]. In fact, we prove that satisfiability in K2 restricted
to formulas of switching depth k (the minimal modal rank among the two dimensions) is
k-NEXP-complete (where k-NEXP is the set of all problems that can be solved on a nondeter-
ministic Turing machine in k-fold exponential time), hereby confirming a conjecture of Marx
and Mikulás [16]. We derive nonelementary lower bounds for the two-dimensional modal
logics K4 ×K and S52 ×K for which only elementary lower bounds were known [3].

Our lower bound technique allows us to derive a nonelementary lower bound for the size
of Feferman-Vaught decompositions w.r.t. product for K. Such a result was already shown
in [17]. However, in contrast to [17], our proof technique implies that the nonelementary
lower bound carries over to all decomposable logics that are at least as expressive as K. An
instance of such a logic is the two-variable fragment FO2 of first-order logic. Moreover, we
prove that the same lower bound holds when relativized to the class of finite trees, answering
an open problem formulated in [17].

In the same fashion, we derive the following new results for the three-variable fragment
FO3 of first-order logic: (i) the sizes of Feferman-Vaught decompositions w.r.t. disjoint sum are
inherently nonelementary and (ii) equivalent formulas in Gaifman normal form are inherently
nonelementary. It is worth mentioning that (i) and (ii) were shown in [12] for full FO. By
inspecting the formulas in [12] it turns out that they are in fact FO4-formulas. However,

3

it seems to be unclear whether the construction from [12] can be adapted so that it yields
FO3-formulas.

Finally, we provide effective doubly exponential (and hence elementary) upper bounds for
the two-variable fragment FO2 of first-order logic both for Feferman-Vaught decompositions
and for equivalent formulas in Gaifman normal form. This supports former observations that
in many aspects FO2 is better behaved than FO3. For instance, in contrast to FO3 it has
a finite model property and satisfiability is decidable in NEXP [18]. We also prove (non-
matching) lower bounds of the form cf(n) (for any constant c and any function f(n) ∈ o(√n))
for both Feferman-Vaught decompositions and equivalent formulas in Gaifman normal form
for FO2.

An extended abstract of this paper appeared as [19].

2 Preliminaries

For i, j ∈ Z let [i, j] be the interval [i, i + 1, . . . , j]. By N def= {0,1, . . .} we denote the non-
negative integers. For a set X we denote by bool(X) the set of boolean formulas with
variables ranging over X. Let u = u1⋯uk ∈ Σ∗ with ui ∈ Σ for each i ∈ [1, k]. By ∣u∣ def= k we
denote the length of u. The tower function Tower ∶ N ×N → N is defined as Tower(0, n) def= n

and Tower(` + 1, n) def= 2Tower(`,n) for each `, n ∈ N. A function f ∶ N → N is elementary
if it can be formed from the successor function, addition, subtraction, and multiplication
using compositions, projections, bounded additions and bounded multiplications (of the form
∑z≤y g(x, z) and ∏z≤y g(x, z)). We will sometimes use the fact that for each elementary
function f ∶ N→ N there exist some h0 ∈ N such that f(h) < Tower(h,2) for each h ≥ h0.

2.1 Kripke frames and structures

Let us fix a countable set of action labels A and a countable set of propositional variables P.
For a finite set A ⊆ A of action labels, an A-frame is a tuple F = (W,{ aÐ→∣ a ∈ A}), where W
is set of worlds and

aÐ→ ⊆ W ×W is a binary (accessibility) relation over W for each a ∈ A.
Most of the time we write v

aÐ→ w instead of (v,w) ∈ aÐ→. We say that F is a tree if

• W ⊆ U∗ is a prefix-closed set of words for some set U ,

• aÐ→ ∩ bÐ→ = ∅ for each a, b ∈ A with a /= b, and

• for all v,w ∈ W , we have v
aÐ→ w for some a ∈ A if and only if there exists u ∈ U with

w = vu.

We say that F is finite if W is finite. In case F is a finite tree, the height of F is defined as
max{∣w∣ ∣ w ∈W}.

An (A,P)-Kripke structure (or (A,P)-structure for short), for a finite set A ⊆ A of action
labels and a finite set P ⊆ P of propositional variables, is a tuple S = (W,{ aÐ→∣ a ∈ A},{Wp ∣
p ∈ P}), where (W,{ aÐ→∣ a ∈ A}) is an A-frame and Wp ⊆ W is an interpretation for each

propositional variable p ∈ P. By F(S) def= (W,{ aÐ→∣ a ∈ A}) we denote the underlying A-frame
of S. We say that S is a tree structure (or simply a tree) if F(S) is isomorphic to a tree.
By ∣S∣ = ∣W ∣ we denote the size of S. For s ∈ W let NS(s) def= {u ∈ W ∣ ∃a ∈ A ∶ s aÐ→ u}

4

be the set of successors of s in S. A pointed (A,P)-structure is a pair (S, s) where S is
an (A,P)-structure and s is a world of S. We identify a tree structure S with the pointed
(A,P)-structure (S, r), where r is the root of S. An ({a},P)-structure is also called unimodal
and we write (W, aÐ→,{Wp ∣ p ∈ P}) instead of (W,{ aÐ→},{Wp ∣ p ∈ P}).

2.2 Multimodal logic

Formulas of multimodal logic are defined by the following grammar, where a (resp., p) ranges
over A (resp., P):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◇a ϕ

We introduce the usual abbreviations ⊺ = p∨¬p for some p ∈ P, � = ¬⊺, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2),
and ◻aϕ = ¬◇a ¬ϕ. We say that ϕ is over (A,P) if the set of action labels (resp., the set of
propositional variables) that appear in ϕ is a subset of A (resp., P). For an (A,P)-structure
S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}), w ∈ W , and a multimodal logic formula ϕ over (A,P),
we define the satisfaction relation (S,w) ⊧ ϕ by structural induction on ϕ, where a ∈ A and
p ∈ P:

(S,w) ⊧ p def⇔ w ∈Wp

(S,w) ⊧ ¬ϕ def⇔ (S,w) /⊧ ϕ

(S,w) ⊧ ϕ1 ∧ ϕ2
def⇔ (S,w) ⊧ ϕ1 and (S,w) ⊧ ϕ2

(S,w) ⊧ ◇aϕ
def⇔ ∃w′ ∶ w aÐ→ w′ and (S,w′) ⊧ ϕ

Let ϕ be a multimodal logic formula over (A,P). An (A,P)-structure S is a model of ϕ if
(S,w) ⊧ ϕ for some world w of S. We say that ϕ is satisfiable if ϕ has a model.

If ϕ is a boolean formula with propositional variables from P ⊆ P and α ∶ P → {0,1} then
we write α ⊧ ϕ if ϕ evaluates to 1 if every propositional variable p ∈ P is replaced by the truth
value α(p).

2.3 Asynchronous products

Fix non-empty, finite, and pairwise disjoint sets A1, . . . ,Ad ⊆ A of action labels and non-
empty, finite, and pairwise disjoint sets P1, . . . ,Pd ⊆ P of propositional variables. Let A =
⋃i∈[1,d] Ai and P = ⋃i∈[1,d] Pi. For Ai-frames Fi = (Wi,{

aÐ→i∣ a ∈ Ai}) (i ∈ [1, d]) we define the

asynchronous product ∏i∈[1,d] Fi
def= (W,{ aÐ→∣ a ∈ A}) to be the A-frame, where

• W = ∏i∈[1,d]Wi, and

• for each v = ⟨v1, . . . , vd⟩ ∈ W and w = ⟨w1, . . . ,wd⟩ ∈ W we have v
aÐ→ w if and only if

there is some i ∈ [1, d] such that a ∈ Ai, vi
aÐ→i wi and vj = wj for each j ∈ [1, d] ∖ {i}.

An (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) is an uninterpreted product structure
if F(S) = ∏i∈[1,d] Fi, where each Fi is some Ai-frame. Thus, we do not make any restrictions
on how atomic propositions are interpreted.

Next, let us define interpretations of atomic propositions in products, as introduced in [13].
A (product) interpretation is a mapping σ ∶ P → bool(P), that is, a mapping from the set of

5

propositions to boolean formulas over that set. In our lower bound proofs in Section 3, σ will
be the identity interpretation id with id(p) = p for all p ∈ P. Let

Si = (Wi,{
aÐ→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi})

be an (Ai,Pi)-structure for i ∈ [1, d]. For an interpretation σ, their σ-product ∏σ
i∈[1,d] Si is

defined as the (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) such that

• F(S) = ∏i∈[1,d] F(Si) and

• ⟨w1, . . . ,wd⟩ ∈Wp if and only if α ⊧ σ(p), where α(q) = 1 if and only if wi ∈Wq,i for each
i ∈ [1, d] and q ∈ Pi.

If no interpretation is given, we define ∏i∈[1,d] Si
def= ∏id

i∈[1,d] Si. Since we mainly deal with
the case d = 2 and σ = id, let us repeat the above definition of the σ-product in this case:
∏id
i∈[1,2] Si is defined as the (A,P)-structure S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) such that

• F(S) = F(S1) × F(S2) and

• ⟨w1,w2⟩ ∈Wp if and only if either p ∈ P1 and w1 ∈Wp,1 or p ∈ P2 and w2 ∈Wp,2.

In case (Si, si) is a pointed (Ai,Pi)-structure for each i ∈ [1, d], then by ∏σ
i∈[1,d](Si, si)

we denote the pointed structure (∏σ
i∈[1,d] Si, ⟨s1, . . . , sd⟩).

2.4 Many-dimensional modal logic

Given (A,P) with A = ⊎i∈[1,d] Ai and P = ⊎i∈[1,d] Pi, a Kd(A,P)-formula is a multimodal
formula ϕ over the signature (A,P). For a Kd(A,P)-formula ϕ and i ∈ [1, d], we define
ranki(ϕ) inductively

ranki(p) def= 0 p ∈ P

ranki(¬ϕ) def= ranki(ϕ)
ranki(ϕ1 ∧ ϕ2) def= max{ranki(ϕ1), ranki(ϕ)2}

ranki(◇aϕ) def= ranki(ϕ) if a ∉ Ai

ranki(◇aϕ) def= ranki(ϕ) + 1 if a ∈ Ai

and the switching depth of ϕ as min{ranki(ϕ) ∣ 1 ≤ i ≤ d} [16].
An uninterpreted product model of ϕ is an uninterpreted product structure S (in the above

sense) such that for some world w of S we have (S,w) ⊧ ϕ. For an interpretation σ, a σ-
model is a σ-product structure S such that (S,w) ⊧ ϕ for some world w of S. We say ϕ
is uninterpreted satisfiable (resp., σ-satisfiable) if ϕ has an uninterpreted (resp., σ-) product
model. Let us introduce the following decision problems.

Kd-SAT

INPUT: A Kd(A,P)-formula ϕ.
QUESTION: Is ϕ uninterpreted satisfiable?

We introduce the corresponding variant in the presence of an interpretation σ of the
atomic propositions.

6

Kd
σ-SAT

INPUT: A Kd(A,P)-formula ϕ.
QUESTION: Is ϕ σ-satisfiable?

The first problem (and variants thereof) were intensively studied in the past, for an
overview consult [5]. In particular, it is well-known that K2-SAT is decidable in nonele-
mentary time.

The second problem, Kd
σ-SAT is less standard but is more useful for our purposes. Indeed,

it is not hard to show that Kd(A,P)-SAT is at least as difficult as Kd
σ(A,P)-SAT as stated

in the following proposition which be technically useful in Sections 3 and 4. It can be shown
for an arbitrary interpretation σ, but we will only need the case σ = id.

Proposition 1. There is a polynomial time many-one reduction from Kd
id-SAT to Kd-SAT

which preserves the switching depth. The reduction still holds when restricted to any frame
class.

Proof. Let A = ⊎i∈[1,d] Ai be the set of action labels and let P = ⊎i∈[1,d] Pi be the set of atomic
propositions, and let ϕ be some formula over (A,P).

The idea is to give a formula χ that admits only models which are id-product structures,
in particular, ϕ is id-satisfiable if and only if ϕ ∧ χ is satisfiable.

We need the following definition: The set of modal sequences ms(ψ) ⊆ A∗ of a formula ψ
is inductively defined as follows:

• ms(p) def= {ε} for each p ∈ P,

• ms(¬ψ) def= ms(ψ),

• ms(ψ1 ∧ ψ2) def= ms(ψ1) ∪ms(ψ2),

• ms(◇aψ) def= ({a}ms(ψ)) ∪ {ε}.

We note that ms(ψ) is prefix closed, that ∣ms(ϕ)∣ ≤ ∣ϕ∣, and that the maximal length of an
element of ms(ϕ) is the modal rank of ϕ. If w = a1⋯an ∈ A∗ we denote with ◻w the sequence
of boxes ◻a1⋯◻an . Particularly, ◻ε is the empty sequence of boxes. Moreover, define the
relation

wÐ→ def= a1Ð→ ○ a2Ð→ ○⋯○ anÐ→.
For i ∈ [1, d] and a word s ∈ A∗ let s ∖ i ∈ (A ∖ Ai)∗ be the word that results from s by

removing all occurrences of all symbols from Ai and let s↾i ∈ A∗
i be the word that results from

s by removing all occurrences of all symbols from A ∖Ai. We define the following formula χ:

χ
def= ⋀

i∈[1,d]
⋀

s∈ms(ϕ)
⋀
p∈Pi

◻s↾i((p→ ◻s∖i p) ∧ (◇s∖i p→ p))

We define ϕ′ def= ϕ ∧ χ.
Note that ϕ′ has the same switching depth as ϕ and can be constructed in polynomial time

from ϕ. Therefore it suffices to show that ϕ is id-satisfiable if and only if ϕ′ is uninterpreted
satisfiable.

Since every id-product satisfies χ, it follows that ϕ′ is uninterpreted satisfiable if ϕ is
id-satisfiable. For the other direction let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) be an (A,P)-
structure such that F(S) = Πi∈[1,d]Fi where Fi = (Wi,{

aÐ→∣ a ∈ Ai}) is an Ai-frame for

7

each i ∈ [1, d] and assume that (S,w0) ⊧ ϕ ∧ χ for some w0 ∈ W . In particular, we have
W = ∏i∈[1,d]Wi. Let

WR = {w ∈W ∣ ∃s ∈ ms(ϕ) ∶ w0
sÐ→ w}.

We define for each i ∈ [1, d] an (Ai,Pi)-structure Si = (Wi,{
aÐ→∣ a ∈ Ai},{Vp ∣ p ∈ Pi}) with

F(Si) = Fi such that (∏id
i∈[1,d] Si,w0) ⊧ ϕ. For giving the interpretations Vp we need the

following statement:

Claim 1. For all v,w ∈WR, i ∈ [1, d], and p ∈ Pi, if v(i) = w(i) then (v ∈Wp⇔ w ∈Wp).
Proof of Claim 1. Since v,w ∈WR there exist s, t ∈ ms(ϕ) such that

w0
sÐ→ v and w0

tÐ→ w.

Since we have a product model and v(i) = w(i), there exists some u with

w0
t↾iÐ→ u, w0

s↾iÐ→ u, u
s∖iÐ→ v, u

t∖iÐ→ w.

Since (S,w0) ⊧ χ, we get v ∈ Wp ⇒ u ∈ Wp ⇒ w ∈ Wp and analogously w ∈ Wp ⇒ v ∈ Wp,
which proves Claim 1.

Let us define for all p ∈ Pi

Vp = {w(i) ∈Wi ∣ w ∈WR ∩Wp}.

With Claim 1, we get for all w ∈WR:

w ∈Wp ⇔ w(i) ∈ Vp (1)

It remains to show that (∏id
i∈[1,d] Si,w0) ⊧ ϕ. For a sequence s ∈ ms(ϕ) let subs(ϕ) be the set

of all subformulas ψ of ϕ such that in the syntax tree for ϕ there exists a path to an occurrence
of ψ such that s is the sequence of modalities along this path. We prove by induction on the
structure of a subformula ψ ∈ subs(ϕ) that for all w ∈WR with w0

sÐ→ w:

(S,w) ⊧ ψ ⇔ (
id

∏
i∈[1,d]

Si,w) ⊧ ψ.

For the induction base consider a propositional variable p ∈ P and assume that p ∈ Pi and let
w ∈WR. We get:

(S,w) ⊧ p ⇔ w ∈Wp
(1)
⇔ w(i) ∈ Vp ⇔ (

id

∏
i∈[1,d]

Si,w) ⊧ p

For the induction step, the operators ∧ and ¬ are straightforward. Finally, let ψ = ◇aθ ∈
subs(ϕ) and assume that w0

sÐ→ w. Hence, θ ∈ subsa(ϕ). We have:

(S,w) ⊧ ◇aθ ⇔ ∃w′ ∶ w aÐ→ w′ ∧ (S,w′) ⊧ θ
hyp⇔ ∃w′ ∶ w aÐ→ w′ ∧ (

id

∏
i∈[1,d]

Si,w
′) ⊧ θ

⇔ (
id

∏
i∈[1,d]

Si,w) ⊧ ◇aθ

8

Since ϕ ∈ subε(ϕ), and w0
εÐ→ w0, this shows that (∏id

i∈[1,d] Si,w0) ⊧ ϕ.
Overall, we have given a reduction from Kd

id-SAT to Kd-SAT. Note that the constructed
formula ϕ′ has the same switching depth as ϕ. ⊓⊔

Note that the proof of this proposition does not make any assumption about the underlying
structures. In particular, this implies that Proposition 1 holds also for restricted frame classes,
e.g., transitive frames.

2.5 Bisimulation equivalence

Let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣ p ∈ P}) and S′ = (W ′,{ aÐ→′ ∣ a ∈ A},{W ′
p ∣ p ∈ P}) be two

(A,P)-structures. A bisimulation between S and S′ is a binary relation R ⊆ W ×W ′ such
that for each (s, s′) ∈ R the following holds:

(1) s ∈Wp if and only if s′ ∈W ′
p for all p ∈ P,

(2) for each s
aÐ→ t there exists s′

aÐ→′ t′ such that (t, t′) ∈ R, and

(3) for each s′
aÐ→′ t′ there exists s

aÐ→ t such that (t, t′) ∈ R.

In case there is a bisimulation R between S and S′ with (s, s′) ∈ R we say that (S, s) is
bisimilar to (S′, s′) and write (S, s) ∼ (S′, s′) or, in case S and S′ are clear from the context,
s ∼ s′. It is well-known that modal logic cannot distinguish between bisimilar structures, i.e.,
if (S, s) ∼ (S′, s′) then (S, s) ⊧ ϕ if and only if (S′, s′) ⊧ ϕ for all modal logic formulas over
(A,P), see for instance [1]. The following proposition (which is straightforward to prove) lifts
this statement to many-dimensional modal logics, i.e., modal logic formulas cannot distinguish
between interpreted products structures whose components are bisimilar.

Proposition 2. Let A = ⋃di=1 Ai, P = ⋃di=1 Pi and for each i ∈ [1, d] assume two pointed
(Ai,Pi)-structures (Si,wi) and (S′

i,w
′
i) with (Si,wi) ∼ (S′

i,w
′
i). Then for every interpre-

tation σ ∶ P → bool(P) we have (∏σ
i∈[1,d] Si, ⟨w1, . . . ,wd⟩) ∼ (∏σ

i∈[1,d] S
′
i, ⟨w′

1, . . . ,w
′
d⟩). In

particular (∏σ
i∈[1,d] Si, ⟨w1, . . . ,wd⟩) and (∏σ

i∈[1,d] S
′
i, ⟨w′

1, . . . ,w
′
d⟩) satisfy the same Kd(A,P)-

formulas.

Proof. Assume Si = (Wi,{
aÐ→i∣ a ∈ Ai},{Wp,i ∣ p ∈ Pi}) and S′

i = (W ′
i ,{

aÐ→i′ ∣ a ∈ Ai},{W ′
p,i ∣

p ∈ Pi}), let σ ∶ P→ bool(P) be an arbitrary interpretation, and let S = (W,{ aÐ→∣ a ∈ A},{Wp ∣
p ∈ P}) and S′ = (W ′,{ aÐ→′ ∣ a ∈ A},{W ′

p ∣ p ∈ P}) be their respective σ-product. Assume
Ri ⊆ Wi ×W ′

i is a bisimulation between Si and S′
i with (wi,w′

i) ∈ Ri for each i ∈ [1, d]. We
claim that

R = {(⟨u1, . . . , ud⟩, ⟨u′1, . . . , u′d⟩) ∣ ∀i ∈ [1, d] ∶ (ui, u′i) ∈ Ri}

is a bisimulation. For this, let u = ⟨u1, . . . , ud⟩ ∈ ∏i∈[1,d]Wi and u′ = ⟨u′1, . . . , u′d⟩ ∈ ∏i∈[1,d]W
′
i

with (u,u′) ∈ R. Hence ui ∼ u′i and thus ui ∈Wp,i⇔ u′i ∈W ′
p,i for each p ∈ Pi and each i ∈ [1, d].

By definition of interpreted product structures, we get u ∈Wp if and only if u′ ∈W ′
p for each

p ∈ P. This establishes point (1) of R being a bisimulation. For proving point (2), let us
assume u

aÐ→ v, where v = ⟨v1, . . . , vd⟩ ∈ ∏i∈[1,d]Wi. Then there exists some i ∈ [1, d] such that

a ∈ Ai, ui
aÐ→ vi and vj = uj for all j ∈ [1, d] ∖ {i}. Since (ui, u′i) ∈ Ri and ui

aÐ→ vi there exists
some v′i ∈W ′

i such that u′i
aÐ→′ v′i and (vi, v′i) ∈ Ri. Choose v′ = ⟨v′1, . . . , v′d⟩, where v′j = vj for

9

each j ∈ [1, d] ∖ {i} and v′i as mentioned above. Hence from (vj , v′j) ∈ Rj for each j ∈ [1, d] it

follows (u′, v′) ∈ R by definition of R. Moreover we have v
aÐ→′ v′, thus point (2) follows. Point

(3) can be proven analogously. In particular, we have (S, ⟨w1, . . . ,wd⟩) ∼ (S′, ⟨w′
1, . . . ,w

′
d⟩)

and, thus, (S, ⟨w1, . . . ,wd⟩) and (S′, ⟨w′
1, . . . ,w

′
d⟩) satisfy the same Kd(A,P)-formulas. ⊓⊔

3 K2-SAT is hard

The goal of this section is to show a nonelementary lower bound for K2-SAT. As a nonele-
mentary upper bound is already known, we close the complexity gap for this problem. By
Proposition 1 it suffices to show hardness for K2

id-SAT. As a necessary preliminary step we
show how to enforce (nonelementarily) big models in K2

id. Using this, we prove via a standard
reduction from an appropriate tiling problems that K2

id-SAT is nonelementary.
In this section, we will only deal with id-products of two structures S and S (over disjoint

sets of propositions and actions). To simplify notation we write S ×S for S ×id S.
Recall the tower function Tower ∶ N×N→ N defined as Tower(0, n) = n and Tower(`+1, n) =

2Tower(`,n) for each `, n ∈ N. In this section, we construct a family {ϕ`,n ∣ `, n ≥ 1} of K2(A,P)-
formulas (A and P are specified later) such that for each `, n ∈ N the following hold:

(i) P = Pn ⊎ Pn, where Pn is to be defined and Pn is a disjoint copy of Pn,

(ii) A = {a} ⊎ {a},

(iii) ∣ϕ`,n∣ ≤ exp(`) ⋅ poly(n), and

(iv) if (S ×S, ⟨s, s⟩) ⊧ ϕ`,n, then ∣S∣, ∣S∣ ≥ Tower(`, n).

Informally speaking, our intention is that if ` ≥ 1 and (S × S, ⟨s, s⟩) ⊧ ϕ`,n then (S, s)
(resp., (S, s)) will be bisimilar to a particular tree over ({a},Pn) (resp., ({a},Pn) that will
encode a value in the interval [0,Tower(` + 1, n) − 1] and whose root has Tower(`, n) chil-
dren. When ` = 0 we will use single-node trees to encode values in the interval [0,2n − 1] =
[0,Tower(1, n) − 1].

Let us describe in detail how we encode values in the interval [0,Tower(` + 1, n) − 1] by
trees over the signature ({a},Pn), where

Pn
def= {b0, . . . ,bn−1,b,minb,min←b ,min¬b,min←¬b}.

Definition 3. In case ` = 0 we encode a value j from the interval [0,2n−1] = [0,Tower(1, n)−
1] by using the following single-node tree that we call Υ(0)

0,n(j): It consists of a single node
v that is (only) labeled with the subset X of the propositions {b0, . . . ,bn−1} such that j =
∑bi∈X 2i ∈ [0,2n−1]. By Υ(1)

0,n(j) we denote the single-node tree that one obtains from Υ(0)
0,n(j)

by additionally labeling v with b.
For ` > 0 we inductively encode a value j from the interval [0,Tower(` + 1, n) − 1] by the

following tree Υ(0)
`,n(j) that arises as follows:

(i) Let I ⊆ [0,Tower(`, n) − 1] be the unique set such that j = ∑i∈I 2i and take the disjoint
union of a root r and all trees from the set

U = {Υ(1)
`−1,n(i) ∣ i ∈ I} ∪ {Υ(0)

`−1,n(i) ∣ i /∈ I}.

10

r

v0

b

min←¬b

minb

v1

b0

b

min←¬b

v2

b1

b

min←¬b

v3

b0b1

b

min←¬b

v4

b2

min¬b

v5

b0b2

b

v6

b1b2

v7

b0b1b2

b

Figure 1: The tree Υ(0)
1,3(175) with root r.

(ii) Draw an a-transition from r to the root of each tree in U . Hence r has Tower(`, n)
children.

(iii) For the propositions minb and min←b , proceed as follows: If I /= ∅, then define mb =
min(I); otherwise set mb = Tower(`, n). If mb < Tower(`, n), then add the label minb to
the root of Υ(1)

`−1,n(mb) ∈ U . Moreover, add the label min←b to the root of Υ(0)
`−1,n(m

′) ∈ U
for every m′ ∈ [0,mb − 1].

(iv) For the propositions min¬b and min←¬b, proceed as follows: If I ≠ [0,Tower(`, n)−1], define
m¬b = min([0,Tower(`, n)−1]∖I); otherwise set m¬b = Tower(`, n). If m¬b < Tower(`, n),
then add the label min¬b to the root of Υ(0)

`−1,n(m¬b) ∈ U . Moreover, add the label min←¬b

to the root of Υ(1)
`−1,n(m

′) ∈ U for every m′ ∈ [0,m¬b − 1].

Let Υ(1)
`,n(j) denote the tree that one obtains from Υ(0)

`,n(j) by adding the label b to its root.

Figure 1 shows the tree Υ(0)
1,3(175). First observe that the root r has 8 = 23 = Tower(1,3)

successors v0, . . . , v7. Next note that in each vi the evaluation of the propositions bj (j ∈ [0,2])
gives a binary number equal to i. For instance, in v4 only b2 is true, hence the corresponding
binary number encodes 4. As indicated, the evaluation of b at the children of r gives rise to the
binary number 11110101 (least significant bit to the left) which equals 175. By definition, minb

(resp., min¬b) holds in the minimal position where b holds (resp., does not hold) and min←b
(resp., min←¬b) holds in all positions left of minb (resp., min¬b). These auxiliary propositions
will be useful for enforcing the successor relation. For example, observe that the labelings
of b in Υ(0)

(1,3)(175) and Υ(0)
(1,3)(176), depicted in Figure 2, differ only on positions that were

labeled with min¬b and min←¬b in Figure 1.
It is worth mentioning that the defined trees Υ`,n(j) are similar to the trees T (j) intro-

duced in [20, Chapter 10] and used for example in [12]. In particular, they both represent
the number j and have small depth, but high outdegree. However, there are some differences.
Note first that the root of T (j) has a child for those numbers i such that the i-th bit in
j is 1. In contrast, the root of Υ`,n(j) has, independent of j, Tower(` − 1, n) children each
corresponding to one bit position and the bits set to 1 are marked with the proposition b.
Moreover, as we use two-dimensional modal logic instead of first-order logic as in [20] to
enforce our trees, we face two problems: First, we cannot enforce them up to isomorphism
but only up to bisimulation equivalence. Second, as the logic is much weaker, we need some
auxiliary propositional variables (or unary predicates). The particular difficulty is expressing

11

r

v0

min¬b

min←b

v1

b0

min←b

v2

b1

min←b

v3

b0b1

min←b

v4

b2

b

minb

v5

b0b2

b

v6

b1b2

v7

b0b1b2

b

Figure 2: The tree Υ(0)
1,3(176) with root r.

a “less-than” or “successor” predicate and it seems impossible to do this without the auxiliary
propositions, already for ` = 1.

Conventions. In the following, let Υ
(β)
`,n (j) denote the corresponding copy of Υ(β)

`,n (j) over the

signature ({a},Pn), i.e. the tree that one obtains from the tree Υ(β)
`,n (j) by replacing every

action label a by a and every proposition p ∈ Pn by p ∈ Pn. For simplicity, we write ◇,◻,◇,◻
for the modalities ◇a,◻a,◇a,◻a, respectively.

We say that a tree T is an extension of Υ(β)
`,n (j) if T evolves from Υ(β)

`,n (j) by adding an
arbitrary subset (possibly empty) of {b,minb,min←b ,min¬b,min←¬b} to the root of T. Note that

in particular Υ(1)
`,n(j) is an extension of Υ(0)

`,n(j). Extensions of Υ
(b)
`,n(j) are defined analogously.

Before we define the formulas ϕ`,n, we introduce auxiliary formulas eq`,n, first`,n, last`,n,
and succ`,n whose names indicate their meaning on the asynchronous (id-)product of two trees

that are extensions of Υ(0)
`,n(j1) and Υ

(0)
`,n(j2), respectively, where j1, j2 ∈ [0,Tower(`+1, n)−1].

For ` = 0 they are defined as follows:

eq0,n
def= ⋀

i∈[0,n−1]
bi ↔ bi

first0,n
def= ⋀

i∈[0,n−1]
¬bi ∧ ¬bi

last0,n
def= ⋀

i∈[0,n−1]
bi ∧ bi

succ0,n
def= ⋁

i∈[0,n−1]
(¬bi ∧ bi ∧ ⋀

j∈[0,i−1]
(bj ∧ ¬bj) ∧ ⋀

j∈[i+1,n−1]
bj ↔ bj)

For ` > 0 we define them as follows:

eq`,n
def= ◻◻(eq`−1,n → (b↔ b))

first`,n
def= ◻¬b ∧ ◻¬b

last`,n
def= ◻b ∧ ◻b

succ`,n
def= ◇¬b ∧ ◻◻(eq`−1,n → ((min¬b ↔ minb) ∧ ((¬min←¬b ∧ ¬min¬b) → (b↔ b))))

The following lemma shows that the formulas indeed express what they suggest to express.
Recall that we identify a tree T with the pointed structure (T, r), where r is the root of T.

12

Hence, in the following lemma T × T is identified with the pointed structure (T × T, ⟨r, r⟩),
where r (resp., r) is the root of T (resp., T).

Lemma 4. Let `, n ≥ 0, let j1, j2 ∈ [0,Tower(` + 1, n) − 1] and let T and T be an extension of
Υ(0)
`,n(j1) and Υ

(0)
`,n(j2), respectively. Then the following holds:

(a) T ×T ⊧ eq`,n if and only if j1 = j2.

(b) T ×T ⊧ first`,n if and only if j1 = j2 = 0.

(c) T ×T ⊧ last`,n if and only if j1 = j2 = Tower(` + 1, n) − 1.

(d) T ×T ⊧ succ`,n if and only if j2 = j1 + 1.

Proof. We show the statement by induction on `. Let T and T be as in the lemma. We
assume w.l.o.g. that T = Υ(0)

`,n(j1) and T = Υ
(0)
`,n(j2): Each of the formulas eq`,n, first`,n, last`,n

and succ`,n holds in Υ(0)
`,n(j1) ×Υ

(0)
`,n(j2) if and only if it holds in T ×T.

In the following let r and r denote the root of Υ(0)
`,n(j1) and of Υ

(0)
`,n(j2), respectively.

For the induction base let ` = 0. For (a) we have (Υ(0)
`,n(j1) ×Υ

(0)
`,n(j2)) ⊧ eq0,n if and only

if (bi holds in r ⇔ bi holds in r) for all i ∈ [0, n − 1] if and only if j1 = j2. Both (b) and (c)

can be proven in analogy to (a). For (d) we have (Υ(0)
`,n(j1) ×Υ

(0)
`,n(j2)) ⊧ succ0,n if and only

if there is some i ∈ [0, n − 1] such that r does not satisfy bi, r satisfies bi, r satisfies bj and r
does not satisfy bj for each j ∈ [0, i− 1] and moreover (r satisfies bj ⇔ r satisfies bj) for each
j ∈ [i + 1, n − 1]. The latter is equivalent to j2 = j1 + 1.

For the induction step let ` > 0. The cases (a), (b) and (c) are straightforward. Let
us prove case (d). For j ∈ [0,Tower(`, n) − 1] let cj , dj ∈ {0,1} such that Υ(cj)

`−1,n(j) (resp.,

Υ
(dj)
`−1,n(j)) is a subtree of T (resp., T). The formula succ`,n states the following:

• There is a j ∈ [0,Tower(`, n) − 1] such that cj = 0.

• If j0 is the minimal j ∈ [0,Tower(`, n) − 1] such that cj = 0, then j0 is also the minimal
j ∈ [0,Tower(`, n) − 1] such that dj = 1.

• For all j0 < j < Tower(`, n) we have cj = dj .

These conditions are equivalent to

1 +
Tower(`,n)−1

∑
j=0

cj2j =
Tower(`,n)−1

∑
j=0

dj2j ,

i.e., j2 = j1 + 1. ⊓⊔

Now we give a family of formulas ϕ`,n with the idea that for every model (S ×S, ⟨s, s⟩)
of ϕ`,n there exists some j ∈ [0,Tower(`+ 1, n) − 1] such that (S, s) ∼ T and (S, s) ∼ T, where

T (resp. T) is an extension of Υ(0)
`,n(j) (resp., Υ

(0)
`,n(j)).

Definition 5. Set ϕ0,n = eq0,n ∧◻� ∧◻� and for each ` ≥ 1 define ϕ`,n, by induction on `, as
the conjunction of the following formulas:

13

(1) ⋀
i∈[0,n−1]

¬bi ∧ ¬bi

(2) ◻◇ϕ`−1,n

(3) ◻◇ ϕ`−1,n

(4) ◇◇(ϕ`−1,n ∧ first`−1,n)

(5) ◻(◻¬last`−1,n →◇succ`−1,n)

(6) ◻◻(eq`−1,n → ⋀
p∈Pn

(p↔ p))

(7) ◇(min¬b ∨min←¬b) ∧ ◇(minb ∨min←b)

(8) ◻(((min¬b ∨min←b) → ¬b) ∧ ((min←¬b ∨minb) → b)))

(9) ◻◻(succ`−1,n → ⋀
x∈{b,¬b}

((minx ∨min←x) ↔ min←x)))

We are now ready to present our main theorem. Roughly speaking, it states that ϕ`,n
enforces structures bisimilar to the product of extensions of Υ(0)

`,n(j) and Υ
(0)
`,n(j) for some j.

Theorem 6. For every ` ≥ 0 the following holds:

(a) (S ×S, ⟨s, s⟩) ⊧ ϕ`,n if and only if there exists j ∈ [0,Tower(` + 1, n) − 1] such that (S, s)
is bisimilar to some extension of Υ(0)

`,n(j) and (S, s) is bisimilar to some extension of

Υ
(0)
`,n(j).

(b) ∣ϕ`,n∣ ≤ 3` ⋅ poly(`, n) and the formula ϕ`,n is computable in time 3` ⋅ poly(`, n).

(c) The switching depth of ϕ`,n is `.

Before giving the complete formal proof of Theorem 6, we want to give some intuition.
Parts (b) and (c) are straightforward consequences of the definition of ϕ`,n. For Part (a)
observe first that ϕ`,n is satisfiable: it is not hard to verify that the product of (any extension

of) Υ(0)
`,n(j) and (any extension of) Υ

(0)
`,n(j) satisfies ϕ`,n. The difficult part is to show that

ϕ`,n enforces such models, i.e., each model of ϕ`,n is of the form T ×T, where T (resp., T) is

bisimilar to an extension of Υ(0)
`,n(j) (resp., an extension of Υ

(0)
`,n(j)) for some j. Obviously,

this is the case for ϕ0,n.
For ` > 0, let (S×S, ⟨s, s⟩) ⊧ ϕ`,n. By induction, formula (2) implies that for each successor

t of s it holds that (S, t) is bisimilar to an extension of Υ(0)
`−1,n(i) for some i. Formula (3)

implies the analogous property for every successor t of s.
Given this, formulas (3)-(5) together with Lemma 4 imply that for every i ∈ [0,Tower(`, n)−

1] there is a child si of s such that (S, si) is bisimilar to an extension of Υ(0)
`−1,n(i) and, anal-

ogously, there is a child si of s such that (S, si) is bisimilar to an extension of Υ
(0)
`−1,n(i): By

formula (4) and Lemma 4, there are such s0 and s0. The existence of s0 and formula (5)
imply the existence of s1. Formula (3) implies that there is some s1, and we can repeat the
argument using formulas (5) and (3).

14

Observe now that, in principle, there might be children si ≠ s′i of s such that (S, si)
and (S, s′i) are bisimilar to different extensions of Υ(0)

`−1,n(i). This is ruled out by applying
formula (6) twice: For any proposition p ∈ Pn we have: p is satisfied in (S, si) if and only if
p is satisfied in (S, si) if and only if p is satisfied in (S, s′i). Hence, we can talk about the
children si and si, respectively. Of course, children of s and s can appear numerous times as
copies.

The children si and si encode binary numbers N and N , respectively, in the natural way:
The i-th bit1 of N is 1 if and only if (S, si) satisfies b and analogously for N . Note that
formula (6) implies that N = N .

Finally, formulas (7)-(9) ensure that the children si and si are labeled with the propositions
minb,min¬b,min←b ,min←¬b and minb,min¬b,min←b ,min←¬b, respectively, in a way such that (S, s)
is bisimilar to an extension of Υ(0)

`,n(N) and (S, s) is bisimilar to an extension of Υ
(0)
`,n(N).

This is actually the most subtle part of the following proof of Theorem 6.

Proof of Theorem 6. Part (c) is an immediate consequence of Definition 5.

We show Part (b) by induction on ` starting with ` = 0. For ϕ0,n = ⋀i∈[0,n−1] bi ↔ bi ∧◻�∧◻�
the statement is trivial. Let now be ` > 0. The formula ϕ`−1,n occurs 3 times in ϕ`,n. The
auxiliary formulas succ`−1,n, eq`−1,n, last`−1,n, and first`−1,n are all polynomially sized in ` and
n. Thus, overall we get ∣ϕ`,n∣ = 3 ⋅ ∣ϕ`−1,n∣+poly(`, n). Thus, we obtain by induction hypothesis
∣ϕ`,n∣ = 3` ⋅ poly(`, n).
Let us finally prove Part (a). With (1), (2), . . . , (9) we refer to the formulas from Definition 5.

If: We prove the “if”-direction by induction on `.
For the induction base, assume ` = 0. Assume some j ∈ [0,Tower(1, n)−1] = [0,2n−1] such

that (S, s) is bisimilar to some extension of Υ(0)
0,n(j) and (S, s) is bisimilar to some extension

of Υ
(0)
0,n(j). It is clear that (S ×S, ⟨s, s⟩) ⊧ ◻� ∧ ◻�. Moreover, Proposition 2 and point (a)

of Lemma 4 imply that (S ×S, ⟨s, s⟩) ⊧ eq0,n. Hence (S ×S, ⟨s, s⟩) ⊧ ϕ0,n.
For the induction step, assume ` ≥ 1. Let j be arbitrary in [0,Tower(`+1, n)−1] and assume

(S, s) is bisimilar to some extension of Υ(0)
`,n(j) and (S, s) is bisimilar to some extension of

Υ
(0)
`,n(j). By Proposition 2, it is sufficient to show that Υ(0)

`,n(j) ×Υ
(0)
`,n(j) ⊧ ϕ`,n. Let r (resp.,

r) be the root of Υ(0)
`,n(j) (resp., Υ

(0)
`,n(j)).

Clearly, formula (1) holds in Υ(0)
`,n(j) ×Υ

(0)
`,n(j) as neither Υ(0)

`,n(j) satisfies any bi nor does

Υ
(0)
`,n(j) satisfy any proposition bi.

For formula (2) let t be any child of r By Definition 3, the subtree T rooted in t is an
extension of Υ(0)

`−1,n(i) for some i ∈ [0,Tower(`, n) − 1]. Also by Definition 3, there is a child t

of r such that the subtree T rooted in t is an extension of Υ
(0)
`−1,n(i). By induction hypothesis,

we have T ×T ⊧ ϕ`−1,n. Formula (3) holds for analogous reasons.
By Definition 3, there is a child t (resp., t) of r (resp., r) such that the subtree T (resp.,

T) rooted in t (resp., t) is an extension of Υ(0)
`−1,n(0) (resp., Υ

(0)
`−1,n(0)). Point (b) of Lemma 4

implies T ×T ⊧ first`−1,n. Hence formula (4) is satisfied.

1The least significant bit is the 0-th bit.

15

For formula (5) assume that t is an arbitrary child of r. By Definition 3, the subtree T

rooted in t is an extension of Υ(0)
`−1,n(i) for some i ∈ [0,Tower(`, n) − 1]. We distinguish the

following cases on i.

• i = Tower(`, n)−1. By Definition 3, there is a child t of r such that the subtree T rooted
in t is an extension of Υ

(0)
`−1,n(i). By Point (c) of Lemma 4, T ×T ⊧ last`−1,n.

• i < Tower(`, n)−1. By Definition 3, there is a child t of r such that the subtree T rooted
in t is an extension of Υ

(0)
`−1,n(i + 1). By Point (d) of Lemma 4, T ×T ⊧ succ`−1,n.

For formula (6) let t and t be arbitrary successors of r and r, respectively. There are
k, i ∈ [0,Tower(`, n)−1] such that the subtree T (resp., T) rooted in t (resp., t) is an extension

of Υ(0)
`−1,n(k) (resp., Υ

(0)
`−1,n(i)). Now, assume that T × T ⊧ eq`−1,n. Point (a) of Lemma 4

implies that k = i. Note that by Definition 3 the propositions that hold in t and t are uniquely
determined by k = i. Hence, a proposition p ∈ Pn holds in t if and only if p holds in t.

For formula (7) observe that Point (iii) in Definition 3 implies that there is either some

child of r labeled with minb or some child of r labeled with min←b . Thus, Υ(0)
`,n(j) ×Υ

(0)
`,n(j) ⊧

◇(minb ∨min←b). Similarly, Point (iv) implies that there is either some child of r labeled with

min¬b or some child of r is labeled with min←¬b. Hence, Υ(0)
`,n(j) ×Υ

(0)
`,n(j) ⊧ ◇(min¬b ∨min←¬b).

For formula (8) observe that, by Point (iii) and (iv) in Definition 3, every child of r that
satisfies min¬b or min←b does not satisfy b. Analogously, every child of r that satisfies min←¬b

or minb satisfies b.
For formula (9), let t and t be arbitrary successors of r and r, respectively. There are

i, i ∈ [0,Tower(`, n)−1] such that the subtree T (resp., T) rooted in t (resp., t) is an extension

of Υ(0)
`−1,n(i) (resp., Υ

(0)
`−1,n(i)). Now, assume that T × T ⊧ succ`−1,n. We need to show that

T×T ⊧ ⋀x∈{b,¬b}((minx ∨min←x) ↔ min←x). We only show it for x = ¬b, because the case x = b

can be proven analogously. By Point (d) of Lemma 4, we have i = i + 1.
If j = Tower(` + 1, n) − 1, then by Point (iv) of Definition 3, every child of r (resp., r) is

labelled with min←¬b (resp., min←¬b). Hence, T ×T ⊧ ((min¬b ∨min←¬b) ↔ min←¬b) holds.
Now, assume that j < Tower(` + 1, n) − 1. Put M = Tower(`, n) − 1 and let t0, . . . , tM be

the successors of r such that the subtree Tk rooted in tk is an extension of Υ(0)
`−1,n(k) for all

k ∈ [0,M]. Analogously, define t0, . . . , tM to be the successors of r such that the subtree Tk

rooted in tk is an extension of Υ
(0)
`−1,n(k) for all k ∈ [0,M]. We have that t = ti and t = ti+1.

By Point (iv) of Definition 3, there is some m ∈ [0,M] such that

• Tm ⊧ min¬b and Tm ⊧ min¬b,

• Tk ⊧ min←¬b and Tk ⊧ min←¬b for all k <m, and

• Tk ⊧ ¬min¬b ∧ ¬min←¬b and Tk ⊧ ¬min¬b ∧ ¬min←¬b for all k >m.

Now, it is easy to verify that T ×T = Ti ×Ti+1 ⊧ (min¬b ∨min←¬b) ↔ min←¬b.

Only-if: Let us prove the “only-if” direction by induction on `.
For ` = 0 assume (S × S, ⟨s, s⟩) ⊧ ϕ0,n. Thus, both s and s do not have any outgoing

transitions and due to Point (a) of Lemma 4 there exists some j ∈ [0,Tower(1, n) − 1] such

16

that (S, s) is bisimilar to some extension of Υ(0)
0,n(j) and (S, s) is bisimilar to some extension

of Υ
(0)
0,n(j).

For the induction step, let us assume ` ≥ 1 and (S × S, ⟨s, s⟩) ⊧ ϕ`,n and put m =
Tower(`, n) − 1. For each i ∈ [0,m] let Ei denote the set of extensions of Υ(0)

`−1,n(i) and by E i
the set of extensions of Υ

(0)
`−1,n(i).

Claim 1. For each successor t of s we have that (S, t) is bisimilar to some element from Ei
for some i ∈ [0,m] and, conversely, for each i ∈ [0,m] there is a successor si of s such that
(S, si) is bisimilar to some element from Ei. An analogous property holds for S.

Proof of Claim 1. Let t be an arbitrary successor of s. By formula (2), there is a successor
t of t such that (S × S, ⟨t, t⟩) ⊧ ϕ`−1,n. By induction hypothesis, there is a i ∈ [0,m] such
that (S, t) is bisimilar to some extension of Υ(0)

`−1,n(i). Analogous reasoning using formula (3)
yields that for every successor t of s there is some i ∈ [0,m] such that (S, t) is bisimilar to
some extension of Υ

(0)
`−1,n(i).

Moreover, formulas (3),(4), and (5) imply that there are successors s0, . . . , sm of s and
s0, . . . , sm of s such that (S, si) is bisimilar to some element from Ei and (S, si) is bisimilar
to some some element from E i: By formula (4) and point (b) of Lemma 4, there are such s0,
s0. By formula (5) and points (c) and (d) of Lemma 4, there is such an s1. By formula (3)
(and reasoning as above), there is such an s1. Inductively repeating the argument yields the
claimed s0, . . . , sm and s0, . . . , sm. This proves Claim 1.

Claim 2. For each i ∈ [0,m] there is a unique element Ei ∈ Ei with the following property:
for every successor t of s such that (S, t) is bisimilar to some element from Ei, we have that
(S, t) is bisimilar to Ei. In the same way, there are elements Ei ∈ E i.
Proof of Claim 2. Consider two successors t, t′ of s such that both are bisimilar to elements
from Ei. It suffices to prove that (S, si) and (S, s′i) satisfy the same propositions since both
are bisimilar to extensions of Υ(0)

`−1,n(i). By applying formula (6) twice, we have for each
proposition p ∈ Pn that (S, t) ⊧ p iff (S, si) ⊧ p iff (S, t′) ⊧ p. This finishes the proof of
Claim 2.

Fix the elements Ei,Ei, i ∈ [0,m] that exist due to Claim 2. For each i ∈ [0,m] let xi = 1 if
the tree Ei is an extension of Υ(1)

`−1,n(i) and xi = 0 otherwise. Note that by formula (6) the
latter is equivalent to saying that for each i ∈ [0,m] we set xi = 1 if the tree Ei is an extension
of Υ

(1)
`−1,n(i) and xi = 0 otherwise. Let

j = ∑
i∈[0,m]

xi ⋅ 2i ∈ [0,Tower(` + 1, n) − 1].

Moreover, let X denote the set of atomic propositions that hold in (S ×S, ⟨s, s⟩). Let

Y = {b,minb,min←b ,min¬b,min←¬b} and Y = {b,minb,min←b ,min¬b,min←¬b}.

By formula (1), we have X = Q ∪Q for some Q ⊆ Y and some Q ⊆ Y .
Let us define the tree T as the unique extension of Υ(0)

`,n(j) satisfying precisely the propo-

sitions Q in its root t. Analogously, we define the tree T as the extension of Υ
(0)
`,n(j) that

17

satisfies precisely the propositions Q in its root t. Moreover, for each i ∈ [0,m] let Ti be the
unique subtree of T that is an extension of Υ(0)

`−1,n(i) and define Ti analogously.

Claim 3. (T, t) ∼ (S, s) and (T, t) ∼ (S, s).
Proof of Claim 3. We start with (T, t) ∼ (S, s). Note that s and t satisfy the same atomic
propositions (namely those from Q) by definition of T. Thus, it remains to show the ‘back-
and-forth’ condition of bisimulation. By Claim 2, for every u ∈ NS(s) there exists i ∈ [0,m]
such that (S, u) ∼ Ei, and every child of t is the root of a tree Tj . Hence, it is sufficient
to show that Ei ∼ Ti holds for each i ∈ [0,m]. But since both Ei and Ti are extensions of
Υ(0)
`−1,n(i) it is sufficient to prove that Ei and Ti satisfy the same set of atomic propositions in

their roots. Note that the same arguments apply to (T, t) ∼ (S, s), that is, it suffices to show
that Ei and Ti satisfy the same propositions. This is, however, an immediate consequence:
Ei ⊧ p iff Ei ⊧ p iff Ti ⊧ p iff Ti ⊧ p, where the first equivalence is due to formula (6) and the
last follows from Definition 3.

Since T is an extension of Υ(0)
`,n(j), where j = ∑i∈[0,m] xi ⋅2i ∈ [0,Tower(`+1, n)−1], the roots

of Ei and Ti agree on all atomic propositions from {b0, . . . ,bn−1,b}. Next, let us prove that
the roots of Ei and Ti are labelled with the same atomic propositions from {min¬b,min←¬b}.
That they are labelled with the same atomic propositions from {minb,min←b } can be proven
analogously.

First, note that we have the following:

(a) For each i ∈ [0,m] we have that Ei does not satisfy both min¬b and min←¬b since otherwise
this would imply Ei ⊧ b ∧ ¬b by formula (8), a contradiction.

(b) If there exists some i0 ∈ [0,m] such that Ei0 ⊧ min¬b ∨ min←¬b, then Ei ⊧ min←¬b for all
i ∈ [0, i0 − 1]: By formula (6), we have Ei0 ⊧ min¬b ∨ min←¬b. By formula (9), we obtain
Ei0−1 ⊧ min←¬b. This argument can be continued inductively.

Since (S ×S, ⟨s, s⟩) satisfies formula (7) we can distinguish two cases:

Case 1. There exists some i0 ∈ [0,m] such that Ei0 ⊧ min¬b. Then we proceed as follows:

(c) Ei0 ⊧ ¬b by formula (8).

(d) Ei ⊧ min←¬b for each i ∈ [0, i0 − 1] by Point (b) above and hence Ei ⊧ b by formula (8) for
each i ∈ [0, i0 − 1].

(e) Ei /⊧ (min←¬b ∨min¬b) for each i ∈ [i0 + 1,m]. Assume the contrary, namely Ei ⊧ (min←¬b ∨
min¬b) for some i ∈ [i0 + 1,m]. By Point (b) above, we get in particular Ei0 ⊧ min←¬b,
which is a contradiction due to Point (a).

By comparing the above Points (a) to (e) with Point (iv) of Definition 3, one sees that Ei and
Ti satisfy the same propositions from {min¬b,min←¬b} for each i ∈ [0,m].
Case 2. There does not exist any i ∈ [0,m] such that Ei ⊧ min¬b. Then we proceed as follows:

(c’) There exists some i0 ∈ [0,m] such that Ei0 ⊧ min←¬b by formula (7) and hence Ei0 ⊧ b by
formula (8).

(d’) Ei ⊧ min←¬b for each i ∈ [0, i0 − 1] by Point (b) above and hence Ei ⊧ b by formula (8) for
each i ∈ [0, i0 − 1].

18

(e’) Ei ⊧ min←¬b and thus Ei ⊧ b by formula (8) for each i ∈ [i0 + 1,m].
This is proven by applying the following three steps inductively:

(i) By formula (9), we have Ei0+1 ⊧ (min¬b ∨min←¬b).
(ii) Assume Ei0+1 ⊧ min¬b. By formula (6), we have Ei0+1 ⊧ min¬b, which is a contra-

diction. Thus, Ei0+1 ⊧ min←¬b.

(iii) By formula (6), we have Ei0+1 ⊧ min←¬b.

By comparing the above Points (a), (b), and (c’) to (e’) to Point (iv) of Definition 3 one sees
that Ei and Ti satisfy the same propositions from {min¬b,min←¬b} for each i ∈ [0,m]. This
concludes the proof of Claim 3 and thus of Theorem 6. ⊓⊔

We are finally ready to proceed to the main result of this section. By making use of
the models that are enforced by the formulas ϕ`,n, we can encode big numbers. In the
proof of the following proposition we use these numbers to encode big tiling problems. Let
`-NEXP = NTIME(Tower(`,poly(n))) for ` ≥ 0.

Proposition 7. The folowing holds:

• For each ` ≥ 1, K2
id-SAT restricted to formulas of switching depth ` is `-NEXP-hard

under polynomial time many-one reductions.

• In particular, K2
id-SAT is nonelementary.

For the proof of Proposition 7, we need to introduce tilings and the tiling problem. A
tiling system is a tuple S = (Θ,H,V), where Θ is a finite set of tile types, H ⊆ Θ × Θ is
a horizontal matching relation, and V ⊆ Θ × Θ is a vertical matching relation. A mapping
τ ∶ [0, k−1]×[0, k−1] → Θ (where k ≥ 0) is a k-solution for S if for all (x, y) ∈ [0, k−1]×[0, k−1]
the following holds:

• if x < k − 1, τ(x, y) = θ, and τ(x + 1, y) = θ′, then (θ, θ′) ∈ H, and

• if y < k − 1, τ(x, y) = θ, and τ(x, y + 1) = θ′, then (θ, θ′) ∈ V.

Let Solk(S) denote the set of all k-solutions for S. Let w = θ0⋯θn−1 ∈ Θn be a word and
let k ≥ n. With Solk(S,w) we denote the set of all τ ∈ Solk(S) such that τ(x,0) = θx for all
x ∈ [0, n−1]. We denote with ∣S∣ the size of a tiling system S = (Θ,H,V), that is, the number
of elements in Θ ⊎H ⊎V. Now, we define tiling problems as follows:

`-EXP-tiling problem

INPUT: A tiling system S = (Θ,H,V), θ0 ∈ Θ.
QUESTION: Does SolTower(`,n)(S, θ0) ≠ ∅ hold, where n = ∣S∣?

The following result is folklore. It is based on the fact that, in general, from a nonde-
terministic t(n)-time bounded Turing machine M and an input word w one can construct a
(polynomially sized) tiling system SM and an initial tile type t0 which simulate M on input
w (see e.g. [21, 22]) in the following sense: M accepts w if and only if Solt(n)(SM , θ0) ≠ ∅.

Theorem 8 (folklore). For each ` ≥ 1, the `-EXP-tiling problem is hard for `-NEXP
under polynomial time many-one reductions.

19

We can finally prove Proposition 7.

Proof of Proposition 7. Due to technical reasons, we do the proof only for ` ≥ 3. The proof
is via a polynomial time many-one reduction from the `-EXP-tiling problem K2

id-SAT
restricted to formulas of switching depth `. Let S` = (Θ,H,V) be some tiling system of size
n = ∣S∣ and set m = Tower(` − 1, n) − 1.

We add to the set of propositions Pn from the previous section all tile types from Θ and
two additional propositions x and y. To Pn we add copies θ (θ ∈ Θ), x, and y of these

propositions. For β ∈ {0,1} and z ∈ {x, y} we define Υ(β,z)
`−1,n(j) (resp., Υ

(β,z)
`−1,n(j)) as the tree

that is obtained from Υ(β)
`−1,n(j) (resp., Υ

(β)
`−1,n(j)) by adding the label z (resp., z) to the root.

We first define for all X,Y ∈ [0,Tower(`, n) − 1] and all θ ∈ Θ the grid element tree
G(X,Y, θ) as follows: Define the subsets Ix, Iy ⊆ [0,m] uniquely by

X = ∑
i∈Ix

2i and Y = ∑
i∈Iy

2i.

Then G(X,Y, θ) is obtained as follows:

• Take the disjoint union of a root node r and all trees from the set

U = {Υ(1,x)
`−2,n(i) ∣ i ∈ Ix} ∪ {Υ(0,x)

`−2,n(i) ∣ i ∉ Ix} ∪

{Υ(1,y)
`−2,n(i) ∣ i ∈ Iy} ∪ {Υ(0,y)

`−2,n(i) ∣ i ∉ Iy}.

• Add an edge from the root r to the root of each tree from U .

• Label the root r with θ.

The tree G(X,Y, θ) is obtained from G(X,Y, θ) by replacing every action label a by a and
every proposition p by p.

In order to enforce grid element trees, we need to slightly modify the formulas used in
the proof of Theorem 6. For this purpose, it is useful to have for z ∈ {x, y} the abbreviations
◇zψ = ◇(z ∧ ψ), ◻zψ = ◇(z → ψ), ◇zψ = ◇(z ∧ ψ), and ◻zψ = ◇(z → ψ). Then, for
z ∈ {x, y} we can define relativized formulas ϕz`−1,n, eqz`−1,n, firstz`−1,n, lastz`−1,n, and succz`−1,n

by replacing in the definitions of the formulas ϕ`−1,n, eq`−1,n, first`−1,n, last`−1,n, and succ`−1,n

every modality ◇ (resp., ◻, ◇, ◻) by ◇z (resp., ◻z, ◇z, ◻z). All occurrences of ϕ`−2,n,
eq`−2,n, first`−2,n, last`−2,n, and succ`−2,n are not changed, i.e., we do not replace modalities
within these formulas. The following Claim can be verified along the lines of the proof of
Lemma 4.

Claim 1. Let Nx,Ny,Nx,Ny ∈ [0,Tower(`, n) − 1] and θ, θ′ ∈ Θ and let T = G(Nx,Ny, θ) and
T = G(Nx,Ny, θ

′) be grid element trees. Then the following holds for all z ∈ {x, y}:

(a) T ×T ⊧ eqz`−1,n if and only if Nz = Nz.

(b) T ×T ⊧ firstz`−1,n if and only if Nz = Nz = 0.

(c) T ×T ⊧ lastz`−1,n if and only if Nz = Nz = Tower(`, n) − 1.

(d) T ×T ⊧ succz`−1,n if and only if Nz = Nz + 1.

20

Using the relativized version of ϕ`−1,n we can enforce grid element trees. We define gridel as
the conjunction of

⋁
θ∈Θ

(θ ∧ θ ∧ ⋀
κ∈Θ∖{θ}

(¬κ ∧ ¬κ)) ∧ ◻◻((x⊕ y) ∧ (x⊕ y)) ∧ ϕx`−1,n ∧ ϕ
y
`−1,n,

and
⋀

p∈Pn∖Θ

(¬p ∧ ¬p) ∧ ⋀
2≤i≤`−1

⋀
p∈Θ∪{x,y}

◻i◻i(¬p ∧ ¬p)

where ⊕ denotes “exclusive or” and ◻i denotes the sequence of i boxes ◻. Intuitively, the first
formula expresses that (i) the root is labeled with precisely one symbol θ ∈ Θ and (ii) we can
associate precisely two values with the grid element structure: the value enforced by ϕx`−1,n

(in analogy to Theorem 6) and the value enforced by ϕy`−1,n. The second formula is just
an auxiliary formula restricting the newly introduced propositions appropriately, similar to
formula (1) of Definition 5. The following claim makes this property of gridel explicit.

Claim 2. For all structures (S, s) and (S, s) we have that (S ×S, ⟨s, s⟩) ⊧ gridel if and only
if there are X,Y ∈ [0,Tower(`, n) − 1] and θ ∈ Θ such that (S, s) and (S, s) are bisimilar to
grid element structures G(X,Y, θ) and G(X,Y, θ), respectively.

Next, let τ ∶ [0,Tower(`, n) − 1]2 → Θ be a mapping. We define the tiling tree T(τ) as
follows:

• Take the disjoint union of a root node r and all trees from the set

U = {G(X,Y, τ(X,Y)) ∣X,Y ∈ [0,Tower(`, n) − 1]}.

• Add an edge from the root r to the root of each tree from U .

Intuitively, a tiling tree T(τ) represents the mapping τ as follows: for every X,Y in the
domain of τ it has a successor that is a grid element tree encoding the triple (X,Y, τ(X,Y)).
Again, the copy T(τ) is defined as usual. The following claim states the existence of a formula
that enforces tiling trees.

Claim 3. There is a formula tiling of switching depth ` such that for all pointed structures
(S, s) and (S, s) we have (S ×S, ⟨s, s⟩) ⊧ tiling if and only if there is a Tower(`, n)-solution
τ of S` such that (S, s) is bisimilar to the tiling tree T(τ) and (S, s) is bisimilar to T(τ)
Proof of Claim 3. We take for tiling the conjunction of the following formulas, where recall
that Pn ∪ Pn is the set of all atomic propositions:

(1) ⋀
p∈Pn

(¬p ∧ ¬p)

(2) ◇◇(gridel ∧ firstx`−1,n ∧ firsty`−1,n)

(3) ◻◇gridel

(4) ◻◇ gridel

(5) ◻ ◻ ((eqx`−1,n ∧ eqy`−1,n) → ⋀θ∈Θ(θ↔ θ))

21

(6) ◻(◻¬lastx`−1,n →◇(succx`−1,n ∧ eqy`−1,n ∧ ⋁
(θ1,θ2)∈H

(θ1 ∧ θ2)))

(7) ◻(◻¬lasty`−1,n →◇(succy`−1,n ∧ eqx`−1,n ∧ ⋁
(θ1,θ2)∈V

(θ1 ∧ θ2)))

To show that the formula tiling satisfies the statements from the Claim we proceed similarly
as in the proof of Theorem 6. Observe first that tiling has switching depth `. For the “if”-
direction of the statement assume a Tower(`, n)-solution τ and structures (S, s) and (S, s)
that are bisimilar to T(τ) and T(τ), respectively. It is routine to verify that (S ×S, ⟨s, s⟩)
satisfies all the formulas (1)-(7) given above.

For the “only-if”-direction assume that (S×S, ⟨s, s⟩) ⊧ tiling. Formulas (3) and (4) enforce
that for all successors t and t of s and s, respectively, we have that (S, t) is bisimilar to some
grid element tree and (S, t) is bisimilar to some grid element tree. Formula (2) enforces the
existence of successors t and t such that (S, t) is bisimilar to the grid element tree G(0,0, θ)
and (S, t) is bisimilar to the grid element tree G(0,0, θ) for some θ ∈ Θ. Formulas (6) and (7)
inductively enforce the remaining grid element trees as successors: Assume a successor t
of s such that (S, t) is bisimilar to the grid element tree G(i, j, θ). If i < Tower(`, n) − 1,
then formula (6) enforces the existence of a successor t of s such that (S, t) is bisimilar to
a grid element tree G(i + 1, j, θ′) with (θ, θ′) ∈ H. By formula (4), there is some successor
s′ of s such that (S, s′) is bisimilar to G(i + 1, j, θ′). Similarly, if j < Tower(`, n) − 1, then
formula (7) together with formula (3) enforces the existence of a successor s′ of s such that
(S, s′) is bisimilar to a grid element tree G(i, j + 1, θ′) with (θ, θ′) ∈ V. Thus, for each
i, j ∈ [0,Tower(`, n) − 1] there are states t, t, and a tile type θ, θ ∈ Θ such that

• t is a successor of s and t is a successor of s;

• (S, t) is bisimilar to the grid element tree G(i, j, θ);

• (S, t) is bisimilar to the grid element tree G(i, j, θ).

Note first that, if two successors t and t of s and s, respectively, are bisimilar to G(i, j, θ)
and G(i, j, θ), then we have (S ×S, ⟨t, t⟩) ⊧ eqx`−1,n ∧ eqy`−1,n by Claim 1. By formula (5), we
obtain θ = θ. Assume now that there are successors t, t′ of s such that (S, t) is bisimilar to
G(i, j, θ1) and (S, t′) is bisimilar to G(i, j, θ2). By the above, there is a successor t of s such
that (S, t) is bisimilar to some G(i, j, θ′). By Claim 1 and formula (5), we obtain θ′ = θ1.
Analogously, we get θ′ = θ2 and thus θ1 = θ2. Hence, for every i, j ∈ [0,Tower(`, n) − 1] there
is a unique θij such that for all successors t of s with (S, t) bisimilar to G(i, j, θ′) we have
θ′ = θij (and analogously, for all successors t of s). Thus, the mapping τ defined by τ(i, j) = θij
is well-defined. By what was said above, it is easy to verify that it is a Tower(`, n)-solution
for S`.

It remains to verify that (S, s) and (S, s) are bisimilar to the tiling trees T(τ) and T(τ),
respectively. In order to do this, it suffices to note that the labels in the points s and s are
the same as in a tiling tree, by formula (1). Together with the properties observed above,
this yields the bisimulation and finishes the proof of Claim 3.

Finally, define a formula ϕθ0 expressing that the tile type at position (0,0) is precisely
the input tile type θ0:

ϕθ0 = ◇◇(gridel ∧ firstx`−1,n ∧ firsty`−1,n ∧ θ0).

22

It is not hard to see that SolTower(`,n)(S`, θ0) ≠ ∅ if and only if tiling ∧ ϕθ0 is id-satisfiable.
It remains to note that the size of the formula tiling ∧ ϕθ0 is polynomial in the size n of S.
By Theorem 6(b), the size of ϕ`−1,n (and thus of ϕz`−1,n) is polynomial in n. Hence, also
the size of gridel is polynomial in n. Moreover, all the auxiliary formulas like firstx`−1,n are
clearly polynomial in n. Overall, we get that tiling∧ϕθ0 is polynomially sized in n = ∣S∣. This
concludes the proof. ⊓⊔

The following corollary is an immediate consequence of Proposition 1 and Proposition 7.

Corollary 9. The following holds:

• For each ` ≥ 1, K2-SAT restricted to formulas of switching depth ` is `-NEXP-hard
under polynomial time many-one reductions.

• In particular, K2-SAT is nonelementary.

4 Hardness results for K4 ×K and S52 ×K

In this section, we prove further nonelementary lower bound results for the satisfiability
problem of two-dimensional modal logics on restricted classes of frames. We hereby close
nonelementary complexity gaps that were stated as open problems in [8]. Although in [8]
uninterpreted product models for these logics are of interest, we prove our lower bounds for
the id-interpretation only: For each of the logics studied here, the id-interpretation case can
be reduced in polynomial time to the uninterpreted case by Proposition 1.

We define the following logics:

• K4×K: Two-dimensional logic restricted to product models S1 ×S2 where F(S1) is a
frame (W,Ð→a) such that Ð→a is transitive.

• S5 ×K: Two-dimensional logic restricted to product models S1 ×S2 where F(S1) is a
frame (W,≡) with an equivalence relation ≡.

• S52 ×K: Two-dimensional modal logic restricted to models S1 ×S2 where F(S1) is a
frame (W,≡,≈) with equivalence relations ≡ and ≈.

Note that the lower bounds from the last section already hold for formulas having only
one action label ai in every component i ∈ {1,2}. Hence, throughout this section we fix
A = {a1, a2} and some countable set P = P1 ∪P2 of propositons. As in the previous section we
will abbreviate ◇a1 with ◇ and ◇a2 with ◇.

Let us start with K4 × K. We adapt in a straightforward way the reduction from K-
satisfiability to K4-satisfiability to the two-dimensional case. When following a transition
in a K4-frame one has no control over how far one is actually going due to transitivity of
the frame. The idea for the reduction is to introduce additional propositions h0, . . . , hn and
enforce levels in the models. Intuitively, hi is true in w′ precisely when w′ is in level i seen
from the world w where the formula is evaluated. Following a transition is then restricted to
increase the level only by 1.

Let ϕ be a K2-formula with rank1(ϕ) = r and let h0, . . . , hr be fresh propositions. For
every 0 ≤ k ≤ r, we specify by structural induction a translation function tk such that tk is

23

defined for an input formula ψ whenever rank1(ψ) + k ≤ r. More precisely, we set

tk(p) def= Hk ∧ p
tk(¬ψ) def= Hk ∧ ¬tk(ψ)

tk(ψ1 ∧ ψ2) def= tk(ψ1) ∧ tk(ψ2)
tk(◇ψ) def= ◇tk(ψ)
tk(◇ψ) def= Hk ∧◇(Hk+1 ∧ tk+1(ψ))

where Hk
def= hk∧⋀i≠k ¬hi and k < r in the definition of tk(◇ψ). We show that the translation

is satisfiability preserving. More precisely, we prove the following lemma.

Lemma 10. For every K2(A,P)-formula ϕ we have: ϕ is id-satisfiable in K2 if and only if
t0(ϕ) is id-satisfiable in K4 ×K.

Proof. We assume that ϕ is defined over P = P1 ∪ P2 for disjoint P1 and P2. Moreover set
r

def= rank1(ϕ). As in Section 3 we will write S1 ×S2 for ∏id
i∈[1,2] Si.

Assume first that ϕ is id-satisfiable in K ×K. Thus, there are structures

Si = (Wi,Ð→i,{Wi,p ∣ p ∈ Pi})

(i ∈ {1,2}) and w = ⟨w1,w2⟩ ∈W1 ×W2 such that (S1 ×S2,w) ⊧ ϕ. Without loss of generality
we assume that S1 is a tree with root w1. Define

S′
1 = (W1,Ð→+

1 ,{W ′
1,p ∣ p ∈ P1 ∪ {h0, . . . , hr}}),

where

• Ð→+
1 is the transitive closure of Ð→1,

• W ′
1,p

def= W1,p for all p ∈ P1, and

• W ′
1,hi

def= Vi, where Vi is defined to be the set of worlds w′ such that the (unique) path
in S1 from w1 to w′ has length i, i.e., consists of i transitions.

We prove by induction on the structure of ϕ that for each subformula ψ it holds: for all
i ∈ [0, r] we have

rank1(ψ) ≤ i ⇒ ((S1 ×S2, x) ⊧ ψ ⇔ (S′
1 ×S2, x) ⊧ tr−i(ψ))

for each x ∈ Vr−i ×W2.
For the induction base, assume ψ = p for some atomic proposition p ∈ P1∪P2, i arbitrary in

[0, r], and fix an arbitrary x = ⟨x1, x2⟩ ∈ Vr−i×W2. By definition of S′
1, we have x ∈W ′

1,hr−i×W2

and x ∉W ′
1,hj

×W2 for j ≠ r − i; hence, (S′
1 ×S2, x) ⊧Hr. Finally, the following equivalences

hold, where we assume that p ∈ Pj (j ∈ {1,2}): (S1 ×S2, x) ⊧ ψ if and only if xj ∈Wj,p if and
only if (S′

1 ×S2, x) ⊧Hr ∧ p = tr(ψ).
For the induction step, assume ψ is not atomic and i ∈ [0, r] such that i ≥ rank1(ψ), and
let us fix some x ∈ Vr−i × W2. Note that (S′

1 × S2, x) ⊧ Hr−i by definition of S′
1. We

make a case distinction on the structure of ψ. For the cases ¬χ, χ1 ∧ χ2, and ◇χ the

24

equivalence follows straightforwardly from the induction hypothesis since rank1(ψ) = rank1(χ)
and rank1(χi) ≤ rank1(ψ) for i ∈ {1,2}.

It remains to consider the case ψ = ◇χ. Then rank1(χ) = rank1(ψ) − 1 ≤ i − 1 and we have

(S1 ×S2, x) ⊧ ψ ⇔ ∃y ∈ Vr−(i−1) ×W2 ∶ xÐ→1 y and (S1 ×S2, y) ⊧ χ
IH⇔ ∃y ∈ Vr−i+1 ×W2 ∶ xÐ→1 y and

(S′
1 ×S2, y) ⊧ tr−i+1(χ)

y∈Vr−i+1×W2⇔ ∃y ∈ Vr−i+1 ×W2 ∶ xÐ→+
1 y and

(S′
1 ×S2, y) ⊧Hr−i+1 ∧ tr−i+1(χ)

⇔ (S′
1 ×S2, x) ⊧ ◇(Hr−i+1 ∧ tr−i+1(χ))

x∈Vr−i×W2⇔ (S′
1 ×S2, x) ⊧Hr−i ∧◇(Hr−i+1 ∧ tr−i+1(χ))

⇔ (S′
1 ×S2, x) ⊧ tr−i(ψ).

Since rank1(ϕ) = r, (S1 ×S2,w) ⊧ ϕ, and w ∈ V0 ×W2 we get (S′
1 ×S2,w) ⊧ t0(ϕ). Hence

t0(ϕ) is id-satisfiable in K4 ×K.

For the other direction assume that t0(ϕ) is id-satisfiable in K4 × K. Thus, there are
a transitive structure S1 = (W1,Ð→1,{W1,p ∣ p ∈ P1 ∪ {h0, . . . , hr}}) and a structure S2 =
(W2,Ð→2,{W2,p ∣ p ∈ P2}) and w = ⟨w1,w2⟩ ∈ W1 ×W2 such that (S1 ×S2,w) ⊧ t0(ϕ). For
each 0 ≤ i ≤ r we set

Ti
def= W1,hi ∖ (⋃

j≠i
W1,hj),

which corresponds to the formulas Hi in S1.
Now, define the structure S′

1 = (W ′
1,Ð→′

1,{W ′
1,p ∣ p ∈ P1) by taking

• W ′
1 = ⋃0≤i≤r Ti,

• Ð→′
1 = Ð→1 ∩(⋃0≤i<r Ti × Ti+1), and

• W ′
1,p =W1,p ∩W ′

1 for all p ∈ P1.

We prove by structural induction that for each subformula ψ of ϕ we have: for all i ∈ [0, r] it
holds

rank1(ψ) ≤ i ⇒ ((S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S′
1 ×S2, x) ⊧ ψ)

for each x ∈ Tr−i ×W2.
For the induction base assume ψ = p for some atomic proposition p ∈ P1 ∪ P2 and i ≥

switchingdepth1(ψ) = 0. By definition, we have tr−i(ψ) = Hr−i ∧ p. Take an arbitrary
x ∈ Tr × W2. By definition of Tr−i, we have (S1 × S2, x) ⊧ hr−i and (S1 × S2, x) /⊧ hj
for each j ∈ [0, r] ∖ {r − i}. Thus, (S1 ×S2, x) ⊧ Hr−i. Moreover we have (S1 ×S2, x) ⊧ p if
and only if (S′

1 ×S2, x) ⊧ p by definition of W ′
1,p. Thus,

(S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S1 ×S2, x) ⊧Hr−i ∧ ψ ⇔ (S′
1 ×S2, x) ⊧ ψ.

For the induction step assume that ψ is not atomic, let i ∈ [0, r] be such that rank(ψ) ≤ i
and fix an arbitrary x = ⟨x1, x2⟩ ∈ Tr−i ×W2. Note that we have (S1 × S2, x) ⊧ Hr−i, by
definition of Tr−i. We make a case distinction on the structure of ψ. For the cases ¬χ, χ1∧χ2,
and ◇χ the equivalence follows directly from the induction hypothesis.

25

For the remaining case ψ = ◇χ we have rank1(χ) = rank1(ψ) − 1 ≤ i − 1 and

(S1 ×S2, x) ⊧ tr−i(ψ) ⇔ (S1 ×S2, x) ⊧Hr−i ∧◇(Hr−i+1 ∧ tr−i+1(χ))
x1∈Tr−i⇔ (S1 ×S2, x) ⊧ ◇(Hr−i+1 ∧ tr−i+1(χ))

Def. Tr−i+1⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→1 y and
(S1 ×S2, y) ⊧Hr−i+1 ∧ tr−i+1(χ)

y∈Tr−i+1×W2⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→1 y and
(S1 ×S2, y) ⊧ tr−i+1(χ)

Def. Ð→′
1⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→′

1 y and
(S1 ×S2, y) ⊧ tr−i+1(χ)

rank1(χ)≤i−1,hyp
⇔ ∃y ∈ Tr−i+1 ×W2 ∶ xÐ→′

1 y and (S′
1 ×S2, y) ⊧ χ

⇔ (S′
1 ×S2, x) ⊧ ◇χ

⇔ (S′
1 ×S2, x) ⊧ ψ.

By assumption we have (S1 ×S2,w) ⊧ t0(ϕ), w ∈ T0 ×W2, and rank1(ϕ) = r. Thus, the
above equivalence implies (S′

1 ×S2,w) ⊧ ϕ and thus, ϕ is id-satisfiable in K ×K. ⊓⊔

Lemma 10 provides a reduction of K2
id-SAT to id-satisfiability in K4×K. Finally, Propo-

sition 1 together with Proposition 7 yields the following result.

Theorem 11. Satisfiability in K4 ×K is nonelementary.

Next, we study combinations of K with S5 and S52. It is well-known that the complexity
for checking satisfiability jumps from NP for S5 to PSPACE for S52. We will show that also
the complexity for deciding satisfiability in the product logics S5×K and S52×K, respectively,
differs. In particular, we will again reduce from K2

id-SAT in order to show a nonelementary
lower bound for the latter logic, which is in sharp contrast to the following result by Marx [23].

Theorem 12 ([23]). Satisfiability in S5 ×K is NEXP-complete.

PSPACE-hardness for satisfiability in S52 can be shown via a straightforward reduction
from K [3]. We adapt this reduction to the two-dimensional case by defining a translation †

by
q†

def= p∗ ∧ q
(ϕ1 ∧ ϕ2)† def= p∗ ∧ ϕ†

1 ∧ ϕ
†
2

(¬ϕ)† def= p∗ ∧ ¬(ϕ†)
(◇ϕ)† def= p∗ ∧◇ϕ†

(◇ϕ)† def= p∗ ∧◇≡(¬p∗ ∧◇≈(p∗ ∧ ϕ†))
where ◇≡ and ◇≈ refer to the two modalities in S52 and p∗ is a fresh propositional variable
in the signature of the first component. Intuitively, one transition in K is simulated by
two transitions in S52. This is possible since the composition of two equivalence relations is
neither symmetric nor transitive in general and using the fresh variable p∗ we can enforce a
non-trivial transition, i.e., no loops. It can be proven along the lines of the proof in [3] that †

preserves id-satisfiability.

26

Lemma 13. For every K2(A,P)-formula ϕ we have: ϕ is id-satisfiable in K2 if and only if
ϕ† is id-satisfiable in S52 ×K.

Proof. We assume that ϕ is defined over P = P1 ∪P2 for disjoint P1 and P2 with p∗ /∈ P1 ∪P2.
Again, we write S1 ×S2 for ∏id

i∈[1,2] Si.

Assume first that ϕ is id-satisfiable in K ×K. Thus, there are S1 = (W1,
aÐ→,{W1,p ∣ p ∈

P1}), S2 = (W2,
bÐ→,{W2,p ∣ p ∈ P2}), and s ∈W1 ×W2 such that (S1 ×S2, s) ⊧ ϕ. Define an

S52-structure S′
1 = (W ′

1,≡,≈,{W ′
1,p ∣ p ∈ P1 ∪ {p∗}}) as follows:

• W ′
1

def= W1⊎
aÐ→,

• ≡ is the reflexive, transitive, and symmetric closure of {(w, (w,w′)) ∣ w aÐ→ w′},

• ≈ is the reflexive, transitive, and symmetric closure of {((w,w′),w′) ∣ w aÐ→ w′},

• W ′
1,p

def= W1,p for p ∈ P1,

• W ′
1,p∗

def= W1.

Now, one can prove by induction on the structure of a formula ψ that for every world w ∈
W1 ×W2 we have:

(S1 ×S2,w) ⊧ ψ ⇔ (S′
1 ×S2,w) ⊧ ψ†.

For the induction base, i.e., when ψ is a propositional variable, the statement is immedi-
ately true, by definition of the structure S′

1. For the cases ¬χ, χ1∧χ2 and ◇χ, the statement
follows directly from the induction hypothesis.

So assume ψ is of the form ◇χ. Suppose first that (S1 ×S2, ⟨w1,w2⟩) ⊧ ◇χ. Thus, there
is some world w′

1 such that w1
aÐ→ w′

1 and (S1 ×S2, ⟨w′
1,w2⟩) ⊧ χ. By induction hypothesis,

we have (S′
1 ×S2, ⟨w′

1,w2⟩) ⊧ χ†. By definition of S′
1, we have w1 ≡ (w1,w

′
1), (w1,w

′
1) ≈ w′

1,
w1,w

′
1 ∈W ′

1,p∗ , and (w1,w
′
1) ∉W ′

1,p∗ . Obviously, this yields (S′
1×S2, ⟨w1,w2⟩) ⊧ p∗∧◇≡(¬p∗∧

◇≈(p∗∧χ†)). For the other direction suppose (S′
1×S2, ⟨w1,w2⟩) ⊧ p∗∧◇≡(¬p∗∧◇≈(p∗∧χ†)).

Thus, there are worlds v,w′
1 ∈ W ′

1 with w1 ≡ v, v ≈ w′
1, w1,w

′
1 ∈ W ′

1,p∗ , and v ∉ W ′
1,p∗ such

that (S′
1 ×S2, ⟨w′

1,w2⟩) ⊧ χ†. By definition of S′
1, we know that w′

1 ∈W1, v = (w1,w
′
1), and

w1
aÐ→ w′

1. As w′
1 ∈ W1, the induction hypothesis implies (S1 × S2, ⟨w′

1,w2⟩) ⊧ χ. Hence,
(S1 ×S2, ⟨w1,w2⟩) ⊧ ◇χ.

In particular, we obtain (S′
1 ×S2, s) ⊧ ϕ†, thus, ϕ† is id-satisfiable in S52 ×K.

Assume now that ϕ† is id-satisfiable in S52 ×K. Hence, there is an S52-structure

S1 = (W1,≡,≈,{W1,p ∣ p ∈ P1 ∪ {p∗}}),

a structure S2 = (W2,
bÐ→,{W2,p ∣ p ∈ P2}), and s ∈ W1 ×W2 such that (S1 × S2, s) ⊧ ϕ†.

Define a structure S′
1 = (W ′

1,
aÐ→,{W ′

1,p ∣ p ∈ P1}) as follows:

• W ′
1

def= W1,p∗

• aÐ→ def= {(u, v) ∣ ∃w ∈W1 ∖W1,p∗ ∶ u ≡ w ≈ v}

• W ′
1,p

def= W1,p ∩W1,p∗ for all p ∈ P1

27

One can prove by induction on the structure of a formula ψ that for every world w ∈W ′
1 ×W2

we have:
(S1 ×S2,w) ⊧ ψ† ⇔ (S′

1 ×S2,w) ⊧ ψ

Again, the case when ψ is a propositional variable is immediately clear from the definition of
S′

1. Also the cases ¬χ, χ1∧χ2, and ◇χ are direct consequences from the induction hypothesis.
For the case ψ = ◇χ assume first that (S1 × S2, ⟨w1,w2⟩) ⊧ (◇χ)†. By the semantics,

there is some world v with w1 ≡ v and v ≈ w2 such that w1,w2 ∈ W1,p∗ , v ∉ W1,p∗ , and
(S1 ×S2, ⟨w′

1,w2⟩) ⊧ χ†. By induction, we have that (S′
1 ×S2, ⟨w′

1,w2⟩) ⊧ χ. Moreover, the
definition of S′

1 yields w1
aÐ→ w′

1. By the semantics, we get (S′
1×S2, ⟨w1,w2⟩) ⊧ ◇χ. For the

other direction assume (S′
1 ×S2, ⟨w1,w2⟩) ⊧ ◇χ. Hence, there is some world w′

1 such that
w1

aÐ→ w′
1 and (S′

1 ×S2, ⟨w′
1,w2⟩) ⊧ χ. By induction, (S1 ×S2, ⟨w′

1,w2⟩) ⊧ χ†. By definition
of

aÐ→, there is some v ∈ W1 ∖W1,p∗ such that w1 ≡ v ≈ w′
1. By definition of S′

1, we have
w1,w

′
1 ∈W1,p∗ . Thus, the semantics yields (S1 ×S2, ⟨w1,w2⟩) ⊧ (◇χ)†.

Observe now that (S1 ×S2, s) ⊧ ϕ† implies s ∈W ′
1 ×W2 by the definition of †. Therefore,

we get (S′
1 ×S2, s) ⊧ ϕ and ϕ is id-satisfiable in K ×K. ⊓⊔

The following theorem is an immediate consequence of Lemma 13, Proposition 7, and
Proposition 1.

Theorem 14. Satisfiability in S52 ×K is nonelementary.

5 Feferman-Vaught decompositions for products

The Feferman-Vaught decomposition theorem for many-dimensional modal logic Kd can be
formulated as follows, and was proven in [13]. Recall the notion of an interpretation σ from
Section 2.3.

Theorem 15 ([13]). From an interpretation σ and a Kd(A,P)-formula ϕ with A = ⊎i∈[1,d] Ai,
P = ⊎i∈[1,d] Pi, one can compute a tuple (Ψ1, . . . ,Ψd, β) with Ψi = {ψji ∣ j ∈ Ji} a finite set
of multimodal formulas over (Ai,Pi) and β a positive boolean formula with variables from
X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for every (Ai,Pi)-structure Si and every world wi of Si

(i ∈ [1, d]):

(
σ

∏
i∈[1,d]

Si, ⟨w1, . . . ,wn⟩) ⊧ ϕ ⇔ µ ⊧ β

Here, µ ∶X → {0,1} is defined by µ(xji) = 1 if and only if (Si,wi) ⊧ ψji .

We call D
def= (Ψ1, . . . ,Ψd, β) the decomposition of ϕ and define ∣D∣ def= ∣β∣ + ∑i,j ∣ψji ∣ to be

its size.
Note that Theorem 15 only holds in the presence of an interpretation σ for the atomic

propositions since interpretations establish the connection between the product and compo-
nent structures. We also mention that Theorem 15 has been proven in [13] for much more
elaborated notions of interpretations. However, note that not every logic admits decompo-
sition: An example for this is the temporal logic CTL. More precisely, it has been shown in
[13, Theorem 11] that decomposition with respect to asynchronous products and a particular
interpretation for the atomic proposition (in the sense of Section 2.3) fails for every logic that

28

can express the property EGp meaning “there is a maximal path (a path is maximal if it is
either infinite or ends in a dead-end) on which every world satisfies p”.

An analogous theorem can be stated for first-order sentences, see [11] for a survey. We
assume standard definitions concerning first-order logic. We will consider only relational
signatures τ . For a finite set A of action labels and a finite set of propositions P we identify
the pair (A,P) with the signature, where every a ∈ A has arity 2 and every p ∈ P has arity 1.
This allows to consider Kripke structures as ordinary relational structures. In the following
we consider decomposition theorems for finite variable fragments FOk of first-order logic. A
formula ϕ is in FOk if at most k different variables occur in ϕ. Note that a formula, in which
every subformula has at most k free variables is equivalent to an FOk-formula.

Theorem 16 ([10]). From an interpretation σ and an FOk-sentence ϕ over the signature
(A,P) with A = ⊎i∈[1,d] Ai, P = ⊎i∈[1,d] Pi, one can compute a tuple (Ψ1, . . . ,Ψd, β) with Ψi =
{ψji ∣ j ∈ Ji} a finite set of FOk-sentences over the signature (Ai,Pi) and β a positive boolean
formula with variables from X = {xji ∣ i ∈ [1, d], j ∈ Ji} such that for every (Ai,Pi)-structure
Si (i ∈ [1, d]):

σ

∏
i∈[1,d]

Si ⊧ ϕ ⇔ µ ⊧ β.

Here, µ ∶X → {0,1} is defined by µ(xji) = 1 if and only if Si ⊧ ψji .

Note that the proofs of both Theorem 15 and Theorem 16 yield decompositions of nonele-
mentary size. In this section we provide matching lower bounds for Feferman-Vaught decom-
positions for Kd and FOk for k ≥ 2. Having enforced nonelementarily branching trees with
small formulas (Theorem 6) allows us to prove a nonelementary lower bound for the sizes
of Feferman-Vaught decompositions for 2-dimensional modal logic. Without making this ex-
plicit in the statement, our lower bound is more general than the nonelementary lower bound
for 2-dimensional modal logic from [17] in the following sense. We provide a family of small
formulas which are “inherently hard to decompose”: When assuming, by contradiction, the
existence of small decompositions for our formulas, any model for them can be used to deduce
the desired contradiction, whereas in [17] appropriately chosen models had to be defined for
this. Our proof strategy is similar to the proof of Theorem 5.1 in [12].

Theorem 17. Feferman-Vaught decompositions for many-dimensional modal logic w.r.t.
asynchronous product are inherently nonelementary. More precisely, for every elementary
function f(n) there exists ` ≥ 1 such that the K2-formula ϕ`,2 from Definition 5 has no de-
composition D` in the sense of Theorem 15 with ∣D`∣ ≤ f(∣ϕ`,2∣). The same lower bound holds
when relativized to product structures T ×T′, where F(T) and F(T′) are finite trees.

Proof. Assume by contradiction that there were an elementary function f ∶ N → N such that
for each ` ≥ 1 there is a decomposition D` = (Ψ(`),Ψ

(`)
, β`) of ϕ`,2 in the sense of Theorem 15

with ∣D`∣ ≤ f(∣ϕ`,2∣). In particular, ∣β`∣ ≤ f(∣ϕ`,2∣). Since ∣ϕ`,2∣ ≤ exp(`) by Theorem 6(b),
there exists an elementary function g such that ∣β`∣ ≤ g(`) for all ` ≥ 0. Thus, there exists an
h0 ≥ 0 with 2g(h−1) < Tower(h,2) for all h ≥ h0; let us fix such an h0.

By Theorem 6(a), ϕh0,2 is id-satisfiable. Assume that (S × S, ⟨s, s⟩) ⊧ ϕh0,2 for some
pointed structure (S, s) over ({a},Pn) and some pointed structure (S, s) over ({a},Pn). By
Theorem 6(a) there exists some k ∈ [0,Tower(h0 + 1, n)] such that (S, s) is bisimilar to some

extension of Υ(0)
h0,n

(k) and (S, s) is bisimilar to some extension of Υ
(0)
h0,n(k).

29

By Definition 3, for each i ∈ [0,Tower(h0,2) − 1] there exist successors si of s and si of s
such that (S, si) is bisimilar to some extension of Υ(0)

h0−1,2(i) and (S, si) is bisimilar to some

extension of Υ
(0)
h0−1,2(i). Also note that

(S ×S, ⟨si, sj⟩) ⊧ ϕh0−1,2 ⇔ i = j (2)

for all i, j ∈ [0,Tower(h0,2)−1]. Consider our decomposition Dh0−1 = (Ψ(h0−1),Ψ
(h0−1)

, βh0−1)
of ϕh0−1,2 where Ψ(h0−1) = {ψj ∣ j ∈ J} and Ψ

(h0−1) = {ψj ∣ j ∈ J} for some indexed sets J, J ,
and βh0−1 is a positive boolean formula with variables from X = {xj ∣ j ∈ J} ∪ {xj ∣ j ∈ J}. By
assumption, we have ∣βh0−1∣ ≤ g(h0 − 1) and hence, ∣X ∣ ≤ g(h0 − 1).

For each r ∈ [0,Tower(h0,2) − 1] we define a truth assignment µr ∶X → {0,1} as follows:

µr(xj) = 1 ⇔ (S, sr) ⊧ ψj
µr(xj) = 1 ⇔ (S, sr) ⊧ ψj

Since for βh0−1 there are 2∣X ∣ ≤ 2g(h0−1) < Tower(h0,2) many truth assignments, by the pigeon-
hole principle there exist 0 ≤ a < b < Tower(h0,2) with µa = µb. In other words, (S, sa) ⊧ ψj
if and only if (S, sb) ⊧ ψj and (S, sa) ⊧ ψj if and only if (S, sb) ⊧ ψj . By the definition
of a Feferman-Vaught decomposition and the fact that (S ×S, ⟨sa, sa⟩) ⊧ ϕh0−1,2, we obtain
(S ×S, ⟨sa, sb⟩) ⊧ ϕh0−1,2. But this contradicts (2).

Note that the lower bound also holds when restricting models to products of finite trees,
since every pointed structure (S, s) (resp., (S, s)) that is bisimilar to an extension of Υ(0)

`,n(j)
(resp., to an extension of Υ

(0)
`,n(j)) is bisimilar to a finite tree. ⊓⊔

Note that the lower bound from Theorem 17 would even hold if we defined the size of a
decomposition (Ψ1, . . . ,Ψd, β) as the size of the boolean formula β only (and not accounting
for the sizes of the Ψi); the same proof works for this variant. In contrast to [17] the proof of
Theorem 17 allows to derive nonelementary lower bounds on decompositions for any decom-
posable logic (in the sense of Theorem 15) that is at least as expressive as modal logic and
only elementarily less succinct than modal logic.

Corollary 18. Every logic that is at least as expressive as and at most elementary less
succinct than modal logic does not have elementary sized Feferman-Vaught decompositions
with respect to asynchronous product.

Proof. We exemplarily provide the proof for FO2 sentences. The proof for any other logic
that satisfies the properties from Corollary 18 works analogously. It is well known that a
modal logic formula ϕ can be translated (in polynomial time) into an equivalent FO2-formula
ϕ̂(x) with one free variable, see for instance [1, Section 2.4]. The family of FO2-sentences that
witnesses that there are no elementarily-sized decompositions is simply {∃x ∶ ϕ̂`,2(x) ∣ ` ≥ 1}.

⊓⊔

6 Feferman-Vaught decompositions for sum

So far, we only considered Feferman-Vaught decompositions for asynchronous products. An-
other important and natural operation on structures is the disjoint sum. Let us fix a relational
signature τ and for i ∈ [1, d] let Si = (Di,{Pi,a ∣ a ∈ τ}) be a τ -structure such that Di∩Dj = ∅

30

for i ≠ j. Let Ai /∈ τ be a fresh unary predicate symbol for each i ∈ [1, d]. The the disjoint
sum ∑di=1 Si is the following structure over the signature τ ∪ {A1, . . . ,Ad}:

d

∑
i=1

Si
def= (⋃

i∈[1,d]
Di,{ ⋃

i∈[1,d]
Pi,a ∣ a ∈ τ} ∪ {Di ∣ i ∈ [1, d]}).

Here, ⋃i∈[1,d] Pi,a is the interpretation for a ∈ τ and Di is the interpretation for the fresh
symbol Ai. Note that the fresh symbol Ai allows to recover the component structure Si. In
other words, we can express in FO over ∑di=1 Si that Si satisfied a certain FO-sentence. The
following result is again classical [10, 11].

Theorem 19. For every FOk-sentence ϕ over the signature τ ⊎{A1, . . . ,Ad} one can compute
a tuple (Ψ1, . . . ,Ψd, β), where each Ψi = {ψji ∣ j ∈ Ji} is a finite set of FOk-sentences over
the signature τ and where β is a positive boolean formula with variables from X = {xji ∣ i ∈
[1, d], j ∈ Ji} such that for all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji) = 1 if and only if Si ⊧ ψji .

The following result is a simple corollary of Corollary 18.

Corollary 20. For every k ≥ 3, there is no elementary function f such that every FOk-formula
ϕ has a Feferman-Vaught decomposition w.r.t. disjoint sum of size f(∣ϕ∣).

Proof. Recall that ϕ`,2 is an K2(A,P)-formula with (A,P) def= ({a, a},P2∪P2). For a structure

S over ({a},P2) let S̃ be the corresponding structure over ({a},P2). We translate the formula
ϕ`,2 from above (see the proof of Theorem 17) into an FO3-formula ϕ∗`,2(x,x′) with two free
variables over the signature τ = {a} ∪ P2 ∪ {A1,A2} inductively as follows:

• p∗(x,x′) def= p(x) for each p ∈ P2

• p∗(x,x′) def= p(x′) for each p ∈ P2

• (¬ψ)∗(x,x′) def= ¬ψ∗(x,x′)

• (ψ1 ∧ ψ2)∗(x,x′) def= ψ∗1(x,x′) ∧ ψ∗2(x,x′)

• (◇ψ)∗(x,x′) def= ∃y ∶ (A1(y) ∧ a(x, y) ∧ ψ∗(y, x′))

• (◇ψ)∗(x,x′) def= ∃y′ ∶ (A2(y′) ∧ a(x′, y′) ∧ ψ∗(x, y′))

Note that this translation indeed yields an FO3-formula because every subformula has at most
three free variables.

The reader can easily verify by induction that for every pointed structure (S, s) over
({a},P2) and every pointed structure (S, s) over ({a},P2) and every K2(A,P)-formula ϕ

we have (S × S, ⟨s, s⟩) ⊧ ϕ if and only if S + S̃ ⊧ ϕ∗(s, s). The family of FO3-sentences
that witnesses that there are no elementarily-sized decompositions is thus simply {∃x∃x′ ∶
A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′) ∣ ` ≥ 1} – the proof is analogous to the proof of Theorem 17. ⊓⊔

31

Corollary 20 raises the question whether even Feferman-Vaught decompositions for FO2

w.r.t. disjoint sum become nonelementary. We give a negative answer to this question.

Theorem 21. The following is computable in doubly exponential time:
INPUT: An FO2-sentence ϕ over τ ⊎ {A1, . . . ,Ad}.
OUTPUT: A decomposition (Ψ1, . . . ,Ψd, β), where Ψi = {ψji ∣ j ∈ Ji} is a finite set of FO2-
sentences over τ and β is a positive boolean formula with variables from X = {xji ∣ i ∈ [1, d], j ∈
Ji} such that for all τ -structures S1, . . . ,Sd:

d

∑
i=1

Si ⊧ ϕ if and only if µ ⊧ β.

Here, µ ∶X → {0,1} is defined by: µ(xji) = 1 if and only if Si ⊧ ψji .

We will prove Theorem 21 only for the case d = 2; the general case can be shown in the
same way. Hence, let us fix a signature τ of relational symbols and let A1,A2 /∈ τ be two
additional unary symbols. Let S1 and S2 be relational structures over the signature τ .

We define a partial order ⪯ on the set of all first-order formulas by setting ψ1 ⪯ ψ2 if ψ1 is
a subformula of ψ2. For a formula ϕ we denote with Qϕ the set of all subformulas of ϕ that
start with a quantifier. With Qcl

ϕ we denote the set of those formulas in Qϕ that are closed,
i.e., do not have free variables. In a formula ∃x ∶ Ai(x) ∧ ψ (resp. ∀x ∶ Ai(x) → ψ), where
i ∈ {1,2}, we say that x is relativized to Ai, and for better readability we write ∃x ∈ Ai ∶ ψ
(resp. ∀x ∈ Ai ∶ ψ) for that formula.

A formula ϕ over the signature τ ∪ {A1,A2} is called pure if ϕ is a boolean combination
of formulas ϕ1, . . . , ϕn such that for every 1 ≤ i ≤ n there exists j ∈ {1,2} such that for every
(Qx ∶ ψ) ∈ Qϕi (where Q ∈ {∃,∀}), x is relativized to Aj in Qx ∶ ψ. Equivalently, ϕ is pure, if
the following two conditions hold:

• For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in (Qx ∶ ψ) to either A1 or A2.

• For all (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), x is relativized in
(Q1x ∶ ψ1) to the same Ai as y in (Q2y ∶ ψ2).

To prove Theorem 21 (for d = 2), it suffices to transform an FO2-sentence over the signature
τ∪{A1,A2} in doubly exponential time into an equivalent pure FO2-sentence over the signature
τ ∪ {A1,A2}; this will be shown as Theorem 24 below.

A formula ϕ over the signature τ ∪{A1,A2} is called almost pure if it satisfies the following
conditions:

• For all (Qx ∶ ψ) ∈ Qϕ, x is relativized in (Qx ∶ ψ) to either A1 or A2.

• If (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2), then x is relativized in
(Q1x ∶ ψ1) to the same Ai as y in (Q2y ∶ ψ2), or there exists θ ∈ Qcl

ϕ with (Q1x ∶ ψ1) ⪯
θ ⪯ ψ2.

In other words, whenever a chain of subformulas (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2) ⪯ ϕ does not satisfy
the pureness condition, then (Q1x ∶ ψ1) occurs within a proper subsentence of (Q2y ∶ ψ2) that
moreover starts with a quantifier. Clearly, every pure formula is almost pure. Vice versa, we
have:

32

Lemma 22. From a given almost pure formula ϕ over the signature τ ∪ {A1,A2} one can
compute a logically equivalent pure formula ϕ′ of size 2∣Qcl

ϕ∣ ⋅O(∣ϕ∣). If ϕ is an FO2-formula
then ϕ′ is an FO2-formula as well.

Proof. The idea is to replace the topmost occurrences of sentences from the set Qcl
ϕ by truth

values in all possible ways in a big disjunction over all possible truth assignments. Since
sentences fromQcl

ϕ may also violate the pureness condition, we have to iterate this replacement
step.

Let ϕ be almost pure and let F be the set of all mappings from Qcl
ϕ ∖ {ϕ} to {true, false}.

For f ∈ F and a formula θ let θ[f] be the formula that results from θ by replacing every
⪯-maximal formula ψ from the set Qcl

ϕ ∖ {θ} by the truth value f(ψ). Then, we define ϕ′ as
the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ) ↔ ψ[f])).

Let us first show that ϕ′ is pure: Since ϕ is almost pure, in every subformula (Qx ∶ ψ) ∈ Qϕ,
x is either relativized to A1 or A2. Hence, the same holds for ϕ′. Now, let (Q1x ∶ ψ′1), (Q2y ∶
ψ′2) ∈ Qϕ′ with (Q1x ∶ ψ′1) ⪯ (Q2y ∶ ψ′2). In order to get a contradiction, assume that x is
relativized in (Q1x ∶ ψ′1) to A1 and y is relativized in (Q2y ∶ ψ′2) to A2. The two subformulas
(Q1x ∶ ψ′1) and (Q2y ∶ ψ′2) must be of the form (Q1x ∶ ψ1[f]) and (Q2y ∶ ψ2[f]), respectively,
where (Q1x ∶ ψ1), (Q2y ∶ ψ2) ∈ Qϕ with (Q1x ∶ ψ1) ⪯ (Q2y ∶ ψ2). Since ϕ is almost pure,
there exists a closed formula θ ∈ Qcl

ϕ with (Q1x ∶ ψ1) ⪯ θ ⪯ ψ2. But then, by construction of
ϕ′ we cannot have (Q1x ∶ ψ1[f]) ⪯ (Q2y ∶ ψ2[f]) in ϕ′, since the whole subformula θ (which
contains Q1x ∶ ψ1) is replaced by a truth value within Q2y ∶ ψ2[f].

Next, let us argue that ϕ′ is equivalent to ϕ. For this, let us fix a τ -structure S. First,
assume that S ⊧ ϕ(a) (where a is a tuple of values for the free variables in ϕ; note that
we do not assume that ϕ is closed). We define the mapping f ∶ Qcl

ϕ ∖ {ϕ} → {true, false} by
f(ψ) = true if and only if S ⊧ ψ. Since S ⊧ ϕ(a) we get

S ⊧ ϕ[f](a) ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ) ↔ ψ[f]).

On the other hand, if there is a mapping f ∶ Qcl
ϕ ∖ {ϕ} → {true, false} with

S ⊧ ϕ[f](a) ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ) ↔ ψ[f]),

then an induction on the formula size shows that for every ψ ∈ Qcl
ϕ∖{ϕ}, f(ψ) is the truth value

of the closed formula ψ in the structure S. Since moreover S ⊧ ϕ[f](a), we get S ⊧ ϕ(a).
Finally, the size of the formula

ϕ[f] ∧ ⋀
ψ∈Qcl

ϕ∖{ϕ}
(f(ψ) ↔ ψ[f])

is in O(∣ϕ∣) since the formulas ϕ[f], ψ[f] (for ψ ∈ Qcl
ϕ ∖ {ϕ}) form a kind of partition of the

whole formula ψ. Hence, the size of ϕ′ is bounded by 2∣Qcl
ϕ∣ ⋅O(∣ϕ∣). ⊓⊔

Lemma 23. From a given FO2-formula ϕ(x) over the signature τ ∪{A1,A2} with at most one
free variable x, one can compute FO2-formulas ϕ′(x) and ϕ′′(x) over the signature τ∪{A1,A2}
of size 2O(∣ϕ∣2) such that the following holds for all structures S1 and S2 over the signature
τ .

33

• Qx ∈ A1 ∶ ϕ′(x) and Qx ∈ A2 ∶ ϕ′′(x) are almost pure (where Q ∈ {∀,∃}).

• For all a ∈ S1, S1 +S2 ⊧ ϕ(a) if and only if S1 +S2 ⊧ ϕ′(a).

• For all a ∈ S2, S1 +S2 ⊧ ϕ(a) if and only if S1 +S2 ⊧ ϕ′′(a).

Moreover, ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) and ∣Qcl

ϕ′′(x)∣ ∈ 2O(∣ϕ∣).

Proof. Let us construct the formula ϕ′(x) (ϕ′′(x) is constructed analogously) by induction
over the structure of the formula ϕ(x). For this, we assume that ϕ(x) is in negation normal
form, i.e., negations appear only in front of atomic formulas. The case when ϕ(x) is quantifier-
free is easy: simply replace every occurrence of A1(x) by true and every occurrence of A2(x)
by false.

The case that the top-most operator in ϕ(x) is a boolean operator is clear, e.g., set
(ϕ1 ∧ ϕ2)′ = ϕ′1 ∧ ϕ′2.

Let us now assume that ϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is an FO2-formula, the formula
ψ(x, y) can be obtained from a positive boolean formula B(p1, . . . , pk) by replacing every
propositonal variable pi by

(a) some α(x) ∈ Qϕ, where only x may occur freely, or by

(b) some β(y) ∈ Qϕ, where only y may occur freely, or by

(c) a possibly negated atomic formula (i.e., a literal) that involves a subset of the variables
{x, y}.

Let ψ′(x, y) be the formula that results from ψ(x, y) by replacing every subformula α(x)
(resp., β(y)) of type (a) (resp., (b)) by α′(x) (resp., β′(y)). Since by induction, every formula
∃x ∈ A1 ∶ α′(x) and every formula ∃y ∈ A1 ∶ β′(y) is almost pure, also ∃x ∈ A1∃y ∈ A1 ∶ ψ′(x, y)
is almost pure.

By transforming B into DNF, we can write ψ(x, y) as ⋁ri=1ψi, where every ψi is a con-
junction of formulas of the types (a)–(c). Hence, we can write ψi as

ψi = αi(x) ∧ βi(y) ∧ γi(x, y),

where αi is a conjunction of type-(a) formulas, βi is a conjunction of type-(b) formulas, and
γi(x, y) is a conjunction of type-(c) formulas. Note that r ≤ 2∣B∣ ≤ 2∣ϕ(x)∣.

Clearly, over a structure S1 + S2, the formula ∃y ∶ ψ(x, y) is equivalent to ∃y ∈ A1 ∶
ψ(x, y) ∨ ∃y ∈ A2 ∶ ψ(x, y), i.e., to

∃y ∈ A1 ∶ ψ(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (αi(x) ∧ βi(y) ∧ γi(x, y)).

By induction, for all x ∈ S1, this formula is equivalent to

∃y ∈ A1 ∶ ψ′(x, y) ∨
r

⋁
i=1

∃y ∈ A2 ∶ (α′i(x) ∧ β′′i (y) ∧ γi(x, y)).

In this formula, every occurrence of a literal in γi(x, y), in which both x and y occur, can
be replaced either by true (if the literal is negative) or false (if the literal is positive). The
reason for this is that no atomic relations of S1 +S2 involve both elements of S1 and S2.

34

Clearly, if a literal in γi(x, y) is replaced by false then we can remove the whole disjunct
∃y ∈ A2 ∶ (α′i(x) ∧ β′′i (y) ∧ γi(x, y)); let us assume that this occurs for q + 1 ≤ i ≤ r. We
therefore obtain an equivalent formula of the form

∃y ∈ A1 ∶ ψ′(x, y) ∨
q

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))).

Here δi,1(x) (resp., δi,2(y)) is the conjunction of all literals in γi(x, y) that only involve the
variable x (resp., y). Let ϕ′(x) be the above formula. We have to show that the formula

∃x ∈ A1 (∃y ∈ A1 ∶ ψ′(x, y) ∨
q

⋁
i=1

(α′i(x) ∧ δi,1(x) ∧ ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))))

is almost pure. This follows inductively from the fact that ∃x ∈ A1∃y ∈ A1 ∶ ψ′(x, y), ∃x ∈
A1 ∶ α′i(x), and ∃y ∈ A2 ∶ β′′i (y) are almost pure, and the fact that ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y))
is closed. This concludes the case ϕ(x) = ∃y ∶ ψ(x, y). The case ϕ(x) = ∀y ∶ ψ(x, y) can be
treated analogously.

If we allow ∧’s and ∨’s of arbitrary width, then the depth (i.e., the height of the syntax
tree) of ϕ′(x) is bounded by O(∣ϕ∣). Due to forming CNFs and DNFs, the width of ∧’s
and ∨’s can be bounded by 2∣ϕ(x)∣. Hence, the syntax tree of ϕ′(x) has height O(∣ϕ∣) and
branching degree 2∣ϕ(x)∣, and therefore has 2O(∣ϕ∣2) nodes. Replacing ∧’s and ∨’s of arbitrary
width ≤ 2∣ϕ(x)∣ by 2-ary ∧’s and ∨’s only multiplies the number of nodes by 2∣ϕ(x)∣. Hence,
ϕ′(x) is of size 2O(∣ϕ∣2).

For the bound ∣Qcl
ϕ′(x)∣ ∈ 2O(∣ϕ∣) note that in the above construction, the number of closed

subformulas that start with a quantifier is increased by at most q + 1 ≤ r + 1 (due to the
formulas ∃y ∈ A2 ∶ (β′′i (y) ∧ δi,2(y)) for i ∈ [1, q] and possibly ∃y ∈ A1 ∶ ψ′(x, y)). Since r is
exponential in the size of the boolean formula B, the bound ∣Qcl

ϕ′(x)∣ ∈ 2O(∣ϕ∣) follows. ⊓⊔

Theorem 24. From a given closed FO2-formula ϕ over the signature τ ∪ {A1,A2} one can
compute a pure closed FO2-formula ψ of size 22O(∣ϕ∣) such that for all structures S1 and S2

over the signature τ , S1 +S2 ⊧ ϕ if and only if S1 +S2 ⊧ ψ.

Proof. We first apply Lemma 23 to ϕ and obtain a closed almost pure FO2-formula θ such
that S1 +S2 ⊧ ϕ if and only if S1 +S2 ⊧ θ. The size of θ is bounded by 2O(∣ϕ∣2). Finally,
we apply Lemma 22 to θ and obtain an equivalent pure FO2-formula ψ of size 2∣Qcl

θ ∣ ⋅O(∣θ∣).
Since ∣θ∣ ∈ 2O(∣ϕ∣2) and ∣Qcl

θ ∣ ∈ 2O(∣ϕ∣) this yields the upper bound 22O(∣ϕ∣) for the size of ψ. ⊓⊔

Let us conclude this section with a (non-matching) lower bound on Feferman-Vaught
decompositions for FO2.

Proposition 25. There is no function f(n) ∈ o(√n) and c > 1 such that every FO2-formula
ϕ has a Feferman-Vaught decompositions w.r.t. disjoint sum of size cf(∣ϕ∣).

Proof. Let us define the family of unary predicate symbols Pn = {p0, . . . , pn−1, pb} and τn =
Pn ∪ {A1,A2} for each n ≥ 0.

One can define a family of FO2-sentences {ϕn ∣ n ≥ 0}, where each formula ϕn is defined
over the signature τn that has precisely models of the form S1 +S2, where

• S1 and S2 are both Pn-structures,

35

• S1 has precisely 2n elements u0, . . . , u2n−1,

• S1 ⊧ pj(ui) if and only if the jth least significant bit of the binary representation of i is
1 (where j ∈ [0, n − 1]),

• S2 has precisely 2n elements v0, . . . , v2n−1,

• S2 ⊧ pj(vi) if and only if the jth least significant bit of the binary representation of i is
1, and

• for every i ∈ [0,2n − 1], S1 ⊧ pb(ui) if and only if S2 ⊧ pb(vi).

By a standard argument, one can construct FO2-formulas ϕn of size O(n2) that realize the
above-mentioned properties:

ϕn
def= ∀x ∶ x ∈ A1 ↔ x /∈ A2

∧ ⋀
i∈{1,2}

∃x ∈ Ai ∶ ⋀
j∈[0,n−1]

¬pj(x)

∧ ⋀
i∈{1,2}

∀x, y ∈ Ai ∶ ⋀
j∈[0,n−1]

(pj(x) ↔ pj(y)) → x = y

∧ ⋀
i∈{1,2}

∀x ∈ Ai ∶ ⋀
j∈[0,n−1]

∃y ∈ Ai ∶ pj(x) ↔ ¬pj(y) ∧ ⋀
k∈[0,n−1]∖{j}

(pk(x) ↔ pk(y))

∧ ∀x ∈ A1, y ∈ A2 ∶ ⋀
j∈[0,n−1]

(pj(x) ↔ pj(y)) → (pb(x) ↔ pb(y))

We can assign both to S1 and to S2 a number in [0,22n − 1] by simply interpreting the 2n

worlds as positions of a binary string of length 2n. Formally, let bi ∈ {0,1} for i ∈ [0,2n − 1],
where bi = 1 if and only if S1 ⊧ pb(ui) (resp., S2 ⊧ pb(vi)). We define

val(Sj) def=
2n−1

∑
i=0

bi2i ∈ [0,22n − 1].

for each j ∈ {1,2}. Recall that formula ϕn enforces val(S1) = val(S2). Also note that
conversely for each i ∈ [0,22n − 1] there is a unique Pn-structure S

(n)
1,i and a unique Pn-

structure S
(n)
2,i such that S

(n)
1,i +S

(n)
2,i ⊧ ϕn and val(S(n)

1,i) = val(S(n)
2,i) = i. In fact, we have

S
(n)
1,i +S

(n)
2,j ⊧ ϕn ⇔ i = j. (3)

Assume by contradiction that there were some c > 1, a function f(n) ∈ o(√n), and for every
n ≥ 1 a decomposition

Dn = (Ψ(n),Θ(n), βn)

where

• each Ψ(n) = {ψ(n)
j ∣ j ∈ Jn} is a finite set of FO2 sentences over the signature Pn,

• each Θ(n) = {θ(n)h ∣ h ∈Hn} is a finite set of FO2 sentences over the signature Pn,

• βn is a positive boolean formula with variables {x(n)j ∣ j ∈ Jn} ∪ {y(n)h ∣ h ∈Hn}, and

36

• ∣Dn∣ ≤ cf(∣ϕn∣) ≤ cf(O(n2)).

such that for every two Pn-structure S1 and S2 we have

S1 +S2 ⊧ ϕn ⇔ µ ⊧ βn.

Here, µ assigns variables of βn as follows:

• µ(x(n)j) = 1 if and only if S1 ⊧ ψ(n)
j and

• µ(y(n)h) = 1 if and only if S2 ⊧ θ(n)h .

Note that the number of variables of βn is bounded by cf(O(n2)). Since f(n) ∈ o(√n) (and
thus f(dn2) ∈ o(n) for every constant d) there exists an n such that the number of variables
of βn is strictly smaller than 2n. Let us fix this n in the following consideration.

For i ∈ [0,22n − 1] define the truth assignment µ(n)
i as follows:

• µ
(n)
i (x(n)j) def= 1 if and only if S

(n)
1,i ⊧ ψ

(n)
j and

• µ
(n)
i (y(n)h) def= 1 if and only if S

(n)
2,i ⊧ θ

(n)
h .

Since there are strictly less than 22n truth assignments for βn (by the choice of n), there exist
i < j such that µ(n)

i = µ(n)
j . Since S

(n)
1,i +S

(n)
2,i ⊧ ϕn we must have S

(n)
1,i +S

(n)
2,j ⊧ ϕn as well.

Hence i = j by (3), which is a contradiction. ⊓⊔

7 Gaifman normal form

Our technique from the proof of Theorem 21 can be used to prove a doubly exponential upper
bound on the size (and construction) of Gaifman normal forms [14]. Let us start with a few
definitions.

Let S = (D,{Pa ∣ a ∈ τ}) be a structure over a finite relational signature τ . The Gaifman
graph of S is the undirected graph G(S) = (D,E), where the edge relation E contains a
pair (u, v) ∈ D ×D with u ≠ v if and only if there exists a relation Pa (a ∈ τ) of arity say
n and a tuple (u1, . . . , un) ∈ Pa such that u, v ∈ {u1, . . . , un}. For u, v ∈ D, the distance
dS(u, v) is the length (number of edges) of a shortest path from u to v in G(S). For a tuple
u = (u1, . . . , un) ∈ Dn and v ∈ D, let dS(u, v) = min{dS(ui, v) ∣ 1 ≤ i ≤ n}. For n ∈ N, the
n-sphere around u is SS,n(u) = {v ∈ D ∣ dS(u, v) ≤ n}. We write Sn(u) for SS,n(u), if S is
clear from the context.

Note that for every n ∈ N, there exists a first-order formula dn(x, y) such that for all
τ -structures S and all elements u, v of S, S ⊧ dn(u, v) if and only if dS(u, v) ≤ n. For
better readability, we write d(x, y) ≤ n instead of dn(x, y). The formula d(x, y) > n should be
understood similarly. In a formula of the form ∃y ∶ d(x, y) ≤ r ∧ ψ or ∀y ∶ d(x, y) ≤ r → ψ, we
say that the variable y is relativized to Sr(x). A formula ϕ is called r-local around x if for
every subformula (Qy ∶ ψ) ∈ Qϕ, the variable y is relativized in (Qy ∶ ψ) to a sphere Sq(x) for
some q ≤ r. A sentence ψ is called an r-local Gaifman-sentence if it is of the form

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕ(xi),

where ϕ(xi) is q-local around (the single variable) xi for some q ≤ r.

37

Theorem 26 (Gaifman’s theorem [14]). Every first-order formula ϕ(x) is equivalent to a
boolean combination ψ(x) of r-local formulas around x and q-local Gaifman-sentences for
suitable r and q (that are exponential in the size of ϕ(x)).

We call the formula ψ(x) from Theorem 26 a Gaifman normal form for ϕ(x). In [12] it was
shown that (for FO4-formulas already) the size of equivalent formulas in Gaifman normal form
cannot be bounded elementarily. By using our formulas ϕ`,n from Section 3 and analogous
ideas as in [12], we can strengthen the latter result to FO3.

Proposition 27. There is no elementary function f such that every FO3-formula ϕ has an
equivalent formula in Gaifman normal form of size f(∣ϕ∣).

Proof (sketch). We only give a sketch of the proof because the overall proof strategy is very
similar to the proof of Theorem 4.2 in [12].

Recall that the K2-formula ϕ`,2 was defined over ({a, a},P2 ∪ P2). Recall the translation
of the K2-formula ϕ`,2 into the FO3-formula ϕ∗`,2 over the signature τ = {a} ∪ P2 ∪ {A1,A2}
from the proof of Corollary 20.
For each i ∈ {1,2} and each j ∈ [0,Tower(` + 1,2) − 1] we define the τ -tree T

(i)
`,2(j) with root

r
(i)
`,2(j) as the tree that evolves from Υ(0)

`,2 (j) (see Definition 3) by adding the unary predicate
Ai everywhere.

Consider the structure

F`
def= ⊎

j∈[0,Tower(`+1,2)−1]
T

(1)
`,2 (j) ⊎T

(2)
`,2 (j),

where ⊎ denotes disjoint union. For each ` ≥ 1 let us define the FO3-formula ϕ` as the
conjunction of the following two formulas:

• ∃x,x′ ∶ A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′) ∧ first∗`,2(x,x′)

• ∀x,x′ ∶ (A1(x) ∧A2(x′) ∧ ϕ∗`,2(x,x′) →

last∗`,2(x,x′) ∨ ∃x′ ∶ (succ∗`,2(x,x′) ∧ ∃x ∶ ϕ∗`,2(x,x′)))

Let us interpret the formula ϕ` on the structure F`. The two trees Υ(1)
`,2 (0) and Υ(2)

`,2 (0) witness
the first conjunct of the formula ϕ`. The second conjunct of ϕ` holds in F` since for each
j ∈ [0,Tower(` + 1,2) − 1] either j = Tower(` + 1,2) − 1 and hence F` ⊧ last∗`,2(r

(1)
`,2 (j), r(2)`,2 (j))

or j < Tower(` + 1,2) − 1 and hence F` ⊧ succ∗(r(1)`,2 (j), r(2)`,2 (j + 1)) and moreover we have

F` ⊧ ϕ∗`,2(r
(1)
`,2 (j + 1), r(2)`,2 (j + 1)).

For each j ∈ [0,Tower(` + 1,2) − 1] let F
−j
` be the τ -structure that one obtains from

F` by entirely removing T
(2)
`,2 (j) from it. Note that F` ⊧ ϕ`, but F

−j
` /⊧ ϕ` for every j ∈

[0,Tower(` + 1,2) − 1].
Assume now that there were an elementary function f such that every formula ϕ` has an

equivalent formula ψ` in Gaifman normal form of size at most f(∣ϕ`∣). Note that f(∣ϕ`∣) is
elementarily bounded in `. Hence, there exists ` such that f(∣ϕ`∣) < Tower(` + 1,2). Since
F` ⊧ ϕ`, we also have F` ⊧ ψ`. We can now prove in exactly the same way as in the proof
of Theorem 4.2 in [12] that there must exist j ∈ [0,Tower(` + 1,2) − 1] with F

−j
` ⊧ ψ`, i.e.,

F
−j
` ⊧ ϕ`, which is a contradiction. ⊓⊔

38

Next, we show that for the fragment FO2 such an elementary (in fact, doubly exponential)
bound is possible: The quantifier rank of a first-order formula ϕ is the maximal nesting depth
of quantifiers in ϕ; it is denoted by qr(ϕ).

Theorem 28. Every FO2-formula ϕ(x) is equivalent to a boolean combination ψ(x) of r-
local formulas around x and q-local Gaifman-sentences with r ≤ 3qr(ϕ), q ≤ 6qr(ϕ), and
∣ψ∣ ≤ 22O(∣ϕ∣).

In Theorem 28, x is a single variable. This is no restriction, since every FO2-formula can
be written as a boolean combination of atomic formulas a(x) (which are r-local around x
for every r) and formulas that (i) start with a quantifier, and (ii) that have at most one free
variable. In the rest of this section, all r-local formulas will be r-local around a single variable
x. For the proof of Theorem 28 it is useful to define almost r-local formulas around x and
almost r-local Gaifman-sentences. We do this by simultaneous induction:

• Every formula that is built up from atomic formulas and almost p-local Gaifman-
sentences (for arbitrary p) using boolean operators and quantifiers relativized to Sq(x)
for arbitrary q ≤ r is an almost r-local formula around x (hence, every r-local formula
around x is almost r-local around x).

• If the formula ϕ(xi) is almost q-local around xi (1 ≤ i ≤ n) for some q ≤ r, then the
sentence

∃x1, . . . , xn ∶ ⋀
1≤i<j≤n

d(xi, xj) > 2q ∧ ⋀
1≤i≤n

ϕ(xi) (4)

is an almost r-local Gaifman-sentence.

For a formula ϕ, let G(ϕ) be the set of all almost p-local Gaifman-sentences ψ (for arbitrary
p) with ψ ⪯ ϕ.

Lemma 29. From an almost r-local formula ϕ(x) (around x) one can compute a logically
equivalent Boolean combination ϕ′(x) of r-local formulas around x and q-local Gaifman sen-
tences. Here, the size of ϕ′(x) is bounded by 2∣G(ϕ)∣ ⋅O(∣ϕ∣) and q is the maximum of all p
such that G(ϕ) contains an almost p-local Gaifman sentence.

Proof. Let ϕ(x) be almost r-local around x and let F be the set of all mappings from G(ϕ)
to {true, false}. For f ∈ F and a formula θ let θ[f] be the formula that results from θ by
replacing every ⪯-maximal formula ψ from the set G(ϕ)∖{θ} by the truth value f(ψ). Then,
we define ϕ′ as the disjunction

⋁
f∈F

(ϕ[f] ∧ ⋀
ψ∈G(ϕ)

(f(ψ) ↔ ψ[f])).

The proof that ϕ′ is equivalent to ϕ and that ϕ′ is r-local around x is analogous to the proof
of Lemma 22. The size of the formula

ϕ[f] ∧ ⋀
ψ∈G(ϕ)

(f(ψ) ↔ ψ[f])

is in O(∣ϕ∣) since the formulas ϕ[f], ψ[f] (for ψ ∈ G(ϕ)) form a kind of partition of the whole
formula ψ. Hence, the size of ϕ′ is bounded by 2∣G(ϕ)∣ ⋅O(∣ϕ∣). ⊓⊔

39

Lemma 30. From an FO2-formula ϕ(x) with at most one free variable x, one can compute
an equivalent almost r-local formula ϕ`(x) of size 2O(∣ϕ∣2) with r ≤ 3qr(ϕ), ∣G(ϕ`)∣ ≤ 2O(∣ϕ∣),
and every ψ ∈ G(ϕ`) is an almost 2r-local Gaifman sentence.

Proof. We prove the lemma by induction over the structure of the formula ϕ(x). The case
that the top-most operator in ϕ(x) is a boolean operator is clear, e.g., set (ϕ1∧ϕ2)` = ϕ`1∧ϕ`2.

Now, assume that ϕ(x) = ∃y ∶ ψ(x, y). Since ϕ(x) is an FO2-formula, the formula ψ(x, y)
can be obtained from a positive boolean formula B(p1, . . . , pk) by replacing every propositonal
variable pi by

(a) a formula α(x) ∈ Qϕ, which may only contain x freely, or by

(b) a formula β(y) ∈ Qϕ, which may only contain y freely, or by

(c) a possibly negated atomic formula (i.e., a literal) that involves a subset of the variables
{x, y}.

Inductively, we replace each of the formulas α(x) and β(y) in (a) and (b), respectively, by
α`(x) and β`(y), respectively. These formulas are almost r-local with r ≤ 3qr(ψ). Let us
denote the resulting formula by ∃y ∶ ψ`(x, y) It is clearly equivalent to

∃y ∶ (d(x, y) ≤ 1 ∧ ψ`(x, y)) ∨ ∃y ∶ (d(x, y) ≥ 2 ∧ ψ`(x, y)).

The formula ∃y ∶ (d(x, y) ≤ 1 ∧ ψ`(x, y)) can be transformed into an almost (r + 1)-local
formula around x. To see this, note that d(x, y) ≤ 1 implies that every quantification that is
relativized to Sr(y) can be replaced by a quantification that is relativized to Sr+1(x), see also
[14]. We will use this argument several times below.

So, let us concentrate on the second formula ∃y ∶ (d(x, y) ≥ 2 ∧ ψ`(x, y)). We transform
the boolean formula B(p1, . . . , pk) into disjunctive normal form. Hence, for ∃y ∶ (d(x, y) ≥
2 ∧ ψ`(x, y)) we obtain an equivalent formula of the form

∃y ∶ (d(x, y) ≥ 2 ∧
p

⋁
i=1

(αi(x) ∧ βi(y) ∧ γi(x, y))),

where

• αi(x) is a conjunction of formulas α`(x), where α(x) is of type (a),

• βi(y) is a conjunction of formulas β`(y), where β(y) is of type (b), and

• γi(x, y) is a conjunction of literals in the free variables x and y.

Note that all αi(x) and βi(y) are almost r-local with r ≤ 3qr(ψ). Since we assume that
d(x, y) ≥ 2, every occurrence of an atomic formula in γi(x, y), in which both x and y occur,
can be replaced by false. We thus obtain an equivalent formula of the form

∃y ∶ (d(x, y) ≥ 2 ∧
p

⋁
i=1

(αi(x) ∧ βi(y) ∧ δi,1(x) ∧ δi,2(y))).

Here δi,1(x) (resp., δi,2(y)) is the conjunction of all literals in γi(x, y) that only involve the
variable x (resp., y). The above formula is equivalent to

p

⋁
i=1

(αi(x) ∧ δi,1(x) ∧ ∃y ∶ (d(x, y) ≥ 2 ∧ βi(y) ∧ δi,2(y))).

40

The formulas αi(x)∧δi,1(x) are almost r-local around x. So, let us concentrate on the formulas
∃y ∶ (d(x, y) ≥ 2∧βi(y)∧ δi,2(y)). Let us consider a specific such formula and let us just write

∃y ∶ (d(x, y) ≥ 2 ∧ θ(y)) (5)

for it, where θ(y) is almost r-local around y. Consider the sentence

ρ = ∃x1, x2 ∶ (d(x1, x2) > 2r ∧ θ(x1) ∧ θ(x2)) ∧
∃x1, x2 ∶ (3 ≤ d(x1, x2) ≤ 2r ∧ θ(x1) ∧ θ(x2)).

The part in the first line is an almost r-local Gaifman-sentence. The part in the second line
can be rewritten as

∃z ∶ (∃x1, x2 ∈ Sr(z) ∶ d(x1, x2) ≥ 3 ∧ θ(x1) ∧ θ(x2)). (6)

This sentence is an almost 2r-local Gaifman-sentence (with n = 1 in (4)): Since θ(y) is almost
r-local around y, the formula ∃x1, x2 ∈ Sr(z) ∶ d(x1, x2) ≥ 3 ∧ θ(x1) ∧ θ(x2) is almost 2r-local
around z.

Hence, ρ is the conjunction of an almost r-local Gaifman-sentence and an almost 2r-local
Gaifman-sentence, which states that there exist two elements with distance at least 3 that
satisfy θ.

We claim that the formula in (5) is equivalent to the following almost (r+3)-local formula
around x:

(∃z ∶ θ(z)) ∧ (¬(∃z ∈ S1(x) ∶ θ(z)) ∨ ρ ∨ (∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y))).

Let us first assume that there exists y with d(x, y) ≥ 2 and θ(y). Hence, ∃z ∶ θ(z) holds.
Moreover, assume that ∃z ∈ S1(x) ∶ θ(z) and ¬ρ hold. We have to show that ∃y ∈ S3(x) ∶
d(x, y) ≥ 2∧θ(y) holds. Since we have ¬ρ, all elements that satisfy the formula θ have pairwise
distance at most 2. Since there is an element of distance at most 1 from x that satisfies θ,
the element y with d(x, y) ≥ 2 and θ(y) has distance at most 3 from x.

For the other direction, assume that ∃z ∶ θ(z) and one of ¬(∃z ∈ S1(x) ∶ θ(z)), ρ, or
∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y) holds. We have to show that there exists y with d(x, y) ≥ 2
and θ(y). The case that ¬(∃z ∈ S1(x) ∶ θ(z)) or ∃y ∈ S3(x) ∶ d(x, y) ≥ 2 ∧ θ(y) holds is clear.
If ρ holds, then there exist two elements with distance at least 3 that satisfy θ. Since two
elements in S1(x) have distance at most 2, there must exist y /∈ S1(x) satisfying θ.

We have shown that ϕ(x) = ∃y ∶ ψ(x, y) is equivalent to an almost (r + 3)-local formula
around x (with r ≤ qr(ψ)), which we can take for ϕ`(x). Hence, ϕ`(x) is indeed almost
r′-local for some r′ ≤ 3qr(ϕ). Moreover, every sentence in G(ϕ`(x)) is an almost 2r′-local
Gaifman sentence (the factor 2 comes from the formula (6)).

In order to bound the size of ϕ`(x), note that the depth of ϕ`(x) is bounded by O(∣ϕ∣) if
we allow ∧’s and ∨’s of arbitrary width. Since the width can be bounded by 2∣ϕ(x)∣, the size
of ϕ`(x) can be bounded by 2O(∣ϕ∣2), see the proof of Lemma 23 for an analogous argument.

For the bound ∣G(ϕ`)∣ ≤ 2O(∣ϕ∣) note that in the above construction, the number of almost
local Gaifman sentences that are introduced is bounded by O(p). Since p is exponential in
the size of the boolean formula B, the bound ∣G(ϕ`)∣ ≤ 2O(∣ϕ∣) follows. Again, see the proof
of Lemma 23 for an analogous argument. ⊓⊔

41

Let us finally prove Theorem 28. We first apply Lemma 30 to ϕ(x) and obtain an equiva-
lent almost r-local formula θ(x) with ∣θ∣ ≤ 2O(∣ϕ∣2). Moreover r ≤ 3qr(ϕ) and every sentence in
G(θ) is an almost 2r-local Gaifman sentence. Finally, we apply Lemma 29 to θ and obtain an
equivalent Boolean combination ψ(x) of r-local formulas around x and 2r-local Gaifman sen-
tences. The size of ψ(x) is bounded by 2∣G(θ)∣ ⋅O(∣θ∣). Since ∣θ∣ ≤ 2O(∣ϕ∣2) and ∣G(θ)∣ ≤ 2O(∣ϕ∣),
this yields the upper bound 22O(∣ϕ∣) for the size of ψ(x). ⊓⊔

Finally, we give a (non-matching) lower bound on the size of equivalent formulas in Gaif-
man normal form for FO2; the proof is again based on techniques from [12].

Proposition 31. There is no function f(n) ∈ o(√n) and c > 1 such that every FO2-formula
ϕ has an equivalent formula in Gaifman normal form of size cf(∣ϕ∣).

Proof. This proof uses a very similar strategy as in [12]. Let us define the signature τn =
{p0, . . . , pn−1} of solely unary predicate symbols for each n ≥ 1. For each n ≥ 1 it is standard
to define an FO2-sentence ϕn of size O(n2) such that there is a unique τn-structure Sn with
Sn ⊧ ϕn, where Sn satisfies the following properties:

• Sn has 2n elements u0, . . . , u2n−1 and

• Sn ⊧ pj(ui) if and only if the jth least significant bit of the binary representation of i
is 1 (where j ∈ [0, n − 1]).

Assume by contradiction that there is a function f(n) ∈ o(√n) and c > 1 such that for every
n ≥ 1, ϕn has an equivalent sentence ψn in Gaifman normal form with ∣ψn∣ ≤ cf(∣ϕn∣) = cf(O(n2)).
Hence, we have Sn ⊧ ψn. Since f(n) ∈ o(√n) there is an n such that ∣ψn∣ < 2n. Let us fix
such an n in the following.

The sentence ψn is a boolean combination of sentences χ1, . . . , χ`, where each sentence

χi = ∃x1, . . . , xni ∶ χ′i

is an ri-local Gaifman-sentence. Without loss of generality, we can assume that there is some
h ∈ [1, `] such that

(1) Sn ⊧ χi for each i ∈ [1, h] and

(2) Sn /⊧ χi for each i ∈ [h + 1, `].

Recall that Sn consists precisely of the elements u0, . . . , u2n−1. By (1) we have that for
each i ∈ [1, h], we can fix elements w(i)

1 , . . . ,w
(i)
ni ∈ {u0, . . . , u2n−1} that witness Sn ⊧ χi, i.e.

Sn ⊧ χ′i(w
(i)
1 , . . . ,w

(i)
ni). Let d def= ∑hi=1 ni ≤ ∑`i=1 ni ≤ ∣ψn∣ < 2n. For each j ∈ [0,2n − 1], let

the τn-structure S
−j
n be obtained from Sn by removing the element uj . Note that obviously

S
−j
n /⊧ ϕn for every j ∈ [0,2n − 1]. Since d < 2n, by the pigeonhole principle, there exists some

j ∈ [0,2n − 1] such that

• uj /∈ {w(i)
k ∣ i ∈ [1, h], k ∈ [1, ni]} and thus

• S
−j
n ⊧ χi (since χi is an ri-local Gaifman-sentence) for each i ∈ [1, h].

42

Recall that by (2) we have Sn /⊧ χi, or equivalently

Sn ⊧ ¬∃x1, . . . , xni ∶ χ′i

for each i ∈ [h+ 1, `]. Also, note that since each formula χi is an ri-local Gaifman-sentence it
follows S

−j
n ⊧ ¬χi for each i ∈ [h + 1, `]. In total we have

• S
−j
n ⊧ χi for each i ∈ [1, h] and

• S
−j
n /⊧ χi for each i ∈ [h + 1, `].

and hence S
−j
n ⊧ ψn, contradicting S

−j
n /⊧ ϕn. ⊓⊔

8 Conclusions and open problems

We have defined a class of trees that can be enforced in two-dimensional modal logic K ×K.
Using these trees we were able to show nonelementary lower bounds for satisfiability in K×K
and, via reductions from this, for K4×K and S52×K. As our trees have very large outdegree,
we believe that it is not possible to adapt our techniques to the case when the frames in one
dimension are restricted to be some kind of ‘linear’, e.g., the frame (N,<) or transitive, weakly
connected frames, so called K4.3-frames. However, it would be interesting to study the precise
complexity of such logics as well. Note that there have been results in this direction. For
example, it is known that satisfiability in PTL×K and PTL×S52 is hard for nonelementary
time [3, 24], where PTL is propositional linear temporal logic including the ‘until’-operator,
which is not available in our setting.

Fusions are another way to combine two modal logics; intuitively, they are the independent
join of the two participating logics. For example, the fusion of K and K is just the bimodal
logic K2. While it is well-known that satisfiability in K2 is PSPACE-complete [6], nothing
is known for combinations that lie between fusions and products. In particular, K2 can be
axiomatized by taking two copies of the well-known K-axiom, one for each modal operator;
an axiomatization for K × K can be obtained from the axiomatization for the fusion by
adding axioms postulating that the two modal operators commute and have the Church-
Rosser property. Thus, combinations between fusion and product can be obtained by dropping
either Church-Rosser or half of commutativity, and it would be interesting to see which of
the additional axioms suffice to prove the nonelementary lower bound.

An open problem from the second part of the paper concerns the size of Feferman-Vaught
decompositions (w.r.t. disjoint sum) and equivalent formulas in Gaifman normal form for
FO2. For both formalisms, we proved a doubly exponential upper bound and a lower bound
of the form co(

√
n) (for any constant c > 1). We conjecture that the upper bound can be

improved to a singly exponential bound.
The Loś-Tarski theorem gives another normal form: the first-order sentences that are pre-

served under extensions coincide with the ones that are equivalent to an existential sentence.
It has been shown in [12, Theorem 6.1] that the size of this normal form is also inherently
nonelementary, however the used formulas had at least four free variables. Of course one
might ask whether our technique yields formulas in FO3.

A further potential question could be to study logics for which Feferman-Vaught decom-
positions do not exist in general (like CTL) and to find a (possibly decidable) characterization
of those formulas which are decomposable.

43

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. Markus Lohrey
is partially supported by the DFG research project GELO. Jean Christoph Jung is supported
by the DFG research project ProbDL (LU1417/1-1).

References

[1] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic. Cambridge University Press,
2001.

[2] P. Blackburn, F. Wolter, and J. van Benthem, Eds., Handbook of Modal Logic. Elsevier,
2006.

[3] D. Gabbay, A. Kurusz, F. Wolter, and M. Zakharyaschev, Many-Dimensional Modal
Logics: Theory and Applications. Elsevier, 2003.

[4] M. Marx and Y. Venema, Multi-Dimensional Modal Logic. Kluwer Academic Press,
1996.

[5] D. M. Gabbay and V. B. Shehtman, “Products of Modal Logics, Part 1,” Logic Journal
of the IGPL, vol. 6, no. 1, pp. 73–146, 1998.

[6] R. E. Ladner, “The Computational Complexity of Provability in Systems of Modal Propo-
sitional Logic,” SIAM J. Comput., vol. 6, no. 3, pp. 467–480, 1977.

[7] R. Hirsch, I. M. Hodkinson, and Á. Kurucz, “On modal logics between K x K x K and
S5 x S5 x S5,” J. Symb. Log., vol. 67, no. 1, pp. 221–234, 2002.

[8] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev, “Products of ’transitive’
modal logics,” J. Symb. Log., vol. 70, no. 3, pp. 993–1021, 2005.

[9] A. Mostowski, “On direct products of theories,” J. Symbolic Logic, vol. 17, pp. 1–31,
1952.

[10] S. Feferman and R. L. Vaught, “The first order properties of products of algebraic sys-
tems,” Fundamenta Mathematicae, vol. 47, pp. 57–103, 1959.

[11] J. A. Makowsky, “Algorithmic uses of the Feferman-Vaught Theorem,” Ann. Pure Appl.
Logic, vol. 126, no. 1-3, pp. 159–213, 2004.

[12] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt, “Model Theory Makes Formulas
Large,” in Proc. of ICALP, ser. Lecture Notes in Computer Science, vol. 4596. Springer,
2007.

[13] A. Rabinovich, “On compositionality and its limitations,” ACM Trans. Comput. Log.,
vol. 8, no. 1, 2007.

[14] H. Gaifman, “On local and nonlocal properties,” in Logic Colloquium ’81, J. Stern, Ed.
North Holland, 1982, pp. 105–135.

44

[15] S. Kreutzer, “Algorithmic meta-theorems,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 16, p. 147, 2009.

[16] M. Marx and S. Mikulás, “Products, or How to Create Modal Logics of High Complex-
ity,” Logic Journal of the IGPL, vol. 9, no. 1, pp. 71–82, 2001.

[17] S. Göller and A. W. Lin, “Concurrency Makes Simple Theories Hard,” in Proc. of STACS,
ser. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012, pp. 344–355.

[18] E. Grädel, P. G. Kolaitis, and M. Y. Vardi, “On the decision problem for two-variable
first-order logic,” Bulletin of Symbolic Logic, vol. 3, no. 1, pp. 53–69, 1997.

[19] S. Göller, J. C. Jung, and M. Lohrey, “The complexity of decomposing modal and first-
order theories,” in Proceedings of the 27th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2012. IEEE, 2012, pp. 325–334.

[20] J. Flum and M. Grohe, Parametrized Complexity Theory. Springer, 2006.

[21] E. Börger, E. Grädel, and Y. Gurevich, The classical decision problem, ser. Universitext.
Berlin: Springer-Verlag, 2001.

[22] B. S. Chlebus, “From domino tilings to a new model of computation,” in Symposium
on Computation Theory, ser. Lecture Notes in Computer Science, A. Skowron, Ed., vol.
208. Springer, 1984, pp. 24–33.

[23] M. Marx, “Complexity of products of modal logics,” J. Log. Comput., vol. 9, no. 2, pp.
197–214, 1999.

[24] J. Y. Halpern and M. Y. Vardi, “The complexity of reasoning about knowledge and time.
I. lower bounds,” J. Comput. Syst. Sci., vol. 38, no. 1, pp. 195–237, 1989.

45

