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Abstract

XML tree structures can conveniently be represented using ordered unranked
trees. Due to the repetitiveness of XML markup these trees can be com-
pressed effectively using dictionary-based methods, such as minimal directed
acyclic graphs (DAGs) or straight-line context-free (SLCF) tree grammars.
While minimal SLCF tree grammars are in general smaller than minimal
DAGs, they cannot be computed in polynomial time unless P = NP. Here,
we present a new linear time algorithm for computing small SLCF tree gram-
mars, called TreeRePair, and show that it greatly outperforms the best known
previous algorithm BPLEX. TreeRePair is a generalization to trees of Lars-
son and Moffat’s RePair string compression algorithm. SLCF tree grammars
can be used as efficient memory representations of trees. Using TreeRePair,
we are able to produce the smallest queryable memory representation of or-
dered trees that we are aware of. Our investigations over a large corpus
of commonly used XML documents show that tree traversals over TreeRe-
Pair grammars are 14 times slower than over pointer structures and 5 times
slower than over succinct trees, while memory consumption is only 1/43 and
1/6, respectively. With respect to file compression we are able to show that
a Huffman-based coding of TreeRePair grammars gives compression ratios
comparable to the best known XML file compressors.

Key words: XML, tree structure compression, memory representation

Email addresses: lohrey@informatik.uni-leipzig.de (Markus Lohrey),
sebastian.maneth@cs.ox.ac.uk (Sebastian Maneth), roy.mennicke@tu-ilmenau.de
(Roy Mennicke)

1This work was produced while the author was affiliated to NICTA (Sydney) and to
the University of New South Wales, Australia

Preprint submitted to Information Systems June 27, 2013



1. Introduction

XML tree structures can conveniently be represented using node-labeled
ordered unranked trees. Here, “ordered” means that the children of a node
are ordered from left to right, and “unranked” means that the number of
children of a node is not determined by the node label. Due to the repet-
itiveness of the markup in XML documents, these tree structures can be
effectively compressed using dictionary based methods. A standard tool to
compress trees are directed acyclic graphs (DAGs). In contrast to a tree,
a node of a DAG may have several incoming edges, i.e., there is no unique
parent node. In this way, subtrees that occur several times in the original
tree have to be represented only once. It was shown in [6] that the minimal
DAG (minimal w.r.t. the number of edges) of the structure tree of a typ-
ical XML document consists of only about 10% of the original number of
edges of the tree. Minimal DAGs have many appealing features, e.g., they
are unique, can be computed in linear time [13], and allow for constant time
subtree equality check. On the other hand, their sharing ability is limited to
complete subtrees of the given tree.

A generalization of DAGs from the sharing of repeated subtrees to the
sharing of repeated tree patterns (that is, connected subgraphs of the tree)
are straight-line context-free (SLCF) tree grammars, initiated in [27, 35]. An
SLCF tree grammar is a context-free tree grammar, see e.g. [11], which is
acyclic (from a nonterminal A, one cannot derive a tree containing A) and
has exactly one defining production per nonterminal. SLCF tree grammars
generalize Plandowski’s singleton context-free grammars [32] (also known as
straight-line programs) from strings to trees. SLCF tree grammars can be
(at most) exponentially smaller than DAGs. On the negative side, a minimal
SLCF tree grammar for a given tree is in general not unique and cannot be
computed in polynomial time unless P = NP (this is known already for the
string case [9]). The first algorithm for computing a small linear SLCF tree
grammar for a given input tree was BPLEX [7]. BPLEX repeatedly searches
in a fixed window for the optimal pattern to share. It was shown in [7] that
BPLEX compresses equally or better on binary tree representations (i.e.,
first-child/next-sibling encodings, see e.g. [38]) than on unranked trees.
Note that this is not true for minimal DAGs of XML document trees: they
are typically smaller in the unranked case [7, 25].

Here, we introduce an efficient algorithm called “TreeRePair” for com-
puting small linear SLCF tree grammars. We show that our linear time
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implementation of TreeRePair is superior to BPLEX in many aspects: it
runs faster (by a factor of around 50), needs less memory, produces smaller
grammars, and is easier to understand. As far as we know, the grammars
produced by TreeRePair give rise to the smallest existing memory representa-
tion of ordered trees; see also [29] where an XML self-index using TreeRePair
grammars is presented. TreeRePair is a generalization of Larson and Mof-
fat’s RePair for strings [19]. Their idea is to replace in a given string all
(non-overlapping) occurrences of a most frequent digram (= two consecutive
letters) by a new nonterminal. This process is repeated until no digram oc-
curs more than once. It naturally gives rise to a linear SLCF tree grammar
(even with all non-start productions in Chomsky normal form). In TreeRe-
Pair a digram consists of a triple (f, i, g) where f and g are node labels and
i is a natural number. An occurrence of the digram (f, i, g) in a given tree
consists of a node labeled f together with its i-th child node labeled g. Sim-
ilar as with BPLEX, TreeRePair compresses better on the binary encoded
XML document trees than on unranked trees.

Let us consider in more detail the replacement of all occurrences of the
digram (f, 2, g) by the new nonterminal X in a given binary tree t. If both f
and g are binary, then every occurrence of the digram has 3 outgoing edges
(one for the f -labeled node and two for the g-labeled node). Hence, removing
an occurrence of the digram (f, 2, g) from the tree leaves three dangling
subtrees. Therefore the nonterminal X must be of rank 3, which means that
every X-labeled node has three children. In an SLCF tree grammar, formal
parameters y1, y2, . . . are used to indicate where dangling subtrees are to be
inserted. Thus, the production of X has the form

X(y1, y2, y3)→ f(y1, g(y2, y3)).

In the next round of replacement, if the digram (X, 1, X) is replaced, then a
new nonterminal Y of rank 5 is introduced. The complexity of several algo-
rithms on SLCF tree grammars (such as evaluating tree automata) depend
on the number of parameters in the grammar [22]. For this reason, BPLEX
is controlled by a user-defined max rank constant and produces grammars
with at most max rank many parameters per nonterminal. In TreeRePair,
we realize such a constant by only counting digrams which give rise to non-
terminals of rank at most max rank. Interestingly, the choice of max rank

drastically influences the compression ratio of TreeRePair. We show:

1. There is a family of trees on which TreeRePair with max rank=1 pro-
duces grammars that are exponentially smaller than those produced by
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TreeRePair with max rank=unbounded.

2. For every k there is a family of trees on which the TreeRePair algorithm
with max rank ≥ k produces grammars that are exponentially smaller
than those produced by TreeRePair with max rank < k.

Fortunately, typical XML (binary) document trees do not depend much on
max rank, and setting this constant to 4 gives the smallest grammars (in
terms of number of edges) for our XML corpus.

We also experimented with using the grammars produced by TreeRePair
as a means for XML file compression. For this, we use a layered Huffman-
based coding as in DEFLATE [12]. We show that the achieved compression is
competitive with the best known XML file compressors, and that only a single
compressor (XMLPPM [10]) compresses slightly better than TreeRePair (to
about 0.41% of the original file sizes, as compared to 0.44% with TreeRePair).

Technically speaking, the linear running time of our implementation of
TreeRePair is achieved by following the ideas of RePair for strings [19] by
using a priority queue of length

√
n (where n is the number of digram occur-

rences) and updating this queue in constant time for each round of replace-
ment.

An extended abstract of this paper appeared as [23] and a preliminary
conference version was published as [24].

Related work

Independently to our work the tree compressor CluX (for Clustering
XML-subtrees) was developed at the University of Paderborn [18, 5]. CluX
is also based on the RePair string compression algorithm but exhibits some
fundamental differences to TreeRePair. One of the main differences is that
CluX first generates a DAG of the input tree and then processes each part
(called “repair packets”) of it individually, i.e., it generates multiple gram-
mars which are combined in the end. The maximal size of each repair packet
can be specified by an input parameter. The author of [18] points out that
this packet-based behavior may have a negative impact on the compression
performance of CluX. Our own investigations concerning a TreeRePair ver-
sion running on the DAG (in one part) of the input tree support this point
of view.

Several other types of tree grammars were proposed in the literature for
the purpose of tree compression: elementary ordered tree grammars [2] (were
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a tree version of the bisection algorithm for strings was developed), variable
replacement grammars [39], and higher-order tree grammars [17]. As men-
tioned at the beginning of the Introduction, DAGs (which are a special case
of the grammars considered in this paper) have been applied to XML docu-
ment trees in [6]. Recently, DAG variations which can give rise to stronger
compression than usual DAGs have been considered: top-trees [4] and hybrid
DAGs [25]. In [25] a compression combining (binary) DAGs and the string
repair of [19] is considered and compared directly to TreeRePair.

Algorithmic problems for trees that are represented by SLCF tree gram-
mars have been thoroughly studied. In [22] various membership problems for
SLCF-compressed trees and tree automata were considered. It was shown
that in many cases the same complexity bounds hold as for DAGs. In partic-
ular, it was pinpointed that for a given nondeterministic tree automaton A
and a linear, k-bounded (meaning that every nonterminal has rank at most
k) SLCF tree grammar G it can be checked in polynomial time if the tree
represented by G is accepted by A – provided that k is a constant. This is
important because in the context of XML, for instance, tree automata are
used to type check XML documents against an XML schema (cf. [30, 31]).
The result was further improved in [26], where it was shown that every lin-
ear SLCF tree grammar can be transformed in polynomial time into a lin-
ear monadic (= 1-bounded) one. Together with the above mentioned result
from [22], a polynomial time algorithm for testing if a given nondeterministic
tree automaton accepts a tree given by a linear SLCF tree grammar is ob-
tained. In [22] it was proved that the evaluation problem of core XPath (the
navigational part of XPath) over linear SLCF tree grammars is PSPACE-
complete, which is the same complexity as for DAGs [14]. The evaluation
problem for XPath asks whether a given node in a given tree is selected by
a given XPath expression. This result is remarkable since SLCF tree gram-
mars achieve higher compression ratios than DAGs. In [29] an evaluator for
simple XPath expressions is investigated which runs over compact memory
representations of XML, based on SLCF tree grammars; the demonstrated
space requirement for the tree structures is indeed tiny: for an XMark docu-
ment [34] of half a billion nodes, a single bit of storage accommodates more
than 8 XML tree nodes.

Several other algorithmic problems on SLCF tree grammars that are re-
lated to term rewriting (e.g., unification) were studied in [8, 15, 20, 36, 37].
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2. Preliminaries

In the following, N+ = N \ {0} denotes the set of non-zero natural num-
bers. For a set X, we denote by X∗ the set of all finite words over X. For
w = x1x2 . . . xn ∈ X∗, we define |w| = n. The empty word is denoted by ε.
For readability, we sometimes surround an element of N by square brackets,
e.g., for the sequence 222221, we write [2]5[1] instead of 251 to clarify that
we are not dealing with the fifth power of 2.

In the following two subsections, we introduce several formal definitions
concerning trees and tree grammars. These definitions are needed to formally
specify the TreeRePair algorithm. Most of our notations are standard, see
e.g. [11].

2.1. Labeled ordered trees

A ranked alphabet is a pair (F , rank), where F is a finite set of function
symbols and the function rank : F → N assigns to each a ∈ F a natural
number rank(a) that we call the rank of a. Furthermore, we define Fi = {a ∈
F | rank(a) = i}. We fix a ranked alphabet (F , rank) in the following. An
F-labeled ordered tree is a pair t = (domt, λt) where

(1) domt ⊆ N∗+ is a non-empty finite set of nodes

(2) λt : domt → F is the (total) node labeling function

(3) if w = vv′ ∈ domt for v, v′ ∈ N∗+, then also v ∈ domt

(4) if v ∈ domt and λt(v) ∈ Fn, then vi ∈ domt if and only if 1 ≤ i ≤ n.

The node ε ∈ domt is called the root of t. If vi ∈ domt and i ∈ N+, then we
say that vi is the i-th child of v. The size of t is defined as its number of
edges, i.e., |t| = |domt|−1. The depth of t is max{|u| | u ∈ domt}. The set of
all F -labeled trees is denoted by T (F). We identify an F -labeled tree t with
a term in the usual way: if λt(ε) = a ∈ Fi, then this term is a(t1, . . . , ti),
where tj is the term associated with the subtree of t rooted at node j for all
j ∈ {1, . . . , i}.

Example 1. Figure 1 shows the F -labeled ordered tree t ∈ T (F) where
domt = {ε, 1, 2, 3, 11, 12, 21, 22, 31, 111, 112, 121, 122, 211, 212, . . .}, λt(ε) =
f , λt(1) = g, λt(2) = g, λt(3) = h, λt(11) = i, λt(12) = i, λt(111) = a, etc.
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Figure 1: The F-labeled ordered tree t from Example 1.

We fix a countable set Y = {y1, y2, . . .} of (formal context-) parameters such
that Y ∩ F = ∅. Below, we also use a distinguished parameter z /∈ (Y ∪ F).
The set of all F -labeled trees with parameters from Y ⊆ Y is denoted by
T (F , Y ). Formally, we consider parameters as function symbols of rank 0
and define T (F , Y ) = T (F ∪ Y ).

The tree t ∈ T (F , Y ) is said to be linear if every parameter y ∈ Y occurs
at most once in t. For t ∈ T (F , {y1, . . . , yn}) and t1, . . . , tn ∈ T (F , Y ), we
denote by t[y1/t1, . . . , yn/tn] the tree that is obtained from t by replacing
every yi-labeled leaf by the tree ti for i ∈ {1, 2, . . . , n}.

A context is a tree C ∈ T (F ,Y ∪ {z}) in which the distinguished param-
eter z appears exactly once. Instead of C[z/t] we write C[t].

Let t ∈ T (F , {y1, . . . , yn}) such that for every yi there exists a node v ∈
domt with λt(v) = yi. We say that t is a tree pattern occurring in t′ ∈ T (F ,Y)
if there exist a context C ∈ T (F ,Y∪{z}) and trees t1, . . . , tn ∈ T (F ,Y) such
that C

[
t[y1/t1, y2/t2, . . . , yn/tn]

]
= t′.

2.2. SLCF tree grammars

For further consideration, let us fix a countable infinite set Ni of symbols
of rank i ∈ N with F ∩ Ni = Y ∩ Ni = ∅. Hence, every finite subset
N ⊆

⋃
i≥0Ni is a ranked alphabet. A context-free tree grammar (over the

ranked alphabet F) or short CF tree grammar is a triple G = (N,P, S), where

(1) N ⊆
⋃
i≥0Ni is a finite set of nonterminals,

(2) P (the set of productions) is a finite set of pairs (A→ t), where A ∈ N ,
t ∈ T (F ∪ N, {y1, . . . , yrank(A)}), t /∈ (Y ∪ N), each of the parameters
y1, . . . , yrank(A) appears in t2, and

2In contrast to [26], our definition of a context-free tree grammar inherits productivity,
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(3) S ∈ N is the start nonterminal of rank 0.

If (A → t) ∈ P , then A is called the left-hand side and t is said to be the
right-hand side of (A→ t). We assume that every nonterminal B ∈ N \ {S}
as well as every terminal symbol from F occurs in the right-hand side t of
some production (A→ t) ∈ P .

If G = (N,P, S) is a CF tree grammar, then we define the derivation
relation ⇒G on T (F ∪N,Y) as follows: We have s⇒G s′ if and only if there
exists a production (A → t) ∈ P with rank(A) = n, a context C ∈ T (F ∪
N,Y∪{z}), and trees t1, . . . , tn ∈ T (F∪N,Y) such that s = C[A(t1, . . . , tn)]
and s′ = C[t[y1/t1 · · · yn/tn]]. The language of G is L(G) = {t ∈ T (F) | S ⇒∗G
t} and its size |G| is defined by

|G| =
∑

(A→t)∈P

|t| .

That means that |G| equals the sum of the numbers of edges of the right-hand
sides of G’s productions.

We consider the following restrictions on context-free tree grammars G =
(N,P, S):

• G is k-bounded (for k ∈ N) if rank(A) ≤ k for every A ∈ N .

• G is monadic if it is 1-bounded.

• G is linear if for every (A→ t) ∈ P the tree t is linear.

Let G = (N,P, S) be a CF tree grammar. Consider the binary relation

 G = {(A,B) ∈ N ×N | (B → t) ∈ P and A occurs in t}.

The hierarchical order of G is the reflexive transitive closure  ∗G of  G.
A straight-line context-free tree grammar (SLCF tree grammar) is a CF

tree grammar G = (N,P, S), where

(1) for every A ∈ N , there is exactly one production (A → t) ∈ P with
left-hand side A, and

i.e., t /∈ Y and each parameter y1, . . . , yrank(A) appears in t for every (A→ t) ∈ P . This is
justified by the fact that the grammars generated by TreeRePair are always productive.
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Figure 2: On the left side: A tree t containing two occurrences of the very same subtree
t′. On the right side: A tree t containing two occurrences of the tree pattern p.

(2) the relation  G is acyclic.

The conditions (1) and (2) ensure that L(G) contains exactly one tree which
we denote by val(G).

Example 2. Consider the (linear and monadic) SLCF tree grammar G =
(N,P, S) where P is given by the following productions:

S → f
(
A(a), A(b), B

)
, A(y1)→ g

(
i(a, a), i(a, y1)

)
, B → h(a)

We have val(G) = t where t ∈ T (F) is the tree from Example 1.

SLCF tree grammars can be considered as a generalization of the well-known
DAGs (see, for instance, [22] for a common definition). Whereas the latter
is a structure preserving compression of a tree by sharing common subtrees,
SLCF tree grammars broaden this concept to the sharing of repeated tree
patterns (connected subgraphs of a tree); see Figure 2 for an illustration.
Actually, a DAG can be considered as a 0-bounded SLCF tree grammar,
where the nonterminals of the grammar correspond to the nodes of the DAG.

Let G = (N,P, S) be a linear SLCF tree grammar and let (A → t) ∈ P
be the production for the nonterminal A ∈ N \ {S}. In order to define a
measure of the contribution of A→ t to the size of G, we first need to make
the following definition. By refG(A), we denote the set of all pairs (t′, v)
where t′ is a right-hand side of G’s productions and v ∈ domt′ is labeled by
A. More formally, we define

refG(A) = {(t′, v) | there exists (B → t′) ∈ P with

v ∈ domt′ and λt′(v) = A} .
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Now, we define the save value of A to be

savG(A) = |refG(A)| · (|t| − rank(A))− |t| .

Intuitively, savG(A) is A’s contribution (in terms of number of edges) to a
small representation of the tree val(G) by the linear SLCF tree grammar
G. Note that savG can be negative; for instance, for (A → t) ∈ P with
|refG(A)| = 1 we have savG(A) = −rank(A). Thus, a production which is
only referenced once can be removed without increasing the size of G.

2.3. Digrams

In this section, we introduce the notion of digrams which is central to
our TreeRePair algorithm. Recall that we have fixed a ranked alphabet F
of function symbols, a set N of nonterminals, and a set Y = {y1, y2, . . .}
of parameters. A digram is a triple α = (a, i, b) where a, b ∈ F ∪ N and
1 ≤ i ≤ rank(a). The symbol a is called the parent symbol of the digram α
and b is called the child symbol of the digram α, respectively. We denote the
set of all digrams by Π.

For a digram α ∈ Π we define its rank and pattern as

par(α) = rank(a) + rank(b)− 1 ∈ N ,

pat(α) = a
(
y1, . . . , yi−1, b(yi, . . . , yj−1), yj, . . . , ypar(α)

)
∈ T (F ∪N ,Y) ,

and j = i+rank(b). Intuitively, pat(α) is the tree pattern which is represented
by the digram α. In this pattern, the parameters y1, . . . , ypar(α) occur. For
m ∈ N ∪ {∞}, let

Πm = {α ∈ Π | par(α) ≤ m}
be the set of digrams of rank at most m. Clearly, Π∞ = Π.

Let α ∈ Π and t ∈ T (F ∪ N ,Y). An occurrence of α within t is a node
v ∈ domt at which a subtree

pat(α)[y1/t1, y2/t2, . . . , ypar(α)/tpar(α)]

with t1, t2, . . . , tpar(α) ∈ T (F ∪ N ,Y) is rooted. The set of all occurrences of
the digram α in t is denoted by OCCt(α) ⊆ domt.

If α = (a, i, b) ∈ Π and t ∈ T (F ∪ N ,Y), then the occurrences v, w ∈
OCCt(α) are overlapping if one of the following equations holds: v = w,
vi = w or wi = v. A subset σ ⊆ OCCt(α) is said to be overlapping if there
exist overlapping v, w ∈ σ.
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Figure 3: The Tree t from Example 3.

It is easy to see that the set OCCt(α) is non-overlapping if a 6= b. In
contrast, if we have a = b, the set OCCt(α) potentially contains overlapping
occurrences. Consider the following example:

Example 3. Let t ∈ T (F) be the tree depicted in Figure 3 and α = (f, 2, f).
Clearly, we have {ε, 2, 22} ⊆ OCCt(α) where on the one hand ε and 2 and on
the other hand 2 and 22 are overlapping occurrences of α.

Let α ∈ Π and t ∈ T (F ∪N ,Y). Let σ ⊆ OCCt(α) be a non-overlapping set.
Furthermore, let us assume that σ∪{v} is overlapping for all v ∈ OCCt(α)\σ,
i.e., σ is maximal with respect to inclusion among non-overlapping subsets.
Then the following example shows that σ is not necessarily maximal with
respect to cardinality.

Example 4. Consider the tree t ∈ T (F) which is depicted in Figure 3. Let
α = (f, 2, f) ∈ Π. We have OCCt(α) = {ε, 2, 22}. If σ = {2} ⊆ OCCt(α),
then σ is non-overlapping and σ∪{v} is overlapping for all v ∈ OCCt(α) \σ.
However, σ is not maximal with respect to cardinality. Consider the non-
overlapping subset σ′ = {ε, 22} ⊆ OCCt(α) with |σ| < |σ′|.

Let us also point out that, in general, the set OCCt(α) may give rise to more
than one maximal (with respect to cardinality) non-overlapping subset.

Example 5. Consider the tree t = f(f(f(a))) over the ranked alphabet F
and α = (f, 2, f). The subsets {ε} and {1} of OCCt(α) are both maximal
with respect to cardinality.
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FUNCTION retrieve-occurrences(t, α) // α = (a, i, b)
M := ∅; v := ε;
while (true) do
v := next-in-postorder(t, v);
if (v ∈ OCCt(α) and vi /∈M) then
M := M ∪ {v};

endif
if v = ε then
return M ;

endif
endwhile

ENDFUNC

Figure 4: The algorithm retrieve-occurrences.

The algorithm retrieve-occurrences from Figure 4 computes a non-over-
lapping set M ⊆ OCCt(α). Using the function next-in-postorder (not
listed), it traverses the tree t in postorder. It begins by passing the param-
eters t and ε to next-in-postorder to obtain the first node u ∈ domt of t
in postorder. The second node in postorder is then obtained by passing the
parameters t and u. This step is repeated to traverse the whole tree t in pos-
torder. For every node v which is encountered during the postorder traversal,
it is checked if v is an occurrence of α and if it is non-overlapping with all
occurrences already contained in the current set M . If both conditions are
fulfilled, the node v is added to M .

Let t ∈ T (F ∪ N ,Y) and α ∈ Π. We define occt(α) to be the set
M computed by the algorithm retrieve-occurrences(t, α) from Figure 4.
Clearly, if a 6= b in α = (a, i, b), then we have occt(α) = OCCt(α). In
the following, we show that the subset occt(α) ⊆ OCCt(α) is maximal with
respect to cardinality.

Lemma 6. Let α = (a, i, b) ∈ Π, t ∈ T (F∪N ,Y), and σ ⊆ OCCt(α) be non-
overlapping and maximal with respect to cardinality. Then |occt(α)| = |σ|.

Proof. If a 6= b, then σ = OCCt(α). Moreover, by inspecting the algorithm
from Figure 4, it can be easily checked that occt(α) = OCCt(α).

Now, let us assume that a = b. We define a graph (V,E) with V ⊆
domt as follows: V = {v ∈ domt | λt(v) = a} and (u, v) ∈ E if and only
v = ui. This graph is a disjoint union of paths. Note that |σ| is simply
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Figure 5: The trees t (left side) and t[α/A] (right side) from Example 7.

the number of edges in a largest (with respect to cardinality) matching of
(V,E). To see that |occt(α)| = |σ| we can assume that (V,E) consists of
a single path (otherwise, consider maximal path in (V,E) separately). So,
let V = {v, vi, . . . , vim}. The size of a largest matching is b(m + 1)/2c.
Moreover, the algorithm from Figure 4 selects from the path (V,E) all nodes
vim+1−2` for 1 ≤ ` ≤ b(m+ 1)/2c, and these are b(m+ 1)/2c many nodes. �

Let t ∈ T (F ∪ N ,Y), α ∈ Π and A ∈ Npar(α). By t[α/A], we denote the
tree which is obtained by replacing all occurrences from occt(α) in the tree t
by the nonterminal A (in parallel). More precisely, we replace every subtree
pat(α)[y1/t1, y2/t2, . . . , ypar(α)/tpar(α)] with t1, . . . , tpar(α) ∈ T (F ∪N ,Y) which
is rooted at an occurrence v ∈ occt(α) by the new subtree A(t1, t2, . . . , tpar(α)).
Since occt(α) is non-overlapping, this parallel substitution is well-defined.

Example 7. Consider the tree t ∈ T (F) which is depicted on the left side
of Figure 5. For α = (f, 2, f), we have occt(α) = {ε, 11, 12, 21, 22}. By
replacing the digram α in t by the nonterminal A ∈ N3, we obtain the tree
t[α/A] which is depicted on the right side of Figure 5.

For t ∈ T (F ∪N ) and m ∈ N ∪ {∞}, we denote with

mfreqm(t) = {α ∈ Πm | occt(α) 6= ∅ and ∀β ∈ Πm : |occt(β)| ≤ |occt(α)|}

the set of digrams which occur in t most frequently (with respect to all
digrams from Πm). If m = ∞, then mfreqm(t) = ∅ if and only if the tree t
consists of exactly one node. Otherwise (i.e., m 6=∞), we have mfreqm(t) = ∅
if and only if t consists of exactly one node or if for all digrams α occurring
in t it holds that α /∈ Πm.

13



3. TreeRePair algorithm

In this section, we introduce our TreeRePair algorithm which consists of
two phases, namely the replacement phase and the pruning phase.

3.1. Replacement phase

During the replacement phase of our algorithm, we subsequently replace a
most frequent digram by a new nonterminal. The replacement process stops
if there is no digram occurring at least twice.

Let t0 ∈ T (F) be our input tree and m ∈ N ∪ {∞} be the maximal
rank allowed for nonterminals. Formally, a replacement phase on the tree
t during which n ∈ N digrams are replaced is described by a sequence
(G1, α1), (G2, α2), . . . , (Gn, αn) where, for all 1 ≤ i ≤ n,

• Gi = (Ni, Pi, Si) is an SLCF tree grammar with (Si → ti) ∈ Pi,

• αi is a digram from mfreqm(ti−1),

• ti = ti−1[αi/Ai] where Ai ∈ Npar(αi) \Ni−1,

• Ni = {Si, A1, . . . , Ai},

• Pi = {Si → ti} ∪ {Aj → pat(αj) | 1 ≤ j ≤ i}, and

• mfreqm(tn) = ∅ or |occt(β)| ≤ 1 for all β ∈ mfreqm(tn).

The linear SLCF tree grammar Gn is not the final output of TreeRePair. It
is further processed in the pruning phase, described next.

3.2. Pruning phase

The grammar produced in the replacement phase of our algorithm poten-
tially contains productions which do not contribute to a compact representa-
tion of the input tree. In our TreeRePair algorithm, we consider production
(A → t) as unprofitable if savG(A) ≤ 0. During the pruning phase, we get
rid of such unprofitable productions.

Let G = (N,P, S) be a linear SLCF tree grammar. We eliminate a
production (A→ t) ∈ P with A ∈ N \ {S} from G as follows:

(1) For every (t′, v) ∈ refG(A), we replace the subtree A(t1, t2, . . . , tn) rooted
at v ∈ domt′ by the tree t[y1/t1, y2/t2, . . . , yn/tn] where n = rank(A) and
t1, . . . , tn ∈ T (F ∪N ,Y).

14



(2) We remove the production A→ t from P .

Eliminating a production has an impact on the save value of the remaining
nonterminals. Let B1, B2, . . . , Bn−1, Bn be a sequence of all nonterminals
from N in hierarchical order, i.e., we have Bn = S and Bj 6 ∗G Bi for all
1 ≤ i < j ≤ |N |. Let (Bi → ti), (Bj → tj) ∈ P , where 1 ≤ i, j < n and
i 6= j. If we eliminate Bi, this may have an impact on the value of savG(Bj).
We need to distinguish two cases.

(a) If Bi occurs in tj, i.e., Bi  G Bj, then |tj| is increased because of
the elimination of Bi. At the same time, savG(Bj) goes up if we have
|refG(Bj)| > 1. The increase of |tj| is due to the fact that we can assume
that the inequality |{v ∈ domti | λti(v) /∈ Y}| ≥ 2 holds. Every produc-
tion which was introduced in the replacement phase represents a digram
and therefore consists of at least two nodes labeled by the parent and
child symbol, respectively, of this digram.

(b) If Bj occurs in ti, i.e., Bj  G Bi, then |refG(Bj)| and therefore savG(Bj)
are possibly increased by eliminating Bi. In fact, both values go up if
|refG(Bi)| > 1.

The following example shows that the size of the final grammar depends on
the order in which possible inefficient productions are eliminated.

Example 8. Consider the linear SLCF tree grammar G = (N,P, S) where
N = {S,A,B} and P is the following set of productions:

S → f(A(a, a), B(A(a, a)))

A(y1, y2)→ f(B(y1), y2)

B(y1)→ f(y1, a)

Let us assume that the grammar G was generated in the replacement phase
of our algorithm and that we now want to remove all inefficient productions.
We have savG(A) = −1 and savG(B) = 0, i.e., the productions with left-hand
sides A and B do not contribute to a small representation of the input tree
val(G). Let us consider the following two cases:

(a) If we eliminate the production with left-hand side A, then we obtain
the grammar G1 = ({S1, B}, P1, S1) where P1 consists of the produc-
tions S1 → f(f(B(a), a), B(f(B(a), a))) and B(y1)→ f(y1, a). We have
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|G1| = 11 and savG1(B1) = 1, i.e., the production with left-hand side B
is not considered inefficient.

(b) In contrast, if we first eliminate the production with left-hand side B,
then we obtain the grammar G2 = ({S2, A}, P2, S2) with productions
S2 → f(A(a, a), f(A(a, a), a)) and A(y1, y2) → f(f(y1, a), y2). Since
savG2(A) = 0, we also eliminate the production with left-hand side A
and obtain the grammar G′2 = ({S ′2}, P ′2, S ′2) consisting solely of the pro-
duction S ′2 → f(f(f(a, a), a), f(f(f(a, a), a), a)). We have |G ′2| = 12.

As shown above, it is a complex optimization problem to find the optimal
order in which inefficient productions should be removed. This forces us to
use a heuristic to decide which production to remove next from the grammar.

Let G = (N,P, S) be the grammar produced in the replacement phase of
our algorithm. The pruning phase of our TreeRePair algorithm is divided
into two phases:

(1) In the first part of the pruning phase, we eliminate every production
(A → t) ∈ P with |refG(A)| = 1. That way we achieve not only a
possible reduction of the size of G (because we have savG(A) = −rank(A)
for every A ∈ N referenced only once) but we also decrement the number
of nonterminals |N | each time we eliminate such a production.

(2) In the second part of the pruning phase, we eliminate all remaining
inefficient productions. We cycle through the remaining productions in
their reverse hierarchical order (recall that the start nonterminal S is the
last nonterminal in the hierarchical order, i.e., it is the first one in the
reverse hierarchical order). For every (A→ t) ∈ P with A 6= S, we check
if savG(A) ≤ 0. If this proves to be true, then we eliminate (A → t).
That way |G| and |N | are possibly further reduced.

Note that, in Example 8, our heuristic would indeed generate the smaller
grammar G1 (since A is the last non-start nonterminal in the hierarchical
order). Another reasonable heuristic might be to eliminate inefficient pro-
ductions in the order of the savG-values of their left-hand sides, i.e., if we
would proceed as follows: As long as there is a production whose left-hand
side has a savG-value smaller or equal to 0 we remove a production whose left-
hand side has the smallest occurring savG-value. However, our investigations
show that this approach leads to unappealing final grammars. The gram-
mars generated by this approach exhibit nearly the same number of edges
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but much more nonterminals (about 50% more) compared to the grammars
obtained using the above heuristic.

Note that one cannot easily detect digrams leading to inefficient produc-
tions during the replacement phase. For example, skipping digrams occurring
only a small number of times and leading to productions with many parame-
ters might be disadvantageous. Imagine an input tree exhibiting a large tree
pattern occurring only twice. In order to generate a grammar which comes
with a production representing this large tree pattern, one has to replace
many digrams possibly occurring only twice and introducing productions
exhibiting a large number of parameters.

4. Influence of the maximal rank allowed

In this section, we investigate the influence of the maximal rank allowed
for nonterminals on the compression performance of TreeRePair.

4.1. Large maximal rank

In the following, we construct, for every k ≥ 2, a family of trees on
which TreeRePair with maximal rank restricted to any ` ≥ k achieves an
exponentially better compression ratio than TreeRePair with maximal rank
restricted to any `′ < k. For n ≥ 1 and k ≥ 2, we consider the tree sn,k
which consists of a right-comb of 2n-many fk-labeled nodes of rank k. The
first k − 1 many children of each fk-labeled node (as well as the last child
of the last fk-labeled node of the comb) are leaves labeled with a. Thus,
the size of sn,k is precisely k · sk. Consider Figure 6 which shows the tree
s3,3 (of size 24). It should be intuitively clear that on this tree, an execution
of TreeRePair with maximal rank set to 1 does not carry out any digram
replacement. This is because in a ternary tree, any replacement of a digram
introduces a nonterminal of rank at least 2. On the other hand, setting the
maximal rank to 2 allows to recursively remove all repeating digrams, thus
ending up with a grammar of size only 2n+ k.

Theorem 9. Let k, `, `′, n ∈ N with k ≥ 2 and ` ≥ k − 1 > `′. For every
grammar G` (resp. G`′) that can be produced by a run of TreeRePair on the
tree sn,k, where the maximal rank of nonterminals is restricted to ` (resp.,
`′), we have |G`| ≤ 2n+ k and |G`′ | = |sn,k| = k · 2n.
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Figure 6: The tree s3,3.

Proof. Since the tree sn,k does not contain digrams of rank at most k − 2,
G`′ must be a trivial grammar for sn,k, i.e., |G`′ | = |sn|. In contrast, if we run
TreeRePair with a maximal rank for nonterminals of at least k− 1, then the
algorithm detects repeating digrams. Note that the most frequent digrams
in sn,k are (fk, j, a) for 1 ≤ j ≤ k− 1. Each of these digrams occurs 2n many
times in sn,k. In the first k−1 iterations of the replacement phase, TreeRePair
introduces k−1 productions that collapse the tree pattern f(a, . . . , a, y) (with
k− 1 many a’s) into a single nonterminal A0(y), and the start production is
S → A2n

0 (a). During the pruning phase these k−1 productions are merged to
a single production A0(y)→ f(a, . . . , a, y). Moreover, the replacement phase
collapses the right-hand side A2n

0 (a) of the start production by introducing
n− 1 additional productions Ai(y)→ Ai−1(Ai−1(y)) (1 ≤ i ≤ n− 1) into the
tree An−1(An−1(a)). This gives the grammar

S → An−1(An−1(a)),

Ai(y) → Ai−1(Ai−1(y)) (1 ≤ i ≤ n− 1),

A0(y) → f(a, . . . , a︸ ︷︷ ︸
k−1 many

, y)

of size 2n+ k. �
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In [23] another example was presented. Let tn be a full binary tree of height
n whose leaves are labeled with pairwise different symbols. It is shown that,
for every k, there is a bound m such that, for every tree tn with n ≥ m,
TreeRePair with maximal rank k produces a grammar that is strictly larger
than TreeRePair with unlimited maximal rank.

4.2. Small maximal rank

It seems natural to assume that, in general, trees can be compressed best
by TreeRePair if there are no restrictions on the maximal rank of nonter-
minals. However, it turns out that there are (not so uncommon) types of
trees for which the opposite is true. In this section, we construct a family
of trees sn which can be compressed best if we limit the maximal rank of
nonterminals to 1.

The tree sn is a right-comb of 2n many binary f -labeled nodes. The left
child of each f -node (as well as the right-child of the last f -node of the comb)
is a leaf with a label from {ai | 0 ≤ i ≤ 4}. If we read the leaf labels of the
comb from left to right, then we obtain a word that is a prefix of a word in
(a1a2a3a4a0)∗. The tree s4 is shown in Figure 7.

Theorem 10. Let n ≥ 4. For every grammar G∞ (resp. G1) that can be
produced by a run of TreeRePair on the tree sn, where the maximal rank of
nonterminals is not restricted (resp., is restricted to 1), we have |G∞| > 1

2
|sn|

and |G1| ∈ O(log2 |sn|) = O(n).

Proof. Let us consider a run (G1, α1), . . . , (Gn−1, αn−1) of TreeRePair on the
tree sn with no restriction on the maximal rank of nonterminals. For 1 ≤ i ≤
n− 1, let Gi = (Ni, Pi, Si) and (Si → ti) ∈ Pi be the start production of Gi.
In the first iteration of the replacement phase, the digram (f, 2, f) is the sole
most frequent one, i.e., α1 = (f, 2, f). This is because of |occsn

(
(f, 2, f)

)
| =

2n−1 whereas for every 0 ≤ ` ≤ 4 the inequality

|occsn

(
(f, 1, a`)

)
| ≤ d2n/5e < 2n−1

holds. Therefore, we replace the digram (f, 2, f) by a new nonterminal A1

of rank 3 and obtain G1. In every subsequent iteration 2 ≤ i ≤ n − 1, we
replace the most frequent digram αi = (Ai−1, 2

i−1 + 1, Ai−1) in ti−1 by a new
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Figure 7: The tree s4.

nonterminal Ai of rank 2i + 1. For every 1 ≤ i ≤ n−1, the tree ti is given by

domti = {ε} ∪ {[2i + 1]j[k] | 0 ≤ j < 2n−i, 1 ≤ k ≤ 2i + 1} and

λti(v) =


Ai if v = [2i + 1]j with 0 ≤ j ≤ 2n−i − 1 .

aj2i+k mod 5 if v = [2i + 1]j[k] with 0 ≤ j ≤ 2n−i − 1, 1 ≤ k ≤ 2i .

a2n+1 mod 5 if v = [2i + 1]2
n−i

.

In order to argue that we have αi+1 = (Ai, 2
i + 1, Ai) for every 1 ≤ i ≤ n−2,

we compute the number of occurrences of all digrams occurring in ti. It is
easy to verify that |occti(αi+1)| = 2n−i−1. In contrast, for every 1 ≤ k ≤ 2i

and 0 ≤ ` ≤ 4, the inequality |occti
(
(Ai, k, a`)

)
| ≤ d2n−i/5e < 2n−i−1 holds.

To see this note that ` · 2i 6≡ 0 mod 5 for every 0 ≤ ` ≤ 4. Hence, we have

j2i + k 6≡ (j + `)2i + k mod 5
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for all j, k ∈ Z and 0 ≤ ` ≤ 4. But this implies that

λti([2
i + 1]j[k]) 6= λti([2

i + 1]j+`[k])

for all 1 ≤ k ≤ 2i and all j, ` with 0 ≤ ` ≤ 4 and j + ` ≤ 2n−i − 1.
Due to the fact that we do not replace digrams with a child symbol from

{a0, . . . , a4}, the tree tn−1 has to contain at least 2n+1 nodes labeled by these
symbols. This property is also preserved during the pruning phase. Hence,
we must have |Gn−1| > 2n and, therefore, |Gn−1| > 1

2
|sn|. To sum up, if we

do not restrict the maximal rank of new nonterminals and always replace a
most frequent digram (which is unique in every step if we start with a tree
sn), then the compression ratio achieved on the trees sn is larger than 1/2.

Now, we consider the same trees sn, but we only allow to introduce new
nonterminals of rank at most 1. Hence, consider a run (G1, α1), . . . , (Gk, αk)
of TreeRePair on the tree sn, where the maximal rank of nonterminals is
restricted to 1. Note that we have (f, 2, f) /∈ mfreq1(sn), since a replace-
ment of (f, 2, f) would result in a nonterminal of rank 3 > 1. Therefore
only the digrams (f, 1, al) (0 ≤ l ≤ 4) and subsequent digrams can be re-
placed. Note that since n ≥ 4, every digram (f, 1, al) occurs at least twice.
It turns out that after the first nine digram replacements the tree pattern
f(a1, f(a2, f(a3, f(a4, f(a0, y))))) is represented by a new nonterminal A(y)
of rank 1. The actual order of the replacements within the first nine itera-
tions depends on the method used to choose a most frequent digram when
there are multiple most frequent digrams.

The right-hand side of G9’s start production is a monadic tree mainly con-
sisting of consecutive nonterminals A. The corresponding nodes — there are
roughly 2n/5 of them — are then boiled down using approximately log2(2n/5)
digram replacements. Therefore the total number of edges in the final gram-
mar Gk is in O(n), i.e., it is of logarithmic size (the size of the input tree sn
is 2n+1 + 1). �

5. Implementation details

We implemented a prototype of the TreeRePair algorithm. The source
code and its documentation can be accessed by visiting the following web
page

http://code.google.com/p/treerepair

Regarding our implementation we decided to focus on the compression of
the tree structure of XML documents only. This allows us to better compare
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<books>
<book>
<author /><title /><isbn />

</book>
...
<book>
<author /><title /><isbn />

</book>

 5
ti

m
es

</books>

Figure 8: A simplified XML document.

the compression performance with existing compressors. More precisely, our
implementation reads the document tree of an XML file by considering only
element nodes and skipping text content and other node types. Internally,
a first-child/next-sibling encoding of the document tree (see Section 5.1) is
constructed as a pointer structure. In this pointer structure each node has
pointers to its children and to its parent node. Optionally, and in fact by
default, the input tree is represented by its minimal unranked DAG in mem-
ory. Since this DAG can be constructed on the fly during parsing, it allows
to save a lot of memory, and hence larger document trees can be processed
by our implementation. A slight drawback is that the administration and
replacement of digram occurrences is more complex over the DAG represen-
tation and results in slightly worse compression rates (this does not happen
if the non-DAG memory representation is used).

The mode of operation of our implementation slightly differs from the
TreeRePair algorithm. In fact, it is not guaranteed that, in every iteration,
one of the most frequent digrams is replaced. More precisely, the set of non-
overlapping occurrences of a digram α in t that is stored by the algorithm is
only guaranteed to be a subset of occt(α), see Section 5.3.1. This phenomenon
results from our efforts to obtain an implementation that runs in linear time.
Our experiments show that this deviation from pure TreeRePair downgrades
the compression ratio in an negligible way while improving running time
drastically.

5.1. From XML document trees to ranked trees

An XML document tree can be considered as an unranked tree, i.e., nodes
with the same label possibly have a varying number of children. Figure 9
shows the unranked XML document tree of the XML document of Figure 8.
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book
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author title isbn
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author title isbn

Figure 9: XML document tree of the XML document listed in Figure 8

However, our TreeRePair algorithm works on ranked trees. A common way
of transforming an unranked tree into a binary tree is the first-child/next-
sibling encoding, see, e.g., Section 2.3.2 in Knuth’s first book [16] and see [38]
for a discussion in the context of XML. In this encoding, the leftmost child
of a node v in the unranked tree (if existing) becomes the left child of v in
the binary tree, and the right sibling of v in the unranked tree (if existing)
becomes the right child of v in the binary tree. Hence, a leaf node of the
unranked tree has no left child but a possible right child in the corresponding
binary tree. In contrast, a last sibling of the unranked tree has no right child
in the binary tree.

To obtain a tree over a ranked alphabet, one introduces, for every node
label a that occurs in the unranked tree, four different variants: a00 is used
for a-labeled nodes with no children in the binary tree, a10 (resp. a01) is used
for a-labeled nodes which exhibit only a left (resp. right) child in the binary
tree, and a11 is used for nodes coming with a left and a right child in the
binary tree. Hence, a00 has rank 0, a10 and a01 have rank 1, and a11 has rank
2. Figure 10 shows the first-child/next-sibling encoding of the unranked tree
from Figure 9.

Another way of transforming an unranked tree into a ranked one which
circumvents the introduction of special labels is the use of placeholder nodes.
These nodes are inserted to indicate missing left or right children. However,
our experiments showed that our implementation of TreeRePair achieves
slightly less competitive compression results under this encoding.

5.2. Data structures used

Our implementation uses similar data structures as RePair for strings [19].
In order to focus on the essentials, we first do not pay attention to the fact
that, internally, the input tree is represented by a DAG. In Section 5.4, we
discuss the necessary modifications for the DAG representation.
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Figure 10: Binary tree representation of the XML document tree from Figure 9.

We suggest to consider Figure 11 while reading the following description.
In main memory, every node v of the input tree is represented by an object
exhibiting several pointers. These allow constant time access to the parent
node, to all child nodes of v, and to the possible next and previous occurrences
of the digrams α =

(
λt(v), i, λt(vi)

)
where 1 ≤ i ≤ rank(λt(v)). The pointers

to the next and previous occurrences of the digram α form a doubly linked
list of occurrences of the digram α. We call these structures occurrences lists
in the following.3 The specific order of the occurrences in an occurrences
list is not relevant. Doubly linked lists allow to remove any specific digram
occurrence in constant time.

Every digram is represented by a special object. The latter exhibits two
pointers which reference the first and the last element of the corresponding
occurrences list. Let us consider a digram α occurring i many times, where
i < b

√
nc and n is the size of the input tree. Then the corresponding object

exhibits two more pointers which point to the next and previous, respectively,
digram β occurring i many times. These pointers form a doubly linked list
of all digrams occurring i times. We call this list the i-th digram list. In
contrast, all digrams γ occurring at least b

√
nc many times are organized in

one doubly linked, unordered list which is called the top digram list. As for
the occurrences lists, doubly linked lists allow to remove a certain digram

3During our investigations we also implemented a TreeRePair version avoiding these
doubly linked lists of occurrences. Instead, for every digram, we used a hashed set storing
pointers to all occurrences. However, this version had no benefits compared to the doubly
linked list approach but lead to slightly longer running times. Considering the memory
usage, in some cases it achieved better results while in others a substantial increase was
noticed.
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Digrams Hash Table
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Figure 11: A simplified depiction of a part of the data structures used by our implemen-
tation. The tree represented in memory is f(f(a, f(a, a)), f(a, f(a, a))).
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from a digram list in constant time.
These doubly linked lists of digrams are again referenced by a digram

priority queue. This queue consists of ≤ b
√
nc entries. The i-th entry stores

a pointer to the head of the i-th digram list, where 1 ≤ i < b
√
nc. The

b
√
nc-th entry references the head of the top digram list. Lastly, there is a

digram hash table storing pointers to the objects of all occurring digrams. It
allows constant time access to all digrams and therefore constant time access
to the first occurrence of each digram.

5.3. Complexity of our implementation

Our implementation of the TreeRePair algorithm runs in linear time if
we restrict the maximal rank of nonterminals to a constant m ∈ N. In fact,
our implementation allows m to be specified using a command line switch.

Theorem 11. Fix 1 ≤ m < ∞ and a ranked alphabet F . For any given
input tree t ∈ T (F), our implementation of TreeRePair run with maximal
rank m for nonterminals, produces in time O(|t|) an m-bounded linear SLCF
tree grammar G such that val(G) = t.

The multiplicative constant in the time bound O(|t|) depends linearly on
m. In our experiments m = 4 turned out to yield the best compression ratio
on large XML structure trees, see Section 7. The choice m = 4 leads to a
moderate constant in the time bound O(|t|).

Let us first argue that the pruning phase of TreeRePair, in which ineffi-
cient productions are eliminated, can be implemented in linear time. Let G
be the grammar obtained after the replacement phase. Recall that during the
pruning phase, we go over all nonterminals except for the start nonterminal S
in reverse hierarchical order. Hence, we need an enumeration A1, A2, . . . , An
of all nonterminals such that Ai  G Aj (i.e., Ai occurs in the right-hand
side of Aj) implies i > j. Such an enumeration is implicitly obtained in
the replacement phase: If Ai occurs in the right-hand side of Aj then Aj is
introduced in the replacement phase after Ai.

Recall that the pruning phase consists of two phases:

• In a first phase, we eliminate all nonterminals A with |refG(A)| = 1.

• In a second phase, we walk over all remaining nonterminals A (the start
nonterminal is excluded) in reverse hierarchical order and eliminate
every nonterminal A with savG(A) ≤ 0.
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Let us argue that the second phase can be implemented in linear time, the
arguments for the first phase are analogous. In a single traversal of the right-
hand sides of G, we can compute, for each nonterminal A, the value |refG(A)|
and a list of all occurrences of A in the right-hand sides of G. Now, we
walk over all nonterminals in reverse hierarchical order. Let us assume that
we process the nonterminals in the following order: A1, A2, . . . , An where
A1 = S is the start nonterminal. Let ti be the right-hand side of Ai. At a
nonterminal Ai, we traverse ti in order to compute |ti|. All in all, this can be
accomplished in linear time since we have O(|G|) ≤ O(|t|). Having refG(Ai)
and |ti| at hand, we are able to calculate savG(Ai). If we decide to eliminate
Ai (i.e., savG(Ai) ≤ 0), then all occurrences of Ai in a right-hand side are
replaced by a copy of ti. Note that Ai can only occur in the right-hand
sides of A1, . . . , Ai−1. Hence, when we eliminate Ai, the right-hand sides
of Ai+1, . . . , An (the nonterminals that still have to be considered) are not
modified.

We have to argue that the total number of node insertions during all
nonterminal eliminations is at most |t|. For this, note that the worst case
occurs if all nonterminals A2, . . . , An are eliminated in this order. In this
case, at most |t| many new nodes are inserted, since the right-hand side t1 of
the start nonterminal A1 = S is transformed into the original tree t.

Finally, we have to argue that all additional data structures (the occur-
rence lists for the nonterminals and the refG-values) can be updated. But
this is easy: Each time we introduce during the elimination process a new
Aj-labeled node in a right-hand side, we set refG(Aj) := refG(Aj) + 1. In the
same way, we can update the occurrences lists for nonterminals.

Now, let us investigate the complexity of the replacement phase which was
described in Section 3.1. With every replacement of a digram occurrence, one
edge of the input tree is absorbed. Therefore, a run of our implementation
can consist of at most n− 1 iterations, where n is the size of the input tree.
Each replacement of an occurrence can be accomplished in O(1) time since
at most m children need to be reassigned — in our implementation, the
reassignment of a child node is just a matter of updating two pointers. For
every production which is introduced during a run of our algorithm it holds
that its right-hand side is at most of size m + 1, i.e., it can be constructed
in constant time.

However, in order to show that the replacement phase can be performed
in linear time two more aspects need to be considered:
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(1) Updating the occurrences lists: When replacing a digram by a new non-
terminal, some digram occurrences have to be removed from the occur-
rences lists and new digrams are introduced for which we have to set
up corresponding occurrences lists. The overall time (over the whole re-
placement phase) necessary for these updates has to be linear in the size
of the input tree.

(2) Retrieving a most frequent digram: Let us assume that up-to-date occur-
rences lists are at hand for every digram occurring. In order to proceed,
we have to determine a most frequent digram α (according to the infor-
mation provided by the occurrences lists). Again, the overall time (over
the whole replacement phase) needed for finding maximal digrams has
to be linear in the size of the input tree.

In the following, we consider each of the above aspects in detail.

5.3.1. Updating the occurrences lists

Let t be our input tree. At the beginning of the replacement phase, the
occurrences list for every digram α ∈ Πm occurring in t is initially con-
structed. This is done by parsing the tree t in a similar way as it is done
in the function retrieve-occurrences which is listed in Figure 4. In fact,
during the traversal not only one digram is considered but for every encoun-
tered digram α ∈ Πm the occurrence list is constructed in parallel. After
completion, for every digram α occurring in t, the occurrence list exactly
contains the nodes from occt(α). However, we cannot afford to redo this
traversal in every subsequent iteration. In this case we would not be able to
achieve a linear running time of our algorithm.

Fortunately, there is another way of keeping track of the sets of non-
overlapping occurrences. It relies on the fact that every replacement of a
digram occurrence v only involves those occurrences of other digrams which
overlap v. There are at most m+ 1 such overlapping digram occurrences.

Example 12. Let us consider the tree t which is depicted in Figure 12. The
occurrences which would be absorbed by the replacement of the occurrence
21 ∈ domt of the digram (g, 3, h) are highlighted. Figure 13 shows the tree
t′ which results from the replacement of (g, 3, h) in t by the nonterminal A.
All new occurrences arising from this replacement are highlighted.
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Figure 12: The tree t from Example 12.
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Figure 13: The tree t′ from Example 12.

In our implementation, before every replacement of a digram occurrence v,
we visit each digram occurrence v′ which will be absorbed by the upcoming
replacement. This can be done in constant time using the parent and child
pointers since we limited the maximal rank of every nonterminal to the con-
stant m. Removing the occurrence v′ from the corresponding occurrence list
is just a matter of setting the right pointers to null. After we replaced v, we
visit every digram occurrence v′ which arose from the replacement and insert
it into the corresponding occurrence list. This can also be done in constant
time by retrieving the corresponding digram object from the hash table and
updating pointers accordingly.

However, the above approach has the following drawback: Although at
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Figure 14: The trees t and t′ (from left to right) from Example 13.

the beginning the occurrences list of a diagram α contains all occurrences
from occt(α), this property is not preserved by our implementation, i.e.,
in general, the set of digram occurrences contained in the occurrences list
of a digram α is different from the set occt(α). This is the reason, why
our implementation is not guaranteed to replace a most frequent digram in
each round of the replacement phase. The example below illustrates this
phenomenon.

Example 13. Consider the tree t depicted in on the left side of Figure 14.
At the beginning of the replacement phase, the occurrences list for the digram
α = (f, 2, f) would exactly contain the occurrences from occt(α) = {2}. This
is because the occurrences lists are constructed in the spirit of the algorithm
retrieve-occurrences from Figure 4. Now, let us assume that we replace
the digram (f, 1, c) (we could easily enlarge t such that (f, 1, c) is the most
frequent digram and still show the same) resulting in the tree t′ depicted on
the right side of Figure 14. After performing this replacement and especially
after updating all involved occurrences lists in the way described above, the
occurrence list of α would be empty. However, we have occt′(α) = {ε}.

5.3.2. Retrieving a most frequent digram

We now investigate the time needed to obtain a most frequent digram in
an iteration of the replacement phase of our algorithm. When referring to
“most frequent diagram” we mean a digram whose current occurrences list
has maximal length. As explained in the previous section, it is not guaranteed
that such a digram is really a most frequent digram in the current tree.

It is easy to see that if the top digram list (which contains all digrams
occurring at least b

√
nc many times where n is the size of the input tree) is

empty, we can obtain the most frequent digram in constant time. We just
need to choose the first element of the first non-empty digram list among
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the remaining b
√
nc− 1 digram lists. In every iteration, after we have deter-

mined the most frequent digram, we remember the first non-empty digram
list in order to save our self the needless and time-consuming rechecking of
the empty digram lists. This is justified due to the fact that the number of
occurrences of the most frequent digrams replaced during the replacement
phase is monotonically decreasing. The latter follows from the following two
observations: After the replacement of all occurrences of a digram, the num-
ber of occurrences of the digrams which were already existing is unchanged or
smaller than before. The number of occurrences of the digrams which arose
from the replacement step (because of the new nonterminal) is less than or
equal to the number of occurrences of the digram replaced.

Now, let us assume that the top digram list, i.e., the doubly linked list of
all digrams occurring at least b

√
nc times, is not empty. We need to scan all

elements in it since the digrams contained are not ordered by their frequency.
There can be roughly at most

√
n digrams in the top digram list. Therefore,

we need roughly O(
√
n) time to retrieve the most frequent digram. However,

by the replacement of this digram at least b
√
nc edges are absorbed. It is

easy to see that, all in all, obtaining the most frequent digram needs constant
time on average.

In a run of our implementation, we can replace at most n− 1 digram occur-
rences and, as shown before, the replacement of each occurrence, the update
of the occurrences lists and the determination of a most frequent digram can
be accomplished in constant time per occurrence replacement. Thus, the
whole replacement phase is completed in linear time.

5.4. Impact of the DAG representation

In the preceding section, dealing with the complexity of our implementa-
tion of TreeRePair, we did not pay attention to the underlying DAG repre-
sentation of the input tree. This enabled us to concentrate on the essentials.
Nevertheless, we have to clarify the impact of this representation, particu-
larly concerning the compression performance and the running time of our
implementation, since it is used by default. Only by starting our implemen-
tation with the -no dag switch it avoids the DAG representation and loads
the whole input tree into main memory.

Consider the sequence G0,G1, . . . ,Gn of grammars, where G0 is the gram-
mar consisting of the single production S0 → t0 with t0 being the original tree
to be compressed, and Gi, i ≥ 1 are the grammars produced during the re-
placement phase, see Section 3.1. Let Gi = (Ni, Pi, Si) and let (Si → ti) ∈ Pi,
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i.e., ti is the right-hand side of the start nonterminal of Gi. In the DAG ver-
sion of our implementation, we store ti as an (unranked) DAG. This means in
particular, that the original tree t0 is represented as a DAG. Recall from [6]
that for typical XML files, the minimal unranked DAG of the XML doc-
ument tree has only 10% of the number of edges of the original unranked
tree. This means that using the DAG in-memory representation, we are able
to compress XML trees that can be roughly 10 times larger than without
DAGs. Note also that all productions except the start production have small
right-hand sides (only containing single digrams). Thus, DAG compression
pays off only for the trees ti. A DAG it is represented as a 0-bounded (linear)
SLCF tree grammar G ′i with val(G ′i) = ti which we call DAG grammar in the
following.

In general, the number of “physical occurrences” of a digram in the DAG
grammar is smaller than the number of “virtual occurrences” of the same
digram in the unfolding of the DAG. However, the computation of a most
frequent digram to be replaced is still based on the virtual occurrences.

5.4.1. Initial construction of the occurrences lists

In the first iteration of the replacement phase, we need to construct the
occurrences list for every digram α ∈ Π occurring in the input tree t. This
can be accomplished by a postorder traversal of all the right-hand sides of the
productions of the DAG grammar representing the input tree. If the DAG
grammar contains a production A → s and the nonterminal B occurs in s
(necessarily at a leaf position since all nonterminals of a DAG grammar have
rank 0), then the right-hand side of B is traversed before the right-hand side
s of A is traversed.

Our implementation also finds digram occurrences spanning two produc-
tions of the DAG. Assume that we visit during the postorder traversal of a
right-hand side s of the DAG grammar a node v labeled with a nonterminal
A of the DAG grammar. Hence v must be a leaf of s. Assume moreover that
v is the i-th child of node u and that u is labeled with the symbol f . We then
determine the root symbol g of the right-hand side s′ of A. In case f 6= g,
we found a new occurrence of the digram (f, i, g) which is inserted into the
corresponding occurrence list (the occurrence can be specified by the pair
consisting of a reference to the right-hand side s together with node u). In
case f = g, we first have to check whether the root of s′ is not an occurrence
of (f, i, f), in which case this occurrence has been already inserted into the
occurrence list for (f, i, f).
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Figure 15: The tree t represented by the DAG grammar given by S → f
(
g(t1, A), A

)
and

A→ h(t2, t3).

5.4.2. Updating the occurrences lists

Regarding the graph representation of a DAG, a tree node can exhibit
multiple parent nodes. In fact, a node has multiple parent nodes if it is
the root of the right-hand side of a production of the corresponding DAG
grammar and if this production is referenced multiple times.

To capture all digram occurrences which are absorbed by the replacement
of a digram we need to take care of the above fact. Instead of removing one
occurrence formed by the node being replaced and its parent, we need to
iterate over possibly multiple parents and remove all corresponding occur-
rences. The same holds when registering the new digram occurrences which
arise from the replacement of a digram occurrence.

It is easy to see that our linear running time is not negatively affected
by this loop over all parents. Far from it — as mentioned earlier, the DAG
representation saves us time by avoiding repetitive re-calculations.

5.4.3. Replacing the digrams

The third and last scenario in which we have to take special care of the
DAG representation is when replacing an occurrence of a digram α spanning
two productions of the DAG grammar. Due to our restriction on digrams
with equal parent and child symbols, the digram α has to have different
parent and child symbols. In the following we want to use an example to
describe what needs to be done when replacing the digram α.

Consider the DAG grammar given by the productions S → f
(
g(t1, A), A

)
and A→ h(t2, t3) which represents the tree t depicted in Figure 15. Imagine
that we want to replace the sole occurrence of the digram (f, 2, h), i.e., an
occurrence spanning two productions. In order to do that we mainly have to
complete the following three steps.

(1) We first have to introduce a new production for every child of the node
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2 ∈ domt. Thus, we obtain two new productions B → t2 and C → t3.
Note that we can skip this step for every child node which is already
labeled by a nonterminal of the DAG grammar.

(2) We need to update the production with left-hand side A to A→ h(B,C).

(3) Finally, we introduce a new nonterminal D representing the digram
(f, 2, h) and update the production for S to S → D(g(t1, A), B, C).

The above steps are necessary because the production with left-hand side A
is referenced more than once. If this would not be the case, then we could
have directly connected the children of 2 ∈ domt to the newly introduced
node labeled by D and removed the production with left-hand side A from
the grammar. Since the maximal rank of a non terminal is restricted to a
constant, the replacement of a digram occurrence spanning two productions
of the DAG grammar can still be accomplished in constant time.

All in all, it has become clear that even when representing the input tree of
our algorithm as a DAG our implementation runs in linear time. Even more,
the DAG representation saves us time by avoiding repetitive re-calculations.

6. Succinct grammar coding

In order to obtain a compact representation of an XML document tree
in terms of file size, we further need to compress the generated SLCF tree
grammar by a binary succinct coding. Our succinct coding, of which we give
an overview in this section, is independent from the TreeRePair algorithm
and can actually be applied to any SLCF grammar. Hence, it could, for
example, also be used to further compress grammars generated by BPLEX
or CLUX.

The technique we use is loosely based on the DEFLATE algorithm de-
scribed in [12]. In fact, we use a combination of a fixed-length coding, multi-
ple Huffman codings, and a run-length coding to encode different aspects of
the grammar. We encode all symbols of the generated grammar by integers.
Since the parameters always occur in the order y1, y2, . . . in right-hand sides,
it suffices to use one fixed place holder for parameters. Element names of
the input XML tree structure become terminal symbols of our tree grammar.
Since under the first-child/next-sibling encoding of unranked trees, a symbol
can have (i) no children, (ii) only a left child, (iii) only a right child, or (iv)
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both a left and a right child, each element type corresponds to four terminal
symbols; one for each of the four possibilities (i)-(iv).

We obtained the best compression ratio by using four different Huffman
encodings for different parts of the grammar. Three of them encode (a) the
right-hand side of the start production, (b) the remaining productions, the
children characteristics of the terminal symbols (i.e., which of the above 4
possibilities (i)-(iv) holds), and the number of terminal and nonterminals,
and finally (c) the names (element types) of the terminals. Moreover, the
three Huffman trees for these encodings (the base Huffman encodings) are
encoded by a fourth Huffman encoding (the super Huffman encoding). As
explained in [12], it is sufficient to only write out the lengths of the generated
Huffman codes to be able to reconstruct the actual Huffman trees. The code
lengths for the three base Huffman encodings are further encoded using a
run-length encoding. We refer the reader to [23] for a detailed description of
the succinct coding.

An interesting aspect of the succinct encoding is that smaller file sizes
are obtained if we eliminate in the pruning phase nonterminals with a save-
value ≤ 2 (instead of ≤ 0, which yields minimal edge numbers). In the
implementation, this modification of the pruning phase is triggered by the
switch -optimize filesize.

7. Experiments

We conduct three types of experiments: we compare our implementation
of TreeRePair to other SLCF tree grammar based compressors, to other
XML file compressors, and we compare (iterative DFS) traversal speeds over
memory representations of the generated grammars.

7.1. Testing environment

Our experiments were performed on a machine with an Intel Core2 Duo
CPU T9400 processor, four gigabytes of RAM, and the Ubuntu Linux op-
erating system, kernel 2.6.32. TreeRePair and BPLEX were compiled with
version 4.4.3 of gcc using the -O3 (compile time optimizations) and -m32

(i.e., we generated them as 32bit-applications) switches. We were not able
to compile the succ-tool of the BPLEX distribution with compile time opti-
mizations enabled. This tool is used to apply a succinct coding to a grammar
generated by the BPLEX algorithm, as described in [28]. However, this has
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XML document File size (kb) # Edges Depth # Element types Source

1998statistics 349 28 305 5 46 1
catalog-01 4 219 225 193 7 50 9
catalog-02 44 656 2 390 230 7 53 9
dictionary-01 1 737 277 071 7 24 9
dictionary-02 17 128 2 731 763 7 24 9
dblp 117 822 10 802 123 5 35 2
EnWikiNew 4 843 404 651 4 20 3
EnWikiQuote 3 134 262 954 4 20 3
EnWikiSource 13 457 1 133 534 4 20 3
EnWikiVersity 5 887 495 838 4 20 3
EnWikTionary 99 201 8 385 133 4 20 3
EXI-Array 5 347 226 522 9 47 5
EXI-factbook 1 214 55 452 4 199 5
EXI-Invoice 266 15 074 6 52 5
EXI-Telecomp 3 700 177 633 6 39 5
EXI-weblog 1 104 93 434 2 12 5
JST gene.chr1 4 202 216 400 6 26 8
JST snp.chr1 13 795 655 945 7 42 8
medline02n0328 51 751 2 866 079 6 78 6
NCBI gene.chr1 6 862 360 349 6 50 8
NCBI snp.chr1 63 941 3 642 224 3 15 8
sprot39.dat 111 175 10 903 567 5 48 7
treebank 19 551 2 447 726 36 251 4

Table 1: Characteristics of the XML documents used in our tests. The values in the
“Source”-column match the source IDs in Table 2. The depth of an XML document tree
specifies the length (number of edges) of the longest path from the root of the tree to a
leaf.

no great influence on the running time for BPLEX since the succ-tool ex-
ecutes quite fast compared to BPLEX. In contrast, CluX is an application
written in Java for which we only had the byte-code at hand. We executed
CluX using the Java SE Runtime EnvironmentTM, version 1.6.0 20. We mea-
sure memory usage by constantly polling the VmRSS-value under Linux.

We tested over 24 different XML documents, most of which are known
from previous articles about XML compression. For all tests, we first remove
all text contents from each document and only keep the start and end element
tags (and empty element tags), thus obtaining “stripped” documents. Table 1
shows the characteristics of the 24 stripped XML documents. The source of
the original XML documents is given in Table 2.

7.2. Comparing tree grammar compressors

We compared BPLEX [7] (sf.net/projects/bplex), CluX [5] (supplied to
us by the authors), DAG and bDAG [6], each of which produces SLCF tree
grammars. The latter two generate minimal DAGs, either for the unranked
XML tree (DAG), or for the binary first-child/next-sibling encoded XML
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ID Source

1 http://www.cafeconleche.org/examples
2 http://dblp.uni-trier.de/xml
3 http://download.wikipedia.org/backup-index.html
4 http://www.cs.washington.edu/research/xmldatasets
5 http://www.w3.org/XML/EXI
6 http://www.ncbi.nlm.nih.gov/pubmed
7 http://expasy.org/sprot
8 http://snp.ims.u-tokyo.ac.jp
9 http://cs.uwaterloo.ca/ tozsu/ddbms/projects/xbench

Table 2: Sources of the XML documents from Table 1.

tree (bDAG), cf. [7] where it was observed already that DAG gives better
compression ratios than bDAG. Note that DAGs and bDAGs can be seen
as SLCF tree grammars of rank zero — nodes of the (b)DAG correspond to
nonterminals of the grammar (for DAGs, different copies of a symbol have to
be introduced, in case that symbol occurs with different ranks). We compare
the grammars produced by the different compressors in terms of the number
of edges, number of nonterminals, size of the start production, and depth of
the grammar. The latter is the maximal nesting depth of nonterminals in a
chain of productions, which, as we see later, influences the traversal speed.
TreeRePair was run with -optimize edges (which prunes all nonterminals
with a save value ≤ 0) and its default setting m = 4 for the maximal rank
of nonterminals (see the remarks below), CluX was run with configuration
ConfEdges.xml, and BPLEX was run with its standard parameters. In the
case of BPLEX, we used the gprint tool to eliminate nonterminals that are
referenced only once.

The results of our experiments are shown in Table 3 (the column “%”
gives the compression ratio with respect to the number of edges, i.e, 100
× number of edges of the output grammar / number of edges of the input
tree) and Table 4 (all values are averages over our XML corpus). Note that
TreeRePair yields the best results with respect to compression ratio in terms
of grammar size. Recall that the size of a grammar is the total number of
edges in all right-hand sides. Moreover, with respect to running time and
memory consumption TreeRePair is comparable to DAG and bDAG, which
are the best in these categories (memory consumption is even better than for
DAG). The depth and the size of the start production are missing for CluX.
The reason for this is that, as already explained in the introduction, CluX
splits the input tree into several packages and generates a grammar for each
package. Hence, it is not clear how to measure the whole depth and the size
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XML document
TreeRePair BPLEX CluX DAG bDAG
% #NT % #NT % #NT % #NT % #NT

1998statistics 1.7 54 1.8 168 1.69 37 4.9 15 8.5 31
catalog-01 1.7 400 2.2 1251 1.63 291 3.8 506 3.1 520
catalog-02 1.1 965 1.4 3045 1.52 1499 1.4 792 2.2 805
dictionary-01 7.7 1676 8.4 3994 8.71 1248 21.1 448 28.0 2058
dictionary-02 5.9 9757 6.6 23209 8.52 11672 20.0 2414 24.9 16281
EnWikiNew 2.3 667 2.4 1369 2.42 476 8.7 29 17.3 23
EnWikiQuote 2.4 452 2.6 985 2.58 323 9.1 25 18.1 19
EnWikiSource 1.1 861 1.3 1895 1.82 1106 8.8 24 17.5 19
EnWikiVersity 1.4 525 1.5 1043 1.61 423 8.8 24 17.6 19
EnWikTionary 1.0 4535 1.1 6402 1.48 6315 8.7 30 17.3 26
EXI-Array 0.4 123 0.6 383 0.53 142 42.2 13 56.5 8
EXI-factbook 2.4 145 4.1 1423 2.58 146 8.1 293 9.2 236
EXI-Invoice 0.7 14 0.6 40 0.93 20 7.1 15 13.7 6
EXI-Telecomp 0.1 21 0.1 47 0.08 21 5.6 15 11.2 10
EXI-weblog 0.1 13 0.0 24 0.05 11 9.1 2 18.2 2
JST gene.chr1 1.8 354 2.2 1113 2.99 126 4.2 76 6.8 114
JST snp.chr1 1.5 856 2.1 4193 1.54 634 3.6 242 6.2 282
medline02n0328 4.1 9064 5.2 33976 6.73 13010 22.8 3960 25.8 20013
NCBI gene.chr1 1.4 504 2.4 3631 1.68 328 4.5 436 4.0 605
NCBI snp.chr1 0.0 17 0.0 23 0.03 291 11.1 2 22.2 2
treebank 20.7 32857 23.3 76109 34.85 48358 53.8 24746 59.4 43586
sprot39.dat 2.3 20224 3.2 111167 4.27 33102 16.1 10243 13.2 31116
dblp 3.9 25250 4.3 38712 5.65 30430 11.1 3378 19.4 6592

Table 3: Performances of the tree grammar compressors on the individual XML documents.

TreeRePair BPLEX CluX DAG bDAG

Edges (%) 2.8 3.5 4.4 12.7 18.2
Number of nonterminals 6 715 32 159 12 133 4 635 8 560
Size of start production (%) 72 61 — 89 93
Depth 24 78 — 4 24
Time (seconds) 19 934 101 15 9
Memory (MB) 72 550 395 123 59

Table 4: Summary of the performance of the tree grammar compressors

of the start production of the CluX output.
It is interesting to note that on our XML corpus, TreeRePair achieves the

best compression ratio with value m = 4 for the maximal number of param-
eters; see Table 5 for a comparison. Our two examples from Section 4.1 and
4.2 offer a possible explanation for this fact: In the binary first-child/next-
sibling encodings of XML trees, we quite often find comb-like subtrees (or
long lists), where all symbols have rank at most 2. On such trees, a small
m-value seems to be a better choice. Our XML documents are quite flat
(depth ≈ 5, see Table 1) and have high branching degree. This results in
long combs under the first-child/next-sibling encoding. On the other hand,
this is not true for treebank, which has a depth of 36. Indeed it turns out
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Max. rank 0 1 2 3 4 5 6

Edges (%) 55.02 3.29 2.92 2.89 2.86 2.89 2.89
# NTs 1 265 5 539 4 712 4 916 4 753 4 956 4 958
File size (%) 2.12 0.51 0.47 0.47 0.46 0.47 0.46
Time (sec) 7.0 8.4 9.3 9.5 9.6 9.8 9.8
Mem (MB) 44 44 45 47 47 47 47

Table 5: Impact of the maximal rank.

TRePair bplex CluX XMill PPM SPPM SHuff gzip bzip2

File size (%) 0.44 0.59 0.63 0.49 0.41 0.74 4.39 1.41 0.60
Time (seconds) 19 946 296 128 4 6 16 1 25
Memory (peak/orig) 2.4 60.3 115 1.0 0.4 0.4 0.3 0.1 2.1

Table 6: Performance for XML file compression

that for treebank m = 42 yields the best compression ratio (20.445% in con-
trast to 20.719% for m = 4 — this is also the worst compression ratio of all
documents in our XML corpus).

7.3. Comparing XML file compressors

Besides the above mentioned tree grammar compressors, we consider the
following XML file compressors: XMill in version 0.8 with bzip2 as back-
end compressor [21], XMLPPM in version 0.98.3 [10], see xmlppm.sf.net,
SCMPPM [1], see www.infor.uva.es/∼jadiego, and SCHuff [1] (an imple-
mentation was kindly provided to us by the authors). As a yardstick we also
include numbers for the general purpose compressors gzip and bzip2 in the
comparison. TreeRePair was run with -optimize filesize, which gener-
ates a succinct grammar encoding, as described in Section 6. CluX was run
with configuration ConfSize.xml and the -s 4 switch. For BPLEX we used
gprint with --threshold 14 and the succ-tool with --type 68, which gen-
erates a Huffman-based coding that was reported to give the smallest output
files [28]. Table 6 shows the outcomes of our experiments. As “Memory” we
show the ratio of the program’s peak memory usage over the size of the orig-
inal file. Thus, on average, TreeRePair’s memory consumption is 2.4-times
the size of the stripped XML document. As can be seen, only XMLPPM
achieves a slightly better compression ratio than TreeRePair. A disadvan-
tage of XMLPPM is that due to the adaptive nature of the PPM algorithm,
traversing the XML tree structure is not possible on the compressed docu-
ment. The latter has to be fully decompressed, see also [1]. The same holds
for SCMPPM, gzip, and bzip2. In contrast, navigating in the XML tree
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TreeRePair BPLEX bDAG Succinct Pointer

Traversal speed (ms) 771 597 3 220 164 56
Index size (KB) 463 794 3 070 2 724 19 995

Table 7: Speeds for iterative pre-order traversals

structure only needs additional space O(depth of the grammar) on SLCF
tree grammar compressed trees using the stack configurations from [7], see
also the next paragraph.

7.4. Comparing grammar traversal speeds

In order to achieve fast tree traversals, we map the output grammar of
TreeRePair into memory as follows: the initial right-hand side of the gram-
mar is represented using an implementation of Sadakane and Navarro’s suc-
cinct trees [33] (for moderate-size trees), which was generously supplied to us
by Sadakane. The rest of the grammar is transformed into Chomsky normal
form (so that every right-hand side has precisely two non-parameter symbols)
and each such production is represented by a single 64-bit machine word. We
then perform an iterative pre-order traversal through the tree represented by
the grammar, using down1 (go to first child), down2 (go to second child), and
up (go to parent) over nodes represented by the stack configurations men-
tioned after Theorem 3 in [7]. These stack configurations are proportional to
the depth of the grammar, which in our examples has an average value of 24,
see Table 4. We calculated the size of the grammar memory representation
(called index size in Table 7) and measured traversal times (excluding the
time needed to generate the grammar’s memory representation) of our im-
plementation. As a yardstick, we also give these values for the succinct trees
of [33], and for a simple pointer-based representation, where each tree node
has three machine pointers to its parent, first, and second child. Note that for
arbitrary root-node path traversals, machine pointers are much faster (about
100 times) than succinct trees [3], which in turn are faster than our gram-
mar compressed trees. Table 7 shows the results of our experiments. Our
comparison does not include CluX, since its output (consisting of a separate
grammar for each package) cannot be processed by our tool for measuring
the traversal speed.
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8. Conclusions

We presented TreeRePair, a generalization to trees of Larsson and Mof-
fat’s RePair algorithm. TreeRePair generates straight-line linear context-free
tree grammars. On our test corpus the produced grammars are smaller than
those produced by previous grammar-based compressors. Moreover, we de-
veloped a Huffman-based succinct coding of the resulting grammars. The
compression ratio of the resulting file compressor is comparable to the best
known XML file compressors. Finally, we demonstrated that the grammars
produced by TreeRePair can be used for traversing the original XML tree.
Our experiments showed a reasonable trade-off between compression perfor-
mance and tree traversal speed.
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