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Abstract

Results on algorithmic problems on strings that are given in a compressed form via straight-

line programs are surveyed. A straight-line program is a context-free grammar that generates

exactly one string. In this way, exponential compression rates can be achieved. Among others,

we study pattern matching for compressed strings, membership problems for compressed

strings in various kinds of formal languages, and the problem of querying compressed strings.

Applications in combinatorial group theory and computational topology and to the solution

of word equations are discussed as well. Finally, extensions to compressed trees and pictures

are considered.

1 Introduction

The topic of this paper are algorithms on compressed strings. The goal of such algorithms is
to check properties of compressed strings and thereby beat a straight forward “decompress-and-
check” strategy. There are three main applications for algorithms of this kind.

• In many areas, large string data have to be not only stored in compressed form, but the initial
data has to be processed and analyzed as well. Here, it makes sense to design algorithms that
directly operate on the compressed string representation in order to save the time and space
for (de)compression. Such a scenario can be found for instance in large genom databases or
XML processing.

• Large and often highly compressible strings may appear as intermediate data structures in
algorithms. Here, one may try to store a compressed representation of these intermediate
data structures and to process this representation. This may lead to more efficient algo-
rithms. Examples for this strategy can be found for instance in combinatorial group theory
[57, 58, 95, 97, 125], computational topology [37, 122, 124], interprocedural analysis [52],
and bisimulation checking [61, 79].

• In some situations it makes sense to compute in a first phase a compressed representation
of an input string, which makes regularities in the string explicit. These regularities may
be exploited in a second phase for speeding up an algorithm. This principle is known
as acceleration by compression. It was recently applied in order to speed up the Viterbi
algorithm for analyzing hidden Markov models [83] as well as speeding up edit distance
computation [31, 59].

When we talk about algorithms on compressed strings, we have to make precise the compressed
representation we want to use. Such a representation should have two properties: (i) it should
cover many compression schemes from practice and (ii) it should be mathematically easy to handle.
Straight-line programs (SLPs) have both of these properties. An SLP is a context-free grammar
that generates exactly one word. In an SLP, repeated subpatterns in a string have to be represented
only once by introducing a non-terminal for the pattern. It is not difficult to see that with an SLP
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consisting of n productions, a string of length 2n can be generated by repeated doubling. In this
sense, an SLP can indeed be seen as a compressed representation of the string it generates.

Several dictionary-based compressed representations, like for instance run-length encoding and
the family of Lempel-Ziv (LZ) encodings [144], can be converted efficiently into straight-line pro-
grams of similar size. Moreover, a certain variant of LZ77-encoding turns out to be equivalent
to SLPs in the following sense: From the LZ77-encoding of a string one can compute in polyno-
mial time an SLP for the string, and, vice versa, from an SLP for a string one can compute in
polynomial time the LZ77-encoding of the string [115]. This implies that complexity results can
be transfered from SLP-encoded input strings to LZ77-encoded input strings. We will discuss the
relationship between LZ77 and SLPs in more detail in Section 3.

The problem of computing a small SLP for a given input string is known as grammar-based
compression; it will be briefly discussed in Section 4. Although computing a size-minimal SLP
for a given input string is not possible in polynomial time unless P = NP [23], there are several
algorithms that compute for a given input string of length n an SLP that is only by a factor log(n)
larger than a minimal grammar [23, 119, 121].

In Sections 5–10 we consider algorithmic problems for SLP-compressed strings. The following
types of algorithmic problems on compressed strings will be studied:

• Comparing compressed strings (Section 5): Are two compressed strings equal or similar in
a certain sense?

• Pattern matching for compressed strings (Section 6 and 8): Does a compressed string occur
(in a certain sense) as a pattern in another compressed string?

• Membership problems for compressed strings in regular and context-free languages (Sec-
tion 11): Does a compressed string belong to a certain regular or context-free language?

• Querying problems for compressed strings (Section 10): What is the symbol at a given
position in a compressed string?

In Section 7 we discuss the relationship between SLPs and leaf languages (and important tool in
complexity theory), which is a useful technique for proving lower bounds on the complexity of
algorithmic problems for SLP-compressed strings.

In Section 11 we present applications in combinatorial group theory. In particular, we survey
results on the compressed word problem for groups. The compressed word problem for the finitely
generated group G asks whether an SLP-encoded input string over the generators of the group
represents the group identity. It turned out that the compressed word problem for a group G
is the right tool in order to attack the (non-compressed) word problem for (finitely generated
subgroups of) the automorphism group of G. For instance, along this line it was shown that the
word problem for the automorphism group of a free group can be solved in polynomial time [125].

Similar to group theory, SLP-techniques can also be used in order to show that several problems
in computational topology can be solved in polynomial time; this is the topic of Section 13. These
problems mainly concern curves in 2-dimensional surfaces that are represented by so called normal
coordinates. With the help of SLPs, it was shown for instance that Dehn twists and geometric
intersection numbers of curves that are given in normal coordinates can be computed in polynomial
time [124].

Finally, in Section 15 we briefly discuss algorithmic problems for extensions of SLPs to trees
(Section 15.1) and 2-dimensional pictures (Section 15.2).

Previous surveys on algorithms for compressed strings can be found in [42, 116, 120].

2 Preliminaries

2.1 General notations

Let Γ be a finite alphabet. The empty word is denoted by ε. Let s = a1a2 · · · an ∈ Γ∗ be a word
over Γ, where ai ∈ Γ for 1 ≤ i ≤ n. The set of symbols occurring in s is alph(s) = {a1, . . . , an}.
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The length of s is |s| = n. For a ∈ Γ and 1 ≤ i ≤ j ≤ n let |s|a = |{k | ak = a}| be the number of
a’s in s. We also write s[i] = ai, and s[i, j] = aiai+1 · · · aj . If i > j we set s[i, j] = ε. Any word
s[i, j] is called a factor of s.

We assume some background in complexity theory [110]. In particular, the reader should be
familiar with the complexity classes L (deterministic logarithmic space) P (deterministic polyno-
mial time), NP (nondeterministic polynomial time), coNP (languages, whose complement belongs
to NP), PSPACE (polynomial space), EXPTIME (deterministic exponential time), and NEXPTIME

(nondeterministic exponential time). As usual, when talking about space bounded classes (e.g.
logarithmic space), we only count the required space on the work tape (but not the space occupied
by the input). A problem A ⊆ Σ∗ is logspace many-one reducible to a problem B ⊆ Γ∗ if there
exists a logspace computable function f : Σ∗ → Γ∗ such that for all x ∈ Σ∗: x ∈ A if and only if
f(x) ∈ B. When talking about efficient algorithms (e.g., linear time algorithms) one has to specify
the underlying computational model. Unless otherwise specified, we always refer to the random
access model (RAM) with uniform cost measure. The latter means that arithmetic operations on
arbitrary numbers can be carried out in constant time. This might seem unrealistic. On the other
hand, all algorithms mentioned in this paper only have to store numbers with O(n) many bits,
where n is the length of the input.

We also assume some basic knowledge in automata theory. In particular, the reader should
be familiar with regular languages and context-free languages. Background can be found in the
classical text book [62].

2.2 Straight-line programs

Definition 1 (straight-line program (SLP)) A straight-line program (SLP) over the terminal
alphabet Γ is a context-free grammar A = (V,Γ, S, P ) (V is the set of nonterminals, Γ is the set
of terminals, S ∈ V is the initial nonterminal, and P ⊆ V × (V ∪ Γ)∗ is the set of productions)
such that the following two conditions hold:

(1) For every A ∈ V there exists exactly one production of the form (A,α) ∈ P for α ∈ (V ∪ Γ)∗.

(2) The relation {(A,B) | (A,α) ∈ P,B ∈ alph(α)} is acyclic.

A production (A,α) is also written as A → α. Clearly, the language generated by the SLP A

consists of exactly one word that is denoted by eval(A). More generally, from every nonterminal
A ∈ V we can generate exactly one word that is denoted by evalA(A) (thus eval(A) = evalA(S)).
We omit the index A if the underlying SLP is clear from the context.

The derivation tree of the SLP A = (V,Γ, S, P ) is a finite rooted ordered tree, where every
node is labelled with a symbol from V ∪ Γ. The root is labelled with the initial nontermial S and
every node that is labelled with a symbol from Γ is a leaf of the derivation tree. A node that is
labelled with a nonterminal A such that (A → α1 · · ·αn) ∈ P (where α1, . . . , αn ∈ V ∪ Γ) has n
children that are labeled from left to right with α1, . . . , αn.

The size of the SLP A = (V,Γ, S, P ) is |A| =
∑

(A,α)∈P |α|. Every SLP can be transformed in
linear time into an equivalent SLP in Chomsky normal form, where every production has the form
(A, a) with a ∈ Γ or (A,BC) with B,C ∈ V .

Example 2 Consider the SLP A over the terminal alphabet {a, b} that consists of the following
productions: A1 → b, A2 → a, and Ai → Ai−1Ai−2 for 3 ≤ i ≤ 7. The start nonterminal is
A7. Then eval(A) = abaababaabaab, which is the 7th Fibonacci word. The SLP A is in Chomsky
normal form and |A| = 12.

A simple induction shows that for every SLP A of size m one has |eval(A)| ≤ O(3m/3) [23, proof of
Lemma 1]. On the other hand, it is straightforward to define an SLP B in Chomsky normal form
of size 2n such that |eval(B)| ≥ 2n. Hence, an SLP can be seen as a compressed representation of
the string it generates, and exponential compression rates can be achieved in this way.

One may also allow exponential expressions of the form Ai for A ∈ V and i ∈ N in right-hand
sides of productions. Here the number i is coded binary. Such an expression can be replaced by a
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sequence of ordinary productions, where the length of that sequence is bounded polynomially in
the length of the binary coding of i.

The following construction from [85] is often useful for proving lower complexity bounds, see
e.g. the end of Section 5.

Example 3 Let w = (w1, . . . , wn) be a tuple of natural numbers. For a bit vector x ∈ {0, 1}n

of length n let us define x · w = x1w1 + x2w2 + · · · + xnwn. Let 1k be the constant-1 vector
(1, 1, . . . , 1) of length k and let sk = 1k · (w1, . . . , wk) = w1 + · · · + wk for 1 ≤ k ≤ n. Let
s = sn = w1 + w2 + · · · + wn. Finally, define the string

S(w) =
∏

x∈{0,1}n

ax·wbas−x·w.

Here, the product
∏

x∈{0,1}n means that we concatenate all string ax·wbas−x·w for x ∈ {0, 1}n

and the order of concatenation is the lexicographic order on {0, 1}n, where the right-most bit has
highest significance. For example, we have

S(2, 3, 5) = ba10 a2ba8 a3ba7 a5ba5 a5ba5 a7ba3 a8ba2 a10b

= ba12ba11ba12ba10ba12ba11ba12b.

Let us show that there is an SLP A of size polynomial in
∑n

i=1 log(wi) for the string S(w). Note
that

∑n
i=1 log(wi) is roughly the length of the binary encoding of the tuple w. The productions of

A are:

A1 → bas+w1b

Ak+1 → Akas−sk+wk+1Ak (1 ≤ k ≤ n − 1)

Let An be the start nonterminal of A.
We prove by induction on k that

evalA(Ak) =

( ∏

x∈{0,1}k\{1k}

ax·wkbas−x·wk

)
askb.

The case k = 1 is clear, since evalA(A1) = bas+w1b = basas1b = a0bas−0as1b. For k + 1 ≤ n we
obtain the following:

( ∏

x∈{0,1}k+1\{1k+1}

ax·wk+1bas−x·wk+1

)
ask+1b =

( ∏

x∈{0,1}k

ax·wkbas−x·wk

)

︸ ︷︷ ︸
evalA(Ak)as−sk

( ∏

x∈{0,1}k\{1k}

ax·wk+wk+1bas−x·wk−wk+1

)
awk+1askb

︸ ︷︷ ︸
awk+1evalA(Ak)

=

evalA(Ak)as−sk+wk+1evalA(Ak) = evalA(Ak+1).

For k = n we finally get

eval(A) = evalA(An) =
∏

x∈{0,1}n

ax·wbas−x·w.

This concludes Example 3.

Let us state some simple algorithmic problems that can be easily solved in polynomial time:
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(1) Given an SLP A (w.l.o.g. in Chomsky normal form), calculate |eval(A)|: One introduces for
each nonterminal A of the SLP A a variable nA which takes values in N. For a production
A → a of A we set nA = 1, and for a production A → BC of A we set nA = nB + nC . In this
way, the length |eval(A)| can be computed with |A| many additions. Moreover, the number of
bits of each value nA is bounded by O(log(|evalA(A)|)) ≤ O(|A|).

(2) Given an SLP A (w.l.o.g. in Chomsky normal form) and a number 1 ≤ i ≤ |eval(A)|, calculate
eval(A)[i] (this problem is in fact P-complete [82], see Section 10): Basically, the algorithm
walks down in the derivation tree for A to position i. At each stage, the algorithm stores a
number p and a nonterminal A of A such that 1 ≤ p ≤ |evalA(A)|. Initially, p = i, and A is the
initial nonterminal of A. If the unique production for A is A → BC, then there are two cases:
If 1 ≤ p ≤ |evalA(B)|, then we continue with position p and the nonterminal B. Otherwise,
we have |evalA(B)| + 1 ≤ p ≤ |evalA(A)|, and we continue with position p − |evalA(B)| (this
number can be computed using the algorithm from the previous point) and the nonterminal
C. Finally, if the unique production for A is A → a, then we must have p = 1 and we output
the terminal symbol a.

(3) Given an SLP A over the terminal alphabet Γ and a homomorphism ρ : Γ∗ → Σ∗, calculate
an SLP B such that eval(B) = ρ(eval(A)): We obtain B by simply replacing every occurrence
of a terminal symbol a in A by the string ρ(a).

Straight-line programs can also be viewed as particular circuits. Given an algebraic structure A
with operations f1, . . . , fn (of arbitrary arity) and constants c1, . . . , cm, a circuit over A is a finite
directed acyclic graph D, where

• every node of indegree 0 is labelled with one of the constants c1, . . . , cm,

• every node of of indegree n ≥ 1 is labelled with an operation fi of arity n,

• the incoming edges for a node are linearly ordered, and

• there is a unique node of outdegree 0 (the output node of D).

Such a circuit computes an element of A. An SLP over the terminal alphabet Γ is nothing else than
a circuit over the free monoid Γ∗, where the only operation is concatenation and the constants are
the symbols from the alphabet Γ. It should be noted that in the literature, the term “straight-line
program” often refers to circuits over the ring of integers or, more generally, polynomial rings, see
e.g. [3, 63, 70].

For some applications, an extension of SLPs called composition systems in [43] are useful.1

A composition system A is defined as an SLP but may also contain productions of the form
X → Y [i, j] for i, j ∈ N with 1 ≤ i ≤ j. Assume that the string w = evalA(Y ) is already defined.
Then we let evalA(X) = w[i,max{|w|, j}]. A composition system is in Chomsky normal form if
all productions have the form X → a, X → Y Z or X → Y [i, j] for nonterminals X, Y , and Z
and a terminal symbol a. The following result was shown by Hagenah in his PhD thesis [55] (in
German), see also [125].

Theorem 4 From a given composition system A in Chomsky normal form with n nonterminals
one can compute in time O(n2) an SLP B of size O(n2) such that eval(B) = eval(A).

3 Straight-line programs and dictionary-based compression

As already remarked in the Introduction, there is a tight relationship between straight-line pro-
grams and dictionary-based compression, in particular, the LZ77 compression scheme. There
are various variants of LZ77 compression. The following variant is used for instance in [119]:

1The formalism in [43] differs in some minor details. Moreover, composition systems are called collage systems

in [74] and interval grammars in [55].
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The LZ77-factorization of a non-empty word s ∈ Σ+ is defined as s = f1f2 · · · fm, where for all
1 ≤ i ≤ m, fi is longest non-empty prefix of fifi+1 · · · fm that is a factor of f1f2 · · · fi−1 in case
such a prefix exists, otherwise fi is the first symbol of fifi+1 · · · fm. Then, the LZ77-encoding of
w is the sequence c1c2 · · · cm such that for all 1 ≤ i ≤ m, either |fi| = 1 and ci = fi or |fi| ≥ 2,
fi = (f1f2 · · · fi−1)[p, q] and fi 6= (f1f2 · · · fi−1)[k, k + q − p] for all 1 ≤ k < p.

Theorem 5 ([23, 119]) For every SLP A, the number of factors in the LZ-factorization of
eval(A) is bounded by |A|.

Theorem 6 ([23, 119]) From the LZ77-factorization of a given string w ∈ Σ∗, one can compute
an SLP of size O(log(|w|/m) · m) for w in time O(log(|w|/m) · m), where m is the number of
factors in the LZ77-factorization of w.

Rytter [119] uses SLPs, whose derivation tree is an AVL-tree for the proof of Theorem 6. An
AVL-tree is a binary tree such that for every node v the height of the left subtree of v and the
height of the right subtree of v differ by at most 1. The construction of Charikar et al. [23] is based
on so called α-balanced SLPs. An SLP A is α-balanced, where 0 < α ≤ 1/2, if the right-hand side
of every production has length two and for every production A → βγ of A (where β and γ are
nonterminals or terminal symbols) the following holds: If m (resp., n) is the length of the string
derived from β (resp., γ), then

α

1 − α
≤

m

n
≤

1 − α

α
.

Using the fact that the number of factors in the LZ77-factorization of an SLP-compressed word
eval(A) is bounded by the size of the SLP A (Theorem 6) as well as the results from Section 6
on compressed pattern matching, one can also show that the LZ77-encoding of eval(A) can be
computed in polynomial time from A. Hence, SLPs and LZ77-encodings are equivalent with
respect to polynomial time transformations.

4 Grammar-based compression

As explained in the Introduction, in this paper we mainly deal with algorithmic problems on
strings, which are already given in compressed form as an SLP. In this section, we will briefly
consider the problem of compression itself, i.e., the computation of a small SLP for a given input
string. This problem is known as grammar-based compression, and is considered for instance in
[23, 101, 119, 121]. For a string w let opt(w) be the size of a minimal SLP for w. Thus, there
exists an SLP A with eval(A) = w, |A| = opt(w) and for every SLP B with eval(B) = w, |B| ≥ |A|
holds. The following theorem provides a lower bound for grammar-based compression.

Theorem 7 ([23]) Unless P = NP there is no polynomial time algorithm with the following
specification:

• The input consists of a string w over some alphabet Σ.

• The output is a grammar A such that eval(A) = w and |A| ≤ 8569/8568 · opt(w).

Theorem 7 is shown in [23] using a reduction from the vertex cover problem for graphs with
maximal degree 3. In Theorem 7 it is important that the alphabet Σ is not fixed. It is an
open problem whether there is a polynomial time algorithm that computes for a binary string
w ∈ {0, 1}∗ an SLP A such that eval(A) = w and |A| = opt(w). Some partial results can be found
in [8].

The best known upper bound for grammar-based compression is provided by the following
results that was shown independently by Charikar et al. [23] and Rytter [119]:

Theorem 8 ([23, 119]) There is an O(log(|Σ|) · n)-time algorithm that computes for a given
word w ∈ Σ∗ of length n an SLP A such that eval(A) = w and |A| ≤ O(log(n/opt(w)) · opt(w))
(i.e., the approximation ratio of the algorithm is O(log(n/opt(w)))).
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The algorithms of Charikar et al. and Rytter follow a similar strategy. First, the LZ77-encoding
of the input string w is computed. This is possible in time O(log(|Σ|) · |w|) using suffix trees, see
e.g. [53]. Let m be the number of factors in the LZ77-factorization of w. By Theorem 5, we have
m ≤ opt(w). In a second step, the LZ77-encoding of w is transformed into an SLP for w of size
at most O(log(|w|/m) · m) ≤ O(log(|w|/opt(w)) · opt(w)) using Theorem 6.

Rytter’s technique [119] can also be used to transform an SLP A for a string of length n in
time O(|A| · log(n)) into an equivalent SLP of height O(log(n)), where the height of an SLP is the
height of the corresponding derivation tree. Hence, there is a very efficient algorithm for making
SLPs balanced.

Let us remark that the existence of a polynomial time algorithm that computes from a given
string w an SLP A for w of size o(log(|w|)/ log log(|w|))) · opt(w) would imply a major progress on
the problem of computing shortest addition chains, see [23]. In this problem, a sequence k1, . . . , km

of binary encoded natural numbers is given, and one is looking for a smallest circuit over (N,+)
such that every ki is the value of some gate. Currently the best approximation algorithm for
this problem is by Yao [143] (from 1976) and its approximation ratio is O(log n/ log log n), where
n = k1 + · · · + km.

Some optimizations of Rytter’s algorithm can be found in [17]. Another grammar-based com-
pression algorithm with linear running time (for a fixed alphabet) and an approximation ratio
of O(log(n/opt(w))) was presented by Sakamoto [121]. His algorithm is based on the RePair
compressor [78], which is another popular grammar-based compressor.

The algorithms from [23, 119, 121] all use space Ω(n) in order to generate an SLP for a string of
length n, which might be a problem for large input texts. A grammar-based compression algorithm
with an approximation ratio of O(log2(n)) that runs in linear time and needs no more space than
the size of the output grammar was recently presented in [101].

Grammar-based compression using a weak form of context-sensitive grammars (so called Σ-
sensitive grammars) is discussed in [102].

5 Compressed equality checking

The most basic task for SLP-compressed strings is equality checking: Given two SLPs A and
B, does eval(A) = eval(B) hold? Clearly, a simple decompress-and-compare strategy is very
inefficient. It takes exponential time to compute eval(A) and eval(B). Nevertheless a polynomial
time algorithm exists. This was independently discovered by Hirshfeld, Jerrum, and Moller [61],
Mehlhorn, Sundar, and Uhrig [105], and Plandowski [112].

Theorem 9 ([61, 105, 112]) The following problem can be solved in polynomial time:

input: Two SLPs A and B

output: eval(A) = eval(B)?

In [105], the result is not explicitly stated but follows immediately from the main result. Mehlhorn
et al. provide an efficient data structure D for a finite set of strings that supports the following
operations:

• Add a string consisting of the symbol a to D.

• For two string x and y in D, add the string xy (here, one may have x = y) to D. Moreover,
the strings x and y remain in D (the latter property is called persistence).

• For a string x in D, and a position k in x, split x into its length-k prefix and the remaining
suffix and add both strings to D. Again, x remains in D.

• Check whether two strings x and y from D are identical.

The idea is to compute for each variable a signature, which is a small number, and that allows
to do the equality test in constant time by comparing signatures. A signature corresponds to
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a nonterminal of an SLP. The signature of a string is computed by iteratively breaking up the
sequence into small blocks, which are encoded by integers using a pairing function. Adding the
concatenation xy of two string x and y to the data structure needs time O(log n(log m log∗ m +
log n)) for the mth operation, where n is the length of the resulting string (hence, log(n) ≤ m). This
leads to a cubic time algorithm for checking equality of SLP-compressed strings. An improvement
of the data structure from [105] was obtained by Alstrup, Brodal, and Rauhe [5]; see [4] for a
long version. There, the complexity of adding the concatenation xy of two string x and y to the
data structure is improved to O(log n(log∗ m + log |Σ|)), where n and m have the same meaning
as above and Σ is the underlying alphabet. This leads to the complexity of O(n2 log∗ n) (where
n = |A| + |B|) for checking equality of SLP-compressed strings, which is currently the best upper
bound. One can view the algorithms from [5, 105] as efficient methods for transforming an SLP
A into a canonical SLP A such that eval(A) = eval(B) if and only if A

′ and B
′ are identical. One

should note that the machine model in [5] is a RAM that allows to compute bitwise XOR and
AND of machine words in constant time.

In contrast to [105], the polynomial time algorithms of Hirshfeld et al. [61] and Plandowski [112]
use combinatorial properties of words, in particular the periodicity lemma of Fine and Wilf [39].
This lemma states that if p and q are periods of a string w (i.e., w[i] = w[i+p] and w[j] = w[j +q]
for all positions 1 ≤ i ≤ |w| − p and 1 ≤ j ≤ |w| − q) and p + q ≤ |w| then also the greatest
common divisor of p and q is a period of w. The algorithm from [61] achieves a running time of
O(n4), where n = |A| + |B|.

Both, Plandowski and Hirshfeld et al. use Theorem 9 as a tool to solve another problem.
Plandowski derives from Theorem 9 a polynomial time algorithm for testing whether two given
morphisms (between free monoids) agree on a given context-free language. Hirshfeld et al. use
Theorem 9 in order to check bisimilarity of two normed context-free processes (a certain class of
infinite state systems) in polynomial time.

The equality problem for SLP-compressed strings can also be viewed as a very restricted case
of the equality problem for context-free languages, where the two context-free languages are sin-
gleton sets. One might try to generalize Theorem 9 to larger classes of context-free grammars.
Equality of arbitrary context-free languages is a well-known undecidable problem [62]. An impor-
tant class in between SLPs and general context-free grammars are acyclic context-free grammars
(also known as non-recursive context-free grammars). These are context-free grammars such that
from a nonterminal A one cannot derive in ≥ 1 steps a word containing A. In other words, we
only keep condition (2) in Definition 1. Acyclic context-free grammars generate only finite sets of
words. Let G be an acyclic context-free grammar of size n. Then, every word generated by G has

length 2O(n), and |L(G)| ≤ 22O(n)

.
Unfortunately, Theorem 9 cannot be generalized to acyclic context-free grammars, as the

following result from [64] shows:

Theorem 10 ([64]) It is NEXPTIME-complete to check for two given acyclic context-free gram-
mars G1 and G2, whether L(G1) 6= L(G2).

In [108], it was shown that the problem of checking L(G1) ∩ L(G2) = ∅ for two given acyclic
context-free grammars G1 and G2 is PSPACE-complete.

Let us finally mention a related result of Lifshits [82], which when compared with Theorem 9
shows again the quite subtle borderline between tractability and intractability for problems on
compressed strings. A function f : Σ∗ → N belongs to #P if there exists a nondeterministic
polynomial time bounded Turing-machine M such that for every x ∈ Σ∗, f(x) equals the number
of accepting paths of M on input x. A function f : Σ∗ → N is #P-complete if it belongs to #P and
for every #P-function g : Γ∗ → N there is a logspace computable mapping h : Γ∗ → Σ∗ such that
h ◦ f = g. Functions that are #P-complete are computationally very powerful. By Toda’s [135]
famous result, every language from the polynomial time hierarchy can be decided in deterministic
polynomial time with the help of a #P-function, briefly: PH ⊆ P#P. For two strings u and v of
the same length m, the Hamming-distance dH(u, v) is the number of positions i ∈ {1, . . . ,m} such
that u[i] 6= v[i].
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Theorem 11 ([82]) The mapping (A, B) 7→ dH(eval(A), eval(B)), where A and B are SLPs is
#P-complete.

This result can be shown using the construction from Example 3. Standard arguments show that
the function that maps a tuple of binary encoded natural numbers w1, . . . , wn, t to the number of
tuples x ∈ {0, 1}n such that x · (w1, . . . , wn) = t is #P-complete (this can be shown by the same
reduction that reduces the 3SAT problem to the subsetsum problem); we use here the notation
from Example 3. Now, given a tuple of binary encoded natural numbers w1, . . . , wn, t, we construct
in logspace two SLPs A and B such that the following holds (as in Example 3 let s = w1+· · ·+wn):

eval(A) =
∏

x∈{0,1}n

ax·wbas−x·w

eval(B) = (atbas−t)2
n

The SLP B can easily be constructed, and Example 3 shows how to construct A (in logspace).
Now, it is an easy observation that dH(eval(A), eval(B)) is exactly the number of tuples x ∈ {0, 1}n

such that x · (w1, . . . , wn) = t.

6 Compressed pattern matching

A natural generalization of checking equality of two strings is pattern matching. In the classical
pattern matching problem it is asked for given strings p (usually called the pattern) and t (usually
called the text), whether p is a factor of t. There are dozens of linear time algorithms for this
problem on uncompressed strings, most notably the well-known Knuth-Morris-Pratt algorithm
[75]. It is therefore natural to ask, whether a polynomial time algorithm for pattern matching on
SLP-compressed strings exists; this problem is sometimes called fully compressed pattern matching
and is defined as follows:

input: Two SLPs P and T

question: Is eval(P) a factor of eval(T)?

The first polynomial time algorithm for fully compressed pattern matching was presented in [73],
further improvements with respect to the running time were achieved in [42, 67, 81, 106].

Theorem 12 ([42, 67, 73, 81, 106]) Fully compressed pattern matching can be solved in poly-
nomial time.

Basically, the algorithms from [42, 67, 73, 81, 106] can be divided into two classes: Those that
are based on the periodicity lemma of Fine and Wilf [39] mentioned in the previous section
[42, 73, 81, 106] and Jez’s solution from [67] that does not use any non-trivial combinatorial
properties of words.

An important observation that is crucial in [42, 67, 73, 81, 106] is the obvious fact that if a
pattern p is a factor of eval(T) then there exists a production X → Y Z in eval(T) such that p
has an occurrence in evalT(X) = evalT(Y )evalT(Z) that “touches” the cut (or border) position
between evalT(Y ) and evalT(Z) (called the cut of X). It is a consequence of the periodicity lemma
of Fine and Wilf [39] mentioned in the previous section that the set of all starting positions of
occurrences of p in evalT(X) that touch the cut of X forms an arithmetic progression, i.e., a set
of the form {b + i · p | 0 ≤ i < ℓ} (see Figure 1), which can be represented by the binary encoded
triple (b, p, ℓ). Lifshit’s [81] algorithm for instance computes for each nonterminal A of the pattern
SLP P and each nonterminal X of the text SLP T the arithmetic progression corresponding to the
occurrences of evalP(A) in evalT(X) that touch the cut of X. These arithmetic progressions are
computed in a bottom-up fashion spending time O(|P|) for each progressions, which results in the
overall time bound O(|P|2|T|).

As already mentioned above, Jez’s algorithm for fully compressed pattern matching [67] does
not use non-trivial combinatorial properties of words. Moreover, it is the currently fastest algo-
rithm; its running time is O((|T| + |P|) log(M) log(|T| + |P|)), where M is the length of eval(P).
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evalT(Y ) evalT(Z)
p

p
p

p
p

Figure 1: Occurrences of a pattern p that touch the cut of X, where X → Y Z

Since log(M) ∈ O(|P|), the running time can be upper bounded by O(n2 log(n)), where n is the
total input length. The basic idea of the algorithm is to rewrite the SLP for the pattern and the
text simultaneously; he calls this process recompression. In a single round of this recompression
process, maximal blocks of the form an (for a letter a) and length-2 words ab (for a and b different
letters) become new alphabet symbols. Moreover, the combined length of the (fully decompressed)
text and pattern shrinks by a constant factor in each single recompression round. Hence, the re-
compression process terminates after O(log M) many rounds with a pattern of length 1. Some
effort is necessary in order to show that during this process the intermediate SLPs are small.
Jez’s recompression technique uses some of the ideas from the equality-checking algorithms from
[5, 105]. In particular the idea of breaking up a text into maximal blocks of the form an appears in
[5, 105] too. One might say that Jez extends the techniques from [5, 105] so that pattern matching
(instead of only equality checking) of SLP-compressed strings can be done efficiently.

Randomized algorithms for checking equality of compressed strings and fully compressed pat-
tern matching are studied in [43, 129]. These algorithms are based on arithmetic modulo small
prime numbers. The algorithm from [129] has a quadratic running time under the RAM model
with logarithmic cost measure, which means that arithmetic operations on n-bit numbers need time
O(n). If eval(A) = eval(B) then the algorithm will correctly output “yes”; if eval(A) 6= eval(B)
then the algorithm may incorrectly output “yes” with a small error probability.

In the fully compressed pattern matching problem, the term “fully” refers to the fact that both
the pattern and the text are compressed. In practical applications, the pattern is usually short in
comparison to the text. In such a situation, it makes sense the consider the weaker variant, where
only the text is compressed, but the pattern is given explicitly. This leads to the semi-compressed
pattern matching problem (sometimes just called compressed pattern matching problem), where
it is asked whether an uncompressed pattern p is a factor of a compressed text eval(T). Semi-
compressed pattern matching has been studied intensively for various compression schemes, e.g.
LZW (Lempel–Ziv-Welch) [7, 44] and LZ1 (a variant of LZ77 as defined in Section 3) [38, 45]. For
SLP-compressed texts it is easy to show that compressed pattern matching can be solved in time
O(|p|·|T|). Assume that the text SLP T is in Chomsky normal form. As remarked earlier, it suffices
to check for each nonterminal X of T, whether there exists an occurrence of p in evalT(X) that
touches the cut of X. For this, one computes for every nonterminal X the prefix prefX of evalT(X)
of length min{|p|, |evalT(X)|} as well as the suffix suffX of evalT(X) of length min{|p|, |evalT(X)|}.
This is possible in time O(|p| · |T|) by a straightforward bottom-up computation. Then, one only
has to check for every production X → Y Z of T, whether p is a factor of suffY prefZ , which is a
string of length at most 2p. This is again possible in time O(|p| · |T|) using any linear time pattern
matching algorithm for uncompressed strings. It should be also remarked that the currently best
algorithm for semi-compressed pattern matching for LZ1 [45] first transforms the LZ1-encoding of
the text into an α-balanced SLP using the method from [23] (see Theorem 6) and then runs an
algorithm for semi-compressed pattern matching for α-balanced SLPs.

Several other algorithmic problems that are related to compressed pattern matching were
studied. In [25, 26, 40], self-indexes for SLP-compressed strings are constructed. The goal of
such a self-index is to store an SLP A with small space overhead in such a form that for a given
uncompressed pattern p one can quickly list all occurrences of p in eval(A). Bille et al. [15] present
an efficient algorithm for approximative compressed pattern matching for SLP-compressed strings:
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Here, for a given pattern p, SLP T, and k ∈ N the goal is to find all occurrences of factors of eval(T)
that have distance at most k from p with respect to a certain distance measure (e.g. Hamming
distance or edit distance). The problem of computing q-gram frequencies for SLP-compressed
strings is studied in [49, 50]. A q-gram is just a string of length q. An algorithm that computes
in time O(q · n) for a Chomsky normal form SLP A of size n a list with the frequencies of all
q-grams occurring in eval(A) is presented in [49]. This algorithm can be seen as a refinement of
the algorithm for semi-compressed pattern matching outlined above. In [103], it is shown that the
length of the longest common factor of two SLP-compressed strings can be computed in polynomial
time.

7 Leaf languages and string compression

In this section, we discuss a technique that turned out to be useful for deriving lower complexity
bounds for algorithmic problems on SLP-compressed strings. This technique is based on the
concept of leaf languages from complexity theory. A detailed survey of leaf languages can be
found in [139]. Here, we will only introduce the basic definitions necessary in order to understand
the relationship to SLPs.

Let M be a nondeterministic Turing-machine. We say that M is adequate if it satisfies the
following three properties:

• On every input M does not have an infinite computation path.

• A linear order < is fixed on the set of transition tuples of M .

• To every configuration of M at most two transition tuples of M apply, i.e., every configuration
has at most two successor configurations.

For an adequate Turing-machine M and an input w, the computation tree TM (w) of M on input
w becomes a finite rooted ordered binary tree, where nodes are labelled with configurations of
M . The root is labelled with the initial configuration on input w. Now, assume that a node v of
TM (w) is labelled with the configuration c, and c has exactly two successor configurations c1 and
c2 (the case that c has at most one successor configuration is analogous). Assume moreover that ci

results from c by applying the transition tuple ti to c and t1 < t2. Then, v has two children v1 and
v2 in this order and vi is labelled with the configuration ci. The leaf string leaf(M,w) is defined as
follows: Let v1, . . . , vm be the leaves of the ordered tree TM (w) in the natural left-to-right order,
and set bi = 1 (resp., bi = 0) if the configuration that labels node vi is accepting (resp., rejecting).
Then, we set leaf(M,w) = b1 · · · bm.

With a language L ⊆ {0, 1}∗, one can associate a complexity class LEAFp(L) as follows: A
language K ⊆ Σ∗ belongs to the class LEAFp(L) if there exists an adequate nondeterministic
polynomial time Turing-machine M with input alphabet Σ such that for every word w ∈ Σ∗ we
have: w ∈ K if and only if leaf(M,w) ∈ L. In this way, many complexity classes can be defined
in a uniform way. Here are a few examples:

• NP = LEAFp({0, 1}∗1{0, 1}∗)

• coNP = LEAFp(1∗)

• PP = LEAFp({x ∈ {0, 1}∗ | |x|1 > |x|0}) (PP stands for probabilistic polynomial time.2)

Of course, the leaf language concept is not restricted to nondeterministic polynomial time Turing-
machines. In the context of SLP-compression, logspace leaf language classes [65] turned out
to be useful: A language K ⊆ Σ∗ belongs to the class LEAFlog(L) if there exists an adequate

2If we view a nondeterministic Turing machine as a probabilistic machine that chooses successor configurations
with uniform distribution, then PP can be defined as the class of all languages L for which there exists a probabilistic
machine M such that for all inputs x: x ∈ L if and only if M accepts x with probability > 1/2.
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nondeterministic logspace Turing-machine M with input alphabet Σ such that for every word
w ∈ Σ∗ we have: w ∈ K if and only if leaf(M,w) ∈ L.

Note that the machine M together with an input w can be seen as a compressed representation
of the string leaf(M,w). In a certain sense, if the machine M is logspace-bounded, then this form
of compression is equivalent to SLP-compression:

Theorem 13 ([88]) The following holds:

• Let M be an adequate nondeterministic logspace Turing-machine. From a given input w ∈ Σ∗

for M we can construct in logspace an SLP A over {0, 1} such that eval(A) = leaf(M,w).

• There exists an adequate nondeterministic logspace Turing-machine M that takes as input
an SLP A in Chomsky normal form over the alphabet {0, 1} and produces the leaf string
leaf(M, A) = eval(A).

The proof of this result is quite simple. For the first statement, let n be the length of the input
w and assume that M works in space log(n) on an input of length n. Then the nonterminals of
the SLP A are all configurations of M , where the input tape contains the word w and the work
tape is restricted to length log(n). There is only a polynomial number of such configurations.
If the successor configurations of the configuration c are c1, . . . , cm and m ≥ 1 (we must have
m ≤ 2 since M is adequate) then we add the production c → c1 · · · cm to the SLP. If c is a
configuration without successor configurations, then we add the production c → 1 (resp., c → 0)
if c is an accepting (resp., rejecting) configuration. Finally, the initial nonterminal of the SLP A

is the initial configuration corresponding to input w. Clearly, this SLP A produces the leaf string
leaf(M,w).

For the second statement of Theorem 13 we take the adequate nondeterministic logspace
Turing-machine M that stores on the work tape a nonterminal of the input SLP A; logarith-
mic space suffices for this. If in a configuration c the work tape stores the nonterminal A, then M
searches (deterministically) the unique production with left hand A. If this production is of the
form A → 1 (resp., A → 0), then M terminates and accepts (resp., rejects). Otherwise, assume
that the production for A has the form A → BC. Then M branches nondeterministically into two
successor configurations c1 and c2. From c1 (resp., c2), M updates the content of the work tape
to the nonterminal B (resp., C).

The main result of [88] shows that also the leaf strings produced by nondeterministic polynomial
time Turing-machines can be produced by SLPs in a certain way. We need a few more definitions.

It is often useful to restrict adequate Turing-machines further. We say that an adequate
Turing-machine M is fully balanced if for every input w, the computation tree TM (w) has the
same number of branching nodes (i.e., nodes with exactly two children) along every maximal
path. In other words, if we contract edges (v, v′) such that v′ is the unique child of v, then TM (w)
becomes a full binary tree. Figure 2 shows a typical shape for the computation tree of a fully
balanced adequate Turing-machine. For two binary strings u = a1a2 · · · an and v = b1b2 · · · bn

(a1, b1, . . . , an, bn ∈ {0, 1}) we define the convolution u ⊗ v = (a1, b1)(a2, b2) · · · (an, bn). Finally,
let ρ : ({0, 1} × {0, 1})∗ → {0, 1}∗ be the morphism with ρ(0, 0) = ρ(0, 1) = ε, ρ(1, 0) = 0, and
ρ(1, 1) = 1. The following result was shown in [88]:

Theorem 14 ([88]) Let M be a fully balanced adequate polynomial time Turing-machine such
that for some polynomial p(n) and for every input w, every maximal path in the computation
tree TM (w) has exactly p(|w|) many branching nodes. From a given input w ∈ Σ∗ for M we
can construct in logspace two SLPs A and B such that |eval(A)| = |eval(B)| and leaf(M,w) =
ρ(eval(A) ⊗ eval(B)).

The proof of Theorem 14 can be seen as a refinement of the construction from Example 3. It
is based on an encoding of the subsetsum problem. In the following sections, we will see two
applications of Theorem 14.
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Figure 2: A computation tree of a fully balanced adequate Turing-machine

a1 a2 a3 · · · am−1 am

· · · a1 · · · a2 · · · a3 · · · am−1 · · · am · · ·

Figure 3: Subsequences

8 Compressed problems for subsequences

In many applications in computational biology, approximate occurrences of a pattern in a text are
more relevant than exact matches, see e.g. [53]. A very simple formalization of an approximate
occurrence is that of a subsequence. The string p = a1 · · · an is a subsequence of t ∈ Σ∗, if
t ∈ Σ∗a1Σ

∗ · · · anΣ∗, see Figure 3. Note the difference between the notions of a factor and a
subsequence. The fully compressed subsequence matching problem is defined as follows:

input: Two SLPs P and T

question: Is eval(P) a subsequence of eval(T)?

When comparing fully compressed subsequence matching with fully compressed pattern matching,
it is the more liberal notion of a pattern occurrence that makes the application of periodicity
properties of words (in particular, the periodicity lemma of Fine and Wilf) impossible. Indeed
it turned out in [82, 88] that fully compressed subsequence matching is much harder than fully
compressed pattern matching.

Recall the definition of the complexity class PP (probabilistic polynomial time) from the previ-
ous section. This class contains computationally very difficult problems. A famous result of Toda
[135] states that every language from the polynomial time hierarchy is polynomial time Turing-
reducible to a language from PP, briefly: PH ⊆ PPP. Moreover, PP contains the class PNP

|| (parallel

access to NP), which consists of all problems that can be accepted by a deterministic polynomial
time machine with access to an oracle from NP and such that furthermore all questions to the
oracle are asked in parallel [110, 138].

Theorem 15 ( [88]) The fully compressed subsequence matching problem belongs to PSPACE and
is PP-hard.

Theorem 15 improves a result from [82] stating that the fully compressed subsequence matching
problem is hard for the class PNP

|| .
Membership of fully compressed subsequence matching in PSPACE is easy to prove. The

straight-forward greedy linear time algorithm for uncompressed strings becomes a polynomial
space bounded algorithm for SLP-compressed strings. In polynomial space, we store a position pP

in the string eval(P) and a position pT in the string eval(T) (initially, pT = pP = 1). In each step,
we search for the smallest position p ≥ pT such that eval(T)[p] = eval(P)[pP]. If we find such a
position, we set pP := pP + 1 and pT := p + 1.
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Hardness of fully compressed subsequence matching for the class PP is derived in [88] from
Theorem 14. It is easy to see that there exists a fixed fully balanced adequate polynomial time
Turing-machine M for which it is PP-complete to check whether the number of accepting com-
putations of M on a given input w is at least m (a given binary coded number). Let us fix an
input w for M and a binary coded number m. By Theorem 14, we can compute in logspace
two SLPs A and B such that |eval(A)| = |eval(B)| and leaf(M,w) = ρ(eval(A) ⊗ eval(B)). Let
n = |eval(A)| = |eval(B)| ≥ 1; the binary encoding of this number can be computed in logspace
in this particular case. For the number m we can w.l.o.g. assume that m ≤ n (otherwise, there
cannot be m accepting computations on input w).

We define two morphisms φ1 and φ2 as follows:

φ1(0) = 0n+1 φ1(1) = (10)n

φ2(0) = 0(10)n φ2(1) = (10)n+1

It is straightforward to compute in logspace SLPs C and D such that

eval(C) = φ1(eval(A))(10)m and eval(D) = φ2(eval(B)).

Moreover, it is not too hard to show that eval(C) is a subsequence of eval(D) if and only if
ρ(eval(A) ⊗ eval(B)) contains at least m many 1’s. The latter holds if and only if the number of
accepting computations of M on input w is at least m. This concludes our proof sketch for the
PP-hardness of fully compressed subsequence matching.

A corollary of the PP-hardness of fully compressed subsequence matching is PP-hardness of the
longest common subsequence problem and the shortest common supersequence problem on SLP-
compressed strings, even when both problems are restricted to two input strings. These problems
have many applications e.g. in computational biology [53]. Another interesting property of the
fully compressed subsequence matching problem is that it can be reduced to its own complement
[82]. Hence, the fully compressed subsequence matching problem and its complementary problem
have the same complexity.

As for pattern matching, also the length of the pattern in subsequence matching is quite often
small in comparison to the length of the text. In such a situation it makes sense to consider the
complexity of checking whether an uncompressed pattern p ∈ Σ∗ is a subsequence of a compressed
string eval(T). Let us call this problem the semi-compressed subsequence matching problem. There
is a straightforward algorithm for semi-compressed subsequence matching that works in time
O(|p| · |T|), see [133, 142]. Assume that the SLP T is in Chomsky normal form. Let p = a1 · · · am.
The idea is to compute for every position 1 ≤ i ≤ m and every variable X of T the length ℓ(i,X)
of the longest prefix of ai · · · am that is a subsequence of evalT(X). The values ℓ(i,X) satisfy
a simple recursion, which allows to compute all these values in time O(|p| · |T|). More complex
problems related to semi-compressed subsequence matching (e.g. counting the number of shortest
factors of eval(T), which contain p as a subsequence) are considered in [22, 134, 142].

The structural complexity of a generalization of semi-compressed subsequence matching was
studied by Markey and Schnoebelen [100]. LOGCFL is the class of all languages that are logspace
reducible to a context-free language [132]; it coincides with the class of all languages that can be
recognized by a uniform boolean circuit family of polynomial size and logarithmic depth, where
all ∧-gates have bounded fan-in and all ∨-gates have unbounded fan-in [137]. It is conjectured
that LOGCFL is a proper subclass of P.

Theorem 16 ([100]) The following problem belongs to LOGCFL:

input: Strings p0, p1 . . . , pn ∈ Σ∗ and an SLP T over Σ
question: Does eval(T) ∈ p0Σ

∗p1Σ
∗ · · · pn−1Σ

∗pn hold?

9 Compressed membership problems

The complexity of membership problems for various classes of formal languages is a classical topic
at the borderline between formal language theory and complexity theory. It is therefore natural to
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consider membership problems in a compressed setting. For a language L ⊆ Σ∗, the compressed
membership problem is the following decision problem:

input: An SLP A over the alphabet Σ
question: Does eval(A) ∈ L hold?

An immediate corollary of Theorem 13 is the following result:

Corollary 17 For every language L ⊆ {0, 1}∗, the compressed membership problem for the lan-
guage L is complete for the logspace leaf language class LEAFlog(L).

If we fix some formalism for describing languages, we may also consider a uniform version of the
compressed membership problem, where the language L is part of the input. In this section,
we will survey result on the complexity of this problem for various kinds of automata, regular
expression, and grammars. Let us start with regular languages.

9.1 Regular languages

Let us start with regular languages, the most basic languages in formal language theory.

Theorem 18 ([10, 100, 115]) The following holds:

• For a given nondeterministic finite automaton A with n states and an SLP A it can be
checked in time O(|A| · n3) whether eval(A) ∈ L(A).

• There exists a fixed regular language with a P-complete compressed membership problem.

The first statement is easy to show. Let A be an SLP in Chomsky normal form over the alphabet Σ
and let A be a nondeterministic finite automaton with state set Q and input alphabet Σ. W.l.o.g.
assume that Q = {1, . . . , n}. The set of transition tuples of A can be represented by a bunch of
boolean matrices Ba ∈ {0, 1}n×n, one for each input symbol a ∈ Σ. Entry (i, j) of Ba is 1 if and
only if there is an a-labelled transition from state i to state j. Clearly, there is a path from state
i to state j that is labelled with the word a1 · · · am (a1, . . . , am ∈ Σ) if and only if entry (i, j) of
the product matrix Ba1

Ba2
· · ·Bam

is 1. This simple observation allows us to compute for each
nonterminal C of the SLP A a boolean matrix BC such that entry (i, j) of BC is 1 if and only
if there is an evalA(C)-labelled path from state i to state j: If C → a ∈ Σ is a production of
A, we set BC = Ba. If C → DE is a production of A, then we set BC = BDBE . If S is the
initial nonterminal of A, then eval(A) ∈ L(A) if and only if in the matrix BS there is a 1-entry
at a position (i, j), where i is an initial state of A and j is a final state of A. In this way, we can
check whether eval(A) ∈ L(A) using |A| many multiplications of boolean (n × n)-matrices, which
leads to the time bound O(|A| · n3). Actually, by using a better algorithm for boolean matrix
multiplication than the standard n3 school method, the time bound O(|A| · n3) can be improved.
For about 20 years, the Coppersmith–Winograd algorithm was the asymptotically best algorithm
for matrix multiplication with a complexity of O(n2,3755). This bound was recently improved by
Williams [29] to O(n2,3727).

For a given deterministic finite automaton A with n states and an SLP A, one can verify
eval(A) ∈ L(A) in time O(|A| · n) [115]. Instead of |A| many boolean matrix multiplications, only
|A| compositions of functions from {1, . . . , n} to {1, . . . , n} are necessary in the deterministic case.
In [12] the following generalization has been shown: From a given SLP A over an alphabet Σ and
a deterministic finite state transducer τ with input alphabet Σ and n states, one can compute in
time O(|A| · n) an SLP B of size O(|A| · n) for the output string τ(eval(A)).

The second statement of Theorem 18 is stated in [100]. The proof is based on a result from
[10], which states that there exists a fixed finite monoid M (in fact, any finite non-solvable group
can be taken for M) such that the circuit evaluation problem for M is P-complete. The latter
problem asks whether a given circuit over M (i.e., a circuit, where all input gates are labelled
with constants from M and all internal gates are labelled with the multiplication operation of M)
evaluates to a given element of M . A circuit over M can be viewed as an SLP that generates
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a word over the alphabet M . The second statement of Theorem 18 follows, since the set of all
words over the alphabet M that evaluate to a particular element of M is a regular language.
P-hardness of the circuit evaluation problem for a finite non-solvable group is shown in [10] using
a technique of Barrington [9]. In this paper, Barrington proved that the word problem for every
finite non-solvable group is complete for the circuit complexity class NC1.

9.2 Compressed membership for regular expressions

When the regular language is not given by an automaton but by a regular expression, the complex-
ity of the compressed membership problem depends on the operators that we allow in expressions.
The same phenomenon is already well-known for uncompressed strings. For instance, whereas the
membership problem for ordinary regular expressions (where only the Kleene-operators ·,∪, ∗ are
allowed) is NL-complete [69], membership for semi-extended regular expressions (where in addition
also intersection is allowed) is LOGCFL-complete [111].

Let us be a bit more formal: For a set C of language operations, C-expressions over the alphabet
Σ are built up from constants in Σ ∪ {ε} using the operations from C. Thus, ordinary regular
expressions are {·,∪, ∗}-expressions. The language defined by ρ is L(ρ). The length |ρ| of an
expression is defined as follows: For ρ ∈ Σ ∪ {ε} set |ρ| = 1. If ρ = op(ρ1, . . . , ρn), where op is an
n-ary operator, we set |ρ| = 1+ |ρ1|+ · · ·+ |ρn|. For a set C of language operations, the compressed
membership problem for C is the following computational problem:

input: A C-expression ρ and an SLP A

question: Does eval(A) ∈ L(ρ) hold?

Beside the Kleene-operators ·,∪, ∗, we also consider intersection (∩), complement (¬), squaring
( 2, where L2 = {uv | u, v ∈ L}), and shuffle (||). The latter operator is defined as follows: For
words u, v ∈ Σ∗ let

u || v = {u0v0u1v1 · · ·unvn | n ≥ 0, u = u0 · · ·un, v = v0 · · · vn}.

For L,K ⊆ Σ∗ let L || K =
⋃

u∈L,v∈K u || v. It is well known that the class of regular languages

is closed under ∩,¬, 2, and ||, but each of these operators leads to more succinct representations
of regular languages. Operator sets that received particular interest in the literature are {·,∪,¬}
(star-free expressions), {·,∪, ∗,∩} (semi-extended regular expressions), {·,∪, ∗,¬} (extended reg-
ular expressions), and {·,∪, ∗, ||} (shuffle-expressions).

The next theorem gives a rather complete picture on the complexity of compressed membership
problems for regular expressions. It characterizes the complexity for all operator sets

{·,∪} ⊆ C ⊆ {·,∪, ∗,∩,¬, ||, 2}.

The class ATIME(exp(n), O(n)) denotes the class of all problems that can be solved on an alternat-
ing Turing-machine in exponential time, but the number of alternations (i.e., transitions between
an existential and a universal state or vice versa) has to be bounded by O(n) on every computation
path. Completeness results for ATIME(exp(n), O(n)) are typical for logical theories [28], but we
are not aware of any other completeness results for this class in formal language theory.

Theorem 19 ([86]) Let {·,∪} ⊆ C ⊆ {·,∪, ∗,∩,¬, ||, 2}. The compressed membership problem for
C is

(1) in P if C ⊆ {·,∪,∩} or C ⊆ {·,∪, ∗},

(2) NP-complete if {·,∪, ||} ⊆ C ⊆ {·,∪,∩, ||},

(3) PSPACE-complete if (i) ¬ 6∈ C or || 6∈ C and (ii) C contains {·,∪,¬} or {·,∪, 2} or {·,∪, ∗,∩}
or {·,∪, ∗, ||}, and

(4) ATIME(exp(n), O(n))-complete if {·,∪,¬, ||} ⊆ C.
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The first statement (membership in P for C ⊆ {·,∪,∩} or C ⊆ {·,∪, ∗}) is clear: The case
C ⊆ {·,∪, ∗} reduces to the uniform compressed membership problem for nondeterministic finite
automata (since {·,∪, ∗}-expressions can be transformed in polynomial time into nondeterminis-
tic finite automata), see Theorem 18. The case C ⊆ {·,∪,∩} is also clear, since for a {·,∪,∩}-
expression ρ the length of every word in L(ρ) is bounded by |ρ|. Hence, the compressed membership
problem for {·,∪,∩} reduces to the (uncompressed) membership problem for {·,∪,∩}-expressions,
which can be solved in polynomial time. By the same argument, the compressed membership prob-
lem for {·,∪,∩, ||} reduces to the (uncompressed) membership problem for {·,∪,∩, ||}-expressions.
But the latter problem is known to be NP-complete; in fact this already holds for {·, ||}-expressions
[104, 140], which yields statement (2) of Theorem 19. The upper complexity bounds in statement
(3) and (4) of Theorem 19 can be shown by rather straightforward algorithms (using for (3) the
well-known correspondance between PSPACE and alternating polynomial time).

Let us now turn to the lower bounds in (3) and (4) from Theorem 19. PSPACE-hardness
for {·,∪,¬} is shown in [86] by a reduction from the quantified boolean satisfiability problem;
the reduction is mainly taken from [99], where it was shown that model checking the temporal
logic LTL on SLP-compressed strings is PSPACE-complete. PSPACE-hardness for {·,∪, 2} and
{·,∪, ∗,∩} is shown by generic reductions from the acceptance problem for a polynomial space
bounded machine. Finally, the PSPACE lower bound for {·,∪, ∗, ||} is proved by a reduction
from the intersection nonemptiness problem for regular expressions (over the standard operator
set {·,∪, ∗}), which is a well-known PSPACE-complete problem [77]. The ATIME(exp(n), O(n))-
hardness part from (4) uses a corresponding result from [89] on the model-checking problem for
monadic second-order logic over SLP-compressed words over a unary alphabet.

9.3 Compressed finite automata

A compressed nondeterministic finite automaton (CNFA for short) is a tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final states, and δ is a finite set of transitions of the form (p, A, q), where p and q are states
and A is an SLP over Σ. The size of A is |A| = |Q|+

∑
(p,A,q)∈δ |A|. We say that a word w labels

a path from state p to state q in A if there exists a sequence of transitions

(p0, A0, p1), (p1, A1, p2), . . . , (pn−1, An−1, pn) ∈ δ

(n ≥ 0) such that p0 = p, pn = q, and w = eval(A0) · · · eval(An−1). The language L(A) ⊆ Σ∗

is the set of all words that label a path from the initial state q0 to some final state qf ∈ F . A
compressed deterministic finite automaton (CDFA for short) is a CNFA A = (Q,Σ, δ, q0, F ) such
that for every state p ∈ Q, and all transitions (p, A1, q1), (p, A2, q2) ∈ δ, neither eval(A1) is a prefix
of eval(A2), nor eval(A2) is a prefix of eval(A1) The compressed membership problem for CNFAs
(resp., CDFAs) is the following decision problem:

input: A CNFA (resp., CDFA) A and an SLP A

question: Does eval(A) ∈ L hold?

Theorem 20 ([66]) The compressed membership problem for CNFAs is NP-complete, whereas
the compressed membership problem for CDFAs is P-complete.

In his proof of Theorem 20, Jez developed his recompression technique that he latter applied in
[67] to get his O((|T|+ |P|) log(M) log(|T|+ |P|))-algorithm for fully compressed pattern matching,
see Section 6.

The order of a word u is the largest number n such that u can be written as u = vnw, where
w is a prefix of v. If A1, . . . , An is a list of all SLPs that occur as labels in the CNFA A, then we
set

ord(A) = max{ord(eval(Ai)) | 1 ≤ i ≤ n}.

Note that ord(A) is in general exponential in the size of A. By the following result, the compressed
membership problem for CNFAs A with small ord(A) can be solved efficiently.
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Theorem 21 ([93]) Given a CNFA A and an SLP A, we can check eval(A) ∈ L(A) in time
polynomial in |A|, |A|, and ord(A).

9.4 Context-free languages

In this section, we consider the compressed membership problem for context-free languages. It
is easy to see that for every context-free language the compressed membership problem can be
solved in polynomial space. This result even holds in a uniform setting, where the input consists
of a context-free grammar G and an SLP A, and it is asked whether eval(A) ∈ L(G):

Theorem 22 ([85]) For a given context-free grammar G and an SLP A it can be checked in
polynomial space whether eval(A) ∈ L(G).

First, one has to transform the grammar G into Chomsky normal form; this is possible in polyno-
mial time. By [48] the uniform (uncompressed) membership problem for context-free grammars in
Chomsky normal form can be solved in DSPACE(log2(|G|+ |w|)), where |G| is the size of the input
grammar (in Chomsky normal form) and w is the word that has to be tested for membership.
This algorithm can be used to check for a given context-free grammar G in Chomsky normal form
and an SLP A in DSPACE(log2(|G| + 2|A|)), i.e., in polynomial space, whether eval(A) ∈ L(G).

In [85], a fixed deterministic context-free language with a PSPACE-complete compressed mem-
bership problem was constructed using a generic reduction from the acceptance problem for poly-
nomial space machines. Alternatively, the existence of such a language can also be deduced from
Corollary 17 and the following result from [65]: There is a deterministic context-free language L
such that PSPACE = LEAFlog(L). In [21], this result was sharpened: There even exists a 1-turn
deterministic context-free language L such that PSPACE = LEAFlog(L). A deterministic pushdown
automaton P is 1-turn, if for every input, the unique computation of P can be divided into two
phases: In a first phase, the height of the pushdown does not decreases in every step, whereas
in the second phase, the height of the pushdown does not increase in every step. Moreover, in
[21] also a deterministic 1-counter language L (i.e., a context-free language that is accepted by a
deterministic pushdown automaton with a unary pushdown alphabet) with PSPACE = LEAFlog(L)
is constructed. Hence, there also exist fixed 1-turn deterministic context-free languages and de-
terministic 1-counter languages with a PSPACE-complete compressed membership problem.

In [88] it was shown that even the important subclass of visibly pushdown languages [6] contains
languages with a PSPACE-complete compressed membership problem. Let us first define visibly
pushdown automata and the associated languages. Let Σc and Σr be two disjoint finite alphabets
(call symbols and return symbols) and let Σ = Σc ∪ Σr. A visibly pushdown automaton (VPA)
[6] over (Σc,Σr) is a tuple V = (Q, q0,Γ,⊥,∆, F ), where Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, Γ is the finite set of stack symbols, ⊥ ∈ Γ is the
initial stack symbol, and

∆ ⊆ (Q × Σc × Q × (Γ \ {⊥})) ∪ (Q × Σr × Γ × Q)

is the set of transitions.3 A configuration of V is a triple from Q × Σ∗ × (Γ \ {⊥})∗⊥. For two
configurations (p, au, v) and (q, u, w) (with a ∈ Σ, u ∈ Σ∗) we write (p, au, v) ⇒V (q, u, w) if one
of the following three cases holds:

• a ∈ Σc and w = γv for some γ ∈ Γ with (p, a, q, γ) ∈ ∆

• a ∈ Σr and v = γw for some γ ∈ Γ with (p, a, γ, q) ∈ ∆

• a ∈ Σr, u = v = ⊥, and (p, a,⊥, q) ∈ ∆.

The language L(V ) is defined as

L(V ) = {w ∈ Σ∗ | ∃f ∈ F, u ∈ (Γ \ {⊥})∗⊥ : (q0, w,⊥) ⇒∗
V (f, ε, u)}.

The VPA V is deterministic if for every p ∈ Q and a ∈ Σ the following hold:

3In [6], the input alphabet may also contain internal symbols, on which the automaton does not touch the stack
at all. For our lower bound, we will not need internal symbols.
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• If a ∈ Σc, then there is at most one pair (q, γ) ∈ Q × Γ with (p, a, q, γ) ∈ ∆.

• If a ∈ Σr, then for every γ ∈ Γ there is at most one q ∈ Q with (p, a, γ, q) ∈ ∆.

A VPA V is called a 1-turn VPA, if L(V ) ⊆ Σ∗
cΣ

∗
r . In this case L(V ) is called a linear visibly

pushdown language.
Visibly pushdown automata and their languages have many decidability results and closure

results that do not hold for general context-free languages. For instance, for every VPA V there
exists a deterministic VPA V ′ with L(V ) = L(V ′), the class of visibly pushdown languages is effec-
tively closed under boolean operations, and equivalence, inclusion, and intersection non-emptiness
are decidable for VPAs, see [6] where also precise complexity results are shown. Moreover, also
the membership problem seems to be easier for visibly pushdown languages than for general
context-free languages. By a classical result from [51], there exists a context-free language with
a LOGCFL-complete membership problem. For visibly pushdown languages the complexity of the
membership problem decreases to the circuit complexity class NC1 [35] and is therefore of the
same complexity as for regular languages [9] (complexity theorists conjecture that NC1 is a proper
subclass of LOGCFL). In contrast to this, by the following theorem, compressed membership is
in general PSPACE-complete even for linear visibly pushdown languages, whereas it is P-complete
for regular languages (Theorem 18):

Theorem 23 ([88]) There is a fixed 1-turn visibly pushdown language with a PSPACE-complete
compressed membership problem.

This result can be deduced from Theorem 14. By the main result of [60] there exists a regular
language K ⊆ {0, 1}∗ such that for every language L in PSPACE there exists a fully balanced
adequate polynomial time Turing-machine M with the following properties:

• There is a polynomial p(n) such that for every input w, every maximal path in the compu-
tation tree TM (w) has exactly p(|w|) many branching nodes.

• For every input w, w ∈ L if and only if leaf(M,w) ∈ K.4

Hence, by Theorem 14, the following problem is PSPACE-hard:

input: Two SLPs A and B over the terminal alphabet {0, 1} such that |eval(A)| = |eval(B)|.

question: Does eval(A) ⊗ eval(B) ∈ ρ−1(K) hold?

Since the class of regular languages is closed under inverse morphisms, the language ρ−1(K) ⊆
({0, 1} × {0, 1})∗ is regular too. Fix a deterministic finite automaton D for ρ−1(K). Let 0, 1 be
two new symbols. For a word w = a1 · · · an with a1, . . . , an ∈ {0, 1} let w = an · · · a1. It remains
to construct a 1-turn visibly pushdown automaton P such that

L(P ) = {uv | u, v ∈ {0, 1}∗, |u| = |v|, u ⊗ v ∈ L(D)}

(then, we get eval(A) ⊗ eval(B) ∈ ρ−1(K) if and only if eval(A)eval(B) ∈ L(P )). This is straight-
forward: While reading a symbol from {0, 1}, the visibly pushdown automaton stores the symbol
on the stack. When reading a symbol a ∈ {0, 1}, the automaton checks if the topmost stack
symbol is a. If not, the automaton blocks, otherwise it pops a from the stack.

10 Querying compressed strings

One of the simplest questions one can ask about a given string is whether a certain position in the
string carries a certain symbol. Let us formally define the compressed querying problem as follows:

input: An SLP A over an alphabet Σ, a binary-coded number 1 ≤ i ≤ |eval(A)|, and a symbol
a ∈ Σ.
question: Does eval(A)[i] = a hold?

4The proof of this result uses again Barrington’s technique mentioned at the end of Section 9.1.
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Theorem 24 ([82]) Compressed querying is P-complete.

We already argued in Section 2.2 that compressed querying can be solved in polynomial time.
P-completeness of compressed querying is shown in [82] by a reduction from the P-complete super
increasing subsetsum problem [72], which is the following problem:

input: Binary coded natural numbers t, w1, . . . , wn such that wk <
∑k−1

i=1 wi for all 1 ≤ k ≤ n.
question: Do there exist b1, . . . , bn ∈ {0, 1} such that t =

∑n
i=1 biwi?

Assume that w1, . . . , wn are binary coded natural numbers such that wk <
∑k−1

i=1 wi for all 1 ≤
k ≤ n. In [82], it is shown how to construct in logspace an SLP A over the alphabet {a, b} such
that |eval(A)| = 1 +

∑n
i=1 wi and for all 0 ≤ m ≤

∑n
i=1 wi the following holds: eval(A)[m + 1] = b

if and only if there exist b1, . . . , bn ∈ {0, 1} such that m =
∑n

i=1 biwi. The construction is very
similar to those from Example 3.

P-completeness of compressed querying does not imply that there do not exist highly efficient
polynomial time algorithms for this problem. When considering efficient algorithms for com-
pressed querying it makes sense to distinguish between preprocessing time and query time: During
preprocessing time, an auxiliary data structure is constructed from the input SLP A that allows
to compute in a second phase for any given binary coded number 1 ≤ i ≤ |eval(A)| the symbol
eval(A)[i] within the query time bound. Hence, the preprocessing phase is executed only once.

The straightforward algorithm (see Section 2.2) that first computes the lengths of all strings
generated by nonterminals of A and then walks down the derivation tree of A needs

• preprocessing time Θ(|A|) in order to compute the lengths of all strings generated by non-
terminals of A, followed by

• query time Θ(h), where h is the height of A, for walking down the derivation tree of A.

As usual we assume here the RAM model with uniform cost measure. Note that the extra space
in order to store the lengths of all strings generated by nonterminals of A is Θ(|A|).

The query time of this algorithm can be reduced from Θ(h) to Θ(log(n))) by making the SLP
A balanced using the technique from [119]. As mentioned in Section 4, this needs (preprocessing)
time O(|A| · log(n)); moreover, the best bound for the size of the resulting balanced SLP is
O(|A| · log(n)). Hence, the extra space increases from Θ(|A|) to O(|A| · log(n)). The following
result from [15] combines a query time of O(log(n)) with a preprocessing time and extra space of
O(|A|):

Theorem 25 ([15]) From a given SLP A such that n = |eval(A)| one can compute on a RAM
in (preprocessing) time O(|A|) a data structure of size O(|A|) that allows to compute in (query)
time O(log(n)) the symbol eval(A)[i] for a given binary coded number 1 ≤ i ≤ n.

Some lower bounds on the preprocessing and query time for the compressed querying problem can
be found in [24].

11 Compressed word problems for groups

In recent years, techniques for SLP-compressed strings were successfully applied in order to get
more efficient algorithms for problems in combinatorial group theory. In this section, we briefly
survey some of these results. We will restrict our consideration to the compressed word problem
and its application to the word problem for automorphism groups. Background in combinatorial
group theory can be found for instance in [96, 131].

Let G be a finitely generated group, and let Σ be a finite generating set for G. This means
that every element of G can be written as a product of elements from Σ∪Σ−1. The word problem
of G with respect to Σ is the following decision problem:

input: A word w ∈ (Σ ∪ Σ−1)∗

question: Does w = 1 hold in the group G?
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It is well known and easy to see that if Γ is another finite generating set for G, then the word
problem for G with respect to Σ is logspace many-one reducible to the word problem for G with
respect to Γ. This justifies to speak just of the word problem for the group G.

The word problem was introduced in the pioneering work of Dehn from 1910 [32] in relation
with topological questions. Novikov [109] and independently Boone [16] constructed examples
of finitely presented groups (i.e., finitely generated groups with only finitely many defining rela-
tions) with an undecidable word problem. Despite this negative result, many natural classes of
groups with decidable word problems were found. Prominent examples are for instance finitely
generated linear groups, automatic groups [36], and one-relator groups. With the advent of com-
putational complexity theory, also the complexity of word problems became an active research
area. For instance, it was shown that for a finitely generated linear group the word problem can
be solved in logarithmic space [84, 130], that automatic groups have polynomial time solvable (in
fact quadratic) word problems [36], and that the word problem for a one-relator group is primitive
recursive [19].

For a group G let Aut(G) be the automorphism group of G. In general, Aut(G) is not neces-
sarily finitely generated even if G is finitely generated. For the investigation of the complexity of
the word problem of a finitely generated subgroup of Aut(G), a compressed variant of the word
problem for G turned out to be useful. Assume again that G is finitely generated by Σ. The
compressed word problem of G with respect to Σ is the following computational problem:

input: An SLP A over the alphabet Σ ∪ Σ−1

question: Does eval(A) = 1 hold in G?

It is easy to see that also for the compressed word problem the complexity does not depend on
the chosen generating set, which allows to speak of the compressed word problem for the group
G. The compressed word problem for G can be also viewed as the following question: Does a
given circuit over G evaluate to the identity element of G. One of the main applications of the
compressed word problem to “non-compressed” decision problems is the following result:

Theorem 26 ([95, 125]) Let H be a finitely generated subgroup of Aut(G). Then the word
problem for H is logspace many-one reducible to the compressed word problem for G.

The proof of Theorem 26 is quite simple. Given a sequence of H-generators (and hence automor-
phisms of G) ϕ1, ϕ2, . . . , ϕn, it has to be checked whether the composition ϕ = ϕ1 ◦ϕ2 ◦ · · · ◦ϕn is
the identity mapping on G. But this is equivalent to ϕ(a) = a for each generator a ∈ Σ of G. Now,
one can easily construct in logspace from the sequence ϕ1, ϕ2, . . . , ϕn and a generator a ∈ Σ an
SLP Aa over the alphabet Σ∪Σ−1 such that eval(Aa) represents the group element ϕ(a). Hence,
one has to check for all a ∈ Σ, whether eval(Aa) = a in the group G, which is an instance of the
compressed word problem for G.

Clearly, for a finite group the compressed word problem can be solved in polynomial time. The
following theorem is an immediate corollary of the results from [10].

Theorem 27 ([10]) Let G be a finite group.

• If G is not solvable, then the compressed word problem for G is P-complete.

• If G is solvable, then the compressed word problem for G belongs to the class DET ⊆ NC2.5

So, for instance, the compressed word problem for the symmetric group on 5 elements (a non-
solvable group) is P-complete.

Compressed word problems for infinite groups were considered for the first time in [85]. For
free groups, the following result was shown:

Theorem 28 ([85]) The compressed word problem for a finitely generated free group F of rank
r can be solved in polynomial time. If r > 1 then this problem is P-complete.

5DET is the class of all problems that are NC1-reducible to the problem of computing the determinant of a given
integer matrix.
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The proof for P-hardness for r > 1 uses a construction of Robinson [117], where it is shown that
the (uncompressed) word problem for the free group of rank 2 is hard for the circuit complexity
class NC1. Let us sketch a polynomial time algorithm for the compressed word problem for a
finitely generated free group F . Let Σ be a free set of generators for F and let A be an SLP
over the terminal alphabet Σ ∪ Σ−1. By Theorem 4 it suffices to construct a composition system
B over the same alphabet that generates the reduced normal form of eval(A). This normal form
is obtained by iteratively deleting occurrences of subwords aa−1 with a ∈ Σ ∪ Σ−1 from eval(A)
(the order in which cancelation is done is not relevant). The composition system B contains for
each variable X of A a variable X ′ such that evalB(X ′) is the reduced normal form of evalA(X).
Let X → Y Z be a production of A and assume that B already contains enough productions
such that evalB(Y ′) (resp., evalB(Z ′)) is the reduced normal form of evalA(Y ) (resp., evalA(Z)).
Let evalB(Y ′) = a1a2 · · · am and evalB(Z ′) = b1b2 · · · bk. In the concatenation evalB(Y ′)evalB(Z ′)
cancellation may only occur at the border between evalB(Y ′) and evalB(Z ′). We have to compute
the length n of the longest suffix of evalB(Y ′) that cancels against the length-n prefix of evalB(Z ′),
i.e., we compute the maximal number n such that

(evalB(Y ′)[m − n + 1,m])−1 = a−1
m a−1

m−1 · · · a
−1
m−n+1 = b1b2 · · · bn = (evalB(Z ′))[1, n] (1)

For a particular n we can check equation (1) in polynomial time by the extension of Theorem 9
to composition systems (which holds by Theorem 4). Now, the maximal n satisfying (1) can be
computed in polynomial time as well using binary search. Finally, we add to the composition
system B the production X ′ → Y ′[1,m − n]Z ′[n + 1, k].

A direct corollary of Theorem 26 and 28 is the following result, which solves an open problem
from [71].

Corollary 29 ([125]) Let F be a finitely generated free group. The word problem for Aut(F )
(the automorphism group of F , which is finitely generated) can be solved in polynomial time.

Several closure properties for the complexity of the compressed word problem where shown:

(1) If H is a finitely generated subgroup of G and the compressed word problem for G can be
solved in polynomial time, then the same holds for H [95].

(2) If G is a finite-index subgroup of H and the compressed word problem for G can be solved in
polynomial time, then the same holds for H [95].

(3) Let A and B be finite isomorphic subgroups of the group G, let ϕ : A → B be an isomorphism,
and assume that the compressed word problem for G can be solved in polynomial time. Then,
also the compressed word problem for the HNN-extension H = 〈G, t; t−1at = ϕ(a)(a ∈ A)〉
can be solved in polynomial time [57].

(4) Let G and H be groups, which both contain the finite subgroup A. If the compressed word
problems of G and H can be solved in polynomial time, then also the compressed word problem
for the amalgamated free product G ∗A H can be solved in polynomial time [57].

(5) Let G1, G2, . . . , Gn be groups and let I be a symmetric and irreflexive binary relation on
the set {1, . . . , n}. The graph product GP(G1, G2, . . . , Gn, I) results from the free product
G1 ∗ G2 ∗ · · · ∗ Gn by taking the quotient with respect to the commutation relations ab = ba
for all a ∈ Gi and b ∈ Gj with (i, j) ∈ I. Assume that the compressed word problems for
the groups G1, . . . , Gn can be solved in polynomial time. Then, also the compressed word
problem for the graph product GP(G1, G2, . . . , Gn, I) can be solved in polynomial time [58].

In all these results, polynomial time can be replaced by any complexity class that is closed under
polynomial time Turing-reductions.

Results (1)–(5) yield polynomial time algorithms for a quite large class of groups. First of all,
(5) implies by taking G1 = G2 = · · · = Gn = Z that the compressed word problems for right-
angled Artin groups (which are also known as graph groups or free partially commutative groups)
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can be solved in polynomial time. Due to their rich subgroup structure, right-angled Artin groups
received a lot of attention in group theory during the last few years [14, 30, 46]. With (1) and (5) it
follows that for every group G that virtually embeds into a right-angled Artin group (i.e., G has a
finite index subgroup that embeds into a right-angled Artin group) the compressed word problem
can be solved in polynomial time. Groups that virtually embed into a right-angled Artin group
are also known as virtually special. Recently, it has been shown that virtually special groups form
a quite large class of groups. For instance, every Coxeter group is virtually special [56] and every
fully residually free group is virtually special [141].6 It follows that for every Coxeter group as well
as for every fully residually free group the compressed word problem can be solved in polynomial
time. For fully residually free groups, this result was directly shown by Macdonald [97] using a
generalization of the technique for free groups.

For finitely generated linear groups, the word problem can be solved in logarithmic space
[84, 130]. We currently do not know whether also for these groups the compressed word problem
can be solved in polynomial time. The best we can achieve is a randomized polynomial time
algorithm for the complement of the compressed word problem. More precisely, a language L
belongs to the complexity class RP (randomized polynomial time) if there exists a randomized
polynomial time algorithm A such that:

• if x 6∈ L then Prob[A accepts x] = 0

• if x ∈ L then Prob[A accepts x] ≥ 1/2

The choice of the failure probability 1/2 in case x ∈ L is arbitrary: By repeating the algorithm c
times (where c is some constant), we can reduce the failure probability to (1/2)c and still have a
randomized polynomial time algorithm. A language L belongs to the class coRP, if the complement
of L belongs to RP. This means that there exists a randomized polynomial time algorithm A such
that:

• if x 6∈ L then Prob[A accepts x] ≤ 1/2

• if x ∈ L then Prob[A accepts x] = 1

Theorem 30 ([[95]) If G is a finitely generated linear group, then the compressed word problem
for G belongs to coRP.

The idea for the proof of Theorem 30 is to reduce (by using results from [84, 130]) the compressed
word problem for a finitely generated linear group G to the problem, whether a circuit over a
polynomial ring Z[x1, . . . , xn] or Fp[x1, . . . , xn] (for p a prime) evaluates to the zero polynomial.
This problem is known as algebraic identity testing. It belongs to coRP by [63]. Whether algebraic
identity testing belongs to P is a major open problem in complexity theory, see [1] for a survey.

It also makes sense to consider the compressed word problem for a finitely generated monoid
M . In that case, the input consists of two SLPs A and B over a generating set of M , and it
is asked, whether eval(A) = eval(B) in M . For instance, Theorem 9 says that the compressed
word problem for a finitely generated free monoid can be solved in polynomial time. In [87], it
was shown that the compressed word problem for a finitely generated free inverse monoid of rank
r ≥ 2 is complete for Π2

p, which is the universal second level of the polynomial time hierarchy.
It can be defined as the class of all languages L ⊆ Σ∗ such that there exists a polynomial time
set P ⊆ Σ∗ × {0, 1}∗ × {0, 1}∗ and a polynomial p(x) such that for all u ∈ Σ∗ we have ({0, 1}≤m

denotes the set of binary words of length at most m):

u ∈ L ⇐⇒ ∀v ∈ {0, 1}≤p(|u|) ∃w ∈ {0, 1}≤p(|u|) : (u, v, w, ) ∈ P

The class Πp
2 contains both NP and coNP.

Recently, power circuits [107], which are a compression scheme for representing huge integers
(of multiply exponential size), have been used for solving the word problem for the one-relator
Baumslag group and Higman’s group [34].

6A group G is fully residually free, if for every tuple (g1, . . . gn) of elements from G\{1} there exists a free group
F and a homomorphism ϕ : G → F such that ϕ(gi) 6= 1 for all 1 ≤ i ≤ n.
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12 Word equations

Let Σ be a finite alphabet and X be a finite set of variables. A word equation over (Σ,X ) is a
pair (u, v) with u, v ∈ (Σ ∪ X )∗. For a mapping σ : X → Σ∗ let σ̂ : (Σ ∪ X )∗ → Σ∗ be the unique
homomorphism with σ̂(a) = a for a ∈ Σ and σ̂(x) = σ(x). A solution of the word equation (u, v)
is a mapping σ : X → Σ∗ such that σ̂(u) = σ̂(v). In the following, we write a word equation (u, v)
as u = v. A system of word equations over (Σ,X ) is a conjunction S =

∧n
i=1 ui = vi of word

equations over (Σ,X ). If σ is a solution of every word equation ui = vi, then σ is called a solution
of S. Standard arguments show that from a given system of word equations S one can compute
(in logspace) a single word equation u = v such that the set of solutions of u = v is equal to the
set of solutions of the system S, see e.g. [33].

Deciding whether a given word equation has a solution turned out to be very difficult. In the
1950’s, Markov conjectured that it is undecidable whether a given word equation has a solution.
He knew that solvability of word equations can be reduced to Hilbert’s 10th problem, and his goal
was to prove the undecidability of Hilbert’s 10th problem by proving undecidability of solvability
of word equations. Whereas Hilbert’s 10th problem was finally shown to be undecidable by the
seminal work of Matiyasevich from 1971, solvability of word equations was shown to be decidable
by Makanin [98] in 1977. Makanin’s algorithm is very complicated, both with respect to its
computational complexity and its technical difficulty. Over the years, the estimate on the time
and space complexity of Makanin’s algorithm was gradually improved. Currently, the best known
bound is EXPSPACE [54]. In 1999, Plandowski came up with an alternative algorithm for checking
solvability of word equations, which put the problem into PSPACE [113]. This is still the best upper
complexity bound. The best known lower bound is NP, and it was repeatedly conjectured that
the precise complexity is NP too.

Now, consider the situation, where for every variable x ∈ X a length-constraint ℓ(x) ∈ N is
specified in binary representation. Consider the question whether a given word equation u = v
has a solution that respects the length constraints. Clearly, this problem is decidable. In fact, the
naive algorithm that guesses for every variable x ∈ X a word of length ℓ(x) over the alphabet Σ
and then checks whether the guess is indeed a solution leads to a NEXPTIME-algorithm (recall
that we represent the numbers for the length constraints in binary). This trivial complexity bound
can drastically be improved by the following result of Plandowski and Rytter [114]:

Theorem 31 ([114]) The following problem can be solved in polynomial time:

input: A system of word equations S over (Σ,X ) and a mapping ℓ : X → N, where every value
ℓ(x) with x ∈ X is binary encoded.
question: Is there a solution σ : X → Σ∗ of S such that |σ(x)| = ℓ(x) for all x ∈ X?

Moreover, in case the answer is affirmative, one can compute in polynomial time for every variable
x ∈ X an SLP Ax such that the mapping x 7→ eval(Ax) is a solution of S and |eval(Ax)| = ℓ(x)
for every x ∈ X .

A system of word equations S is quadratic if every variable x ∈ X occurs at most twice in S.
For quadratic systems of word equations, Diekert and Robson [118] improved the polynomial time
upper bound in Theorem 31 to linear time:

Theorem 32 ([118]) The following problem can be solved in linear time:

input: A quadratic system S of word equations over (Σ,X ) and a mapping ℓ : X → N, where every
value ℓ(x) with x ∈ X is binary encoded.
question: Is there a solution σ : X → Σ∗ of S such that |σ(x)| = ℓ(x) for all x ∈ X?

Moreover, in case the answer is affirmative, one can compute in linear time for every variable
x ∈ X an SLP Ax such that the mapping x 7→ eval(Ax) is a solution of S and |eval(Ax)| = ℓ(x)
for every x ∈ X .

The second statement of Theorem 32 is not stated explicitly in [118] but follows easily from the
proof.
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Let σ be a solution for a word equation u = v. We say that σ is minimal, if for every solution σ′

of u = v we have |σ(u)| ≤ |σ′(u)|. We say that |σ(u)| is the length of a minimal solution of u = v.
By the following result of Plandowski and Rytter [114] , minimal solutions for word equations are
highly compressible:

Theorem 33 ([114]) Let u = v be a word equation over (Σ,X ) and let n = |uv|. Assume that
u = v has a solution and let N be the length of a minimal solution of u = v. Then, for every
minimal solution σ of u = v, the word σ(u) can be generated by an SLP of size O(n2 log2(N)(log n+
log log N)).

In [68], Jez applied his recompression technique from [67, 66] (see Section 6) to word equations and
obtained an alternative PSPACE-algorithm for solving word equations. Moreover, his technique
yields a O(poly(n) log N) bound in Theorem 33 (instead of the O(n2 log2(N)(log n + log log N))
bound); this result is not explicitly state in [68].

13 Computational topology

In [37, 122, 124] efficient algorithms for SLP-compressed strings are used to solve various prob-
lems in computational topology efficiently. Fix a connected, compact, and orientable surface M ,
possibly with a boundary ∂M , see for instance [131] for more details. Typical examples are the
2-dimensional sphere and the torus (both have an empty boundary). A simple path in M is the
image of a continuous injective mapping f from the unit interval [0, 1] ⊆ R into M . If more-
over f([0, 1]) ∩ ∂M = {f(0), f(1)}, then the simple path is called a simple arc. A simple cycle
in M is the image of a continuous injective mapping f from the unit circle S1 into M such that
f(S1)∩∂M = ∅. A simple curve in M is either a simple arc or a simple cycle. A simple multi-curve
in M is the union of finitely many pairwise disjoint simple curves. Two simple multi-curves α and
β are isotopic, if there exists a continuous deformation from α into β that leaves the boundary
∂M fixed. For instance, any two simple cycles on the 2-dimensional sphere are isotopic.

A triangulation T of M consists of a finite set V of points in M and a set E of simple paths
in M (the edges of the triangulation) such that (i) each endpoint of a path α ∈ E belongs to V ,
(ii) if two paths from E intersect, then the intersection is a point of V , and (iii) every connected
component of M \ E is an open disc that is bounded by three paths from E (a triangle of T ). A
simple multi-curve α in M is normal w.r.t. T if (i) for every β ∈ E the intersection α∩ β consists
of finitely many points that are different from the endpoints of β, and (ii) the intersection of α
with a triangle of T consists of finitely many paths and for each of these paths the endpoints are
located on different sides of the triangle. The latter means that if α enters a triangle at the side
β, then it has to leave the triangle at a side different from β.

For each edge e let e−1 be a formal inverse of e and choose an orientation −→e of e. A normal
simple curve α can be represented by a finite word over the alphabet E ∪E−1 as follows: Choose
an orientation of α and follow the simple curve in this orientation (if α is a simple cycle then
the starting point is chosen arbitrarily). Each time α intersects −→e from left to right (resp. from
right to left) we write down e (resp. e−1). The resulting word is called an intersection sequence
of α. Clearly, in case α is closed this word is not unique, since a cyclic rotation of an intersection
sequence is again an intersection sequence. A normal simple multi-curve can be represented by
the set of intersection sequences of its connected components. More compact representations of
normal simple (multi-)curves are known. First of all, one can use SLPs in order to describe long
intersection sequences. Another better known representation are normal coordinates. The vector
of normal coordinates of the normal simple multi-curve α is the tuple (|α ∩ β|)β∈E of natural
numbers. One obtains a succinct description of the curve by encoding these natural numbers in
binary. Two normal simple multi-curves with the same normal coordinates must be isotopic. The
number of connected components of α can grow exponentially with the total number of bits of the
normal coordinates of α. Hence, there is no chance to compute from the binary encoded normal
coordinates of α in polynomial time a set of SLPs for the intersection sequences of the connected
components of α; simply because the number of these SLPs is too large. On the other hand, if
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α is connected then such an SLP can be computed by point (1) of Theorem 34 below. Moreover,
the number of non-isotopic connected components of α is at most 6t, where t is the number of
triangles of the triangulation T (Lemma 3 in [122]).

Theorem 34 Let M be a connected, compact, and orientable surface M and let T = (V,E) be
a triangulation for M . The following problems can be solved in polynomial time, where the input
consists of binary encoded normal coordinates for normal simple multi-curves α and β.

1. Compute an SLP for an intersection sequence of α, assuming that α is connected and hence
a normal simple curve [124].

2. Compute the binary encoded normal coordinates of the connected component of α that con-
tains a given intersection point of α and T [122].

3. Compute the number of connected components of α [122].

4. Compute a list of binary encoded normal coordinates of connected components α1, . . . , αn of
α, such that every connected component of α is isotopic to exactly one αi [122].

5. Check, whether α and β are isotopic (assuming that ∂M 6= ∅) [122].

6. Compute the binary encoded normal coordinates of a Dehn twist of α along β assuming that
β is a simple cycle (see [131] for the definition of a Dehn-twist) [124].

7. Compute the geometric intersection number of α and β [124].7

Note that the converse of point (1) is straightforward: One can compute the binary encoded normal
coordinates of a normal simple curve α from an SLP for an intersection sequence of α by simply
counting the number of occurrences of each symbol e ∈ E ∪ E−1 in the generated intersection
sequence.

The main tool for the proof of Theorem 34 are word equations and their connection to SLPs,
see Section 12. For instance, for point (1) Schaefer et al. construct a quadratic system of word
equations with length constraints such that the solutions of the system are exactly the intersection
sequences of α. Then, Theorem 32 can be used in order to construct in linear time an SLP for
a solution of the system. This technique was first used by Schaefer et al. in [123] in order to
show that string graphs can be recognized in NP. Let us also remark that the algorithm from
[124] for computing Dehn twists in polynomial time (see point (6) in Theorem 34) uses the fact
that the unique freely reduced normal form for a given SLP-compressed word over Σ ∪ Σ−1 can
be computed in polynomial time, see the paragraph after Theorem 28.

In [124] also Dehn-Thurston coordinates, which are another succinct representation of sim-
ple multi-curves, are discussed. It is shown that Theorem 34 is also true with Dehn-Thurston
coordinates instead of normal coordinates.

14 Other applications

Let us briefly discuss some other applications of algorithms for SLPs, in particular Theorem 9
(equality testing for SLP-compressed strings is in P). For precise definitions concerning the dis-
cussed problems we refer the interested reader to the original literature.

One of the earliest applications of Theorem 9 concerns normed context-free processes [61,
79]. In [61], the first algorithm for checking bisimulation equivalence of normed context-free
processes was developed; in [79] a more efficient algorithm was presented. In both papers, checking
bisimulation equivalence of normed context-free processes is reduced to checking equality of SLP-
compressed words. In [52], Theorem 9 is applied in the area of program analysis. It is shown that

7The geometric intersection number of α and β is the minimum of |α′ ∩ β′|, where α′ (resp., β′) is isotopic to α
(resp., β).
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the so called interprocedural global value numbering problem for unary uninterpreted function
symbols can be solved in polynomial time.

Applications of Theorem 9 for general context-free languages can be found in [13, 136]. In [136]
it shown that one can decide in polynomial time whether a context-free grammar with terminal
alphabet Σ ∪ Σ (where Σ = {a | a ∈ Σ} is a disjoint copy of Σ) only generates well-bracketed
strings. Here we view a as the closing bracket of a, so for instance abbcca is well-bracketed but ab
is not. In [13], this result is generalized as follows. Assume that R is a terminating and confluent
string rewriting system over an alphabet Σ such that the presented monoid Σ∗/R is cancellative.
Then by [13] one can decide in polynomial time for a given context-free grammar G whether L(G)
is contained in the set of all strings over Σ that can be reduced with R to the empty word.

In [94], Theorem 9 is used in order to solve the isomorphism problem for regular words (a
particular class of colored linear orders) in polynomial time. A regular word is given by a set of
equations {Xi := wi | 1 ≤ i ≤ n}, where every right-hand side wi is a word over the variables
Xi and terminal letters. This is an SLP, where we do not require condition (2) (acyclicity) from
Definition 1. Starting from the distinguished variable X1, we obtain an infinite derivation tree,
where every leaf is labelled with a terminal symbol. The generated regular word is obtained by
taking the natural left-to-right order on the leaves of the derivation tree, together with the labels
on the leaves. For instance, the recursive equation X1 := abX1 defines the regular word, where the
underlying linear order is (N,≤), and every even (resp., odd) position is labelled with a (resp., b).
Another example is X1 := X1aX1bX1. It is not hard to see that this equation defines the regular
word consisting of the rational numbers with the natural order, which are densely colored with
a and b (between every two different rationals, there is an a-colored point as well as a b-colored
point). In [94], it is shown that one can decide for two given sets of equations in polynomial time,
whether they define isomorphic regular words. The proof is based on a reduction to equality for
SLP-compressed strings.

15 Extensions to trees and pictures

The idea of grammar-based compression can be extended from strings to more complicated struc-
tures. In fact, all one needs is a set of operations on a domain D of objects, that construct “larger”
D-objects from smaller ones. Using straight-line programs over D with these operations allows to
construct “very large” D-objects.

15.1 Trees

For background on trees, tree grammars, and tree automata see [27]. The concept of an SLP can
easily be generalized from strings to trees. Here, trees are rooted node-labelled trees. Every node
has a label from an alphabet Σ. Moreover, with every symbol a ∈ Σ a natural number (the rank
of a) is associated. If a tree node v is labelled with a symbol of rank n, then v has exactly n
children, which are linearly ordered. Such trees can conveniently be represented as terms. The
size |t| of a tree t is the number of nodes of t. Here is an example:

Example 35 Let f be a symbol of rank 2, h a symbol of rank 1, and a a symbol of rank 0 (a
constant). Then the term h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a)))) corresponds to the node-labelled
tree of size 14, shown in Figure 4.

A tree straight-line program (TSLP for short and also called SLCF tree grammar in [90, 92]) over
the terminal alphabet Σ (which is a ranked alphabet in the above sense) is a tuple A = (N,Σ, S, P ),
such that N is a finite set of ranked symbols (the nonterminals), S ∈ N has rank 0 (the initial
nonterminal) and P is a finite set of productions of the form A(y1, . . . , yn) → t where A is
a nonterminal of rank n and t is a tree built up from the ranked symbols in Σ ∪ N and the
parameters y1, . . . , yn which are considered as symbols of rank 0 (i.e., constants). Moreover, as
for ordinary SLPs, it is required that every nonterminal occurs on the left-hand side of exactly
one production, and the relation {(A,B) ∈ N × N | (A(y1, . . . , yn) → t) ∈ P,B occurs in t} is

27



h

f

h h

f

h a

h

a

f

h a

h

a

Figure 4: A node-labelled tree

acyclic. A TSLP A generates a tree eval(A) in the natural way. During the derivation process, the
parameters y1, . . . , yn are instantiated with concrete trees. Instead of giving a formal definition,
let us consider and example.

Example 36 Let S,A,B,C be nonterminals, let S be the start nonterminal and let the TSLP A

consist of the following productions:

S → A(B(a), B(a))

A(x1, x2) → C(C(x1, a), C(x2, a))

C(x1, x2) → h(f(x1, x2))

B(x) → h(h(x))

Then eval(G) is the tree from Example 35. It can be derived as follows:

S → A(B(a), B(a))

→ C(C(B(a), a), C(B(a), a))

→ C(C(h(h(a)), a), C(h(h(a)), a))

→ h(f(C(h(h(a)), a), C(h(h(a)), a)))

→ h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a))))

The size of a TSLP A = (N,Σ, S, P ) is defined as the sum of the sizes of all right-hand sides of P .
Due to multiple occurrences of parameters in right-hand sides, TSLPs are able to generate trees
of doubly exponential size.

Example 37 Let the TSLP An consist of the following productions:

S → A0(a)
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n
An(y1) → f(y1, y1)

Then eval(An) is a complete binary tree of height 2n. Thus, |eval(An)| = 2 · 22n

− 1.

Example 37 motivates the definition of linear TSLPs. A TSLP A = (N,S, P ) is linear if for every
rule (A(y1, . . . , yn) → t) ∈ P , each of the parameters y1, . . . , yn occurs exactly once in the tree t.
The TSLP from Example 36 is linear. In contrast to non-linear TSLPs, for a linear TSLP A the
size of tree eval(A) is bounded by 2O(|A|). Efficient algorithms that generate for a given input tree
t a linear TSLP A with eval(A) = t are described in [18, 91] and [2] (for a slightly different type
of grammars). A TSLP is nothing else than a context-free tree grammar that generates a single
tree. An extension of TSLPs to higher order tree grammars was recently proposed in [76].

Let us now consider algorithmic problems for TSLP-compressed trees. Concerning equality
checking, we have the following:
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Theorem 38 ([18, 126]) For two given TSLPs A and B it can be checked in PSPACE, whether
eval(A) = eval(B). For two given linear TSLPs A and B it can be checked in P, whether eval(A) =
eval(B).

For the PSPACE-bound in the first statement, one has to notice that a TSLP A can also be viewed
as a graph generating grammar that produces a node-labelled directed acyclic graph dag(A), whose
unfolding is eval(A). This graph grammar is obtained by merging in a right-hand side t(y1, . . . , yn)
of a production A(y1, . . . , yn) → t all occurrences of a variable yi into a single yi-labelled node.
The number of nodes of dag(A) is bounded singly exponential in the size of A, hence a node of
dag(A) can be represented in polynomial space. A path in dag(A) that starts in the root can be
represented by the sequence of natural number n1, . . . , nk, such that in the ith step the path moves
from the current node to its nth

i child node. A PSPACE-algorithm for checking eval(A) 6= eval(B)
(this suffices, since PSPACE is closed under complement) simply guesses such a path p step by
step and thereby stores the nodes of dag(A) and dag(B), respectively, that are reached by the path
p. The algorithm rejects as soon as these two nodes are labelled by different symbols. It remains
open, whether equality of TSLP-compressed trees can be checked more efficiently.

For the second statement of Theorem 38 one constructs in polynomial time from a linear
TSLP A a (string generating) SLP A

′ such that eval(A′) represents a depth-first left-to-right
transversal of the tree eval(A). For two TSLPs A and B we have eval(A) = eval(B) if and only
if eval(A′) = eval(B′). Hence, equality of trees that are represented by linear TSLPs can be
reduced to checking equality of SLP-compressed strings, which can be checked in polynomial time
by Theorem 9. In [126], the second statement of Theorem 38 is shown by a direct extension of
Plandowski’s algorithm for string SLPs.

In [90, 92], the problem of evaluating tree automata over TSLP-compressed input trees is
considered. A tree automaton runs on an node-labelled input tree bottom-up and thereby assigns
states to tree nodes. Transitions are of the form (q1, . . . , qn, f, q), where f is a symbol (node label)
of rank n and q1, . . . , qn, q are states of the tree automaton. Then a run of the tree automaton
is a mapping ρ from the tree nodes to states that is consistent with the set of transitions in
the following sense: If a tree node is labelled with the symbol f (of rank n) and v1, . . . , vn are
the children of v in that order, then (ρ(v1), . . . , ρ(vn), f, ρ(v)) must be a transition of the tree
automaton. A tree automaton accepts a tree if there is a run that assigns a final state to the root
of the tree (every tree automaton has a distinguished set of final states).

Theorem 39 The following complexity results hold:

• It is PSPACE-complete to check for a given TSLP A and a given tree automaton A, whether
A accepts eval(A) [90].

• It is P-complete to check for a given linear TSLP A and a given tree automaton A, whether
A accepts eval(A) [92].

The polynomial time algorithm in the linear case works in two steps:

(1) Transform in polynomial time the input TSLP A into a TSLP B such that eval(A) = eval(B)
and every nonterminal of B has rank at most one. This is the difficult step in [92].

(2) Evaluate the input tree automaton A on eval(B) in polynomial time, using the fact that every
nonterminal of B has rank at most one, see [90].

Several other algorithmic problems for TSLP-compressed input trees are studied in [20, 41, 80,
127, 128].

15.2 Pictures

A picture over the alphabet Σ is a mapping p : {1, . . . , n} × {1, . . . ,m} → Σ for some n,m ≥ 1.
We say that (n,m) is the dimension of the picture p. For more information on pictures see [47].
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A picture can be viewed as a 2-dimensional word. We define two partial concatenation operations
for pictures. Given two pictures p1 and p2, where p1 has dimension (n,m) and p2 has dimension
(n, k), we define the horizontal concatenation (p1, p2) : {1, . . . , n}×{1, . . . ,m+ k} → Σ (a picture
of dimension (n,m + k)) as follows, where x ∈ {1, . . . , n} and y ∈ {1, . . . ,m + k}:

(p1, p2)(x, y) =

{
p1(x, y) if y ≤ m

p2(x, y − m) if y > m

Given two pictures p1 and p2, where p1 has dimension (m,n) and p2 has dimension (k, n), we
define the vertical concatenation

(
p2

p1

)
: {1, . . . ,m + k} × {1, . . . , n} → Σ (a picture of dimension

(m + k, n)) as follows, where x ∈ {1, . . . ,m + k} and y ∈ {1, . . . , n}:

(
p2

p1

)
(x, y) =

{
p1(x, y) if x ≤ m

p2(x − m, y) if x > m

It is now straightforward to define 2-dimensional straight-line programs (briefly 2SLPs). The
productions of a 2SLP A have one of the forms

X → a, X → (Y,Z), X →

(
Z

Y

)
,

where X,Y,Z are nonterminals and a is a terminal symbol. In order to generate a picture, we
have to require that the dimensions match. Define the dimension of a nonterminal X inductively
as follows. If the unique production for X has the form X → a, then the dimension of X is (1, 1).
If the unique production for X has the form X → (Y,Z), then, inductively the dimension (n,m)
(resp., (k, ℓ)) of Y (resp., Z) is already defined. We require that n = k and define the dimension
of X as (n,m+ ℓ). The constraint for a production X →

(
Z
Y

)
is analogous. If the dimension of the

initial nonterminal S is (n,m), then the 2SLP A defines a picture eval(A) of dimension (n,m).
Algorithmic problems for 2SLPs were studied in [11]. For equality checking, the following was

shown; recall the definition of the complexity class coRP from Section 11.

Theorem 40 ([11]) The problem of checking eval(A) = eval(B) for two given 2SLPs belongs to
the complexity class coRP.

For the proof, one encodes a picture p of dimension (m,n) over the alphabet {1, . . . , k} as the
polynomial

polyp(x, y) =
∑

1≤i≤m

∑

1≤j≤n

p(i, j)xi−1yj−1.

For two 2SLPs A and B, we have eval(A) = eval(B) if and only if polyeval(A)(x, y)−polyeval(B)(x, y)
is the zero polynomial. Now, from a given 2SLP A one can construct in polynomial time a circuit
over the polynomial ring Z[x, y] that defines the polynomial polyeval(A)(x, y). Hence, the initial
question whether eval(A) = eval(B) can be reduced to the problem whether a circuit over the
polynomial ring Z[x, y] evaluates to the zero polynomial. This is an instance of the algebraic
identity testing that we already encountered after Theorem 30 and that belongs to coRP. It
remains open, whether equality of 2SLP-compressed pictures can be checked in polynomial time.

Also pattern matching problems can naturally be defined for pictures. A picture p of dimension
(k, ℓ) occurs in the picture q of dimension (m,n) if there exist 1 ≤ i ≤ m and 1 ≤ j ≤ n such that
(i) i + k − 1 ≤ m, (ii) j + ℓ − 1 ≤ n, and (iii) for all 0 ≤ x ≤ k − 1 and 0 ≤ y ≤ ℓ − 1 we have
q(i + x, j + y) = p(x + 1, y + 1). The following two results from [11] pinpoint the complexity of
2-dimensional pattern matching:

Theorem 41 ([11]) It is coNP-complete to check for an explicitly given picture p and a 2SLP A,
whether p occurs in eval(A).
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The class Σp
2 consists of all complements of Πp

2-sets, see the end of Section 11 for the definition of
Πp

2. Hence, L ⊆ Σ∗ belongs to Σp
2 if there exists a polynomial time set P ⊆ Σ∗ × {0, 1}∗ × {0, 1}∗

and a polynomial p(x) such that for all u ∈ Σ∗ we have:

u ∈ L ⇐⇒ ∃v ∈ {0, 1}≤p(|u|) ∀w ∈ {0, 1}≤p(|u|) : (u, v, w, ) ∈ P (2)

Theorem 42 ([11]) It is Πp
2-complete to check for two given 2SLP A and B, whether eval(A)

occurs in eval(B).

The upper complexity bounds in Theorem 41 and 42 are straightforward. For instance, for two
given 2SLPs A and B the definition of “eval(A) occurs in eval(B)” directly leads to a formula
of the general form (2). The lower complexity bound in Theorem 41 is shown by a reduction
from 3SAT. Assume that F (x1, . . . , xn) =

∧n
i=1 Ci is a boolean formula, where every Ci is a

conjunction of three literals (a literal is a boolean variable or a negated boolean variable) and
x1, . . . , xm are the variables that occur in F . Hence there are 2m truth assignments. For a given
clause Ci = (A ∨ B ∨ C), where A, B, and C are literals, one can construct an SLP Ai over the
alphabet {0, 1} such that |eval(Ai)| = 2m and for all 1 ≤ j ≤ 2m, eval(Ai)[j] is the truth value of
Ci under the jth truth assignment in lexicographic order. Now, one can easily construct a 2SLP
A such that eval(A) is a picture of dimension (n, 2m) such that the ith row of eval(A) is the word
eval(Ai) for every 1 ≤ i ≤ n. Hence, the formula F is satisfiable if and only if the picture eval(A)
contains a column only consisting of 1’s. The lower bound in Theorem 42 is shown by a reduction
from a Πp

2-complete variant of the subsetsum problem.

16 Open problems

Let us state some open problems that in the opinion of the author deserve further investigations.

• Is the problem of checking eval(A) = eval(B) for two given SLPs A and B P-complete, or
does this problem belong to the parallel complexity class NC (see Section 5)? The latter
would mean that the problem can be solved in polylogarithmic time using polynomially
many processors. The same question can be considered also for the fully compressed pattern
matching problem (see Section 6).

• What is the precise complexity of the fully compressed subsequence matching problem (see
Section 8)? The author conjectures that this problem is PSPACE-complete.

• Is the compressed word problem (see Section 11) for a finitely generated linear group solvable
in polynomial time? What about subclasses of linear groups, e.g., braid groups and polycyclic
groups.

• The compressed subgroup membership problem for a free group F (Σ) is the following problem:
Given SLPs A, B1, . . . , Bn (over Σ ∪ Σ−1), does the word eval(A) represent a group element
from the subgroup of F (Σ) generated by eval(B1), . . . , eval(Bn)? We are only aware of an
exponential time algorithm for this problem.

• Can equality of 2SLP-compressed pictures (see Section 15.2) be checked in polynomial time?
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[40] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi. A faster grammar-
based self-index. In Proceedings of the 6th International Conference on Language and Au-
tomata Theory and Applications, LATA 2012, number 7183 of Lecture Notes in Computer
Science, pages 240–251. Springer, 2012.

[41] A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed
terms. ACM Trans. Comput. Log., 12(4):26, 2011.

[42] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-
Ziv encoding (extended abstract). In Proceedings of the 5th Scandinavian Workshop on
Algorithm Theory, SWAT 1996, number 1097 in Lecture Notes in Computer Science, pages
392–403. Springer, 1996.

[43] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Randomized efficient algorithms
for compressed strings: The finger-print approach (extended abstract). In Proceedings of the
7th Annual Symposium on Combinatorial Pattern Matching, CPM 1996, number 1075 of
Lecture Notes in Computer Science, pages 39–49. Springer, 1996.

[44] P. Gawrychowski. Optimal pattern matching in LZW compressed strings. In Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages
362–372. SIAM, 2011.

[45] P. Gawrychowski. Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and
deterministic. In Proceedings of the 19th Annual European Symposium on Algorithms, ESA
2011, number 6942 of Lecture Notes in Computer Science, pages 421–432. Springer, 2011.

[46] R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances in
Applied Mathematics, 38(3):302–323, 2007.

[47] D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 3, pages 216–267. Springer, 1997.

[48] L. M. Goldschlager. ε-productions in context-free grammars. Acta Informatica, 16:303–308,
1981.

[49] K. Goto, H. Bannai, S. Inenaga, and M. Takeda. Fast q-gram mining on SLP compressed
strings. In Proceedings of the 18th International Symposium on String Processing and Infor-
mation Retrieval, SPIRE 2011, number 7024 of Lecture Notes in Computer Science, pages
278–289. Springer, 2011.

[50] K. Goto, H. Bannai, S. Inenaga, and M. Takeda. Speeding-up $q$-gram mining on grammar-
based compressed texts. Technical report, arXiv.org, 2012. http://arxiv.org/abs/1202.

3311.

[51] S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2(4):304–310,
1973.

34



[52] S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural analysis. In
Proceedings of the 16th European Symposium on Programming, ESOP 2007, number 4421
of Lecture Notes in Computer Science, pages 253–267. Springer, 2007.

[53] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1999.

[54] C. Gutiérrez. Satisfiability of word equations with constants is in exponential space. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS
1998, pages 112–119. IEEE Computer Society Press, 1998.
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