
Isomorphism of regular trees and words

Markus Lohreya, Christian Mathissena

aInstitut für Informatik, Universität Leipzig, Germany

Abstract

The computational complexity of the isomorphism problem for regular trees,
regular linear orders, and regular words is analyzed. A tree is regular if
it is isomorphic to the prefix order on a regular language. In case regular
languages are represented by NFAs (DFAs), the isomorphism problem for
regular trees turns out to be EXPTIME-complete (resp. P-complete). In case
the input automata are acyclic NFAs (acyclic DFAs), the corresponding trees
are (succinctly represented) finite trees, and the isomorphism problem turns
out to be PSPACE-complete (resp. P-complete). A linear order is regular if it
is isomorphic to the lexicographic order on a regular language. A polynomial
time algorithm for the isomorphism problem for regular linear orders (and
even regular words, which generalize the latter) given by DFAs is presented.
This solves an open problem by Ésik and Bloom. Similar techniques can
be used to show that one can check in polynomial time whether a given
regular linear order has a non-trivial automorphism. This improves a recent
decidability result of Kuske [21].

1. Introduction

Isomorphism problems for infinite but finitely presented structures are an
active research topic in algorithmic model theory [1]. It is a folklore result
in computable model theory that the isomorphism problem for computable
structures (i.e., structures, where the domain is a computable set of natural
numbers and all relations are computable too) is highly undecidable — more
precisely, it is Σ1

1-complete, i.e., complete for the first existential level of the
analytical hierarchy. Khoussainov et al. proved in [20] that even for automatic

Email addresses: lohrey@informatik.uni-leipzig.de (Markus Lohrey),
mathissen@informatik.uni-leipzig.de (Christian Mathissen)

Preprint submitted to Information and Computation December 21, 2012

structures (i.e., structures, where the domain is a regular set of words and
all relations can be recognized by synchronous multitape automata), the iso-
morphism problem is Σ1

1-complete. In [23], this result was further improved
to automatic order trees and automatic linear orders. On the decidability
side, Courcelle proved that the isomorphism problem for equational graphs
is decidable [8]. Recall that a graph is equational if it is the least solution
of a system of equations over the HR graph operations. We remark that
Courcelle’s algorithm for the isomorphism problem for equational graphs has
very high complexity (it is not elementary), since it uses the decidability of
monadic second-order logic on equational graphs.

In this paper, we continue the investigation of isomorphism problems for
infinite but finitely presented structures at the lower end of the spectrum.
We focus on two very simple classes of infinite structures: regular trees and
regular words. Both are particular automatic structures. Recall that a count-
able tree is regular if it has only finitely many subtrees up to isomorphism.
This definition works for ordered trees (where the children of a node are lin-
early ordered) and unordered trees. An equivalent characterization in the
unordered case uses regular languages: An unordered (countable) tree T is
regular if and only if there is a regular language L ⊆ Σ∗ which contains
the empty word and such that T is isomorphic to the tree obtained by tak-
ing the prefix order on L (the empty word is the root of the tree). Hence,
a regular tree can be represented by a finite deterministic or nondetermin-
istic automaton (DFA or NFA), and the isomorphism problem for regular
trees becomes the following computational problem: Given two DFAs (resp.,
NFAs) accepting both the empty word, are the corresponding regular trees
isomorphic? It is is not difficult to prove that this problem can be solved
in polynomial time if the two input automata are assumed to be DFAs; the
algorithm is very similar to the well-known partition refinement algorithm
for checking bisimilarity of finite state systems [18], see Section 3.1. Hence,
the isomorphism problem for regular trees that are represented by NFAs can
be solved in exponential time. Our first main result states that this problem
is in fact EXPTIME-complete, see Section 3.2.2. The proof of the EXPTIME

lower bound uses three main ingredients: (i) EXPTIME coincides with alter-
nating polynomial space [6], (ii) a construction from [16], which reduces the
evaluation problem for boolean expressions to the isomorphism problem for
(finite) trees, and (iii) a small NFA accepting all words that do not represent

2

an accepting computation of a polynomial space machine [35].1. Our proof
technique yields another result too: It is PSPACE-complete to check for two
given acyclic NFAs A1, A2 (both accepting the empty word), whether the
trees that result from the prefix orders on L(A1) and L(A2), respectively, are
isomorphic. Note that these two trees are clearly finite (since the automata
are acyclic), but the size of L(Ai) can be exponential in the number of states
of Ai. In this sense, acyclic NFAs can be seen as a succinct representation of
finite trees. The PSPACE-upper bound for acyclic NFAs follows easily from
Lindell’s result [25] that isomorphism of explicitly given trees can be checked
in logarithmic space.

The second part of this paper studies the isomorphism problem for regular
words, which were introduced in [7]. A generalized word over an alphabet Σ
is a countable linear order together with a Σ-coloring of the elements. A gen-
eralized word is regular if it can be obtained as the least solution (in a certain
sense made precise in [7]) of a system X1 = t1, . . . , Xn = tn. Here, every ti is
a finite word over the alphabet Σ ∪ {X1, . . . , Xn}. For instance, the system
X = abX defines the regular word (ab)ω. Courcelle [7] gave an alternative
characterization of regular words: A generalized word is regular if and only
if it is equal to the frontier word of a finitely-branching ordered regular tree,
where the leaves are colored by symbols from Σ. Here, the frontier word is
obtained by ordering the leaves in the usual left-to-right order (note that the
tree is ordered). Alternatively, a regular word can be represented by a DFA
A, where the set of final states is partitioned into sets Fa (a ∈ Σ); we call
such a DFA a partitioned DFA, see also [2] where the term A-automaton is
used. The corresponding regular word is obtained by ordering the language
of A lexicographically and coloring a word w ∈ L(A) with a if w leads from
the initial state to a state from Fa. A third characterization of regular words
was provided by Heilbrunner [14]: A generalized word is regular if it can be
obtained from singleton words (i.e., symbols from Σ) using the operations of
concatenation, ω-power, ω-power and dense shuffle. For a generalized word u,
its ω-power (resp. ω-power) is the generalized word uuu · · · (resp. · · ·uuu).
Moreover, the dense shuffle of generalized words u1, . . . , un is obtained by
choosing a dense coloring of the rationals with colors {1, . . . , n} (up to iso-
morphism, there is only a single such coloring [33]) and then replacing every

1This construction is used in [35] to prove that the universality problem for NFAs is
PSPACE-complete.

3

i-colored rational by ui. In fact, Heilbrunner presents an algorithm which
computes from a given system of equations (or, alternatively, a partitioned
DFA) an expression over the above set of operations (called a regular ex-
pression in the following) which defines the least solution of the system of
equations. A simple analysis of Heilbrunner’s algorithm shows that the com-
puted regular expression in general has exponential size with respect to the
input system of equations and it is easy to see that this cannot be avoided.2

The next step was taken by Thomas in [36], where he proved that the iso-
morphism problem for regular words is decidable. For his proof, he uses the
decidability of the monadic second-order theory of linear orders; hence his
proof does not yield an elementary upper bound for the isomorphism prob-
lem for regular words. Such an algorithm was presented later by Bloom and
Ésik in [3], where the authors present a polynomial time algorithm for check-
ing whether two given regular expressions define isomorphic regular words.
Together with Heilbrunner’s algorithm, this yields an exponential time algo-
rithm for checking whether the least solutions of two given systems of equa-
tions (or, alternatively, the regular words defined by two partitioned DFAs)
are isomorphic. It was asked in [3], whether a polynomial time algorithm
for this problem exists. Our second main result answers this question affir-
matively. In fact, we prove that the problem, whether two given partitioned
DFAs define isomorphic regular words, is P-complete. A large part of this
paper deals with the polynomial time upper bound. The first step is simple.
By reanalyzing Heilbrunner’s algorithm, it is easily seen that from a given
partitioned DFA (defining a regular word u) one can compute in polynomial
time a succinct representation of a regular expression for u. This succinct
representation consists of a DAG (directed acyclic graph), whose unfolding
is a regular expression for u. The second and main step of the proof shows
that the polynomial time algorithm of Bloom and Ésik for regular expres-
sions can be refined in such a way that it works (in polynomial time) for
succinct regular expressions too. The main tool in our proof uses (besides
the machinery from [3]) algorithms on compressed strings (see [26, 34] for
surveys). In particular, we use the result that equality of strings that are
represented by straight-line programs (i.e., context free grammars that only
generate a single word) can be checked in polynomial time; this result was

2Take for instance the system Xi = Xi+1Xi+1 (1 ≤ i ≤ n), Xn = a, which defines the
finite word a2

n

.

4

independently shown in [15, 28, 31]. It is a simple observation that an acyclic
partitioned DFA is basically a straight-line program. Hence, we show how to
extend equality checking for acyclic partitioned DFAs to general partitioned
DFAs.

An immediate corollary of our result is that it can be checked in poly-
nomial time whether the lexicographic orderings on the languages defined
by two given DFAs (so called regular linear orderings) are isomorphic. For
the special case that the two input DFAs accept well-ordered languages, this
was shown in [9]. Let us mention that it is highly undecidable (Σ1

1-complete)
to check, whether the lexicographic orderings on the languages defined by
two given deterministic pushdown automata (these are the algebraic linear
orderings [4]) are isomorphic [23].

In Section 4.7 we finally present a polynomial time algorithm for checking
whether a given regular word that is represented by a partitioned DFA has
a non-trivial automorphism. This improves a recent decidability result of
Kuske [21]. For the proof, we reuse our machinery developed for the isomor-
phism problem for regular words.

An extended abstract of this paper appeared as [27].

2. Preliminaries

As usual, for a function f and a subset A of the domain of f , f↾A denotes
the restriction of f to A. Let us take a finite alphabet Σ. The length of a
finite word u ∈ Σ∗ is denoted by |u|. Let Σ+ = {u ∈ Σ∗ | |u| > 0}, Σk =
{u ∈ Σ∗ | |u| = k}, Σ≤k = {u ∈ Σ∗ | |u| ≤ k}, and Σ≥k = {u ∈ Σ∗ | |u| ≥ k}.
For u, v ∈ Σ∗, we write u ≤pref v if there exists w ∈ Σ∗ with v = uw, i.e., u
is a prefix of v. We write u <pref v if u ≤pref v and u 6= v. For a language
L ⊆ Σ∗ let pref(L) = {u ∈ Σ∗ | ∃v ∈ L : u ≤pref v}. For a fixed linear order
≤ on the alphabet Σ we define the lexicographic order ≤lex on Σ∗ as follows:
u ≤lex v if u ≤pref v or there exist words w, x, y and a, b ∈ Σ such that a < b,
u = wax, and v = wby.

2.1. Complexity theory

We assume that the reader has some basic background in complexity the-
ory, in particular concerning the complexity classes NL, P, PSPACE, and
EXPTIME, see e.g. [30]. All completeness results in this paper refer to
logspace reductions.

5

A PSPACE-transducer is a deterministic Turing machine with a read-
only input tape, a write-only output tape and a work tape, whose length is
bounded by nO(1), where n is the input length. The output is written from left
to right on the output tape, i.e., in each step the transducer either outputs a
new symbol on the output tape, in which case the output head moves one cell
to the right, or the transducer does not output a new symbol in which case
the output head does not move. Moreover, we assume that the transducer
terminates for every input. This implies that a PSPACE-transducer computes
a mapping f : Σ∗ → Θ∗, where |f(w)| is bounded by 2|w|O(1)

. We need the
following simple lemma:

Lemma 1. Assume that the mapping f : Σ∗ → Θ∗ can be computed by a
PSPACE-transducer and let L ⊆ Θ∗ be a language in NSPACE(logk(n)) for
some constant k. Then f−1(L) belongs to PSPACE.

Proof. The proof uses the same idea that shows that the composition of two
logspace computable mappings is again logspace computable. Let w ∈ Σ∗

be an input. Basically, we run the NSPACE(logk(n))-algorithm for L on
the input f(w). But since f can be computed by a PSPACE-transducer
(which can generate an exponentially long output) the length of f(w) can be

only bounded by 2|w|O(1)
. Hence, we cannot construct f(w) explicitly. But

this is not necessary. We only store a pointer to some position f(w) (this
pointer needs space |w|O(1)) while running the NSPACE(logk(n))-algorithm
for L. Each time, this algorithm needs the ith letter of f(w), we run the
PSPACE-transducer for L until the ith output symbol is generated. The first
i − 1 symbols of f(w) are not written on the output tape. Note that the

NSPACE(logk(n))-algorithm for L needs space logk(2|w|O(1)
) = |w|O(1) while

running on f(w). Hence, the total space requirement is bounded by |w|O(1).
¤

An alternating Turing machine is an ordinary nondeterministic Turing ma-
chine, where in addition the set of states Q is partitioned into existential
states (Q∃) and universal states (Q∀). A configuration, where the current
state is existential (resp., universal) is called an existential (resp., universal)
configuration. Let us assume that M is an alternating Turing machine with-
out infinite computation paths. Then, we define inductively the notion of an
accepting configuration as follows: If c is an existential configuration, then
c is accepting if and only if c has an accepting successor configuration. If c

6

is a universal configuration, then c is accepting if and only if all successor
configurations of c are accepting. Note that a universal configuration with-
out successor configurations is accepting, whereas an existential configuration
without successor configurations is not accepting. An input x is accepted by
M (briefly, x ∈ L(M)) if and only if the initial configuration with input x is
accepting.

The complexity class C=P consists of all languages L ⊆ Σ∗ such that
there exist nondeterministic polynomial time Turing machines M1 and M2

with input alphabet Σ such that for every input w ∈ Σ∗: w ∈ L if and only if
the number of accepting computations of M1 on input w equals the number
of accepting computations of M2 on input w. If we replace in this defini-
tion nondeterministic polynomial time Turing machines by nondeterministic
logspace Turing machines, we obtain the class C=L.

2.2. Finite automata and transducer

Let A = (Q, Σ, δ, q0, F) be a nondeterministic finite automaton, briefly
NFA, where Q is the set of states, Σ is the input alphabet, δ ⊆ Q×Σ×Q is
the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. A state q ∈ Q is accessible (resp. coaccessible), if q can be reached
from the initial state q0 (resp., if a final state from F can be reached from
q). We say that A is accessible (resp., coaccessible), if every state of A is
accessible (resp, coaccessible). An NFA A is called prefix-closed if every state
of A is a final state. In that case, the language L(A) is prefix-closed, i.e.,
L(A) = pref(L(A)). Moreover, if A is coaccessible and the prefix-closed NFA
B results from A by making every state final, then clearly L(B) = pref(L(A)).
For a DFA (deterministic finite automaton), δ is a partial map from Q×Σ to
Q. Sometimes, we will also deal with NFAs (DFAs) without an initial state.
If A is an NFA without an initial state and q is a state of A, then L(A, q) is
the language accepted by A, when q is declared to be the initial state. We
will need the following simple lemma, which is probably folklore:

Lemma 2. For a given a DFA A = (Q, Σ, δ, q0, F), we can compute the
cardinality |L(A)| ∈ N ∪ {∞} in polynomial time.

Proof. W.l.o.g we can assume that A is accessible and coaccessible. Then
L(A) is finite if and only if A is acyclic. So assume that A is acyclic. Since
A is deterministic, the size of L(A) equals the number of paths from q0 to
F . Now, in a directed acyclic graph, the number of paths from a source

7

node to all other nodes can be easily computed by dynamic programming in
polynomial time. ¤

A partitioned DFA [2] is a tuple A = (Q, Σ, δ, q0, (Fa)a∈Γ), where Γ is a fi-
nite alphabet, Fa ⊆ Q for all a ∈ Γ, Fa ∩ Fb = ∅ for a 6= b, and B =
(Q, Σ, δ, q0,

⋃
a∈Γ Fa) is an ordinary DFA. Since B is a DFA, it follows that

the language L(B) is partitioned by the languages L(Aa), where Aa =
(Q, Σ, δ, q0, Fa) (a ∈ Γ). We use partitioned DFAs to label elements of L(B)
with symbols from Γ. The language L(Aa) will be the set of a-labelled words.
We do not introduce partitioned NFAs, since for NFAs the languages L(Aa)
(a ∈ Γ) would not partition L(B) and thus, a word could get several labels
(one could label words from L(B) with subsets of Γ).

A (ε-free) rational transducer is a tuple T = (Q, Σ, Γ, δ, q0, F), where Q
(the set of states), Σ (the input alphabet), and Γ (the output alphabet) are
finite sets, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ ⊆ Q×Σ×Γ+×Q is a finite transition relation. A transition (q, a, w, p) ∈ δ

is also written as q
a|w
−−→ p. The rational transducer T defines a binary relation

[[T]] ⊆ Σ∗ × Γ∗ in the usual way. For a language L ⊆ Σ∗ let

T (L) = {v ∈ Γ∗ | ∃u ∈ L : (u, v) ∈ [[T]]}.

2.3. Trees

A tree is a partial order T = (A;≤), where ≤ has a smallest element
(the root of the tree; in particular A 6= ∅) and for every a ∈ A, the set
{b ∈ A | b ≤ a} is finite and linearly ordered by ≤. We write a ⋖ b if a < b
and there does not exist c ∈ A with a < c < b. For a ∈ A, let child(a, T) (the
set of children of a) be the set of all b ∈ A such that a ⋖ b. The set of leaves
of T is leaf(T) = {a ∈ A | child(a, T) = ∅}. For a ∈ A let T ↾a be the subtree
of T rooted at a, i.e., the set of nodes of T ↾a is {b ∈ A | a ≤ b}. The tree T is
finitely branching if child(a, T) is finite for all a ∈ A. An infinite path of T is
an infinite chain a0 ⋖a1 ⋖a2 ⋖ · · · ; finite paths are defined analogously. If T
is finite and a ∈ A, then the height of a in T is the maximal length of a path
that starts in a. For trees T1 = (A1;≤1) and T2 = (A2;≤2) we write T1

∼= T2

in case T1 and T2 are isomorphic, i.e., there exists a bijection f : A1 → A2

such that for all a, b ∈ A1: a ≤1 b if and only if f(a) ≤2 f(b).
A tree over the finite alphabet Σ is a pair T = (L;≤pref), where L ⊆ Σ∗ is a

language with ε ∈ L. Note that T is indeed a tree in the above sense. Most of

8

the time, we will identify the language L with the tree (L;≤pref). Moreover,
if L = pref(L) (i.e., L is prefix-closed), then T is a finitely branching tree.

A countable tree T is called regular if T has only finitely many subtrees up
to isomorphism. Equivalently, a countable tree is regular if it is isomorphic
to a tree of the form (L;≤pref), where L is a regular language with ε ∈ L. We
require that the empty word ε belongs to L in order to ensure the existence
of a root (otherwiese (L;≤pref) would be only a forest). If L is accepted by
the accessible DFA A, then the subtrees of (L;≤pref) correspond to the final
states of A. Note that by our definition, a regular tree needs not be finitely
branching.

Our definition of a regular tree (having only finitely many subtrees up
to isomorphism) makes sense for other types of trees as well, e.g. for node-
labeled trees or ordered trees (where the children of a node are linearly or-
dered). These variants of regular trees can be generated by finite automata
as well. For instance, a node-labeled regular tree (L;≤pref , (La)a∈Γ), where Γ
is the finite labeling alphabet and La is the set of a-labeled nodes can be spec-
ified by a partitioned DFA (Q, Σ, δ, q0, (Fa)a∈Γ) with La = L(Q, Σ, δ, q0, Fa)
and L =

⋃
a∈Γ La. We do not consider node labels in this paper, since it

makes no difference for the isomorphism problem (node labels can be elimi-
nated by adding additional children to nodes). Ordered regular trees will be
briefly considered in Section 4.9.

2.4. Linear orders

See [33] for a thorough introduction into linear orders. Let η be the order
type of the rational numbers, ω the order type of the natural numbers, and
ω be the order type of the negative integers. With n we denote a finite
linear order with n elements. Let Λ = (L;≤) be a linear order. Λ is dense
if L consists of at least two elements, and for all x < y there exists z with
x < z < y. By Cantor’s theorem, every countable dense linear order, which
neither has a smallest nor largest element is isomorphic to η. Hence, if we
take symbols 0 and 1 with 0 < 1, then ({0, 1}∗1;≤lex) ∼= η. The linear order
Λ is scattered if there does not exist an injective order morphism ϕ : η → Λ.
Clearly, ω, ω, as well as every finite linear order are scattered. A linear order
is regular if it is isomorphic to a linear order (L;≤lex) for a regular language
L. Hence, for instance, η, ω, ω, and every finite linear order are regular linear
orders.

For two linear orders Λ1 = (L1;≤1) and Λ1 = (L2;≤2) with L1 ∩ L2 = ∅
we define the sum Λ1 + Λ2 = (L1 ∪ L2;≤), where x ≤ y if and only if either

9

x, y ∈ L1 and x ≤1 y, or x, y ∈ L2 and x ≤2 y, or x ∈ L1 and y ∈ L2. We
define the product Λ1 ·Λ2 = (L1×L2;≤) where (x1, x2) ≤ (y1, y2) if and only
if either x2 <2 y2 or (x2 = y2 and x1 ≤1 y1).

An interval of Λ is a subset I ⊆ L such that x < z < y and x, y ∈ I
implies z ∈ I. An interval is right-closed (resp. left-closed) if it has a greatest
(resp. smallest) element and it is closed if it is both right-closed and left-
closed. An interval I is dense (resp., scattered) if the linear order ≤ restricted
to I is dense (resp., scattered). A predecessor (resp., successor) of x ∈ L is a
largest (resp., smallest) element of {y ∈ L | y < x} (resp., {y ∈ L | x < y}).
Of course, a predecessor (resp., successor) of x need not exist, but if it exists
then it is unique.

2.5. Generalized words

Generalized words are countable colored linear orders. Let Σ be a (pos-
sibly infinite) alphabet. A generalized word (or simply word) u over Σ is a
triple (L;≤, τ) such that L is a finite or countably infinite set, ≤ is a linear
order on L, and τ : L → Σ is a coloring of L. The alphabet alph(u) equals
the image of τ . If L is finite, we obtain a finite word in the usual sense.
As for trees, we write u1

∼= u2 for generalized words u1 = (L1;≤1, τ1) and
u2 = (L2;≤2, τ2) in case u1 and u2 are isomorphic, i.e., there exists a bijection
f : L1 → L2 such that for all a, b ∈ L1: a ≤1 b if and only if f(a) ≤2 f(b),
and τ1(a) = τ2(f(a)).

Let u = (L;≤, τ) be a generalized word over Σ with Γ = alph(u). Let
va = (La;≤a, τa) be a generalized word for each a ∈ Γ. We define the
generalized word u[(a/va)a∈Γ] = (L′;≤, τ ′) as follows:

• L′ = {(x, y) | y ∈ L, x ∈ Lτ(y)},

• (x, y) ≤ (x′, y′) if and only if either y < y′ or (y = y′ and x ≤τ(y) x′),
and

• τ ′(x, y) = ττ(y)(x).

Thus, u[(a/va)a∈Γ] is obtained from u by replacing every a-labelled point by
va (for all a ∈ Γ). Now we can define the regular operations on words. In
order to do so we need the following words. The words ab and aω for a, b ∈ Σ
are as usual. The generalized word aω has ω as underlying order and every
element is colored with a. Finally, we let [a1, . . . , an]η be the generalized word
with underlying order η where the coloring is such that any point is labeled

10

by some ai (1 ≤ i ≤ n) and, moreover, for any two points x < y and any
1 ≤ i ≤ n we find a point z with x < z < y colored by ai. It can be shown
that this describes a unique word up to isomorphism [33].

Definition 3 (Regular Operations). Let u, v, u1, . . . , un be words over Σ.
We let:

uv = (ab)[a/u, b/v] uω = aω[a/u]

[u1, . . . , un]η = [a1, . . . , an]η[a1/u1, . . . , an/un] uω = aω[a/u].

Thus, the underlying linear order of uv is the sum of the underlying linear
orders of u and v. Intuitively, we have uω = uuu · · · and uω = · · · uuu. Since
[u1, . . . , un]η is invariant under permutations of the ui we also sometimes use
the notation Xη for a finite set X. The least set of words which is closed
under the regular operations and contains the singleton words a for a ∈ Σ
is called the set of regular words over Σ, denoted Reg(Σ). Note that this
implies that every regular word is non-empty, i.e., its domain is a non-empty
set. Moreover, although we allow Σ to be infinite (this will be useful later),
the alphabet alph(u) of a regular word u must be finite. Clearly, every regular
word can be described by a regular expression over the above operations, but
this regular expression is in general not unique.

Example 4. Here are some typical identities between regular words, where
X is a finite set of regular words, n ≥ 0, m ≥ 1, u, u1, . . . , un ∈ X, every vi

(1 ≤ i ≤ m) has one of the forms Xη, yXη, Xηz, yXηz with y, z ∈ X, and
v, w are regular words:

XηXη ∼= XηuXη ∼= (Xη)ω ∼= (Xηu)ω ∼= (Xη)ω ∼= (uXη)ω ∼= Xη,

[u1, . . . , un, v1, . . . , vm]η ∼= Xη, (1)

(vw)ω = v(wv)ω, (vw)ω = (wv)ωw.

In (1) it is crucial that m > 0. This allows to only require {u1, . . . , un} ⊆ X
instead of {u1, . . . , un} = X. A complete axiomatization of the equational
theory of regular words can be found in [3].

By a result of Heilbrunner [14], regular words can be characterized by parti-
tioned DFAs as follows:3 Let A = (Q, Γ, δ, q0, (Fa)a∈Σ) be a partitioned DFA,

3The notion of partitioned DFA is not used in [14] but the equivalence of partitioned
DFAs and equational systems as used in [14] is obvious, see also [2].

11

and let B = (Q, Γ, δ, q0,
⋃

a∈Σ Fa). Let us fix a linear order on the alphabet
Γ, so that the lexicographic order ≤lex is defined on Γ∗. Then we denote with
w(A) the generalized word

w(A) = (L(B);≤lex, τ),

where τ(u) = a (a ∈ Σ, u ∈ L(B)) if and only if u ∈ L(Q, Γ, δ, q0, Fa). It is
easy to construct from a given regular expression (describing the regular word
u) a partitioned DFA A with u ∼= w(A), see e.g. [36, proof of Proposition 2]
for a simple construction. The other direction is more difficult. Heilbrunner
has shown in [14] how to compute from a given partitioned DFA A (such
that w(A) is non-empty) a regular expression for the word w(A), which is
therefore regular.4 Unfortunately, the size of the regular expression produced
by Heilbrunner’s algorithm is exponential in the size of A. In Section 4.4, we
will see that a succinct representation of a regular expression for w(A) can
be produced in polynomial time.

By replacing a symbol a (which w.l.o.g. is a natural number) by the order
a + ω + ω, one can show that the isomorphism problem for regular words
(given by partitioned DFAs) can be reduced (in logspace) to the isomorphism
problem for regular linear orders (given by DFAs). In other words, node
labels can be eliminated as for regular trees (as remarked at the end of
Section 2.3). So, the reader might ask, why we consider the isomorphism
problem for regular words and do not restrict to regular linear orders. The
point is that even if we start with regular linear orders, in the course of our
polynomial isomorphism check regular words will naturally arise.

3. Isomorphism problem for regular trees

In this section, we investigate the isomorphism problem for (unordered)
regular trees. We consider two input representations for regular trees: DFAs
and NFAs. It turns out that while the isomorphism problem for DFA-
represented regular trees is P-complete, the same problem becomes EXPTIME-
complete for NFA-represented regular trees. Moreover, we show that for fi-
nite trees that are succinctly represented by acyclic NFAs, isomorphism is
PSPACE-complete.

4In fact, Heilbrunner speaks about systems of equations and their least solutions instead
of partitioned DFAs. But these two formalisms can be easily (and efficiently) transformed
into each other.

12

3.1. Upper bounds

Theorem 5. The following problem can be solved in polynomial time:

INPUT: Two DFAs A1 and A2 such that ε ∈ L(A1) ∩ L(A2).
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. By taking the disjoint union of A1 and A2, it suffices to solve the
following problem in polynomial time:

INPUT: A DFA A without initial state and two final states p, q of A.
QUESTION: (L(A, p);≤pref) ∼= (L(A, q);≤pref)?

Note that ε ∈ L(A, p)∩L(A, q) since p and q are final. Let A = (Q, Σ, δ, F).
In fact, we will compute in polynomial time the equivalence relation

iso = {(p, q) ∈ F × F | (L(A, p);≤pref) ∼= (L(A, q);≤pref)}.

This will be done similarly to the classical partition refinement algorithm for
checking bisimilarity of finite state systems [18].

For p ∈ F and C ⊆ F let L(A, p, C) be the set of all words accepted
by the DFA (Q, Σ, δ, p, C). Hence, the sets L(A, p, {q}) (q ∈ F) partition
L(A, p). Let us say that a node u ∈ L(A, p) is of type q if u ∈ L(A, p, {q}).
For p ∈ F and C ⊆ F let us define the subset K(A, p, C) ⊆ L(A, p, C) as
the set of all non-empty words over Σ labeling a path from p to a state from
C without intermediate final states; this is clearly a regular language and a
DFA for K(A, p, C) can be easily computed in polynomial time from A, p,
and C: We take the DFA A and remove every transition leaving a final state
from F . Moreover, we introduce a copy p′ of p, which will be the new initial
state and there is an a-labeled transition from p′ to q if and only if there is
an a-labeled transition from p to q in A. Finally, C is the set of final states.

Note that if u ∈ L(A, p) is of type q, then the nodes uv with v ∈
K(A, q, F) are exactly the children of u in the tree (L(A, p);≤pref). Let
n(p, q) ∈ N ∪ {∞} be the cardinality of the language K(A, p, {q}). By
Lemma 2, each of these numbers n(p, q) can be computed in polynomial
time. For C ⊆ F let n(p, C) =

∑
q∈C n(p, q). Thus n(p, C) is the cardinality

of the language K(A, p, C).
Let us now compute the equivalence relation iso. As already remarked,

this will be done by a partition refinement algorithm. Assume that R is an
equivalence relation on F . We define the new equivalence relation R̃ on F
as follows:

R̃ = {(p, q) ∈ R | n(p, C) = n(q, C) for every equivalence class C of R}.

13

Thus, R̃ is a refinement of R which can be computed in polynomial time
from R. Let us define a sequence of equivalence relations R0, R1, . . . on F
as follows: R0 = F × F , Ri+1 = R̃i. Then, there exists k < |F | such that
Rk = Rk+1. We claim that Rk = iso. A simple argument shows that for
every equivalence relation R on F with iso ⊆ R, one has iso ⊆ R̃ as well.
Hence, by induction over i ≥ 0, one gets iso ⊆ Ri for all i ≥ 0.

For the other direction, we show that if R is an equivalence relation on
F with R = R̃ (this holds for Rk), then R ⊆ iso. So, assume that (p1, p2) ∈

R = R̃. We define an isomorphism f : (L(A, p1);≤pref) → (L(A, p2);≤pref)
as the limit of isomorphisms fn, n ≥ 1. Here, fn is an isomorphism between
the trees that result from (L(A, p1);≤pref) and (L(A, p2);≤pref) by cutting
off all nodes below level n (the roots are on level 1). Let us call these trees
(L(A, pi);≤pref)↾n (i ∈ {1, 2}). Moreover, fn has the additional property
that if fn maps a node u1 of type q1 to a node u2 of type q2, then we have
(q1, q2) ∈ R. Assume that fn is already constructed and let u1 of type q1

be a leaf of (L(A, p1);≤pref)↾n. Let u2 = f(u1) be of type q2; it is a leaf

of (L(A, p2);≤pref)↾n. Then we have (q1, q2) ∈ R = R̃ and hence for every
equivalence class C of R we have n(q1, C) = n(q2, C). We can therefore find
a bijection g between the languages K(A, q1, F) and K(A, q2, F) such that
for all v ∈ K(A, q1, F) we have: If v (resp. g(v)) is of type r1 (resp. r2), then
(r1, r2) ∈ R. Note that the nodes uiv with v ∈ K(A, qi, F) are the children of
ui in the tree (L(A, p1);≤pref). We now extend the isomorphism fn by g and
do this for all leaves u1 of (L(A, p1);≤pref)↾n. This gives us the isomorphism
fn+1. ¤

The above proof show that if (L1;≤pref) ∼= (L2;≤pref) for regular languages
L1 and L2, then there even exists a computable isomorphism. For this,
we have to fix in the second part of the proof computable bijections be-
tween the languages K(A, q1, C) and K(A, q2, C) for every (q1, q2) ∈ iso and
every equivalence class C of iso. We can, for instance, map the length-
lexicographically ith word from K(A, q1, C) to the length-lexicographically ith

word from K(A, q2, C). Note that in general there does not exist a polynomial
time computable isomorphism since the output length may grow exponen-
tially with the input length (e.g., if L1 = {ε} ∪ {a, b}∗c and L2 = {ε} ∪ a∗c).

Corollary 6. The following problem belongs to EXPTIME:

INPUT: Two NFAs A1 and A2 such that ε ∈ L(A1) ∩ L(A2).
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

14

Proof. In exponential time, we can transform A1 and A2 into DFAs using
the powerset construction. Then we can apply Theorem 5. ¤

Theorem 7. The following problem belongs to PSPACE:

INPUT: Two acyclic NFAs A1 and A2 such that ε ∈ L(A1) ∩ L(A2).
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. By [25], isomorphism for finite trees, given explicitly by adjacency
lists, can be decided in deterministic logspace. Hence, by Lemma 1 it suffices
to show that for a given acyclic NFA, the adjacency list representation for
the tree (L(A);≤pref) can be computed by a PSPACE-transducer. This is
straightforward. Assume that Σ is the alphabet of A and that n is the
number of states of A. Let us fix an arbitrary order on Σ and let z be the
largest symbol in Σ.

The language L(A) only contains words of length at most n − 1. In an
outer loop we generate the language L(A). For this, we enumerate all words
(e.g. in lexicographic order) of length at most n − 1 and test whether the
current word is accepted by A. For each enumerated word u ∈ L(A), we
have to output a list of all children of u in the tree (L(A);≤pref). In an inner
loop, we enumerate (again in lexicographic order) all words uv (v ∈ Σ+) of
length at most n − 1 and check whether uv ∈ L(A). In case, we find such a
word uv ∈ L(A), we output uv and do the following: If v ∈ {z}+, then the
inner loop terminates. On the other hand, if v = v′azk, where a 6= z, then
we jump in the inner loop to the word uv′b, where b is the symbol following
a in our order. ¤

3.2. Lower bounds

The main result of this section states that the isomorphism problem
for regular trees that are represented by NFAs is EXPTIME-hard, which
matches the upper bound from the previous section. It is straightforward
to prove PSPACE-hardness by a reduction from universality for NFAs, which
is PSPACE-complete [35]: Take an NFA A over a finite alphabet Σ and let
6∈ Σ. One can easily construct an NFA A′ for the language Σ∗ ∪ L(A)#.
Moreover, we have (L(A′);≤pref) ∼= (Σ∗∪Σ∗#,≤pref) if and only if L(A) = Σ∗.

The proof for the EXPTIME lower bound is more involved. Here is a
rough outline: EXPTIME coincides with alternating polynomial space [6].
Checking whether a given input is accepted by a polynomial space bounded
alternating Turing machine M amounts to evaluate a boolean circuit whose

15

gates correspond to configurations of M . Using a construction from [16],
the evaluation problem for (finite) boolean circuits can be reduced to the
isomorphism problem for (finite) trees. In our case, the boolean circuit will
be infinite. Nevertheless, the infinite boolean circuits we have to deal with
can be evaluated because on every infinite path that starts in the root (the
output gate) there will be either an and-gate, where one of the inputs is a
false-gate, or an or-gate, where one of the inputs is a true-gate. Applying
the construction from [16] to an infinite boolean circuit (that arises from our
construction) will yield two infinite trees, which are isomorphic if and only
if our boolean circuit evaluates to true. Luckily, these two trees turn out to
be regular, and they can be represented by small NFAs.

3.2.1. Infinite boolean circuits.

Let us fix the alphabet

Ω = {a, ℓ∧, ℓ′∧, r∧, ℓ∨, ℓ′∨, r∨}. (2)

In the following, we will only consider prefix-closed trees over the alphabet Ω
(we will not mention this explicitly all the time). Moreover, we will identify
the tree (L;≤pref) with the language L. Now, consider such a tree T ⊆ Ω∗.
Then, T is well-formed, if the following conditions hold:

(a) If u = ε or u ∈ T ends with ℓ∨, ℓ∧, r∨, or r∧, then child(u, T) is one of the
following sets, where ◦ ∈ {∨,∧}: {u ℓ◦, u r◦}, {u ℓ′◦, u r◦}, {ua, u ℓ′◦, u r◦}.

(b) If u ∈ T ends with a, ℓ′∨, or ℓ′∧, then u is a leaf of T .

(c) For every infinite path P in T that starts in the root, there exists u ∈ P
with ua ∈ T .

Note that a well-formed tree T is always infinite; it contains an infinite path
of the form r1r2r3 · · · , where ri ∈ {r∧, r∨} for all i ≥ 1. Let us define the set

cut(T) = {u ∈ T | ua ∈ T, ∀v <pref u : va 6∈ T}. (3)

Hence, on every infinite path in T there is a unique node from cut(T).
With a well-formed tree T we associate an infinite tree-like boolean circuit

bool(T) as follows: The gates of bool(T) are the nodes of T that do not end
with a.

• The set of input gates for u ∈ T is child(u, T) \ {ua}.

16

• If ur∨ ∈ T (resp. ur∧ ∈ T), then u is an or-gate (resp. and-gate).

• If uℓ′∧ ∈ T and ua 6∈ T , then uℓ′∧ is a true-gate.

• If uℓ′∧ ∈ T and ua ∈ T , then uℓ′∧ is a false-gate.

• If uℓ′∨ ∈ T and ua 6∈ T , then uℓ′∨ is a false-gate.

• If uℓ′∨ ∈ T and ua ∈ T , then uℓ′∨ is a true-gate.

Although bool(T) is an infinite boolean circuit, the fact that T is well-formed
ensures that the root of bool(T) can be evaluated: We simply remove from
T all nodes that have a proper prefix from cut(T). The resulting tree has no
infinite path and since it is finitely branching it is finite by König’s lemma. If
u ∈ cut(T) is such that uℓ′∧ ∈ T (resp., uℓ′∨ ∈ T), then u can be transformed
into a false-gate (resp., true-gate). Then, one has to evaluate the resulting
finite boolean circuit.

We next transform a tree T ⊆ Ω∗ into trees [T]1, [T]2 ⊆ {ℓ, r}∗ using two
rational transducers. These two transducers only differ in their initial state.
For i ∈ {1, 2}, let Ti be the transducer from Figure 1, where the initial state
is qi and all states are final. Then, for a tree T ⊆ Ω∗ and i ∈ {1, 2} let
[T]i = pref(Ti(T)). We will show that for every well-formed tree T ⊆ Ω∗:
bool(T) evaluates to true if and only if [T]1 ∼= [T]2. (Lemma 13) For this, we
first have to show a few lemmas. In Figures 2–7 below, the edge labels ℓ and
r are added in order to make the construction clearer. These edge labels do
not have to be preserved by isomorphisms. Hence, for checking whether two
trees are isomorphic, the edge labels ℓ and r should be ignored.

Lemma 8. Let T = {ε, ℓ′∨} ∪ r∨U or T = {ε, ℓ′∧} ∪ r∧U for a tree U (hence,
also T is a tree). Then [T]1 ∼= [T]2 if and only if [U]1 ∼= [U]2.

Proof. We first consider the case T = {ε, ℓ′∨} ∪ r∨U . Let us compute
compute T1(T) and T2(T). We have

T1(ℓ
′
∨) = T2(ℓ

′
∨) = {ℓ2, rℓ2}. (4)

Next, we have to compute T1(r∨U). There are two transitions starting in q1,
where r∨ can be read, namely

q1
r∨|ℓrℓ
−−−→ q2 and q1

r∨|r2ℓ
−−−→ q1.

17

q1 q2

s

ℓ∧| ℓ

r∧| rℓ

ℓ∨| ℓ2

r∨| r2ℓ

ℓ∧| ℓ

r∧| rℓ

ℓ∨| rℓ

r∨| r2ℓ

ℓ∨| rℓ

r∨| ℓrℓ

ℓ∨| ℓ2

r∨| ℓrℓ
ℓ′∨| ℓ2

ℓ′∨| rℓ2

ℓ′∧| ℓ

a| ℓ3

ℓ′∨| ℓ2

ℓ′∨| rℓ2

ℓ′∧| ℓ

a| ℓ3

a| ℓr

Figure 1: The transducer

Hence, we get
T1(r∨U) = r2ℓ T1(U) ∪ ℓrℓ T2(U). (5)

Similarly, we get
T2(r∨U) = r2ℓ T2(U) ∪ ℓrℓ T1(U). (6)

From (4), (5), and (6) it follows that the trees [T]i = pref(Ti({ε, ℓ
′
∨} ∪ r∨U))

(i ∈ {1, 2}) are the ones shown in Figure 2. The equivalence of [T]1 ∼= [T]2
and [U]1 ∼= [U]2 is obvious from these diagrams.

Let us now consider the case T = {ε, ℓ′∧} ∪ r∧U . We have T1(ℓ
′
∧) =

T2(ℓ
′
∧) = {ℓ}, T1(r∧U) = rℓT1(U), and T2(r∧U) = rℓT2(U). The trees

[T]i = pref(Ti({ε, ℓ
′
∧} ∪ r∧U)) (i ∈ {1, 2}) are the ones shown in Figure 3.

The equivalence of [T]1 ∼= [T]2 and [U]1 ∼= [U]2 is again obvious from these
diagrams. ¤

The following three lemmas can be shown with the same kinds of arguments
as for Lemma 8. We therefore only sketch the proofs.

Lemma 9. Let T = {ε, ℓ′∨, a} ∪ r∨U for a tree U (hence, also T is a tree).
Then [T]1 ∼= [T]2.

18

ℓ r

ℓ r ℓ r

[U]2 [U]1

ℓ ℓℓ

ℓ r

ℓ r ℓ r

[U]1 [U]2

ℓ ℓℓ

Figure 2: [T]1 (left) and [T]2 (right) from Lemma 8 for ∨

ℓ r

[U]1

ℓ

ℓ r

[U]2

ℓ

Figure 3: [T]1 (left) and [T]2 (right) from Lemma 8 for ∧

Proof. We have T1(a) = {ℓ3} and T2(a) = {ℓ3, ℓr}. It follows, that the
trees [T]1 and [T]2 are as shown in Figure 4. Clearly, we have [T]1 ∼= [T]2. ¤

Lemma 10. Let T = {ε, ℓ′∧, a} ∪ r∧U for a tree U (hence, also T is a tree).
Then [T]1 6∼= [T]2.

Proof. The trees [T]1 and [T]2 are shown in Figure 5. Clearly, we have
[T]1 6∼= [T]2. ¤

Lemma 11. Let T = {ε} ∪ ℓ∨U ∪ r∨V for well-formed trees U, V (hence,
also T is well-formed). Then [T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 or
[V]1 ∼= [V]2).

Proof. The trees [T]1 and [T]2 are shown in Figure 6. Since U and V are
well-formed, in each of the trees [U]1, [U]2, [V]1, and [V]2, the root has two
children. It follows easily that [T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 or
[V]1 ∼= [V]2). ¤

19

ℓ r

ℓ r ℓ r

[U]2 [U]1

ℓ ℓ ℓℓ

ℓ r

ℓ r ℓ r

[U]1 [U]2

ℓ ℓ ℓℓ

Figure 4: [T]1 (left) and [T]2 (right) from Lemma 9

ℓ

ℓ

ℓ

r

[U]1

ℓ

ℓ

ℓ r

ℓ

r

[U]2

ℓ

Figure 5: [T]1 (left) and [T]2 (right) from Lemma 10

Lemma 12. Let T = {ε} ∪ ℓ∧U ∪ r∧V for well-formed trees U, V (hence,
also T is well-formed). Then [T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 and
[V]1 ∼= [V]2).

Proof. The trees [T]1 and [T]2 are as shown in Figure 7. Since U and V
are well-formed, in each of the trees [U]1, [U]2, [V]1, and [V]2, the root has
two children. It follows easily that [T]1 ∼= [T]2 if and only if ([U]1 ∼= [U]2 and
[V]1 ∼= [V]2). ¤

Lemma 13. For every well-formed tree T ⊆ Ω∗ we have: bool(T) evaluates
to true if and only if [T]1 ∼= [T]2.

Proof. Recall the definition of the set cut(T) from (3). From the defi-
nition it follows that pref(cut(T)) is a finitely branching tree without in-
finite paths. Hence, by König’s lemma it is finite. Moreover, for every

20

ℓ r

[U]1 [U]2

ℓ r ℓ r

[V]2 [V]1

ℓ ℓ

ℓ r

[U]1 [U]2

ℓ r ℓ r

[V]1 [V]2

ℓ ℓ

Figure 6: [T]1 (left) and [T]2 (right) from Lemma 11

[U]1

ℓ r

[V]1

ℓ

[U]2

ℓ r

[V]2

ℓ

Figure 7: [T]1 (left) and [T]2 (right) from Lemma 12

u ∈ pref(cut(T)), the subtree T ↾u is well-formed as well (since pref(cut(T)) ⊆
{ε} ∪ Ω∗{ℓ∨, ℓ∧, r∨, r∧}). Inductively over the height of u ∈ pref(cut(T))
in the finite tree pref(cut(T)), we will prove for every u ∈ pref(cut(T)):
[T ↾u]1 ∼= [T ↾u]2 if and only if bool(T ↾u) evaluates to true.

For the induction base, let u ∈ cut(T) be a leaf of pref(cut(T)). Hence,
we have ua ∈ T . If uℓ′∧ ∈ T , then in bool(T ↾u), the root is an and-gate
for which one of the inputs (namely uℓ′∧) is a false-gate. Hence, bool(T ↾u)
evaluates to false. Moreover, Lemma 10 implies that [T ↾u]1 6∼= [T ↾u]2. On the
other hand, if uℓ′∨ ∈ T , then in bool(T ↾u), the root is an or-gate for which
one of the inputs (namely uℓ′∨) is a true-gate. Hence, bool(T ↾u) evaluates to
true. Moreover, Lemma 9 implies that [T ↾u]1 ∼= [T ↾u]2. This concludes the
induction base.

Next, let u ∈ pref(cut(T)) be a proper prefix of a node from cut(T). In
particular u 6∈ cut(T). We can distinguish 4 different cases:

21

Case 1. child(u, T) = {uℓ∧, ur∧}. We must have {uℓ∧, ur∧} ⊆ pref(cut(T)).
Hence, the induction hypothesis (IH) holds for uℓ∧ and ur∧. We get:

bool(T ↾u) evaluates to true ⇐⇒ bool(T ↾uℓ∧) evaluates to true and

bool(T ↾ur∧) evaluates to true

(IH)
⇐⇒ [T ↾uℓ∧]1 ∼= [T ↾uℓ∧]2 and

[T ↾ur∧]1 ∼= [T ↾ur∧]2
Lemma 12
⇐⇒ [T ↾u]1 ∼= [T ↾u]2

Case 2. child(u, T) = {uℓ∨, ur∨}. This case is analogous to Case 1, using
Lemma 11.

Case 3. child(u, T) = {uℓ′∧, ur∧}. Since u 6∈ cut(T), we have ua 6∈ T . We
must have ur∧ ∈ pref(cut(T)). Moreover, in bool(T ↾u), the root is an and-
gate, where one of the inputs is a true-gate and the other input is the root
for the boolean circuit bool(T ↾ur∧). Hence, we get:

bool(T ↾u) evaluates to true ⇐⇒ bool(T ↾ur∧) evaluates to true

(IH)
⇐⇒ [T ↾ur∧]1 ∼= [T ↾ur∧]2

Lemma 8
⇐⇒ [T ↾u]1 ∼= [T ↾u]2

Case 4. child(u, T) = {uℓ′∨, ur∨}. This case is analogous to Case 3. ¤

Our last auxiliary lemma states that an NFA for the tree [L]i can be easily
computed from an NFA for L.

Lemma 14. There is a logspace machine that computes from a given prefix-
closed NFA A over the alphabet Ω a prefix-closed NFA B such that L(B) =
[L(A)]i for i ∈ {1, 2}.

Proof. Let A = (Q, Ω, δ, p0, Q). Recall that all states of Ti and A are final.
The prefix-closed NFA B is obtained from the direct product of A and Ti by
adding further states so that every transition is labeled with a single symbol.
Thus, the set of states of B contains Q × {q1, q2, s} and the initial state of

B is (p0, qi). If q
b
−→ q′ in A and t

b|w
−−→ t′ in Ti for w ∈ {ℓ, r}+, then we add

|w| − 1 many new states to B, which built up a w-labeled path from from
(q, t) to (q′, t′). ¤

22

3.2.2. EXPTIME-hardness.

We are now in the position to prove the main result of this section.

Theorem 15. The following problem is EXPTIME-hard (and hence EXPTIME-
complete):

INPUT: Two prefix-closed NFAs A1 and A2.
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. The upper bound is stated in Corollary 6. For the lower bound we
use the fact that EXPTIME equals the class of all sets that can be accepted
in polynomial space on an alternating Turing machine [6]. Hence, let M be a
polynomial space bounded alternating Turing machine such that the accepted
language L(M) ⊆ {0, 1}∗ is EXPTIME-complete. By adding a counter, one
can assume that M has no infinite computation paths. By padding inputs,
one can moreover assume that M works in space n for an input of length
n. Let Q = Q∃ ∪ Q∀ be the set of states of M and let Γ ⊇ {0, 1} be the
tape alphabet. W.l.o.g. we can assume that in every computation step, M
moves from an existential state to a universal state or vice versa, and that
the initial state q0 is universal.

Let us now fix an input w ∈ {0, 1}∗ of length n. We construct two prefix-
closed NFAs A1 and A2 such that w ∈ L(M) if and only if

(L(A1);≤pref) ∼= (L(A2);≤pref).

Let Θ = Γ ∪ Q. As usual, a configuration of M can be represented by a
string from the language Θn+1 (more precisely, from

⋃n−1
j=0 ΓjQΓn−j). A word

u ∈ Θ∗ is a valid computation of M on input w if u is of the form c1 · · · cm

for some m ≥ 0 such that the following hold:

• ci ∈
⋃n−1

j=0 ΓjQΓn−j for all 1 ≤ i ≤ m

• ci ⊢M ci+1 (i.e., ci+1 is a successor configuration of ci) for all 1 ≤ i ≤
m − 1

• q0w ⊢M c1

Note that ε is a valid computation in this sense. It is well known that from
w one can construct in logspace a coaccessible NFA Aw such that Aw accepts
all words over Θ that are not a valid computation of M on w [35].

23

Next, we will define a regular well-formed tree Tw ⊆ Ω∗ (depending only
on w) such that bool(Tw) evaluates to true if and only if w ∈ L(M). Roughly,
the idea is that Tw consists of all prefixes of sequences of configurations of
length n, where symbols from Θ are coded by binary strings. Moreover, if
such a sequence s is not a valid computation then we also include the word
sa, where a is a new symbol, into the tree.

In the following, we identify the symbols in Θ with the integers 0, . . . , |Θ|−
1 in an arbitrary way. We can assume that |Θ| ≥ 2. We define two morphisms

ϕ∧ : Θ∗ → {ℓ∧, r∧}
∗

ϕ∨ : Θ∗ → {ℓ∨, r∨}
∗

as follows (◦ ∈ {∧,∨}):

ϕ◦(a) =

{
ra
◦ℓ◦ if 0 ≤ a < |Θ| − 1

ra
◦ if a = |Θ| − 1

For i ≥ 1, let ϕi be the mapping ϕ∧ (resp. ϕ∨) if i is odd (resp., even).
Similarly, for x ∈ {ℓ, ℓ′, r}, let xi be x∧ (resp. x∨) if i is odd (resp., even).
Then, the tree Tw ⊆ Ω∗ is pref(T ′

w), where

T ′
w =

{(m∏

i=1

riϕi(ci)

)
ℓ′m+1 | m ≥ 0, c1, . . . , cm ∈ Θn+1

}
∪

{(m∏

i=1

riϕi(ci)

)
a | m ≥ 0, c1, . . . , cm ∈ Θn+1, c1 · · · cm ∈ L(Aw)

}
.

Clearly, Tw is regular, and a prefix-closed NFA for Tw can be computed in
logspace from w (using the logspace computable coaccessible NFA Aw).

Claim 1: Tw is well-formed.

Proof of Claim 1: The first two conditions (a) and (b) for well-formed trees
are easy to check. For condition (c), we have to consider an arbitrary infinite
path P of Tw and show that there exists u ∈ P such that ua ∈ Tw. The
infinite path P corresponds to an infinite word r1ϕ1(c1)r2ϕ2(c2)r3ϕ2(c3) · · ·
with ci ∈ Θn+1 for all i ≥ 1. Since M does not have infinite computations,
there exists m ≥ 1 such that c1 · · · cm is not a valid computation of M on
input w. Hence, c1 · · · cm ∈ L(Aw), which implies that

(m∏

i=1

riϕi(ci)

)
a ∈ Tw.

24

Since
∏m

i=1 riϕi(ci) belongs to the path P , this shows Claim 1.

Claim 2: w ∈ L(M) if and only if bool(Tw) evaluates to true.

Proof of Claim 2: Let us consider the finite tree pref(cut(Tw)). For every
node

g = r∧ϕ∧(c1)r∨ϕ∨(c2)r∧ · · ·ϕm−1(cm−1)rmϕm(cm) ∈ pref(cut(Tw))

with m ≥ 0 and c1, . . . , cm ∈ Θn+1 we will prove (by induction on the height
of g) the following: If c1 · · · cm is a valid computation of M on input w, then
cm is an accepting configuration if and only if g evaluates to true in bool(Tw).
Here, for m = 0, we define c0 as the initial configuration q0w.

So, assume that g ∈ pref(cut(Tw)) is of the above form and that c1 · · · cm

is a valid computation of M on input w. We only consider that case that m
is odd; the case that m is even can be dealt analogously. Thus,

g = r∧ϕ∧(c1)r∨ϕ∨(c2)r∧ · · ·ϕ∨(cm−1)r∧ϕ∧(cm).

Then, in bool(Tw), the input gates for the or-gate g are gℓ′∨ and gr∨. Since
c1 · · · cm is a valid computation of M on input w, ga does not belong to the
tree Tw. Hence, in bool(Tw), gℓ′∨ is a false-gate. Thus, g evaluates to true if
and only if gr∨ evaluates to true. From the structure of Tw we see that the lat-
ter holds if and only if there exists cm+1 ∈ Θn+1 such that gr∨ϕ∨(cm+1) eval-
uates to true. First assume that cm+1 is such that c1 · · · cmcm+1 is not a valid
computation. The inputs for the and-gate gr∨ϕ∨(cm+1) are gr∨ϕ∨(cm+1)ℓ

′
∧

and gr∨ϕ∨(cm+1)r∧. Since c1 · · · cmcm+1 is not a valid computation, the word
gr∨ϕ∨(cm+1)a belongs to the tree Tw. Thus, in bool(Tw), gr∨ϕ∨(cm+1)ℓ

′
∧ is

a false-gate and gr∨ϕ∨(cm+1) evaluates to false. This holds for all cm+1 such
that c1 · · · cmcm+1 is not a valid computation. Hence, gr∨ evaluates to true if
and only if there exists a configuration cm+1 ∈ Θn+1 such that c1 · · · cmcm+1

is a valid computation (which means that cm+1 is a successor configuration
of cm) and gr∨ϕ∨(cm+1) evaluates to true in bool(Tw). Now, if c1 · · · cmcm+1

is a valid computation, then by induction, gr∨ϕ∨(cm+1) (which belongs to
pref(cut(Tw)) as well) evaluates to true in bool(Tw) if and only if cm+1 is an
accepting configuration of M .

We have shown that g evaluates to true if and only if cm has an accepting
successor configuration. Finally, since m is odd, cm is an existential config-
uration (recall that the initial configuration c0 = q0w is universal). Thus,
indeed, g evaluates to true if and only if cm is accepting. Claim 2 follows by

25

taking m = 0: bool(Tw) = true if and only if ε evaluates to true in bool(Tw)
if and only if c0 is an accepting configuration of M if and only if w ∈ L(M).

Let T1 and T2 be the rational transducers from Section 3.2.1. Using Lemma 14
we can compute in logspace from a prefix-closed NFA for Tw two prefix-closed
NFAs A1 and A2 such that L(Ai) = [Tw]i for i ∈ {1, 2}. We have

w ∈ L(M)
Claim 2
⇐⇒ bool(Tw) evaluates to true

Lemma 13
⇐⇒ (L(A1);≤pref) ∼= (L(A2);≤pref).

This concludes the proof of the EXPTIME lower bound. ¤

3.2.3. PSPACE-hardness.

A variation of the proof for the EXPTIME lower bound shows:

Theorem 16. The following problem is PSPACE-hard (and therefore PSPACE-
complete):

INPUT: Two prefix-closed acyclic NFAs A1 and A2.
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. The upper bound is stated in Theorem 7. For the lower bound, we
use the same idea as in the proof of Theorem 15. In fact, we will use most
of the notations from that proof; some of them will be slightly modified.
This time, we use the fact that PSPACE equals the class of all sets that can
be accepted in polynomial time on an alternating Turing machine. Hence,
let M be a polynomial time bounded alternating Turing machine such that
the accepted language L(M) ⊆ {0, 1}∗ is PSPACE-complete. Let p(n) (a
polynomial) be the time bound and let q(n) = p(n)+1. We can assume that
q(n) is odd for all n ≥ 0. W.l.o.g. we can assume again that M works in
space n for an input of length n. Let w ∈ {0, 1}∗ be an input for M of length
n.

Let us add to the alphabet Ω in (2) an additional symbol r′∨. The no-
tions from Section 3.2.1 have to be extended to this new alphabet Ω. In
condition (a) for the definition of a well-formed tree T , we also allow the
set {ua, uℓ′∨, ur′∨} for child(u, T). Moreover, every node ur′∨ ∈ T is a leaf
of T . For the new definition of the set cut(T) we can reuse (3). Also the
boolean circuit bool(T) can be defined as in Section 3.2.1; the truth value of
a leaf ending with r′∨ is set arbitrarily (say true). Finally, let us extend the

26

two transducers T1 and T2 such that from q1 and q2 they can read the new
symbol r′∨ and output ℓr and then terminate in the sink state s. Note that
this ensures that

[{ε, a, ℓ′∨, r′∨}]1 = {ε, ℓ, ℓ2, ℓ3, ℓr, r, rℓ, rℓ2} = [{ε, a, ℓ′∨, r′∨}]2, (7)

where we define again [L]i = pref(Ti(L)).
We now define the well-formed tree Uw ⊆ Ω∗ as Uw = pref(U ′

w), where:

U ′
w =

{(m∏

i=1

riϕi(ci)

)
ℓ′m+1 | 0 ≤ m ≤ q(n), c1, . . . , cm ∈ Θn+1

}
∪

{(m∏

i=1

riϕi(ci)

)
a | 0 ≤ m ≤ q(n), c1, . . . , cm ∈ Θn+1, c1 · · · cm ∈ L(Aw)

}
∪

{(q(n)∏

i=1

riϕi(ci)

)
r′∨ | c1, . . . , cq(n) ∈ Θn+1

}
.

Note that Uw is finite. An acyclic prefix-closed NFA for Uw can be produced
in logspace from w. Moreover, since every word from Θ(n+1)q(n) is not a
valid computation (since M terminates after ≤ p(n) = q(n) − 1 steps), the
boolean circuits bool(Uw) and bool(Tw) (where Tw was defined in the proof
of Theorem 15) evaluate to the same truth value. Hence, using Claim 2 from
the proof of Theorem 15, it follows that w ∈ L(M) if and only if bool(Uw)
evaluates to true. Using an analogon of Lemma 13 (whose proof uses fact
(7)), this holds if and only if [Uw]1 ∼= [Uw]2. Acyclic NFAs for [Uw]1 and [Uw]2
can be easily constructed in logspace from w (using an acyclic NFA for Uw).
This concludes the proof of the theorem. ¤

3.2.4. P-hardness.

Theorem 17. The following problem is P-hard (and hence P-complete):

INPUT: Two prefix-closed acyclic DFAs A1 and A2.
QUESTION: (L(A1);≤pref) ∼= (L(A2);≤pref)?

Proof. The upper bound is stated in Theorem 5. For the lower bound, we
reduce the P-complete monotone circuit value problem [13] to the problem
from the theorem. Note that the tree (L(A);≤pref), where A is a prefix-closed

27

t1

u1 u2

t2

v1 v2

Figure 8: The or-construction in the proof of Theorem 17

acyclic DFA, is just the unfolding5 of the underlying dag (directed acyclic
graph) in the initial state of A. Vice versa, from a dag D with a root node
r one can construct a prefix-closed acyclic DFA A such that (L(A);≤pref)
is isomorphic to the unfolding of D in r (let us denote the latter tree by
unfold(D, r)). One only has to associate labels to the edges of D. Hence, it
suffices to construct from a given monotone circuit C a dag D which contains
for every gate g of C two nodes g1, g2 such that g evaluates to true if and only
if unfold(D, g1) ∼= unfold(D, g2). This is straightforward for the input gates
of C. For and- and or-gates of C, we can use again the construction of [16].
Take the constructions from Figure 6 and 7, where in Figure 6 each of the
subtrees [U]1, [U]2, [V]1, and [V]2 is represented only once. The construction
for or-gates is shown in Figure 8. Unfolding the dag from Figure 8 in the
nodes t1 and t2 and thereby duplicating u1, u2, v1, and v2 gives the trees
from Figure 6. Assume that the dag D below the nodes u1, u2, v1, and v2

is already constructed. Here u1 and u2 correspond to a gate u and v1 and
v2 correspond to a gate v. Hence, u (resp., v) evaluates to true if and only
if unfold(D, u1) ∼= unfold(D, u2) (resp., unfold(D, v1) ∼= unfold(D, v2)). Let t
be an or-gate with inputs u and v. We add the nodes and edges as shown in
Figure 8. Then the arguments from the proof of Lemma 11 show that u or
v evaluates to true if and only if unfold(D, t1) ∼= unfold(D, t2). ¤

5The unfolding of a directed graph G = (V,E) in a node v ∈ V is the (in general
infinite) tree (P ;≤), where P is the set of all finite paths of G that start in node v. For
finite paths p and p′ we set p ≤ p′ if p is an initial part of p′. Clearly, if G is acyclic, then
the unfolding is a finite tree.

28

4. Isomorphism problem for regular words

In this section we study the isomorphism problem for regular words that
are represented by partitioned DFAs. We prove that this problem as well as
the isomorphism problem for regular linear orders that are represented by
DFAs are P-complete. It follows that the isomorphism problem for regular
linear orders that are represented by NFAs can be solved in exponential
time. We show that this problem is PSPACE-hard. For the case of acyclic
DFAs and NFAs, respectively, we obtain completeness results for counting
classes (C=L-completeness for acyclic DFAs and C=P-completeness for acyclic
NFAs).

4.1. Upper bounds

Recall the definition of the generalized word w(A) for a partitioned DFA
from Section 2.5. The main result of this section is:

Theorem 18. The following problem can be solved in polynomial time:

INPUT: Two partitioned DFAs A1 and A2.
QUESTION: w(A1) ∼= w(A2)?

In Section 4.2–4.6 we prove Theorem 18. Section 4.2 will introduce some of
the machinery from [3] concerning blocks. Blocks allow to condensate a gen-
eralized word to a coarser word (whose symbols are the blocks of the original
word). In Section 4.3 we will formally introduce succinct regular expressions
(expressions in form of dags) and in Section 4.4 we will argue that Heil-
brunner’s algorithm from [14] allows to transform a given partitioned DFA
in polynomial time into an equivalent succinct (regular) expression. Hence,
the remaining goal is to develop a polynomial time algorithm for checking
whether two given succinct expressions represent isomorphic regular words.
For the special case that these regular words consist of only one block (so
called primitive regular words), this will be accomplished in Section 4.5. In
this step, we will make use of algorithms for straight-line programs (succinctly
represented finite words) [34]. Finally, in Section 4.6 we will present a poly-
nomial time algorithm for checking whether two given succinct expressions
represent isomorphic regular words.

29

4.2. Blocks and their combinatorics

In this section, we will introduce the crucial notion of a block, and we
recall some of the results from [3] that we are using later.

Let u = (L;≤, τ) be a generalized word over the possibly infinite alphabet
Σ. An interval of u is an interval of the underlying linear order (L;≤). A
subword or factor of u is an interval I of u together with the coloring τ
restricted to I. Let Γ ⊆ Σ be finite. A Γ-uniform subword of u is a subword
that is isomorphic to Γη. A subword is uniform if it is Γ-uniform for some
Γ ⊆ Σ. A uniform subword is a maximal uniform subword if it is not properly
contained in another uniform subword. Now let v be a subword such that no
point of v is contained in a uniform subword of u. Then v is successor-closed
if for each point p of v, whenever the successor or the predecessor of p exists,
then it is contained in v as well. A successor-closed subword is minimal if it
does not strictly contain another successor-closed subword. Following [3] we
define:

Definition 19 (blocks). Let u be a regular word. A block of u is either a
maximal uniform subword of u or a minimal successor-closed subword of u.

A regular word which consists of a single block is called primitive.6 By [3] a
word u is primitive if and only if it is of one of the following forms (where
x, z ∈ Σ+ and y ∈ Σ∗ are finite words): A finite non-empty word, a scattered
word of the form xωy, a scattered word of the form yzω, a scattered word of
the form xωyzω, or a uniform word Γη for some finite Γ ⊆ Σ. Let D(Σ) be
the set of all primitive words over Σ.

Let u be a regular word. Each point p of u belongs to a unique block
Bl(p), which induces a regular (and hence primitive) word. Moreover we can
order the blocks of u linearly by setting Bl(p) < Bl(q) if and only if p < q.
The order obtained that way is denoted (Bl(u);≤). Then we extend the
order (Bl(u);≤) to a generalized word û over D(Σ) (here it is useful to allow
infinite alphabets, since D(Σ) is infinite), called the skeleton of u, by labeling
each block with the corresponding isomorphic word in D(Σ). Implicitly, it is
shown in [3] that for every regular word u there exists a finite subset of D(Σ)
such that every block of u is isomorphic to a primitive word from that finite

6In combinatorics on words, a finite word is called primitive, if it is not a proper power
of a non-empty word. Our notion of a primitive word should not be confused with this
definition.

30

subset. Moreover, û is again a regular word [3, Proposition 72]. Later it will
be convenient to have the following renaming notion available. Let V be a
finite alphabet, let ϕ : V → D(Σ) be an injective mapping and suppose that
all blocks of a regular word u belong to the image of ϕ. The word v that has
(Bl(u);≤) as underlying order and each block B of u labeled with ϕ−1(B) is
called the ϕ-skeleton of u. We will need the following result from [3]:

Proposition 20 ([3, Corollary 73]). Let u, v ∈ Reg(Σ). Let V be a finite
alphabet and let ϕ : V → D(Σ) be injective such that all blocks of u and v are
in the image of ϕ. Then u and v are isomorphic if and only if the ϕ-skeletons
of u and v are isomorphic.

We will consider finite and infinite sequences, whose elements are regular
words and where the underlying order type is either finite, ω, or ω. In the
following, when writing (ui)i∈I , we assume that either I = {1, . . . , n} 6= ∅
(i.e., (ui)i∈I is the finite sequence (u1, . . . , un)) or I = {1, 2, 3, . . .} (i.e., (ui)i∈I

is the infinite sequence (u1, u2, u2, . . .)) or I = {. . . ,−2,−1, 0} (i.e., (ui)i∈I is
the infinite sequence (. . . , u−2, u−1, u0)). The corresponding generalized word
is

∏
i∈I ui (either u1 · · ·un, or u1u2u3 · · · , or · · ·u−2u−1u0). We say that two

sequences (ui)i∈I and (vj)j∈J are equivalent, if the generalized words
∏

i∈I ui

and
∏

j∈J vj are isomorphic. We use commas to separate the successive ui in
the sequence (ui)i∈I in order to avoid misinterpretations. For instance (a, a)
viewed as a sequence over regular words has length two whereas (aa) has
length 1. Of course, (a, a) and (aa) are equivalent sequences.

Definition 21. Let ū = (ui)i∈I be a sequence of regular words. We say that
ū merges if there exists a block of

∏
i∈I ui that contains elements from two

different ui.

Clearly, if a sequence (ui)i∈I does not merge and J is an interval of I, then
also (ui)i∈J does not merge.

Example 22. Clearly if u and v are finite words, then (u, v) merges. Also,
(Γη, Γη) and (Γη, a, Γη) merge for every Γ ⊆ Σ and a ∈ Γ (in both cases,
the sequence is equivalent to Γη). On the other hand, ([ab]η, [ab]η) does not
merge. The reason is that the blocks of [ab]η are the copies of ab. More
generally, if u is not primitive and X is a finite set of regular words, then
((X ∪ {u})η, (X ∪ {u})η) does not merge.

31

Let us now restate several results from [3] that will be needed in the following.

Lemma 23 ([3, Corollary 32]). A sequence ū merges, if and only if there
exists a factor (ui, ui+1) or (ui, ui+1, ui+2) that merges.

For the case of a sequence of primitive words, a complete description of
merging sequences was given in [3]. Moreover, if a sequence of primitive words
merges, then it can be simplified to a non-merging sequence of primitive
words.

Lemma 24 ([3, Lemma 24]). Let u, v, and w be primitive words.

• If (u, v) merges, then either u and v are Γ-uniform for some Γ ⊆ Σ or
u is right-closed and v is left-closed. In both cases, the regular word uv
has a single block.

• If (u, v, w) merges, then either (u, v) merges, or (v, w) merges, or u,w
are Γ-uniform and v is a singleton from Γ.

Lemma 24 motivates the definition of the following rewriting system R over
finite sequences over D(Σ).

Definition 25 (rewriting system R). The rewriting system R over the
set D(Σ) consists of the following rules:

• (u1, u2, u3) → u if u1 = u3 = u = Γη for some Γ ⊆ Σ and u2 ∈ Γ

• (u1, u2) → u if one of the following holds:

– u1 is right-closed, u2 is left-closed and u = u1u2

– u1 = u2 = u = Γη for some Γ ⊆ Σ.

In the following, we will use some basic facts from rewriting theory, see e.g.
[5] for further details. For sequences x̄ and ȳ over Reg(Σ), we write x̄ →R ȳ
if there exist a rewrite rule ū → u and an occurrence of the sequence ū in x̄
such that replacing that occurrence by u gives the sequence ȳ. Here, x̄ and
ȳ may be infinite sequences. Moreover, those xi of x̄ = (xi)i∈I that are not
primitive are left untouched in the rewrite step x̄ →R ȳ. Clearly, x̄ →R ȳ
implies that the sequences x̄ and ȳ are equivalent. A (possibly infinite)
sequence ū is irreducible with respect to R if there does not exist a sequence

32

v̄ with ū →R v̄. Clearly, on infinite sequences, R cannot be terminating (e.g.,
(aη, aη, aη . . .) →R (aη, aη, aη . . .) is a loop). On the other hand, R is trivially
terminating on finite sequences, since it is length-reducing. Moreover, by
analyzing overlapping left-hand sides of R, one can easily show:

Lemma 26. The rewriting system R is strongly confluent (on finite and
infinite sequences), i.e., for all ū, v̄, w̄ such that ū →R v̄ and ū →R w̄ there
exists x̄ such that (v̄ = x̄ or v̄ →R x̄) and (w̄ = x̄ or w̄ →R x̄).

Proof. The only possible overlappings of left-hand sides of R are the fol-
lowing:

• ū = (Γη, a, Γη, a, Γη) for Γ ⊆ Σ and a ∈ Γ: We obtain (Γη, a, Γη)
regardless of whether we apply the rule (Γη, a, Γη) → Γη to the first or
the second occurrence, respectively, of the left-hand side (Γη, a, Γη) in
ū.

• ū = (Γη, Γη, a, Γη) for Γ ⊆ Σ and a ∈ Γ: We have ū →R (Γη, a, Γη) →R

Γη and ū →R (Γη, Γη) →R Γη.

• ū = (Γη, a, Γη, Γη) for Γ ⊆ Σ and a ∈ Γ: Analogously to the previous
case.

• ū = (Γη, Γη, Γη) for Γ ⊆ Σ: We obtain (Γη, Γη) regardless of whether
we apply the rule (Γη, Γη) → Γη to the first or the second occurrence,
respectively, of the left-hand side (Γη, Γη) in ū.

• ū = (u1, u2, u3), where u2 ∈ Σ∗ is a finite word, u1 is right-closed,
and u3 is left-closed: We have ū →R (u1u2, u3) →R u1u2u3 and ū →R

(u1, u2u3) →R u1u2u3. ¤

By a simple fact from rewriting theory, it follows that R is also confluent, i.e.,
for all ū, v̄, w̄ such that ū →∗

R v̄ and ū →∗
R w̄ there exists x̄ such that v̄ →∗

R x̄
and w̄ →∗

R x̄. Termination (on finite sequences) and confluence imply that
R produces unique normal forms for finite sequences, i.e., for every finite
sequence ū there exists a unique finite sequence v̄ such that ū →∗

R v̄ and v̄
is irreducible with respect to R. This v̄ is called the irreducible normal form
of ū. From Lemma 23 and 24 we immediately get:

Lemma 27. Let ū be a sequence of primitive words. Then ū does not merge
if and only if ū is irreducible with respect to R.

33

We also have to verify that a sequence ū over Reg(Σ) containing non-primitive
words does not merge. Note that a regular word needs not have a first or
last block. For instance, (aω)ω has a first block but no last block, whereas
(aω)ω(aω)ω and [aa]η neither have a first block nor a last block.

Lemma 28 ([3, Corollary 30 and 31]). Let u, v, and w be regular words.

(1) If u has no last block or v has no first block then (u, v) does not merge
(see statement (1) from [3, Corollary 30]).

(2) If (u, v) and (v, w) do not merge, and u has no last block or w has no
first block or v has more than one block, then (u, v, w) does not merge
(see statement (1) from [3, Corollary 31]).

(3) If u has a last block b, w has a first block c and v has a single block, then
(u, v, w) merges if and only if (b, v, c) merges (see statement (2) from [3,
Corollary 31]).

We use the following definition.

Definition 29 (good sequences and semi-good sequences). The sequence
ū = (ui)i∈I is good if the following conditions hold:

(1) ū is irreducible with respect to R.

(2) For all i ∈ I we have:

(a) If ui is not primitive and has a first block, then (i − 1 ∈ I, ui−1 is
uniform, and (ui−1, ui) does not merge) or (i− 1, i− 2 ∈ I, ui−1 and
ui−2 are primitive, and (ui−2, ui−1, ui) does not merge).

(b) If ui is not primitive and has a last block, then (i + 1 ∈ I, ui+1 is
uniform, and (ui, ui+1) does not merge) or (i + 1, i + 2 ∈ I, ui+1 and
ui+2 are primitive, and (ui, ui+1, ui+2) does not merge).

If only (2) holds, then ū is said to be semi-good.

Lemma 30. If ū merges, then ū is not good.

34

Proof. Assume that ū merges. By Lemma 23 one of the following cases
holds:

Case 1. ū contains a factor (ui, ui+1) that merges. If ui and ui+1 are both
primitive, then ū is not irreducible by Lemma 27. Hence ū is not good.
Now assume that ui or ui+1 is not primitive. W.l.o.g. assume that ui is not
primitive; the other case is symmetric. Since (ui, ui+1) merges, Lemma 28(1)
implies that ui has a last block. Since (ui, ui+1) merges, condition (2b) from
Definition 29 implies that ū is not good.

Case 2. ū contains a factor (ui, ui+1, ui+2) that merges but neither (ui, ui+1)
nor (ui+1, ui+2) merges. If ui, ui+1, and ui+2 are primitive, then ū is not
irreducible by Lemma 27 and hence not good. So, assume that ui, ui+1, or
ui+2 is not primitive. The case that ui+2 is not primitive is symmetric to the
case that ui is not primitive. Hence, it suffices to consider the following two
subcases:

Case 2a. ui is not primitive. Since (ui, ui+1, ui+2) merges but (ui, ui+1) and
(ui+1, ui+2) do not merge, Lemma 28(2) implies that ui has a last block bi and
ui+2 has a first block bi+2. If ui+1 is not uniform, then, since (ui, ui+1, ui+2)
merges, condition (2b) from Definition 29 implies that ū is not good. Now,
assume that ui+1 is uniform and hence has a single block. Lemma 28(3)
implies that (bi, ui+1, bi+2) merges. Since (ui, ui+1) and (ui+1, ui+2) do not
merge, also (bi, ui+1) and (ui+1, bi+2) do not merge. It follows (from the
form of our rewriting system R) that bi = bi+2 is uniform and ui+1 is a
singleton word. But we have already shown that ui+1 is uniform, which is a
contradiction.

Case 2b. ui+1 is not primitive. Then ui+1 has more than one block and
Lemma 28(2) directly implies that (ui, ui+1, ui+2) does not merge, which is
again a contradiction. ¤

Lemma 31. If ū is semi-good and ū →R v̄, then v̄ is semi-good as well.

Proof. Assume that ū = (ui)i∈I is semi-good and ū →R v̄. We have to
show that v̄ = (vj)j∈J is semi-good. For this, consider an j ∈ J such that vj

is not primitive. Since the system R does not introduce non-primitive words,
vj must have been already present in ū. Let i ∈ I be the position in ū that
corresponds to position j in v̄. Hence, ui = vj. By symmetry it suffices to
show that condition (2a) from Definition 29 holds for j ∈ J . The case that

35

ui = vj has no first block is clear. So, assume that ui has a first block. Since
ū is semi-good, we can distinguish the following two cases.

Case 1. i − 1 ∈ I, ui−1 is uniform, and (ui−1, ui) does not merge. From the
form of the rewrite rules, it follows that vj−1 = ui−1. Hence, vj−1 is uniform,
and (vj−1, vj) = (ui−1, ui) does not merge. Thus, we have shown condition
(2a) from Definition 29 for j.

Case 2. i− 1, i− 2 ∈ I, ui−2, ui−1 are primitive, and (ui−2, ui−1, ui) does not
merge. We make a case distinction on the position, where the rewrite rule is
applied.

Case 2a. i − 3 ∈ I and in the rewrite step ū →R v̄, (ui−3, ui−2, ui−1) is
replaced by u ∈ D(Σ). Thus, ui−3 = ui−1 = u is uniform. Hence, vj−1 = u is
uniform. Moreover, (vj−1, vj) = (ui−1, ui) does not merge.

Case 2b. i − 4 ∈ I and in the rewrite step ū →R v̄, (ui−4, ui−3, ui−2) is
replaced by u ∈ D(Σ). Thus, ui−4 = ui−2 = u is uniform, vj−2 = u =
ui−2, and ui−1 = vj−1. It follows that vj−2 and vj−1 are primitive, and that
(vj−2, vj−1, vj) = (ui−2, ui−1, ui) does not merge.

Case 2c. In the rewrite step ū →R v̄, (ui−2, ui−1) is replaced by u ∈
D(Σ). Then, (ui−2, ui−1) merges. But this contradicts the assumption that
(ui−2, ui−1, ui) does not merge.

Case 2d. i−3 ∈ I and in the rewrite step ū →R v̄, (ui−3, ui−2) is replaced by
u ∈ D(Σ). If ui−3 = ui−2 = u is uniform, then vj−2 = ui−2 and vj−1 = ui−1

are primitive and (vj−2, vj−1, vj) = (ui−2, ui−1, ui) does not merge. Finally,
assume that ui−3 is right-closed, ui−2 is left-closed and vj−2 = u = ui−3ui−2.
We have vj−1 = ui−1. Thus vj−1 and vj−2 are primitive. It remains to show
that (vj−2, vj−1, vj) = (ui−3ui−2, ui−1, ui) does not merge. We know that
(ui−1, ui) does not merge (since (ui−2, ui−1, ui) does not merge). Assume
that (ui−3ui−2, ui−1) merges. Then (since ui−3ui−2 is primitive and scattered
and ui−1 is primitive) ui−3ui−2 must be right-closed and ui−1 must be left-
closed. But then, ui−2 6= ε is right-closed as well and (ui−2, ui−1) merges.
This is a contradiction. Hence, (ui−3ui−2, ui−1) does not merge. Let bi be the
first block of ui; we know that it exists. If (ui−3ui−2, ui−1, ui) merges, then
by Lemma 28(3) (ui−3ui−2, ui−1, bi) merges. Since neither (ui−3ui−2, ui−1)
nor (ui−1, bi) merges, ui−3ui−2 and bi must be uniform. But we know that
ui−3ui−2 is scattered, which leads again to a contradiction. Thus, indeed
(ui−3ui−2, ui−1, ui) does not merge.

36

If the rewrite rule is applied at a position different from those considered in
Cases 2a–2d, then we have (vj−2, vj−1, vj) = (ui−2, ui−1, ui). Since (ui−2, ui−1, ui)
fulfills condition (2a) from Definition 29, so does (vj−2, vj−1, vj). This con-
cludes the proof of the lemma. ¤

Lemma 31 implies that from a given finite semi-good sequence ū we can
compute an equivalent good sequence by computing the (unique) irreducible
normal form of ū.

4.3. Expressions and succinct expressions

Regular words can be naturally described by expressions using the op-
erations of concatenation, ω-power, ω-power, and shuffle. Formally, the set
T (V, Σ) of expressions over V and Σ is inductively defined as follows:

(a) V ∪ Σ ⊆ T (V, Σ)

(b) If α1, . . . , αn ∈ T (V, Σ) (n ≥ 1), then α1 · · ·αn ∈ T (V, Σ).

(c) If α ∈ T (V, Σ), then αω ∈ T (V, Σ) and αω ∈ T (V, Σ).

(d) If α1, . . . , αn ∈ T (V, Σ) (n ≥ 1), then [α1, . . . , αn]η ∈ T (V, Σ).

A mapping f : V → Reg(Σ) will be extended homomorphically to a mapping
f : T (V, Σ) → Reg(Σ) inductively as follows, where α, α1, . . . , αn ∈ T (V, Σ):

• f(a) = a for a ∈ Σ

• f(α1 · · ·αn) = f(α1) · · · f(αn)

• f(αω) = f(α)ω

• f(αω) = f(α)ω

• f([α1, . . . , αn]η) = [f(α1), . . . , f(αn)]η

For α ∈ T (V, Σ) we define the size |α| ∈ N inductively as follows:

• |α| = 1 for α ∈ V ∪ Σ

• |α1 · · ·αn| = |α1| + · · · + |αn|

• |αω| = |αω| = |α| + 1

37

• |[α1, . . . , αn]η| = |α1| + · · · + |αn| + 1

A succinct expression system (SES) is a triple A = (V, Σ, rhs) such that:

• V (the set of variables) and Σ (the terminal alphabet) are disjoint finite
alphabets.

• rhs (for right-hand side) is a mapping from V to T (V, Σ) such that the
relation {(Y,X) ∈ V × V | Y occurs in rhs(X)} is acyclic. The reflex
transitive closure of this relation is called the hierarchical order of A

and denoted by ¹A.

The property for rhs ensures that there exists a unique mapping valA : V →
Reg(Σ) such that valA(X) = valA(rhs(X)) for all X ∈ V . If A is clear from
the context, we will simply write val(X).

In the following a quadruple A = (V, Σ, rhs, S) where (V, Σ, rhs) is as
above and S ∈ V (i.e., an SES with a distinguished start variable S) we will
be called a succinct expression. In this case let us set val(A) = valA(S). A
succinct expression may be also seen as a dag (directed acyclic graph), whose
unfolding is an expression in the above sense.

Example 32. Consider the succinct expression

A = ({X1, X2, X3, X4, X5}, {a, b}, rhs, X1)

with

rhs(X1) = [X2, X3]
η rhs(X2) = X3X3 rhs(X3) = X4X4

rhs(X4) = X5X6 rhs(X5) = ab rhs(X6) = ba.

We have val(A) = [abbaabba, abbaabbaabbaabba]η. The corresponding dag
looks as follows:

η

◦

◦

◦

◦

◦

a

b

1

2

1

2

2

1

Nodes labelled with ◦ compute the concatenation of their successor nodes. In
case the order of the successor nodes matters, we specify it by edge labels.

38

For an SES A we define
|A| =

∑

X∈V

|rhs(X)|.

An SES A = (V, Σ, rhs) is in normal form if all right-hand sides are in (V ∪Σ)+

or of the form Y ω, Y ω, [Y1, . . . , Yn]η for some Y, Y1, . . . , Yn ∈ V ∪ Σ. Clearly,
from an SES A = (V, Σ, rhs) we can construct in polynomial time an SES
B = (V ′, Σ, rhs′) in normal form such that V ⊆ V ′ and valA(X) = valB(X)
for all X ∈ V . In the following we will only consider SESs in normal form.

For an SES A in normal form, we define depthA(X) and ωη-depthA(X) for
X ∈ V inductively as follows (below, we set depthA(a) = ωη-depthA(a) = 0
for a ∈ Σ):

• If rhs(X) = Y1 · · ·Yn (n ≥ 1, Y1, . . . , Yn ∈ Σ ∪ V), then

depthA(X) = max(depthA(Y1), . . . , depthA(Yn)) + 1,

ωη-depthA(X) = max(ωη-depthA(Y1), . . . , ωη-depthA(Yn)).

• If rhs(X) = Y ω or rhs(X) = Y ω, then

depthA(X) = depthA(Y) + 1,

ωη-depthA(X) = ωη-depthA(Y) + 1.

• If rhs(X) = [Y1, . . . , Yn]η, then

depthA(X) = max(depthA(Y1), . . . , depthA(Yn)) + 1,

ωη-depthA(X) = max(ωη-depthA(Y1), . . . , ωη-depthA(Yn)) + 1.

Straight-line programs.. A succinct expression, where all right-hand sides
belong to (V ∪ Σ)+ is called a straight-line program (SLP) [26, 32, 34]. In
this case, val(A) is a finite non-empty word. An SLP A can be viewed as
a succinct representation of the word val(A). More precisely, the length of
val(A) may be exponential in |A|. We will make heavy use of the fact that
certain algorithmic problems on SLP-encoded finite words can be solved in
polynomial time. More precisely, we use the following results:

Remark 33. There exist polynomial time algorithms for the following prob-
lems (the proofs for (a), (b), and (c) are straightforward):

(a) Given an SLP A, calculate |val(A)|.

39

(b) Given an SLP A and a number k ∈ N (coded in binary) we can produce
an SLP B of size |A| + O(log k) such that val(B) = val(A)k.

(c) Given an SLP A and numbers 1 ≤ i ≤ j ≤ |val(A)|, compute an SLP
B with val(B) = val(A)[i : j]. Here w[i : j] = ai . . . aj for a finite word
w = a1 . . . an.

(d) Given SLPs A and B decide whether val(A) = val(B) [15, 28, 31].

(e) Given SLPs A and B decide whether val(A) is a factor of val(B), i.e.,
there exist finite words u and v such that u val(A)v = val(B) [12, 17, 24,
29].

4.4. Heilbrunner’s algorithm

Theorem 34. From a given partitioned DFA A, we can compute in polyno-
mial time a succinct expression A such that w(A) ∼= val(A).

Proof. There is nothing new about the proof. We just have to follow
Heilbrunner’s algorithm [14] carefully. Let A = (Q, Γ, δ, q0, (Fa)a∈Σ) be a
partitioned DFA and let F =

⋃
a∈Σ Fa. We can assume that every state in F

is a dead end, i.e., does not have outgoing transitions. For this, take a new
symbol $, as well as a copy q′ together with the transition (q, $, q′) for every
final state q ∈ F . We set F ′

a = {q′ | q ∈ Fa} and let $ be the smallest symbol
in Γ ∪ {$}. The resulting partitioned DFA produces the same generalized
word as A.

So, assume that every state in F is a dead end. W.l.o.g. we can also
assume that A is coaccessible. The variables of the succinct expression A

will be the states of A. Consider a state p ∈ Q and let (p, ai, qi) (1 ≤ i ≤ k)
be all outgoing transitions for p, where a1 < a2 < · · · < ak. Let us define
out(p) = q1q2 · · · qk. Next, consider the graph with node set Q and an edge
from p ∈ Q to q ∈ Q if there is a transition from p to q. We partition this
graph into its strongly connected components (SCCs). An SCC C is smaller
than an SCC D if there exists a path from a state in C to a state in D;
this defines a partial order on the set of SCCs. We process all SCCs starting
with the maximal ones. When processing an SCC C, we define rhsA(p) for
each state p ∈ C. So let us consider a maximal SCC C which has not been
processed so far. We distinguish three cases:

Case 1. C is a singleton set {p} with p ∈ Fa. Then we set rhsA(p) = a.

40

Case 2. C = {p} is a singleton set with p 6∈ F , and p does not occur in
out(p). We set rhsA(p) = out(p). Note that out(p) only contains states from
larger SCCs (which have already been processed) and that out(p) 6= ε, since
p 6∈ F and A is coaccessible.

Case 3. Neither Case 1 or Case 2 applies, which means that either |C| ≥ 2
or C = {p} and p occurs in out(p). Then every word out(p) (p ∈ C) contains
at least one occurrence of a state from C. Hence out(p) can be factored as
out(p) = upxpvp, where up and vp do not contain occurrences of states from
the SCC C (i.e., all states occurring in up and vp belong to larger SCCs),
and xp starts and ends with a state from C (xp might consist of a single
state from C). Define functions ℓ : C → C and r : C → C as follows: ℓ(p)
(resp. r(p)) is the first (resp. last) state of the word xp. Then, for every
p ∈ C, the sequences p, ℓ(p), ℓ2(p), . . . and p, r(p), r2(p), . . . become periodic
after at most |C| steps. We now define regular expressions ℓp and rp as
follows: Let p0, p1, . . . , pm and q0, q1, . . . , qm be shortest sequences such that
p0 = q0 = p, pi+1 = ℓ(pi), qi+1 = r(qi), and ℓ(pm) ∈ {p0, p1, . . . , pm}, r(qn) ∈
{q0, q1, . . . , qn}. Assume that ℓ(pm) = pm′ and r(qn) = qn′ for 0 ≤ m′ ≤ m,
0 ≤ n′ ≤ n. Then, we define

ℓp = (up0 · · ·upm′−1
)(upm′

· · ·upm
)ω,

rp = (vqn
· · · vqn′

)ω(vqn′−1
· · · vq0).

Next, let T be the set of all regular expressions of the form ℓsyrt (s, t ∈ C)
such that some word out(p) (p ∈ C) contains a factor syt, where the word
y does not contain a state from C. Then we finally set rhsA(p) = ℓp[T]ηrp

for all p ∈ C. This concludes the processing step for the SCC C. Since C is
not maximal (since A is coaccessible), there exist edges from C to a larger
SCC. This implies that rhsA(p) is not empty. By [14], for every state p ∈ Q
we have w(Q, Γ, δ, p, (Fa)a∈Σ) ∼= valA(p). ¤

By Theorem 34, it suffices to prove the following result in order to prove
Theorem 18.

Theorem 35. The following problem can be solved in polynomial time:

INPUT: Two succinct expressions A1 and A2.
QUESTION: val(A1) ∼= val(A2)?

In the next section, we will prove this result for the special case that both
val(A1) and val(A2) are primitive.

41

4.5. A polynomial time equivalence test for succinct primitive expressions

By Theorem 34, the remaining goal is to test in polynomial time, whether
two succinct expressions represent isomorphic regular words. In a first step,
we accomplish this for succinct expressions that represent primitive words. In
the following, Σ will always refer to a finite alphabet. Let us first show that
we can decide in polynomial time whether a succinct expression represents a
primitive word.

Lemma 36. Given a succinct expression A, we can decide in polynomial
time whether val(A) is a primitive word. If it is, we can compute in polyno-
mial time SLPs B, C, D and Γ ⊆ Σ (here, we should allow also the empty
word for val(C)) such that val(A) is equal to val(B) or val(C)val(D)ω or
val(B)ωval(C) or val(B)ωval(C)val(D)ω or Γη, and we can decide which case
applies.

Proof. We proceed along the hierarchical order of A and compute for each
variable A of A whether val(A) is of one of the following forms (u,w ∈ Σ+, v ∈
Σ∗, Γ ⊆ Σ, a, b ∈ Γ): u, uωv, vwω, uωvwω, Γη, aΓη, Γηb, aΓηb. Moreover,
SLPs for the finite words u, v, and w can computed simultaneously. Observe
that from rhs(A) and the information already computed we can easily obtain
whether val(A) is of such a form and in this case of which form. The following
identities have to be used for shuffles (Γ ⊆ Σ, n ≥ 0, m ≥ 1, a, a1, . . . , an ∈ Γ,
and every ui (1 ≤ i ≤ m) has one of the forms Γη, cΓη, Γηc, cΓηd with
c, d ∈ Γ)

[a1, . . . , an, u1, . . . , um]η ∼= Γη (8)

ΓηΓη ∼= ΓηaΓη ∼= (Γη)ω ∼= (Γη)ω ∼= (Γηa)ω ∼= (aΓη)ω ∼= Γη (9)

(aΓη)ω ∼= aΓη (10)

(Γηa)ω ∼= Γηa (11)

The identities in (8) and (9) are axioms for regular expressions in [3], and
(10) and (11) can be easily deduced from the axioms. Let us also note that
in (8) it is crucial that m > 0. This allows to only require {a1, . . . , an} ⊆ Γ
instead of {a1, . . . , an} = Γ.

Now val(A) is primitive if and only if val(S) is of one of the following
forms (u,w ∈ Σ+, v ∈ Σ∗, Γ ⊆ Σ): u, uωv, vwω, uωvwω, Γη. ¤

For our polynomial time equivalence test for succinct expressions that rep-
resent primitive words, we need the following technical lemma.

42

u2 v2 w2 w2

u1 u1 v1 w1 w1

u1 v1 w1 w1

u2 u2 v2 w2 w2

Figure 9:

u2 w2 w2

u1 u1 w1 w1

u2 u2 w2 w2

u1 w1 w1

Figure 10:

Lemma 37. Let ui, vi, wi (i ∈ {1, 2}) be finite words such that |u1| = |u2| =
|v1| = |v2| = |w1| = |w2| > 0. Then uω

1 v1w
ω
1 = uω

2 v2w
ω
2 if and only if one of

the following conditions holds:

• u2v2w
2
2 is a factor of u2

1v1w
2
1.

• u1v1w
2
1 is a factor of u2

2v2w
2
2.

• v1 = w1, u2 = v2, and u2w
2
2 is a factor of u2

1w
2
1.

• u1 = v1, v2 = w2, and u1w
2
1 is a factor of u2

2w
2
2.

Proof. The four conditions from the lemma are shown in Figures 9 and
10. It is straightforward to show that any of these four situations implies
uω

1 v1w
ω
1 = uω

2 v2w
ω
2 . For instance, if the left situation in Figure 9 occurs, then

there exist words x, y, x′, y′ such that u1 = xy, u2 = yx, w1 = x′y′, w2 = y′x′

and v2w2 = yv1x
′. Hence,

uω
1 v1w

ω
1 = (xy)ωv1(x

′y′)ω = (yx)ωyv1x
′(y′x′)ω = uω

2 v2w2w
ω
2 = uω

2 v2w
ω
2 .

Let us now assume that uω
1 v1w

ω
1 = uω

2 v2w
ω
2 . We distinguish the following

cases:

Case 1. The occurrence of v1 in uω
1 v1w

ω
1 overlaps the occurrence of v2 in

uω
2 v2w

ω
2 . Then, either u2v2w

2
2 is a factor of u2

1v1w
2
1 (if v2 starts before v1) or

u1v1w
2
1 is a factor of u2

2v2w
2
2 (if v1 starts before v2), see Figure 9.

Case 2. The occurrence of v1 in uω
1 v1w

ω
1 does not overlap the occurrence of

v2 in uω
2 v2w

ω
2 .

43

Case 2.1. The occurrence of u1v1w1 in uω
1 v1w

ω
1 overlaps the occurrence of v2

in uω
2 v2w

ω
2 . Then, one of the following two situations occurs:

. . .
u2 v2 w2 w2 w2

u1 u1 u1 v1 w1 . . .

. . .
u2 u2 u2 v2 w2

u1 v1 w1 w1 w1 . . .

In the first situation, we obtain v1 = w1 (since v1w1 is a factor of w3
2) and

u2 = v2 (since u2v2 is a factor of u3
1). Hence, we get the left situation shown

in Figure 10, i.e., u2w
2
2 is a factor of u2

1w
2
1. In the second situation, we obtain

u1 = v1 (since u1v1 is a factor of u3
2) and v2 = w2 (since v2w2 is a factor of

w3
1). Hence, we get the right situation shown in Figure 10, i.e., u1w

2
1 is a

factor of u2
2w

2
2.

Case 2.2. The occurrence of u1v1w1 in uω
1 v1w

ω
1 does not overlap the oc-

currence of v2 in uω
2 v2w

ω
2 . Then u1v1w1 either occurs in uω

2 or wω
2 . Hence,

u1 = v1 = w1 and similarly u2 = v2 = w2. But uω
1 uω

1 = uω
2 uω

2 implies that u3
2

is a factor of u4
1. Hence, the third condition from the lemma holds. ¤

Lemma 38. Given two succinct expressions A1, A2 over Σ such that val(A1)
and val(A2) are primitive words, we can decide in polynomial time whether
val(A1) = val(A2).

Proof. We have to distinguish the following cases:

Case 1. val(Ai) (i ∈ {1, 2}) is finite. Then val(A1) = val(A2) can be checked
in polynomial time by Remark 33(d).

Case 2. val(Ai) is Γi-uniform (i ∈ {1, 2}). Then val(A1) = val(A2) if and
only if Γ1 = Γ2 which can be checked in polynomial time.

Case 3. val(Ai) = uiv
ω
i (i ∈ {1, 2}). By Lemma 36 we can produce SLPs for

ui and vi (i ∈ {1, 2}) from A1 and A2, respectively, in polynomial time. Let
ki = |ui| and ℓi = |vi|. Let lcm(ℓ1, ℓ2) denote the least common multiple of

ℓ1 and ℓ2. By replacing vi by v
max(k1,k2)·lcm(ℓ1,ℓ2)/ℓi

i (for which we can compute
an SLP in polynomial time by Remark 33(b)), we can assume that |v1| =
|v2| ≥ max{k1, k2}. Let ℓ = |v1| = |v2|. W.l.o.g assume that k1 ≤ k2

and let k = k2 − k1 ≤ ℓ. If k1 < k2, then we can replace u1 and v1 by
u1v1[1 : k] and v1[k + 1 : ℓ]v1[1 : k], respectively (we can compute SLPs

44

for these words in polynomial time by Remark 33(c)). Hence, we can also
assume that |u1| = |u2|. But then, u1v

ω
1 = u2v

ω
2 if and only if u1 = u2 and

v1 = v2, which can be checked in polynomial time by Remark 33(d).

Case 4. val(Ai) = uω
i vi (i ∈ {1, 2}). This case can be dealt with analogously

to Case 3.

Case 5. val(Ai) = uω
i viw

ω
i (i ∈ {1, 2}). By Lemma 36 we can produce SLPs

for ui, vi, and wi in polynomial time. As in Case 3, by replacing the words
ui, wi by appropriate powers, we can enforce the condition |u1| = |u2| =
|w1| = |w2| = ℓ ≥ max{|v1|, |v2|}. In addition, we can enforce the condition
|v1| = |v2| = ℓ as follows: If ki = |vi| ≤ ℓ, then we can replace vi and wi by
viwi[1 : ℓ − ki] and wi[ℓ − ki + 1 : ℓ]wi[1 : ℓ − ki], respectively. Now, that we
have |u1| = |u2| = |v1| = |v2| = |w1| = |w2|, we can check uω

1 v1w
ω
1 = uω

2 v2w
ω
2

in polynomial time using Lemma 37 and Remark 33(e). ¤

4.6. A polynomial time equivalence test for succinct expressions

In this section, we will finally prove Theorem 35. The general strategy
is very similar to [3]. We will incrementally reduce the ωη-depth of the two
given succinct expressions, until one of them (or both) describe primitive
words. This allows to use the results from the previous section. We have
to analyze carefully the size of the intermediate succinct expressions. In the
following, Σ will always refer to a finite alphabet. A slight extension of SESs
will be useful for the further consideration:

A 2-level system is a tuple A = (Up, Lo, Σ, rhs) such that the following
holds:

• The tuple (Up, Lo, rhs↾Up) is an SES (w.l.o.g. in normal form) over the
terminal alphabet Lo.

• The tuple (Lo, Σ, rhs↾Lo) is an SES over the terminal alphabet Σ.

The set Up (resp. Lo) is called the set of upper level variables (lower level
variables) of A. Moreover, we set V = Up∪ Lo and call it the set of variables
of A. The SES (Up, Lo, rhs↾Up) is called the upper part of A, briefly up(A), and
the SES (Lo, Σ, rhs↾Lo) is the lower part of A, briefly, lo(A). The upper level
evaluation mapping uvalA : Up → Reg(Lo) of A is defined as uvalA = valup(A).
The evaluation mapping valA is defined by valA(X) = vallo(A)(valup(A)(X))
for X ∈ Up and valA(X) = vallo(A)(X) for X ∈ Lo. Note that valA(X) =
val(Up∪Lo,Σ,rhs)(X) for all X ∈ Up ∪ Lo. We will need certain nice properties
of SESs and 2-level systems.

45

Definition 39 (primitive). A primitive SES is an SES A = (V, Σ, rhs)
such that valA(X) is primitive for all X ∈ V . A 2-level system B is primitive
if lo(B) is primitive and for every upper level variable X of B, val(X) is not
primitive.

Definition 40 (irredundant). An irredundant SES is an SES A = (V, Σ, rhs)
such that valA(X) 6= valA(Y) for all X,Y ∈ V with X 6= Y . A 2-level system
B is irredundant if lo(B) is irredundant.

One can think of a primitive and irredundant SES as a succinct representation
of a finite subset of D(Σ) where valA : V → D(Σ) defines an injective mapping
from V to this finite subset. Hence, for a regular word u such that all
blocks belong to the image of valA, we can define the valA-skeleton of u.
In the following, we will simply call it the A-skeleton of u. A primitive
and irredundant 2-level system intuitively is a system, where the terminal
alphabet is a finite subset of D(Σ) (namely the valuations of the variables of
the lower part lo(B)).

Remark 41. If a primitive 2-level system B is not irredundant then, using
Lemma 38, one can produce in polynomial time an irredundant 2-level system
C such that val(B) = val(C). Indeed, if there are two different variables
X,Y ∈ Lo such that valB(X) = valA(Y), then one has to replace X in all
right-hand sides by Y . Thereafter X can be removed from Lo. Note that this
process does not change the set of upper level variables of B.

Assume that B is an SES or 2-level system and let u = (Ai)i∈I be a (possibly
infinite) sequence of variables of B. We say that u does not merge (is good,
semi-good, irreducible with respect to R), if the sequence (val(Ai))i∈I does
not merge (is good, semi-good, irreducible with respect to R). Moreover,
two sequences u = (Ai)i∈I and v = (Bj)j∈J of variables (possibly from two
different SESs or 2-level systems) are equivalent if the sequences (val(Ai))i∈I

and (val(Bj))j∈J are equivalent (i.e.,
∏

i∈I val(Ai) and
∏

j∈J val(Bj) are iso-
morphic generalized words). The following definition is an adaption of the
definition of a proper expression in [3].

Definition 42 (proper). Let B = (Up, Lo, Σ, rhs) be a primitive 2-level sys-
tem. A variable X ∈ Lo ∪ Up is proper if one of the following cases holds:

(1) X ∈ Lo

46

(2) rhs(X) = Y1 · · ·Yn, where Y1, . . . , Yn are proper and Y1 · · ·Yn does not
merge.

(3) rhs(X) = Y ω or rhs(X) = Y ω, where Y is proper and Y Y Y does not
merge.

(4) rhs(X) = [Y1, . . . , Yn]η where Y1, . . . , Yn are proper and val(X) is not
primitive.

The 2-level system B is proper if B is irredundant, primitive, and all variables
are proper.

Note that the condition that Y Y Y does not merge in Definition 42(3) implies
that Y Y Y · · · and · · ·Y Y Y both do not merge by Lemma 23. Moreover,
condition (4) from Definition 42 means that Y1, . . . , Yn are proper and at
least on val(Yi) is not a single symbol.

The following Lemma follows directly from [3, Corollary 75]. Intuitively
it says the following: Let B be a proper 2-level system and X an upper level
variable. Then every block of the regular word val(X) is isomorphic to a
unique primitive word val(Y) for some lower level nonterminal Y (uniqueness
holds since B is irredundant. Moreover, if we replace every block B of val(X)
by the unique lower level nonterminal Y such that B is isomorphic to val(Y),
then we obtain the regular word uval(X).

Lemma 43. Let B be a proper 2-level system and X an upper level variable.
Then uval(X) is the lo(B)-skeleton of val(X).

The next two lemmas will be used to make a given 2-level system proper.

Lemma 44. Given a primitive 2-level system B and a finite semi-good se-
quence A1 · · ·Am of variables of B, we can produce in polynomial time a
primitive 2-level system C and a sequence B1 · · ·Bn of variables of C such
that the following holds:

• The upper parts of B and C are the same, and the lower part of C

extends the lower part of B by at most m − 1 many new lower level
variables, whose right-hand sides have length 2.

• The sequence B1 · · ·Bn is good.

47

• A1 · · ·Am and B1 · · ·Bn are equivalent sequences.

• The subsequence of upper level variables in A1 · · ·Am is the same as the
subsequence of upper level variables in B1 · · ·Bn.

• n ≤ m.

Proof. As long as the sequence A1 · · ·Am contains a factor AiAi+1 or AiAi+1Ai+2,
whose evaluation is a left-hand side of our rewriting system R, we do the fol-
lowing:

If val(Ai) is right-closed and val(Ai+1) is left-closed, then we introduce a
new lower level variable A, set rhs(A) = AiAi+1, and replace the sequence
A1 · · ·Am by the sequence A1 · · ·Ai−1AAi+2 · · ·Am. If val(Ai) = val(Ai+1) =
Γη for some Γ ⊆ Σ, we continue with the sequence A1 · · ·Ai−1Ai+1 · · ·Am.
Finally, if val(Ai) = val(Ai+2) = Γη for some Γ ⊆ Σ and val(Ai+1) = a ∈ Γ,
we continue with the sequence A1 · · ·Ai−1Ai+2 · · ·Am. We iterate this process
as long as possible.

The resulting sequence B1 · · ·Bn is irreducible with respect to R and it
is semi-good by Lemma 31. Hence it is good by Definition 29. ¤

Lemma 45. Given a primitive SES B and a finite irreducible sequence A1 · · ·Ak

(k ≥ 3) of variables, we can produce in polynomial time a primitive SES C

and sequences B1 · · ·Bm, C1 · · ·Cn (0 ≤ m ≤ k, 1 ≤ n ≤ k) of variables such
that the following holds:

• C extends B by at most one new variable, whose right-hand side has
length 2.

• The infinite sequence B1 · · ·Bm(C1 . . . Cn)ω is irreducible.

• (A1 · · ·Ak)
ω and B1 · · ·Bm(C1 · · ·Cn)ω are equivalent sequences.

Proof. W.l.o.g. assume that (A1 · · ·Ak)
ω is not irreducible. Since A1 · · ·Ak

is irreducible, an R-reduction in the infinite sequence

A1 · · ·AkA1 · · ·AkA1 · · ·Ak · · ·

can only occur at a border between Ak and A1. There are the following cases,
according to the left-hand sides of the system R.

48

Case 1. val(Ak) = val(A1) = Γη for some Γ ⊆ Σ. Then, the infinite sequence
A1A2 · · ·Ak(A2 · · ·Ak)

ω is irreducible and equivalent to our original sequence
(recall that k ≥ 3).

Case 2. val(Ak) is scattered and right-closed, val(A1) is scattered and left-
closed. Then, we introduce a new lower level variable A with rhs(A) = AkA1.
It follows that the infinite sequence

A1A2 · · ·Ak−1(AA2 · · ·Ak−1)
ω

is irreducible and equivalent to our original sequence.

Case 3. val(Ak) = Γη, val(A1) = a, val(A2) = Γη for some Γ ⊆ Σ and
a ∈ Γ. If k = 3, then A1A2 · · ·Ak = A1A2A3 would not be irreducible (since
val(A2) = val(A3) = Γη), which contradicts our assumptions. Hence, assume
that k ≥ 4. Then, the sequence A1A2 · · ·Ak(A3 · · ·Ak)

ω is again irreducible
and equivalent to our original sequence.

Case 4. val(Ak−1) = Γη, val(Ak) = a, val(A1) = Γη for some Γ ⊆ Σ and
a ∈ Γ. This case is similar to Case 3. ¤

Definition 46 (2-unfolded). Let B be a primitive 2-level system. A vari-
able X ∈ Up is called 2-unfolded if the following holds:

(a) If val(X) has a first block, then rhs(X) = Au for some A ∈ Lo and
expression u, and val(A) is the first block of val(X).

(b) If val(X) has a second block and the first block is scattered, then rhs(X) =
ABu for some A,B ∈ Lo and expression u, and val(B) is the second block
of val(X).

(c) If val(X) has a last block, then rhs(X) = uA for some A ∈ Lo and
expression u, and val(A) is the last block of val(X).

(d) If val(X) has a second last block and the last block is scattered, then
rhs(X) = uBA for some A,B ∈ Lo and expression u, and val(B) is the
second last block of val(X).

We need the following two lemmas about 2-unfolded variables.

Lemma 47. Let B be a primitive 2-level system and X ∈ Up. If rhs(X) ∈
Lo≥2 ∪ Lo∗UpLo∗ and rhs(X) is good, then X is 2-unfolded.

49

Proof. By symmetry let us only consider conditions (a) and (b) from Def-
inition 46. Assume that rhs(X) is a good sequence. If rhs(X) ∈ Lo≥2, then
Lemma 30 implies that the variables in rhs(X) evaluate to the blocks of
val(X) (recall that rhs(X) is good). Hence (a) and (b) hold. Next, assume
that rhs(X) ∈ Lo≥2UpLo∗. Again, since rhs(X) is good, Lemma 30 implies
that the first two variables in rhs(X) evaluate to the first two blocks of val(X).
Thus, (a) and (b) hold again. If rhs(X) ∈ UpLo∗, then the first variable of
rhs(X) evaluates to a non-primitive word. Since rhs(X) is good, it follows
that val(X) does not have a first block (otherwise we get a contradiction
to condition (2a) from Definition 29) and (a) and (b) hold. Finally assume
that rhs(X) ∈ LoUpLo∗ and the first two variables of rhs(X) are A ∈ Lo and
Z ∈ Up. Then, val(A) is the first block of val(X), and (a) from Definition 46
holds. Since rhs(X) is good either val(Z) does not have a first block (and
thus val(X) has no second block) or val(Z) has a first block but val(A) is
uniform. In both cases (b) from Definition 46 is satisfied. This proves the
lemma. ¤

Lemma 48. Let B be a primitive 2-level system. Assume that X1, . . . , Xn ∈
Up are proper and 2-unfolded upper level variables such that either rhs(Xi) ∈
Lo≥2∪Lo∗UpLo∗ or rhs(Xi) is a dense shuffle. Let ū be a sequence of variables
such that every upper level variable in ū belongs to {X1, . . . , Xn}. Let the
sequence v̄ result from ū by replacing every occurrence of a variable Xi with
rhs(Xi) ∈ Lo≥2 ∪ Lo∗UpLo∗ by rhs(Xi). Then v̄ is semi-good.

Proof. Let v̄ = (Zj)j∈J . In order show that this sequence is semi-good, we
consider an j ∈ J such that val(Zj) is not primitive (i.e., Zj ∈ Up) and has
a first block (the condition from Definition 29 for the case that val(Zj) has
a last block can be verified analogously). Since val(Zj) has a first block, Zj

cannot be one of the variables Xi (1 ≤ i ≤ n) such that rhs(Xi) is a dense
shuffle (then val(Zj) would be a non-primitive dense shuffle and would have
no first block). Hence Zj arises from replacing an occurrence of a variable Xi

in ū by rhs(Xi) ∈ Lo∗UpLo∗. Let rhs(Xi) = A1 · · ·AmZjB1 · · ·Bn. Note that
since Xi is proper by assumption, the sequence A1 · · ·AmZjB1 · · ·Bn does
not merge.

Since val(Zj) has a first block, also val(Xi) has a first block. Since Xi is 2-
unfolded, we have m ≥ 1. But then val(Xi) has also a second block. In order
show condition (2a) from Definition 29, we have to show that (m ≥ 1, val(Am)
is uniform, and AmZj does not merge) or (m ≥ 2 and Am−1AmZj does not

50

merge). We already know that the whole sequence A1 · · ·AmZjB1 · · ·Bn does
not merge. Hence, we only have to show that (m ≥ 1 and val(Am) is uniform)
or m ≥ 2.

Hence, if m ≥ 2, we are done. So, assume that m = 1. Since val(Xi) has a
second block, condition (b) from Definition 46 implies that val(A1) = val(Am)
is not scattered, i.e., it is uniform.

Let B be an SES (as usual in normal form) and X a variable with ωη-depth(X) =
h ≥ 1. Then there is a sequence of variables X1, . . . , Xh such that the fol-
lowing properties hold (here, it is important that B is in normal form):

• Xh ¹B X,

• Xi ≺B Xi+1 for 1 ≤ i < h,

• ωη-depth(Xi) = i for 1 ≤ i ≤ h, and

• rhs(Xi) is of the form Y ω, Y ω or [Y1, . . . , Yn]η.

Note that val(X1) is either primitive or a shuffle of finite words. If val(X1) =
[u1, . . . , uk]

η where at least one of the ui is in Σ≥2 (thus, val(X1) is not
primitive), then the sequence (X1, . . . , Xh) is called a bad sequence. If a
variable X has a bad sequence, then we say it is of bad shape. Otherwise it
is of good shape. For instance, if rhs(X) = [Y]η and rhs(Y) = ab, then X is
of bad shape.

Proposition 49. Let B = (V, Σ, rhs) be an SES such that for every variable
X ∈ V , either rhs(X) ∈ Σ+ ∪ Σ∗V Σ∗ ∪ V V or rhs(X) is of the form Y ω,
Y ω, or [Y1, . . . , Yn]η for Y, Y1, . . . , Yn ∈ V ∪ Σ. Given B we can produce in
polynomial time a proper 2-level system C = (Up, Lo, Σ, rhs) such that every
variable X ∈ V , where valB(X) is not primitive, belongs to Up and for each
of these variables X we have:

(a) valB(X) = valC(X)

(b) If X is of good shape in B, then ωη-depthB(X) > ωη-depthup(C)(X).

(c) If X is of bad shape in B, then ωη-depthB(X) ≥ ωη-depthup(C)(X) and
X is of good shape in up(C).

Proof. W.l.o.g. we can assume that val(B) is not primitive. We start with
some preprocessing.

51

Preprocessing.. First we transform the SES B into a primitve 2-level sys-
tem C by collecting in Lo all variables X such that val(X) is primitive. This
can be done in polynomial time using Lemma 36. Note that if val(X) is prim-
itive and scattered, then for every Y in rhs(X), val(Y) is primitive too. But
if val(X) is a primitive dense shuffle (i.e., of the form Γη for some Γ ⊆ Σ),
then this is not necessarily true.7 Hence, in this case we have to redefine
rhs(Y) = Γη. After this process the 2-level system C is already primitive and
satisfies conditions (a), (b), and (c) from the proposition. All these proper-
ties will stay invariant throughout the remaining proof where we manipulate
the system C in order to make it proper.

Before we come to the actual algorithm we transform C for technical
convenience such that for all X ∈ Up one of the following holds:

(1) rhs(X) ∈ Lo≥2 ∪ Lo∗UpLo∗,

(2) rhs(X) = [Y1, . . . Yn]η for some Y1, . . . , Yn ∈ Up ∪ Lo,

(3) rhs(X) ∈ Up2,

(4) rhs(X) = Y ω for Y ∈ Up ∪ Lo,

(5) rhs(X) = Y ω for Y ∈ Up ∪ Lo.

In order to achieve this form we simply introduce for each upper level variable
X with rhs(X) = uY v where u, v ∈ Σ∗ and Y ∈ V two variables Xu, Xv ∈ Lo

and set rhs(X) = XuY Xv, rhs(Xu) = u, and rhs(Xv) = v (if e.g. u = ε,
then Xu is not present). Moreover, if a symbol a ∈ Σ occurs in a right-hand
side of the form Y ω, Y ω, or [Y1, . . . , Yn]η, then we replace that occurrence
by a new Lo-variable with right-hand side a. In fact, by this preprocessing
all right-hand sides of the form (1) have length at most 3. This fact will
be important when we estimate the size of the final system. From now on
variables in Up that have a right-hand side of form (i) (for 1 ≤ i ≤ 5) are
said to be of type (i). Moreover, type (1, 2) means “type (1) or (2)” and
type (3-5) means “type (3), (4) or (5)”.

Following [3, proof of Theorem 65 and 66] we will now give an algorithm
that produces a proper 2-level system. We will proceed along the hierarchical

7Let, for instance, rhs(X) = [Y]η with val(Y) = a[a]η. Then val(X) = [a]η is primitive
but val(Y) is not primitive.

52

order of the variables in Up where in each step we possibly add new (lower
und upper level) variables and change the right-hand sides of the original
variables such that at the end, all upper level variables are proper and of
the form (1)–(5). Moreover, all original upper variables are in addition 2-
unfolded and of type (1, 2). Here “original” refers to the fact that the variable
is already present in the initial 2-level system, in contrast to the new variables
that are introduced during the process.

Actual algorithm.. We can now outline our procedure. Consider an origi-
nal variable X ∈ Up such that every variable in rhs(X) is either in Lo or was
already processed and is therefore now proper, 2-unfolded, and of type (1,
2). We need to distinguish on the form of the right-hand side of X. In all of
the following cases, we reset rhs(X) (without changing val(X)) either

(i) to a dense shuffle of variables that are already proper or

(ii) to a good sequence from Lo≥2 ∪ Lo∗UpLo∗ of proper variables.

In (i), X is proper by Definition 42(4) (note that val(X) is not primitive since
X ∈ Up) and 2-unfolded since a non-primitive dense shuffle has no first or
last block. In (ii) it follows from Lemma 30 and 47, that X is proper and
2-unfolded. For every new upper level variables Y that is introduced, the
right-hand side is either

(i) a non-merging sequence of already proper variables or

(ii) Zω or Zω, where Z is already proper and ZZZ does not merge.

In both cases it follows from Definition 42 that Y is proper too.
In the following, we will several times make use of the following obvious

fact: If a sequence ū = (ui)i∈I of regular words does not merge and the
sequence v̄ = (vi)i∈I results from replacing some factors (uk)k∈K (where K is
an interval of I) by the single word

∏
k∈K uk, then v̄ does not merge as well.

Recall also that for every original upper level variable X with rhs(X) ∈
Lo≥2 ∪ Lo∗UpLo∗ we have |rhs(X)| ≤ 3 by our preprocessing.

Case 1. rhs(X) ∈ Lo2 ∪ Lo3 (hence rhs(X) is semi-good). By applying
Lemma 44 to rhs(X), we can compute in polynomial time an equivalent good
sequence of at most three possibly new Lo-variables (and their corresponding
right-hand sides). This sequence becomes the new right-hand side of X.

53

Case 2. rhs(X) ∈ Lo≤1UpLo≤1. Let Y be the unique Up-variable in rhs(X).
Note that Y is one of the original variables, which has already been processed
and hence is proper, 2-unfolded, and of type (1, 2). If rhs(Y) ∈ Lo≥2 ∪
Lo∗UpLo∗, then we replace Y in rhs(X) by rhs(Y). If rhs(Y) is a dense shuffle,
then we leave Y in rhs(X). Since Y is proper and 2-unfolded, Lemma 48
implies that the resulting new right-hand side of X is semi-good and in
Lo≥2 ∪ Lo∗UpLo∗. Thus, we can apply Lemma 44 and obtain an equivalent
good sequence in Lo≥2 ∪ Lo∗UpLo∗ (as in Case 1, we will introduce new Lo-
variables thereby). This good sequence will be the new right-hand side of X.
For later estimating the length of right-hand sides, let us note the following
points (where rhs(X) refers to the new right-hand side of X):

• |rhs(X)| ≤ |rhs(Y)| + 2, and

• only new lower level variables are introduced.

Case 3. rhs(X) = [Y1, . . . , Yk]
η. Then there is nothing to do.

Case 4. rhs(X) = Y Z for some Y, Z ∈ Up. Here Y and Z are original
variables, which have already been processed and therefore are proper, 2-
unfolded, and of type (1, 2). If rhs(Y) ∈ Lo≥2 ∪ Lo∗UpLo∗ then we replace
Y in Y Z by rhs(Y). If rhs(Y) is a dense shuffle, we leave Y in Y Z. We
proceed analogously with Z in Y Z. Since Y and Z are proper and 2-unfolded,
Lemma 48 implies that the resulting new right-hand side of X is semi-good
and contains at most two variables from Up. Thus we can apply Lemma 44
and obtain an equivalent good sequence u of variables with at most two
variables from Up (again, we introduce new Lo-variables thereby).

Now, we replace parts in the sequence u in order to get rhs(X). First,
assume that

u = A1 · · ·Ak ∈ Lo≥2.

If k ≤ 5, then rhs(X) simply becomes u (which is good). If k ≥ 6, then we
introduce a new Up-variable U and set

rhs(X) = A1A2UAk−1Ak, rhs(U) = A3 · · ·Ak−2.

Since u is good, both right-hand sides are good as well. Second, assume that

u = A1 · · ·AkUB1 · · ·Bℓ ∈ Lo∗UpLo∗

54

with U ∈ Up proper. If k ≤ 2 and ℓ ≤ 2 then we we simply set rhs(X) = u.
On the other hand, if k > 2 or ℓ > 2, then we introduce a new Up-variable
W of type (1) and set

rhs(X) = A1A2WBℓ−1Bℓ, rhs(W) = A3 · · ·AkUB1 · · ·Bℓ−2

(if e.g. k > 2 but ℓ = 1, then B1 · · ·Bℓ−2 and Bℓ−1 disappear). Since u
is good, rhs(X) will be good too. Moreover, since u does not merge (by
Lemma 30), rhs(W) does not merge as well (rhs(W) is not necessarily good;
but this is not required since W is a new variable). Third, assume that

u = A1 · · ·AkUB1 · · ·BℓV C1 · · ·Cn ∈ Lo∗UpLo∗UpLo∗

with U, V ∈ Up proper. In this case we introduce two new Up-variables W
(of type (1)) and W ′ (of type (3)) and set

rhs(X) = A1A2W
′C1 · · ·Cn, rhs(W ′) = WV, rhs(W) = A3 · · ·AkUB1 . . . Bℓ.

Again, since u is good, rhs(X) is good as well. Moreover, since u does not
merge, neither rhs(W) nor rhs(W ′) merges. Note that if rhs(Z) is a dense
shuffle then Z = V and the number n in the right-hand side of X is 0. On
the other hand, if rhs(Z) ∈ Lo≥2 ∪ Lo∗UpLo∗ then n can be bounded by the
length of the sequence rhs(Z). Hence, for Case 4 we

• turned the variable X of type (3) into a variable of type (1) with
|rhs(X)| ≤ max{5, 3 + |rhs(Z)|}, and

• added at most one new upper level variable of type (3) and at most
one new upper level variable W of type (1) with |rhs(W)| ≤ |rhs(Y)|+
|rhs(Z)|.

Case 5. rhs(X) = Y ω. Note that Y is either a Lo-variable, or it is an
original Up-variable, which has already been processed and hence is proper,
2-unfolded, and of type (1, 2). We can therefore distinguish the following
subcases.

Case 5(a). rhs(Y) = [Z1, . . . , Zn]η for some Z1, . . . , Zn ∈ Lo ∪ Up proper.
Then by the general identity (Γη)ω ∼= Γη (which follows from Cantor’s theo-
rem), we have val(X) = val(Y). Hence val(Y) is a non-primitive dense shuffle.
We set rhs(X) = [Z1, . . . , Zn]η. The variable Y could be eliminated from the

55

2-level system (but this is not necessary). We turned a variable of type (4)
into a variable of type (2).

Case 5(b). rhs(Y) ∈ Lo∗UpLo∗. Let rhs(Y) = uZv with Z ∈ Up proper and
u, v ∈ Lo∗. Since Y is proper and 2-unfolded, Lemma 48 implies that the in-
finite sequence uZvuZv · · · = u(Zvu)ω is semi-good. By applying Lemma 44
to the sequence vu of Lo-variables, we obtain an equivalent good sequence
u(Zw)ω. Here w is a sequence of (possibly new) Lo-variables such that w
represents the irreducible normal form with respect to R of the sequence
represented by vu. Note that |w| ≤ |uv|. We set

rhs(X) = uV, rhs(V) = Uω, rhs(U) = Zw.

Since the sequence u(Zw)ω is good, also the sequence uV is good. Moreover,
since u(Zw)ω does not merge (by Lemma 30), the same holds for rhs(U) = Zw
and UUU (so U and V are proper by definition). Let us note the following
points:

• We turned the variable X of type (4) into a variable of type (1) with
|rhs(X)| ≤ |rhs(Y)|.

• We introduced a fresh variable V of type (4) and a fresh variable U of
type (1) with |rhs(U)| ≤ |rhs(Y)|.

Case 5(c). Y ∈ Lo and hence val(Y) is primitive. Then the infinite sequence
Y Y Y · · · must be irreducible, because otherwise val(Y) would be either finite
or uniform and val(X) = val(Y)ω would be primitive. We introduce a new
Up-variable Z and set

rhs(X) = Y Y Z, rhs(Z) = Y ω.

Then rhs(X) is good and Y Y Y does not merge. Note that

• we turned the variable X of type (4) into a variable of type (1) with
|rhs(X)| = 3, and

• added a fresh variable of type (4).

Case 5(d). rhs(Y) ∈ Lo2. Let rhs(Y) = A1A2 for A1, A2 ∈ Lo. Since Y is
already proper, we know that A1A2 is irreducible. If the infinite sequence

56

A1A2A1A2 · · · is irreducible too, then we introduce a fresh Up-variables Z
and set

rhs(X) = A1A2Z, rhs(Z) = Y ω.

Clearly, the sequence rhs(X) is good and Y Y Y does not merge. As in Case
5(c), we

• turned the variable X of type (4) into a variable of type (1) with
|rhs(X)| = 3, and

• added a fresh variable of type (4).

On the other hand, if A1A2A1A2 · · · is not irreducible, then (since A1A2 is
irreducible), an R-reduction can only occur at a border between A2 and A1.
The case that val(A1) = val(A2) = Γη for some Γ ⊆ Σ cannot occur (since
A1A2 is irreducible). If val(A2) is scattered and right-closed and val(A1) is
scattered and left-closed, then we introduce a fresh Lo-variable B and a fresh
Up-variable Z and set

rhs(X) = A1BZ, rhs(Z) = Bω, rhs(B) = A2A1.

It is straightforward to show that the infinite sequence A1BBB · · · is irre-
ducible. Hence rhs(X) is good and BBB does not merge. Again, we

• turned the variable X of type (4) into a variable of type (1) with
|rhs(X)| = 3, and

• added a fresh variable of type (4).

Next, if val(A1) = Γη and val(A2) = a for some Γ ⊆ Σ and a ∈ Γ, then
A1A2A1A2 · · · evaluates to Γη. Hence, val(X) is primitive, which is a con-
tradiction. Finally, if val(A2) = Γη and val(A1) = a ∈ Γ, then A1A2A1A2 · · ·
evaluates to aΓη = val(Y) and we set

rhs(X) = A1A2, .

which is good.

Case 5(e). rhs(Y) ∈ Lo≥3. We apply Lemma 45 to the irreducible sequence
rhs(Y) and compute finite sequences u, v of (possibly new) Lo-variables with
their corresponding right-hand sides. We have |u| ≤ |rhs(Y)| and |v| ≤
|rhs(Y)|. Moreover, the infinite sequence uvω of Lo-variables is irreducible

57

(and hence good) and evaluates to val(X). W.l.o.g. we can assume |u| ≥ 2
(otherwise, we can replace u by uvv). We introduce fresh Up-variables U and
V and set

rhs(X) = uV, rhs(V) = Uω, rhs(U) = v.

If |v| = 1, i.e., v consists of a single Lo-variable, then we do not need U .
Then rhs(X) is good and UUU does not merge. We

• turned the variable X of type (4) into a variable of type (1) with
|rhs(X)| ≤ |rhs(Y)| + 1, and

• added a fresh variable V of type (4) and at most one fresh variable U
of type (1).

Case 6. rhs(X) = Y ω. This case is symmetric to Case 4.

The resulting system C is primitive and all Up-variables are proper. On the
other hand, C is not necessarily irredundant. But this can be easily achieved
as described in Remark 41. ¤

We are now in the position to prove Theorem 35.

Proof of Theorem 35. It suffices to show that the following problem can be
solved in polynomial time:

INPUT: An SES A and two variables X,Y of A.
QUESTION: val(X) ∼= val(Y)?

If both variables X and Y evaluate to primitive words, then we just need to
apply Lemma 38. If only one of the two evaluates to a primitive word, then
val(X) 6∼= val(Y). Hence, we may assume that both val(X) and val(Y) are not
primitive. In particular, we have ωη-depth(X) > 0 and ωη-depth(Y) > 0. It
is easy to bring A into the normal form required in Proposition 49. Applying
Proposition 49 to A gives a proper 2-level system A0. The variables X and Y
belong to the upper level part of A0. Starting with A0 we construct a sequence
of proper 2-level systems Aj = (Upj, Loj, Loj−1, rhsj) (with Lo−1 = Σ). In
order to obtain Aj we apply the procedure of Proposition 49 to the SES
up(Aj−1). Let k be maximal such that X and Y belong to the upper level
part of Ak. Since by Proposition 49 in every second step the ωη-depth of X
and Y strictly decreases we have k ≤ 2 · |A|.

Let 0 ≤ j ≤ k. By Lemma 43 uvalj(X) is the lo(Aj)-skeleton of valj(X)
and similarly for Y . Hence valj(X) ∼= valj(Y) if and only if uvalj(X) ∼=

58

uvalj(Y) by Proposition 20. Recall that Aj+1 is obtained by applying the
procedure of Proposition 49 to up(Aj). We obtain valj(X) ∼= valj(Y) if and
only if valj+1(X) ∼= valj+1(Y) for all 0 ≤ j < k. Hence, val(X) ∼= val(Y) if
and only if valk(X) ∼= valk(Y) if and only if uvalk(X) ∼= uvalk(Y). Now, by
the maximality of k, uvalk(X) or uvalk(Y) must be primitive. Hence, using
Lemma 38, we can check in polynomial time whether uvalk(X) ∼= uvalk(Y).

Runtime.. Let us analyze the system up(Aj) for 1 ≤ j ≤ k. The 2-level
system Aj is obtained by applying Proposition 49 to up(Aj−1). Since all
right-hand sides of up(Aj−1) are of the form (1–5), the right-hand sides of
up(Aj−1) have the form that we require in Proposition 49. Let Type(3-5)j be
the set of variables in Upj that are of type (3-5).

Now let us estimate the number |Upj| for 1 ≤ j ≤ k. Observe that in the
proof of Proposition 49 in each of the Cases 1–3 only new lower level variables
are introduced. In each of the Cases 4–6 an original variable of type (3-5) is
turned into a variable of type (1, 2) and at most one fresh variable of type (3-
5) is added to Upj. Moreover, additionally at most one fresh variables of type
(1, 2) is added to Upj. We conclude that |Type(3-5)j| ≤ |Type(3-5)j−1| and
the total number of variables in Upj is bounded by |Upj−1|+2 · |Type(3-5)j−1|.
Recall that j ≤ k ≤ 2|A|. Hence, for all 0 ≤ j ≤ k we get

|Upj| ≤ |Up0| + 2j · |Type(3-5)0| ≤ |A0| · (4 · |A| + 1).

Let us now estimate the maximal size of right-hand sides of Aj. If rhsj(X)
is of the form Y ω or Y ω then by definition |rhsj(X)| = 2. If rhsj(X) =
[Y1, . . . , Yn]η, where every Yi is a variable or terminal symbol of Aj, then
|rhsj(X)| is bounded by one plus the number of different variables or termi-
nal symbols of Aj. We will see in a moment that this number is bounded
polynomially in |A|.

Let us now consider the case that rhsj(X) is a sequence of variables
and terminal symbols. First, consider the case that X ∈ Upj ∩ Upj−1,
i.e., X is an upper level variable of Aj that was already an upper level
variable of the previous system Aj−1 (these variables are called the origi-
nal variables in the proof of Proposition 49). In each of the six cases in
the proof of Proposition 49, we have |rhsj(X)| ≤ max{5, 3 + |rhsj(Y)|},
where Y ∈ Upj ∩ Upj−1 is a variable that was processed before X. We
therefore obtain |rhsj(X)| ≤ 3 · |Upj ∩ Upj−1| + 5. Hence, |rhsj(X)| ≤
3 · |A0| · (4 · |A| + 1) + 5. For a fresh variable X ∈ Upj \ Upj−1, we can
bound |rhsj(X)| by 2 ·max{|rhsj(Y)| | Y ∈ Upj ∩Upj−1} (the factor 2 comes

59

from Case 4). Hence |rhsj(X)| ≤ 6 · |A0| · (4 · |A| + 1) + 10 for all X ∈ Upj.
Finally, note that |A0| is polynomially bounded in |A|.

Next, consider a lower level variable A of Aj such that rhsj(A) is a se-
quence of variables and terminal symbols. Then, |rhsj(A)| is bounded by 2
(if A is introduced in one of the Cases 1–6 in the proof of Proposition 49) or
by the maximal length of a right-hand side of a variable from Aj−1 (if A is
introduced in the preprocessing step).

Finally, notice that in each of the Cases 1–6, the number of fresh lower
level variables that are introduced is bounded by 2 · max{|rhsj(Y)| | Y ∈
Upj ∩ Upj−1} (the factor 2 comes again from Case 4). Hence the number of
lower level variables is also bounded polynomially in |A|.

We have shown that the total size of very 2-level system Aj (1 ≤ j ≤ k)
is bounded polynomially in |A|. As the time needed to construct Aj+1 from
Aj is polynomially bounded by Proposition 49, we conclude that the overall
running time of our algorithm is polynomially bounded as well. ¤

4.7. Deciding the existence of a non-trivial automorphism

A non-trivial automorphism of a generalized word (L;≤, τ) is an auto-
morphism of (L;≤, τ), i.e., an isomorphism f : (L;≤, τ) → (L;≤, τ)) such
that f(p) 6= p for at least one p ∈ L.

Remark 50. Note that every automorphism f of a regular word w has to
map blocks of w to blocks of w. Hence, f induces an automorphism of the
skeleton of w. Thus, w has a non-trivial automorphism if and only if (i)
there is a block of w having a non-trivial automorphism, or (ii) the skeleton
of w has a non-trivial automorphism.

Kuske has shown in [21] that it is decidable whether a given regular word
has a non-trivial automorphism. Using our machinery for the isomorphism
problem we can easily show the following result:

Theorem 51. For a given partitioned DFA A it can be decided in polynomial
time whether w(A) has a non-trivial automorphism.

Before we prove Theorem 51, let us first consider the case of a succinctly
specified primitive word.

Lemma 52. For a given succinct expression A such that val(A) is primi-
tive, one can decided in polynomial time whether val(A) has a non-trivial
automorphism.

60

Proof. By Lemma 36 we can determine in polynomial time, whether val(A)
is finite, Γ-uniform (for some finite subalphabet Γ), or of the form uωv, vwω,
or uωvwω (u,w ∈ Σ+, v ∈ Σ∗). Clearly, a finite word, or a regular word of
the form uvω or uωv has no non-trivial automorphism. If val(A) is Γ-uniform,
then val(A) has non-trivial automorphisms. Finally, assume that val(A) is of
the form uωvwω for finite words u, v, and w. By Lemma 36 we can compute
in polynomial time SLPs B, C, and D such that u = val(B), v = val(C), and
w = val(D). The word uωvwω has a non-trivial automorphism if and only if
uωvwω ∼= uωuω. Hence, we have to check whether val(A) ∼= val(B)ωval(B)ω,
which can be checked in polynomial time by Lemma 38. ¤

Proof of Theorem 51. By Theorem 34, it suffices to show that for a given
SES A one can check in polynomial time whether val(A) has a non-trivial
automorphism. From A we can compute by Proposition 49 in polynomial
time a proper 2-level system A0 and a variable X of A0 such that val(A) =
valA0(X). By Lemma 52 we can assume that X is an upper level variable of
A0. Define the proper 2-level systems Aj as in the proof of Theorem 35. Let
k > 0 be minimal such that X is a lower level variable of Ak. In the proof
of Theorem 35 we have shown that the 2-level systems A0, . . . , Ak can be all
computed in polynomial time. By Lemma 43, uvalAj

(X) is the lo(Aj)-skeleton
of valAj

(X) for all 0 ≤ j < k.
Let 0 ≤ j < k. Let Lj be the set of all lower level variables Y of Aj such

that (i) Y ¹Aj
X and (ii) Y appears in a right-hand side of up(Aj). Then,

uvalAj
(X) is still the Lj-skeleton of valAj

(X). Moreover, for every Y ∈ Lj,
there is a block of valAj

(X) that is isomorphic to valAj
(Y). By Remark 50,

valAj
(X) has a non-trivial automorphism if and only if (i) there is Y ∈ Lj such

that valAj
(Y) has a non-trivial automorphism or (ii) uvalAj

(X) = valAj+1
(X)

has a non-trivial automorphism. By Lemma 52 we can check property (i) in
polynomial time. Moreover, since valAk

(X) is primitive, we can also check
(ii) for j = k−1 in polynomial time. This gives a polynomial time algorithm
for verifying whether valA0(X) = val(A) has a non-trivial automorphism. ¤

4.8. Lower bounds for regular linear orders

In this section we prove lower bounds for the isomorphism problem for
regular words. In fact, all these lower bounds only need a unary alphabet,
i.e., they hold for regular linear orders. We identify in the following the linear
order (L;≤) we the generalized word (L;≤, τ) where τ(x) = a for all x ∈ L.

61

In particular, for n ∈ N the regular expression

aωaω · · · aω
︸ ︷︷ ︸

n times

.

is identified with the linear order ω · n. Moreover, the regular expression αβ
denotes the order sum α + β of α and β (viewed as linear orders).

The results in this section nicely contrast the results from Section 3, where
we studied the isomorphism problem for the prefix order trees on regular
languages. In this section, we replace the prefix order by the lexicographical
order.

Theorem 53. The following problem is P-hard (and hence P-complete) for
every finite alphabet Σ:

INPUT: Two succinct expressions A1 and A2 over the alphabet Σ.
QUESTION: val(A1) ∼= val(A2)?

Proof. Note that the problem can be solved in polynomial time by Theo-
rem 35. P-hardness will be shown by a reduction from the monotone circuit
value problem. So, let C be a monotone boolean circuit. We can assume
that the gates of C are partitioned into layers L1, . . . , Ln, where L1 con-
tains all input gates, Ln only contains the output gate, and all inputs for a
gate from Li+1 belong to Li. Moreover, Li (i > 1) either contains only and-
gates or or-gates. We construct an SES A (over a unary terminal alphabet
{a}), which contains for each gate v of C a variable testv and for each layer
d ∈ {1, . . . , n} two variables goodd, and badd such that the following holds
for all gates v ∈ Ld:

(a) Either valA(testv) ∼= valA(badd) or valA(testv) ∼= valA(goodd).

(b) valA(testv) ∼= valA(goodd) if and only if gate v evaluates to true.

(c) The linear orders valA(goodd) and valA(badd) are shuffles that do not
contain an interval isomorphic to ω · d.

The base case for the first layer is trivial. Set rhsA(good1) = a and rhsA(bad1) =
aa. In other words, valA(good1)

∼= 1 and valA(bad1) ∼= 2. Moreover, rhsA(testv) =
a if v ∈ L1 is a true-gate and rhsA(testv) = aa if v ∈ L1 is a false-gate.

Now assume that v ∈ Ld+1 is a gate with inputs v1, v2 ∈ Ld. There are
two cases:

62

Case 1. Ld+1 consists of and-gates. Then we set

rhsA(testv) = [ω · d + testv1 , ω · d + testv2 , ω · d + goodd]
η

rhsA(goodd+1) = [ω · d + goodd]
η

rhsA(badd+1) = [ω · d + goodd, ω · d + badd]
η.

Case 2. Ld+1 consists of or-gates.

rhsA(testv) = [ω · d + testv1 , ω · d + testv2 , ω · d + badd]
η

rhsA(goodd+1) = [ω · d + goodd, ω · d + badd]
η

rhsA(badd+1) = [ω · d + badd]
η.

The above three properties (a), (b), and (c) can be shown by induction on
the layer. For layer L1 all three properties are trivially true. Now, consider
layer Ld+1. Property (a) follows directly from the induction hypothesis for
layer Ld. Since the linear orders valA(goodd) and valA(badd) are shuffles, (c)
holds for layer Ld+1 too. Finally, for (b) we consider two cases:

Case 1. v ∈ Ld+1 is an and-gate. Let v1, v2 ∈ Ld be the inputs for v. First,
assume that v evaluates to true. Then, v1 and v2 both evaluate to true.
Hence, by induction, we get valA(testv1)

∼= valA(testv2)
∼= valA(goodd). Thus,

valA(testv) = [ω · d + valA(testv1), ω · d + valA(testv2), ω · d + valA(goodd)]
η

∼= [ω · d + valA(goodd)]
η

= valA(goodd+1).

For the other direction assume that

valA(testv) = [ω · d + valA(testv1), ω · d + valA(testv2), ω · d + valA(goodd)]
η

∼= [ω · d + valA(goodd)]
η.

Since neither valA(testv1) nor valA(testv2) nor valA(goodd) contains an interval
isomorphic to ω · d, [22, Lemma 23] implies that

ω · d + valA(testv1)
∼= ω · d + valA(testv2)

∼= ω · d + valA(goodd).

This implies
valA(testv1)

∼= valA(testv2)
∼= valA(goodd).

63

Finally, the induction hypothesis yields that both v1 and v2, and hence also
v evaluate to true.

Case 2. v ∈ Ld+1 is an or-gate. We can use similar arguments as for Case 1.
¤

We do not know, whether the lower bound from Theorem 53 holds for ordi-
nary expressions too (instead of succinct expressions).

Theorem 54. The following problem is P-hard (and hence P-complete):

INPUT: Two DFAs A1 and A2.
QUESTION: (L(A1);≤lex) ∼= (L(A2);≤lex)?

Proof. Note that by Theorem 18 the problem belongs to P. For P-hardness,
it suffices by Theorem 53 to construct in logspace from a given succinct
expression A (over a unary terminal alphabet) a DFA A such that the linear
order val(A) is isomorphic to (L(A);≤lex). But this is accomplished by the
construction in the proof of [36, Proposition 2]. ¤

Theorem 18 implies that it can be checked in EXPTIME whether the lexico-
graphical orderings on two regular languages, given by NFAs, are isomorphic.
We do not know whether this upper bound is sharp. Currently, we can only
prove a lower bound of PSPACE:

Theorem 55. The following problem is PSPACE-hard:

INPUT: Two NFAs A1 and A2.
QUESTION: (L(A1);≤lex) ∼= (L(A2);≤lex)?

Proof. We prove PSPACE-hardness by a reduction from the PSPACE-complete
problem whether a given NFA A (over the terminal alphabet {a, b}) accepts
{a, b}∗ [35]. So let A be an NFA over the terminal alphabet {a, b} and let
K = L(A). Let Σ = {0, 1, a, b, $1, $2} and fix the following order on Σ:

$1 < 0 < 1 < $2 < a < b.

Under this order, ({0, 1}∗1;≤lex) ∼= ({a, b}∗b;≤lex) ∼= η.

64

It is straightforward to construct from A in logspace NFAs for the follow-
ing languages:

L1 = {a, b}∗b $1

L2 = K b {0, 1}∗1

L3 = {a, b}∗b $2

L = L1 ∪ L2 ∪ L3 (12)

It follows that
(L;≤lex) ∼=

∑

w∈{a,b}∗b

L(w),

(the sum is taken over all words from {a, b}∗b in lexicographic order), where
for all u ∈ {a, b}∗:

L(ub) ∼=

{
1 + η + 1 if u ∈ K

2 else.

Hence, if K 6= {a, b}∗, then (L;≤lex) contains an interval isomorphic to 2
and therefore is not dense. Hence (L;≤lex) 6∼= η. On the other hand, if
K = {a, b}∗, then (L;≤lex) ∼= (1+η +1) ·η ∼= η. This proves the theorem. ¤

Remark 56. The proof of Theorem 55 shows that it is PSPACE-hard to
check for a given NFA A, whether (L(A);≤lex) ∼= η. In fact, this prob-
lem is PSPACE-complete, since we can check in polynomial space whether
(L(A);≤lex) ∼= η: In polynomial time, we can construct an NFA B that ac-
cepts a convolution of two words8 u ⊗ v if and only if u, v ∈ L(A) and there
exist words w1, w2, w3 ∈ L(A) such that w1 <lex u <lex w2 and (v ≤lex u or
u <lex w3 <lex v). Then, (L(A);≤lex) ∼= η if and only if B accepts the set
of all convolutions u ⊗ v with u, v ∈ L(A). The latter can be checked in
polynomial space.

Remark 57. In [10] it is shown that the problem, whether for a given context-
free language L the linear order (L;≤lex) is isomorphic to η, is undecidable.

8The convolution of the words a1a2 · · · am and b1b2 · · · bn is the word
(a1, b1)(a2, b2) · · · (ak, bk), where k = max{m,n}, ai = # (a dummy symbol) for
m < i ≤ k and bi = # for n < i ≤ k.

65

This result is shown by a reduction from Post’s correspondence problem. Note
that this result can be also easily deduced using the technique from the above
proof: If we start with a pushdown automaton for A instead of an NFA, then
the language L from (12) is context-free. Hence, (L;≤lex) ∼= η if and only if
L(A) = {a, b}∗. The latter property is a well-known undecidable problem.

In Section 3 we also studied the isomorphism problem for finite trees that
are succinctly given by the prefix order on the finite language accepted by
a DFA (resp., NFA). To complete the picture, we will finally consider the
isomorphism problem for linear orders that consist of a lexicographically
ordered finite language, where the latter is represented by a DFA (resp.,
NFA). Of course, this problem is somehow trivial, since two finite linear
orders are isomorphic if and only if they have the same cardinality. Hence, we
have to consider the problem whether two given acyclic DFAs (resp. NFAs)
accept languages of the same cardinality.

Proposition 58. It is C=L-complete (resp. C=P-complete) to check whether
two given acyclic DFAs (resp., acyclic NFAs) accept languages of the same
size.

Proof. The upper bounds are easy: There exists a nondeterministic poly-
nomial time (resp., logspace) machine, which gets an NFA (resp. a DFA)
A over an alphabet Σ as input, and has precisely |L(A)| many accepting
paths. Let n be the number of states of n. The machine first branches non-
deterministically for at most n · log(|Σ|) steps and thereby produces a word
w ∈ Σ≤n. Then it checks whether w ∈ L(A) and only accepts it this holds.
The checking step can be done in deterministic polynomial time for an NFA
and in deterministic logspace for a DFA.

For the lower bound, we first consider the DFA-case. Given two nondeter-
ministic logspace machines M1,M2 (over the same input alphabet) together
with an input w we can produce in logspace the configuration graphs G1 and
G2 of M1 and M2, respectively, on input w. W.l.o.g. we can assume that
G1 and G2 are acyclic (one can add a step counter to Mi). Now, from Gi it
is straightforward to construct an acyclic DFA Ai such that |L(Ai)| is the
number of paths in Gi from the initial configuration to the (w.l.o.g. unique)
accepting configuration. The latter number is the number of accepting com-
putations of Mi on input w.

66

Finally, C=P-hardness for NFAs follows from [19, Theorem 2.1], where
it was shown that counting the number of words accepted by an NFA is
#P-complete. ¤

4.9. Ordered trees

Let us briefly discuss the isomorphism problem for ordered regular trees,
i.e., regular trees, where the children of a node are linearly ordered. An
ordered tree can be viewed as a triple (A;≤, R), where (A;≤) is a tree as
defined in Section 2.3 and the binary relation R is the disjoint union of
relations Ra (a ∈ A), where Ra is a linear order on the children of a. Now,
assume that L ⊆ Σ∗ is a language with ε ∈ L and let ≤Σ be a linear order on
Σ. Then, we can define a finitely branching ordered regular tree oT(L,≤Σ)
as follows:

oT(L,≤Σ) = (L; ≤pref ,
⋃

u∈L Ru),

where Ru is the relation

Ru = {(v, w) | v, w are children of u in (L;≤pref), v ≤lex w}.

This means that we order the children of a node u ∈ L lexicographically. If
A is a (deterministic or nondeterministic) finite automaton for L, then we
simply write oT(A,≤Σ) for oT(L(A),≤Σ). In the following, we will omit the
order ≤Σ on the alphabet. The proof of the following result combines ideas
from the proof of Theorem 5 with Theorem 18.

Proposition 59. The following problem is P-complete:

INPUT: Two DFAs A1 and A2 with ε ∈ L(A1) ∩ L(A2).
QUESTION: oT(A1) ∼= oT(A2)?

Proof. The lower bound follows easily from Theorem 54. Given a DFA A
for a language L ⊆ Σ∗, we add a new smallest symbol # to Σ. Then, the
language L# is prefix-free (no word is prefix of another word), (L;≤lex) ∼=
(L#;≤lex), and a DFA for L# can be easily constructed from the DFA A.
Moreover, for two languages L1, L2 ⊆ Σ∗ we have (L1#;≤lex) ∼= (L2#;≤lex)
if and only if oT(L1# ∪ {ε}) ∼= oT(L2# ∪ {ε}).

For the upper bound, it suffices (similarly to the proof of Theorem 5) to
take a DFA A = (Q, Σ, δ, F) without initial state and two states p, q ∈ F , and

67

to check in polynomial time, whether oT(A, p) ∼= oT(A, q), where oT(A, r) =
oT(Q, Σ, δ, r, F) for r ∈ F . Define the following equivalence relation on F :

iso = {(p, q) ∈ F × F | oT(A, p) ∼= oT(A, q)}.

We show that iso can be computed in polynomial time. As in the proof of
Theorem 5, this will be done with a partition refinement algorithm. We need
a few definitions.

Recall from the proof of Theorem 5 the definition of the languages L(A, p, C)
and K(A, p, C) ⊆ L(A, p, C) for p ∈ F and C ⊆ F . Assume that R is an
equivalence relation on F and let m be the number of equivalence classes of
R. Fix an arbitrary bijection f between the alphabet {1, . . . ,m} and the set
of equivalence classes of R. With R and p ∈ F we associate a partitioned
DFA A(p,R) as follows: Take the DFA for the language K(A, p, F) as de-
fined in the proof of Theorem 5 and set Fi = f(i) (1 ≤ i ≤ m), which is
the set of final states associated with symbol i. Finally, define the regular
word w(p,R) = w(A(p,R)) over the alphabet {1, . . . ,m}. We define the new

equivalence relation R̃ on F as follows:

R̃ = {(p, q) ∈ R | w(p,R) ∼= w(q, R)}.

Thus, R̃ is a refinement of R which, by Theorem 18, can be computed in
polynomial time from R. Let us define a sequence of equivalence relations
R0, R1, . . . on F as follows: R0 = F × F , Ri+1 = R̃i. Then, there exists
k < |F | such that Rk = Rk+1. We claim that Rk = iso.

For the inclusion iso ⊆ Rk, one shows, by induction on i, that iso ⊆ Ri for
all 1 ≤ i ≤ k. The point is that for every equivalence relation R on F with
iso ⊆ R, we also have iso ⊆ R̃. To see this, assume that iso ⊆ R but there is
(p, q) ∈ iso, which does not belong to R̃. Since (p, q) belongs to R, we must
have w(p,R) 6∼= w(q, R). On the other hand, since (p, q) ∈ iso, it follows that
the regular words w(p, iso) and w(q, iso) are isomorphic. But since iso ⊆ R,
w(p,R) is a homomorphic image of w(p, iso) and similarly for w(q, R). Thus,
also w(p,R) and w(q, R) are isomorphic, which is a contradiction.

For the inclusion Rk ⊆ iso, we show that if R is an equivalence relation
on F such that R = R̃ (this holds for Rk), then R ⊆ iso. For this, take a
pair (p1, p2) ∈ R. Take the tree oT(A, pi). We assign types in form of final
states to the nodes of oT(A, pi) in the same way as in the proof of Theorem 5.
We now construct an isomorphism f : oT(A, p1) → oT(A, p2) as the limit of
isomorphisms fn, n ≥ 1. Here, fn is an isomorphism between the trees that

68

result from oT(A, p1) and oT(A, p2) by cutting off all nodes below level n. Let
us call these trees oT(A, pi)↾n (i ∈ {1, 2}). Moreover, if an fn maps a node u1

of type q1 to a node u2 of type q2, then we will have (q1, q2) ∈ R. Assume that
fn is already constructed and let u1 of type q1 be a leaf of oT(A, p1)↾n. Let
u2 = f(u1) be of type q2. Then we have (q1, q2) ∈ R and hence the regular
words w(q1, R) and w(q2, R) are isomorphic. Let g be an isomorphism. The
elements of these regular words correspond to the children of u1 and u2,
respectively. More precisely, if vi belongs to the domain of w(qi, R), then the
word uivi is a child of ui and vice versa. Clearly, g can be also viewed as an
isomorphism between the lexicographical orderings on the children of u1 and
u2, respectively. Moreover, by definition of the regular words w(q1, R) and
w(q2, R), if g maps some u1v1 of type r1 to u2v2 of type r2, then (r1, r2) ∈ R.
By choosing such an isomorphism g for every pair (u1, f(u1)) of leaves in
oT(A, p1)↾n and oT(A, p2)↾n, respectively, we can extend fn to fn+1. ¤

Let us now consider prefix-closed automata. Here, we can improve the upper
bound from Theorem 59 to NL.

Proposition 60. The following problem is NL-complete:

INPUT: Two prefix-closed DFAs A1 and A2.
QUESTION: oT(A1) ∼= oT(A2)?

Proof. Again, it suffices to take a prefix-closed DFA A = (Q, Σ, δ, Q) with-
out initial state, and two states p, q ∈ Q, and two check in NL, whether

oT(Q, Σ, δ, p,Q) ∼= oT(Q, Σ, δ, q, Q).

By the complement closure of NL, it suffices to check nondeterministically in
logarithmic space, whether oT(Q, Σ, δ, p,Q) 6∼= oT(Q, Σ, δ, q, Q) This can be
done as follows: Let a1 < a2 · · · < am and b1 < b2 < · · · < bn the transition
labels of the outgoing transitions of p and q, respectively. If m 6= n then
clearly oT(Q, Σ, δ, p,Q) 6∼= oT(Q, Σ, δ, q, Q) and the algorithm can accept. If
n = m, then oT(Q, Σ, δ, p,Q) 6∼= oT(Q, Σ, δ, q, Q) if and only if there exists
1 ≤ i ≤ m such that oT(Q, Σ, δ, δ(p, ai), Q) 6∼= oT(Q, Σ, δ, δ(q, bi), Q). Hence,
the algorithm will simply guess 1 ≤ i ≤ m and replace the state pair (p, q)
by (δ(p, ai), δ(q, bi)). In this way, the algorithm only has to store two states
of A, which is possible in logspace.

NL-hardness can be shown by a reduction from the complement of the
graph accessibility problem. Take a directed graph G = (V,E) and two nodes

69

DFA NFA

acyclic
PSPACE-
complete

arbitrary
P-complete EXPTIME-

complete

Table 1: Main results for the isomorphism problem for regular trees

s, t ∈ V . Add to each node of V loops, so that every node v ∈ V \ {t} has
outdegree n (where n can be taken as the maximal outdegree of a node of G)
and t has outdegree n + 1. Then label the edges of the resulting multigraph
arbitrarily by symbols so that we obtain a DFA A (the initial state is s and
all states are final). Then there is no path from s to t in G if and only if the
tree oT(A) is a full n-ary tree. ¤

Corollary 61. The following problem is PSPACE-complete:

INPUT: Two prefix-closed NFAs A1 and A2.
QUESTION: oT(A1) ∼= oT(A2)?

Proof. The PSPACE upper bound follows from Proposition 60, using Lemma 1
and the obvious fact that the power set automaton of a given NFA can be
produced by a PSPACE-transducer. For the PSPACE lower bound, note that
for an NFA A over an alphabet Σ we have L(A) = Σ∗ if and only if oT(A)
is a full |Σ|-ary tree. But universality for NFAs is PSPACE-complete [35]. ¤

5. Conclusion and open problems

Table 1 (Table 2) summarizes our complexity results for the isomorphism
problem for regular trees (regular linear orders). Let us conclude with some
open problems. As can be seen from Table 2, there is a complexity gap for the
isomorphism problem for regular linear orders that are represented by NFAs.
This problem belongs to EXPTIME and is PSPACE-hard. Another interest-
ing problem concerns the equivalence problem for straight-line programs (i.e.,
succinct expressions that generate finite words, or equivalently, acyclic par-
titioned DFAs, or equivalently, context-free grammars that generate a single
word). This problem can be solved in polynomial time [15, 28, 31]. Recall

70

DFA NFA

acyclic C=L-complete C=P-complete

arbitrary P-complete
PSPACE-hard,
in EXPTIME

Table 2: Main results for the isomorphism problem for regular linear orders

that this result is fundamental for our polynomial time algorithm for succinct
expressions (Theorem 35). In [11], it was conjectured that the equivalence
problem for straight-line programs is P-complete, but this is still open.

Acknowledgments.. Both authors were partially supported by the DFG-
project LO 748/8 (Algorithmen für komprimierte Daten). The authors also
want to thank Dietrich Kuske for many useful comments.

References

[1] Vince Bárány, Erich Grädel, and Sasha Rubin. Automata-based presen-
tations of infinite structures. In Finite and Algorithmic Model Theory,
number 379 in London Mathematical Society Lecture Notes Series, pages
1–76. Cambridge University Press, 2011.

[2] Stephen L. Bloom and Zoltán Ésik. Deciding whether the frontier of a
regular tree is scattered. Fundamenta Informaticae, 55(1):1–21, 2003.

[3] Stephen L. Bloom and Zoltán Ésik. The equational theory of regular
words. Information and Computation, 197(1-2):55–89, 2005.

[4] Stephen L. Bloom and Zoltán Ésik. Algebraic linear orderings. Inter-
national Journal of Foundations of Computer Science, 22(2):491–515,
2011.

[5] Ronald V. Book and Friedrich Otto. String–Rewriting Systems.
Springer, 1993.

[6] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alterna-
tion. Journal of the Association for Computing Machinery, 28(1):114–
133, 1981.

71

[7] Bruno Courcelle. Frontiers of infinite trees. Informatique Théorique et
Applications, 12(4), 1978.

[8] Bruno Courcelle. The definability of equational graphs in monadic
second-order logic. In Proceedings of the 16th International Colloquium
on Automata, Languages and Programming (ICALP 1989), number 372
in Lecture Notes in Computer Science, pages 207–221. Springer, 1989.

[9] Zoltán Ésik. Representing small ordinals by finite automata. In Pro-
ceedings of the 12th Annual Workshop on Descriptional Complexity of
Formal Systems (DCFS 2010), number 31 of EPTCS, pages 78–87, 2010.

[10] Zoltán Ésik. An undecidable property of context-free linear orders. In-
formation Processing Letters, 111(3):107–109, 2011.

[11] Leszek Gasieniec, Alan Gibbons, and Wojciech Rytter. Efficiency of fast
parallel pattern searching in highly compressed texts. In Proceedings
of the 24th International Symposium on Mathematical Foundations of
Computer Science (MFCS’99), number 1672 in Lecture Notes in Com-
puter Science, pages 48–58. Springer, 1999.

[12] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski, and Woj-
ciech Rytter. Efficient algorithms for Lempel-Ziv encoding (extended
abstract). In Proceedings of the 5th Scandinavian Workshop on Algo-
rithm Theory (SWAT 1996), number 1097 in Lecture Notes in Computer
Science, pages 392–403. Springer, 1996.

[13] Leslie M. Goldschlager. The monotone and planar circuit value problems
are log space complete for P. SIGACT News, 9(2):25–99, 1977.

[14] Stephan Heilbrunner. An algorithm for the solution of fixed-point
equations for infinite words. Informatique Théorique et Applications,
14(2):131–141, 1980.

[15] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial algo-
rithm for deciding bisimilarity of normed context-free processes. Theo-
retical Computer Science, 158(1&2):143–159, 1996.

[16] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán.
Completeness results for graph isomorphism. Journal of Computer and
System Sciences, 66(3):549–566, 2003.

72

[17] Artur Jez. Faster fully compressed pattern matching by recompression.
In Proceedings of the 39th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2012), number 7391 in Lecture Notes
in Computer Science, pages 533–544. Springer, 2012.

[18] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Information and Compu-
tation, 86(1), 1990.

[19] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. Counting and
random generation of strings in regular languages. In Proceedings of the
6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’95),
pages 551–557, ACM/SIAM, 1995.

[20] Bakhadyr Khoussainov, André Nies, Sasha Rubin, and Frank Stephan.
Automatic structures: richness and limitations. Logical Methods in
Computer Science, 3(2):2:2, 18 pp. (electronic), 2007.

[21] Dietrich Kuske. Isomorphisms of scattered automatic linear orders.
In Proceedings of the 21st Annual Conference of the EACSL (CSL
2012), number 14 of LIPIcs, pages 455–469, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2012.

[22] Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isomorphism
problem on classes of automatic structures. Technical report, arXiv.org,
2010. http://arxiv.org/abs/1001.2086.

[23] Dietrich Kuske, Jiamou Liu, and Markus Lohrey. The isomorphism
problem on classes of automatic structures with transitive relations. to
appear in Transactions of the American Mathematical Society, 2012.

[24] Yury Lifshits. Processing compressed texts: A tractability border. In
Proceedings of the 18th Annual Symposium on Combinatorial Pattern
Matching (CPM 2007), number 4580 in Lecture Notes in Computer
Science, pages 228–240. Springer, 2007.

[25] Steven Lindell. A logspace algorithm for tree canonization (extended
abstract). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing (STOC’92), pages 400–404. ACM Press, 1992.

73

[26] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey.
Groups Complexity Cryptology, 4(2):241–299, 2012.

[27] Markus Lohrey and Christian Mathissen. Isomorphism of regular trees
and words. In Proceeding of the 38th International Colloquium on Au-
tomata, Languages and Programming (ICALP 2011), number 6756 in
Lecture Notes in Computer Science, pages 210–221. Springer, 2011.

[28] Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic
sequences under equality tests in polylogarithmic time. Algorithmica,
17(2):183–198, 1997.

[29] Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An im-
proved pattern matching algorithm for strings in terms of straight-line
programs. In Proceedings of the 8th Annual Symposium on Combina-
torial Pattern Matching (CPM 97), number 1264 in Lecture Notes in
Computer Science, pages 1–11. Springer, 1997.

[30] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[31] Wojciech Plandowski. Testing equivalence of morphisms on context-
free languages. In Proceeding of the 2nd Annual European Symposium
on Algorithms (ESA’94), number 855 in Lecture Notes in Computer
Science, pages 460–470. Springer, 1994.

[32] Wojciech Plandowski and Wojciech Rytter. Complexity of language
recognition problems for compressed words. In Juhani Karhumäki, Her-
mann A. Maurer, Gheorghe Paun, and Grzegorz Rozenberg, editors,
Jewels are Forever, Contributions on Theoretical Computer Science in
Honor of Arto Salomaa, pages 262–272. Springer, 1999.

[33] J. Rosenstein. Linear Ordering. Academic Press, 1982.

[34] Wojciech Rytter. Grammar compression, LZ-encodings, and string
algorithms with implicit input. In Proceedings of the 31st Interna-
tional Colloquium on Automata, Languages and Programming (ICALP
2004), number 3142 in Lecture Notes in Computer Science, pages 15–27.
Springer, 2004.

[35] Larry J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time (preliminary report). In Proceedings of the 5th Annual

74

ACM Symposium on Theory of Computing (STOCS’73), pages 1–9.
ACM Press, 1973.

[36] Wolfgang Thomas. On frontiers of regular trees. Informatique Théorique
et Applications, 20(4):371–381, 1986.

75

